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Euclidean Algorithm

Let p/q ∈ Q. The Euclidean Algorithm is used to find the gcd of p and q:

p = a0q + r0

q = a1r0 + r1

r0 = a2r1 + r2

· · ·

rn−2 = anrn−1.

However, it also has the following consequence:
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= a0 + Φn
k=1

1

ak
.
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Continued Fractions

Let now x ∈ R. Then

x = [x ] +
1

1/{x} = [x ] +
1

[1/{x}] +
1

1/{1/{x}}

= · · ·

=: a0(x) + Φ∞k=1

1

ak(x)
,

where ak(x) ∈ Z ∪ {∞}, which is called a continued fraction representation of

x . Set

xn := a0(x) + Φn
k=1

1

ak(x)
=

pn
qn
∈ Q

to be the n-th convergent of the continued fraction.



Continued Fractions

Fact

Continued fraction

a0(x) + Φ∞k=1

1

ak(x)

is finite if and only if x ∈ Q. Moreover, if x ∈ R \Q, then

1

qn(qn + qn+1)
≤ |x − xn| ≤

1

qnqn+1
.

Consequence

Convergent xn is the optimal rational approximant of the irrational number x

among all rational numbers with denominators of a fixed size.
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Continued Fraction of a Series

Start with a formal power series at infinity

f (z) =
∞∑
k=1

fkz
−k

such that the Hankel determinants of the coefficients {fk} are non-zero. Then

f (z) = Φ∞k=1

bk

z − ak

for some well-defined constants {ak , bk}. Denote [n/n]f the n-th convergent:

[n/n]f (z) := Φn
k=1

bk

z − ak
.

Then it is known that (
f − [n/n]f

)
(z) = O

(
z−2n−1)

and the above relation uniquely determines [n/n]f . Moreover,(
qnf − pn

)
(z) = O

(
z−n−1), [n/n]f =: pn/qn.



Padé Approximants

Equivalently, let pn, qn be polynomials of degree at most n defined by

(qnf − pn)(z) = O
(
z−n−1).

Such a pair of polynomials may not be unique, but their ratio always is with no

conditions on f . Thus, we normalize qn to be monic, set

pn/qn =: [n/n]f ,

and call it the diagonal Padé approximant of f of order n.

If the power series for f is convergent and Γ encircles infinity within the disk of

convergence, then

0 =

∮
Γ

zk(qnf − pn)(z)dz =

∮
Γ

zkqn(z)f (z)dz

for k = 0, n − 1 and z belonging to the exterior of Γ. This can be rewritten as

0 =

∫
xkqn(x)dµ(x), f (z) =

∫
dµ(x)

z − x
,

where µ is in general complex measure.
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Markov’s Theorem

Assume that µ is a positive measure on an interval [a, b] ⊂ R. Since

0 =

∫
xkqn(x)dµ(x), k = 0, n − 1,

it holds that qn(x) =
∏n

i=1(x − xn,i ) and xn,i ∈ [a, b]. Therefore,

[n/n]f (z) =
pn(z)

qn(z)
=

n∑
i=1

λn,i

z − xn,i
=:

∫
dµn(x)

z − x
.

Then the asymptotics

O
(
z−2n−1) =

∫
d(µ− µn)(x)

z − x
=

1

z

∫ ∞∑
k=0

(x
z

)k
d(µ− µn)(x)

implies that ∫
xkdµ(x) =

∫
xkdµn(x), k = 0, 2n.

Since (z − x)−1 is a continuous function of x on [a, b], it holds that

[n/n]f (z)→ f (z) =

∫
dµ(x)

z − x

locally uniformly in C \ [a, b]. Can we quantify this convergence?



Equilibrium Measures

Let ν be a compactly supported positive Borel measure. A function

V ν(z) := −
∫

log |z − x |dν(x)

is called the logarithmic potential of ν. Moreover, the number

I [µ] := −
∫∫

log |z − x |dν(x)dν(z)

is called the logarithmic energy of ν.

