## Symmetric Contours and Convergent Interpolation

Maxim L. Yattselev

凹IUPUI
SCHOOL OF SCIENCE
Department of Mathematical Sciences

Spaces of An. Functions: Approximation, Interpolation, Sampling Centre de Recerca Matemàtica, Barcelona, Spain
November 27th, 2019

## Euclidean Algorithm

Let $p / q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of $p$ and $q$ :

$$
\begin{aligned}
p & =a_{0} q+r_{0} \\
q & =a_{1} r_{0}+r_{1} \\
r_{0} & =a_{2} r_{1}+r_{2} \\
& \cdots \\
r_{n-2} & =a_{n} r_{n-1} .
\end{aligned}
$$

## Euclidean Algorithm

Let $p / q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of $p$ and $q$ :

$$
\begin{aligned}
p & =a_{0} q+r_{0} \\
q & =a_{1} r_{0}+r_{1} \\
r_{0} & =a_{2} r_{1}+r_{2} \\
& \cdots \\
r_{n-2} & =a_{n} r_{n-1} .
\end{aligned}
$$

However, it also has the following consequence:

$$
\begin{gathered}
\frac{p}{q}=a_{0}+\frac{r_{0}}{q}=a_{0}+\frac{1}{a_{1}+\frac{r_{1}}{r_{0}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{r_{2}}{r_{1}}}} \\
=a_{0}+\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{n}}}}=a_{0}+\Phi_{k=1}^{n} \frac{1}{a_{k}} .
\end{gathered}
$$

## Continued Fractions

Let now $x \in \mathbb{R}$. Then

$$
\begin{aligned}
x & =[x]+\frac{1}{1 /\{x\}}=[x]+\frac{1}{[1 /\{x\}]+\frac{1}{1 /\{1 /\{x\}\}}}=\cdots \\
& =: a_{0}(x)+\Phi_{k=1}^{\infty} \frac{1}{a_{k}(x)},
\end{aligned}
$$

where $a_{k}(x) \in \mathbb{Z} \cup\{\infty\}$, which is called a continued fraction representation of $x$. Set

$$
x_{n}:=a_{0}(x)+\Phi_{k=1}^{n} \frac{1}{a_{k}(x)}=\frac{p_{n}}{q_{n}} \in \mathbb{Q}
$$

to be the $n$-th convergent of the continued fraction.

## Continued Fractions

## Fact

Continued fraction

$$
a_{0}(x)+\Phi_{k=1}^{\infty} \frac{1}{a_{k}(x)}
$$

is finite if and only if $x \in \mathbb{Q}$. Moreover, if $x \in \mathbb{R} \backslash \mathbb{Q}$, then

$$
\frac{1}{q_{n}\left(q_{n}+q_{n+1}\right)} \leq\left|x-x_{n}\right| \leq \frac{1}{q_{n} q_{n+1}}
$$

## Fact

Continued fraction

$$
a_{0}(x)+\Phi_{k=1}^{\infty} \frac{1}{a_{k}(x)}
$$

is finite if and only if $x \in \mathbb{Q}$. Moreover, if $x \in \mathbb{R} \backslash \mathbb{Q}$, then

$$
\frac{1}{q_{n}\left(q_{n}+q_{n+1}\right)} \leq\left|x-x_{n}\right| \leq \frac{1}{q_{n} q_{n+1}}
$$

## Consequence

Convergent $x_{n}$ is the optimal rational approximant of the irrational number $x$ among all rational numbers with denominators of a fixed size.

## Continued Fraction of a Series

Start with a formal power series at infinity

$$
f(z)=\sum_{k=1}^{\infty} f_{k} z^{-k}
$$

such that the Hankel determinants of the coefficients $\left\{f_{k}\right\}$ are non-zero. Then

$$
f(z)=\Phi_{k=1}^{\infty} \frac{b_{k}}{z-a_{k}}
$$

for some well-defined constants $\left\{a_{k}, b_{k}\right\}$. Denote $[n / n]_{f}$ the $n$-th convergent:

$$
[n / n]_{f}(z):=\Phi_{k=1}^{n} \frac{b_{k}}{z-a_{k}}
$$

Then it is known that

$$
\left(f-[n / n]_{f}\right)(z)=\mathcal{O}\left(z^{-2 n-1}\right)
$$

and the above relation uniquely determines $[n / n]_{f}$. Moreover,

$$
\left(q_{n} f-p_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right), \quad[n / n]_{f}=: p_{n} / q_{n}
$$

## Padé Approximants

Equivalently, let $p_{n}, q_{n}$ be polynomials of degree at most $n$ defined by

$$
\left(q_{n} f-p_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right)
$$

Such a pair of polynomials may not be unique, but their ratio always is with no conditions on $f$. Thus, we normalize $q_{n}$ to be monic, set

$$
p_{n} / q_{n}=:[n / n]_{f},
$$

and call it the diagonal Padé approximant of $f$ of order $n$.

Equivalently, let $p_{n}, q_{n}$ be polynomials of degree at most $n$ defined by

$$
\left(q_{n} f-p_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right)
$$

Such a pair of polynomials may not be unique, but their ratio always is with no conditions on $f$. Thus, we normalize $q_{n}$ to be monic, set

$$
p_{n} / q_{n}=:[n / n]_{f},
$$

and call it the diagonal Padé approximant of $f$ of order $n$.
If the power series for $f$ is convergent and $\Gamma$ encircles infinity within the disk of convergence, then

$$
0=\oint_{\Gamma} z^{k}\left(q_{n} f-p_