Given a compact set K , either every Borel measure supported on K has infinite

logarithmic energy, in which case K is called polar, or there exists the unique

probability Borel measure ωK such that

I [ωK ] = inf I [ν],

where the infimum is taken over all probability Borel measures supported on K .

The measure ωK is called the equilibrium measure of K .



Green’s Function

Let K be a non-polar compact set with connected complement D. There exists

the unique function gK (z ,∞), which is called Green’s function for D, such that

• gK (z ,∞) is positive and harmonic in D \ {∞};
• gK (z ,∞)− log |z | is bounded near infinity;

• gK (z ,∞) = 0 for quasi every (up to a polar set) z ∈ ∂D.

The quantity

cap(K) := exp
{

lim
z→∞

(
log |z | − gK (z ,∞)

)}
is called the logarithmic capacity of K .

In fact, it holds that

gK (z ,∞) = I [ωK ]− V ωK (z) ⇒ cap(K) = e−I [ωK ].

Moreover, if D is simply connected, we have that

gK (z ,∞) = log |Φ(z)|,

where Φ is a conformal map of D onto |z | > 1 such that Φ(∞) =∞.
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Ullman-Stahl-Totik Regularity of Measures

Let µ be a positive Borel measure with compact support K . Let Qn be a monic

polynomial of degree n such that∫
zkQn(z)dµ(z) = 0, k = 0, n − 1.

The measure µ is called UST-regular if

lim
n→∞

(∫
|Qn|2dµ

)1/2n

= cap(K).

Equivalently, µ is UST-regular if

lim
n→∞

|Qn(z)|1/n = e−VωK (z)

locally uniformly outside of the convex hull of K .

In particular, if

cap

({
z ∈ K : lim sup

δ→0+

logµ{w : |w − z | < δ}
log δ

<∞
})

= cap(K),

the measure µ is UST-regular.
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Weak Asymptotics

Theorem (Stahl-Totik)

Let µ be a UST-regular positive Borel measure with compact support K ⊂ R
and

f (z) =

∫
dµ(x)

z − x
.

Write qn(z) =
∏n

i=0(z − xn,i ). Then 1
n

∑n
i=0 δ(xn,i )

∗→ ωK . Moreover,

lim
n→∞

|f (z)− [n/n]f (z)|1/2n = e−gK (z,∞)

locally uniformly outside of the convex hull of K .



Stahl’s Class

Let f be a holomorphic germ at infinity. We say that f ∈ S if it can be

meromorphically continued along any path in C \ Ef , where Ef is polar and

there exists at least one point in C \ Ef with distinct continuations.

Functions in class S are necessarily multi-valued, while Padé approximants are

single-valued. Hence, if they converge at all, they need to select a single-valued

branch. Which one?



Minimal Capacity Contours

A compact set K is called admissible for f if C \ K is connected and f has a

meromorphic and single-valued extension there.

Theorem (Stahl)

Let f ∈ S. There exists the “unique” admissible compact ∆f such that

cap(∆f ) ≤ cap(K)

for any admissible K . Moreover, for any compact set F ⊂ Df := C \∆f and

ε > 0, it holds that

lim
n→∞

cap
{
z ∈ F :

∣∣∣|f (z)− [n/n]f (z)|1/2n − e−g∆f
(z,∞)

∣∣∣ > ε
}

= 0.

The domain Df is optimal in the sense that the convergence does not hold in

any other domain D such that D \ Df 6= ∅.



Symmetry Property

Theorem (Stahl)

The minimal capacity contour ∆f can be decomposed as

∆f = E0 ∪ E1 ∪
⋃

∆j ,

where E0 ⊆ Ef , E1 consists of isolated points to which f has unrestricted

continuations from infinity leading to at least two distinct function elements,

and ∆j are open analytic arcs. Green’s function for Df satisfies

∂g∆f

∂n+
=
∂g∆f

∂n−
on

⋃
∆j ,

where ∂/∂n± are the one-sided normal derivatives on
⋃

∆j .



Multipoint Padé Approximants

Padé approximants [n/n]f interpolate f at infinity with maximal order. What

if we want to interpolate at more then one point?

We call a collection I = {In}, In = {vn,i}2n
i=1, an interpolation scheme if vn,i are

not necessarily distinct nor finite and belong to the domain of analyticity of f .

A rational function pn/qn =: [n/n; I]f is called a multipoint Padé approximant

of f associated with and interpolation scheme I if

qn(z)f (z)− pn(z)

vn(z)
= O

(
z−n−1)

has the same region of analyticity as f , where vn(z) :=
∏
|vn,i |<∞

(z − vn,i ).

Again, it holds that the rational function [n/n; I]f is uniquely defined.
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Green’s Functions and Potentials

Let K be a non-polar compact set with connected complement D. Given

w ∈ D \ {∞}, there exists the unique function gK (z ,w), which is called

Green’s function for D with pole at w , such that

• gK (z ,w) is positive and harmonic in D \ {w};
• gK (z ,w) + log |z − w | is bounded near w ;

• gK (z ,w) = 0 for quasi every z ∈ ∂D.

Let ω be a positive Borel measure supported in D. Then

GK (z ;ω) :=

∫
g(z ,w)dω(w)

is called the Green’s potential of ω relative to D.

It is known that there exists the unique measure ω̂ on K such that

GK (z ;ω) = V ω(z)− V ω̂(z) + cω

for some constant cω. The measure ω̂ is called the balayage measure of ω

relative to D (for measures with unbounded support one needs to spherically

renormalize logarithmic potentials).
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Weak Asymptotics

Theorem (Stahl-Totik)

Let µ be a UST-regular positive Borel measure with compact support K ⊂ R
and

f (z) =

∫
dµ(x)

z − x
.

Let I be a conjugate symmetric interpolation scheme for f asymptotic to some

measure ω, i.e.,

1

2n

2n∑
i=1

δ(vn,i )
∗→ ω,

which is supported in C \ K . Write qn(z) =
∏n

i=0(z − xn,i ). Then

1

n

n∑
i=0

δ(xn,i )
∗→ ω̂.

Moreover,

lim
n→∞

|f (z)− [n/n; I]f (z)|1/2n = e−GK (z;ω)

locally uniformly outside of the convex hull of K .



Contours Symmetric w.r.t. a Measure

Let f ∈ S and ω be a probability measure supported in C \ Ef . An admissible

compact ∆ is called a symmetric contour for f with respect to ω if it consists

of open analytic arcs and their endpoints and

∂G∆(·;ω)

∂n+
=
∂G∆(·;ω)

∂n−

at every smooth point of ∆.

Theorem (Gonchar-Rakhmanov)

Let f ∈ S and ∆ be symmetric for f w.r.t. ω and the jump of f across ∆ be

non-zero almost everywhere. If I is an interpolation scheme asymptotic to ω,

then for any compact set F ⊂ C \∆f and ε > 0, it holds that

lim
n→∞

cap
{
z ∈ F :

∣∣∣|f (z)− [n/n; I]f (z)|1/2n − e−G∆(z;ω)
∣∣∣ > ε

}
= 0.

Unlike the case of classical Padé approximants, the existence of a

symmetric contour is not shown but assumed.
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Contours Symmetric w.r.t. an Interpolation Scheme

Let ∆ be a rectifiable Jordan arc connecting ±1. Further, let

w(z) =
√

z2 − 1

be the branch holomorphic off ∆ that behaves like z at infinity. Define

Φ(z) = z + w(z)

which is an analytic continuation of the standard conformal map of C \ [−1, 1]

to the complement of the unit disk to C \∆.

Set

Φ(z , v) =
Φ(z)− Φ(v)

1− Φ(z)Φ(v)
, Φ(z ,∞) =

1

Φ(z)
.

Notice that Φ+(x , v)Φ−(x , v) ≡ 1 on ∆.

It is said that ∆ is symmetric w.r.t. an interpolation scheme I ⊂ D := C \∆ if∣∣Φ±n ∣∣ = O(1) and |Φn| = o(1) as n→∞

uniformly on ∆ and locally uniformly in D, where Φn(z) =
∏2n

i=1 Φ(z , vn,i ).
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Contours Symmetric w.r.t. an Interpolation Scheme

Theorem (Baratchart-Ya.)

Let ∆ be a rectifiable Jordan arc connecting ±1 with additional technical

condition around around the endpoints. Then the following are equivalent:

(a) there exists an interpolation scheme I, supported in D, such that ∆ is

symmetric w.r.t. I;

(b) there exists a positive compactly supported Borel measure ω, supported

in D, such that ∆ is symmetric w.r.t. ω;

(c) ∆ is an analytic Jordan arc, i.e., there exists a univalent function Ξ(z)

holomorphic in some neighborhood of [−1, 1] such that ∆ = Ξ([−1, 1]).



Strong Asymptotics

Theorem (Baratchart-Ya.)

Let ∆ be an analytic Jordan arc connecting ±1 that is symmetric w.r.t. I. Let

fρ(z) :=
1

2πi

∫
∆

ρ(t)

t − z

dt

w+(t)
,

where ρ is a non-vanishing Lipschitz continuous, generally complex-valued,

function on ∆. Then

fρ(z)− [n/n; I]fρ(z) =
1 + o(1)

w(z)
S2
ρ(z)Φn(z)

locally uniformly in D = C \∆, where

Sρ(z) := exp

{
w(z)

2πi

∫
F

log ρ(t)

t − z

dt

w+(t)

}
is the Szegő function of ρ.



Strong Asymptotics

Zeros of q8 and q24 when ρ(t) = et and the interpolation points are equally

distributed between 0 and −4i/3. In this case

∆ =

{
i− 2x

2− ix
: x ∈ [−1, 1]

}
.



Strong Asymptotics

Zeros of q24 and q66 when ρ(t) = t if Im(t) ≥ 0 and ρ(t) = t if Im(t) < 0.

The interpolation points are equally distributed between (i− 3)/4,

(87 + 6i)/104, and −i/10.



Symmetric Contours for Algebraic Functions

Theorem (Stahl)

Let f ∈ S and ∆f = E ∪
⋃

∆j be its minimal capacity (symmetric) contour.

Define

h(z) := ∂zg∆f (z), 2∂z := ∂x − i∂y .

The function h2 is holomorphic in C \ E with a double zero at infinity and the

arcs ∆j are orthogonal critical trajectories of the quadratic differential h2(z)dz2.

Assume in addition that f is a germ of an algebraic function (Ef is necessarily

finite). For each point e ∈ E denote by i(e) the bifurcation index of e, that is,

the number of different arcs ∆j incident with e. Then

h2(z) =
∏
e∈E

(z − e)i(e)−2
∏
e∈E2

(z − e)2j(e),

where E2 is the set of critical points of g∆f and j(e) is the order of e ∈ E2.



Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

Let R be the Riemann surface of h and E be the set of its ramification points.

Let symbol ·∗ stand for the conformal involution z∗ = (z ,−h) if z = (z , h). If

E has 2g + 2 points, then the genus of R is g .

Given v ∈R \ E , denote by g(·, v) a function that is harmonic in R \ {v , v∗},
normalized so that g(e, v) = 0 for e ∈ E , and such that

g(z , v)±

{
log |z − v |, |v | <∞,

− log |z |, v =∞,

are harmonic around v (+) and v∗ (−), respectively.

Let ∆ be a system of open analytic arcs and their endpoints and I be an

interpolation scheme in C \∆. We say that ∆ is symmetric w.r.t. (R, I) if

• R \∆, ∆ := π−1(∆), consists of two disjoint domains, say D(0) and

D(1), and no closed subset of ∆ has this property;

• the sums
∑2n

i=0 g
(
·, v (0)

n,i

)
are uniformly bounded above and below on ∆

and go to −∞ locally uniformly in D(1), where z (i) = π−1(z) ∩ D(i).
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Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

Fact

If ∆ is symmetric w.r.t. (R, I) and I is asymptotic to some measure ω, then

∆ is symmetric w.r.t. ω.

Theorem (Ya.)

Let c > 0 be a constant such that Lc := {s : g∆f (s) = c} is a smooth Jordan

curve. If Ξ(z) is a conformal function in the interior of Lc such that Ξ(e) = e

for every e ∈ E , then there exists an interpolation scheme I in C \ Ξ(∆) such

that Ξ(∆f ) is symmetric with respect to (R, I).
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Nuttall-Szegő Functions

Proposition (Ya.)

Let ρ be a Lipschitz continuous and non-vanishing function on ∆. There exists

a sectionally meromorphic in R \∆ function Ψn(z) with the zero/pole divisor

(n − g)∞(1) + zn,1 + · · ·+ zn,g − n∞(0)

for some set of g points zn,i on R, and whose traces on ∆ are continuous and

satisfy

Ψn−(s) =
(
ρ(s)/vn(s)

)
Ψn+(s), s ∈ ∆.

If functions Ψ(z),Ψ∗(z) have these properties, then Ψ(z)/Ψ∗(z) = R(π(z))

for some rational function R(z) with at most g/2 poles. In particular, if {zn,i}
does not contain involution-symmetric pairs (zn,i = z∗n,j for some i 6= j), then

Ψn(z) is unique up to a multiplicative constant.



Strong-Type Asymptotics

Theorem (Ya.)

Let ∆ be symmetric w.r.t. (R, I) and set w 2(z) =
∏

e∈E (z − e). Assume that

there exists an infinite subsequence N∗ such that the closure of
{
{zn,i}gi=1

}
n∈N∗

contains no divisor with an involution-symmetric pair nor with ∞(0). Let

fρ(z) :=
1

2πi

∫
∆

ρ(t)

t − z

dt

w+(t)
,

where ρ is a non-vanishing Lipschitz smooth function on ∆. Then

fρ(z)− [n/n; I]fρ(z) =
vn(z)

w(z)

Ψn

(
z (1)
)

Ψn

(
z (0)
) 1 + εn1(z) + εn2(z)Υn

(
z (1)
)

1 + εn1(z) + εn2(z)Υn

(
z (0)
)

where εni (z) = o(1) locally uniformly in D and vanish at infinity and Υn is a

rational function on R that vanishes at ∞(0) and whose divisor of poles is

equal to zn,1 + · · ·+ zn,g +∞(1). Moreover,∣∣∣∣∣vn(z)

w(z)

Ψn

(
z (1)
)

Ψn

(
z (0)
) ∣∣∣∣∣ ≤ CK exp

{
2n∑
i=1

g
(
z (1), v

(0)
n,i

)}
= o(1)

for every closed subset K ⊂ D.



Strong-type Asymptotics

Zeros of q36, q60, and q34 to (z4 − 1)−1/2 corresponding to the interpolation

schemes {±1± i}, {1/4 + i,−1/4− i, 1− i/4,−1 + i/4}, and {1 + i,−1− i}.



Strong-type Asymptotics

Zeros of q36, q60, and q34 to (z4 − 1)−1/4 corresponding to the interpolation

schemes {±1± i}, {1/4 + i,−1/4− i, 1− i/4,−1 + i/4}, and {1 + i,−1− i}.


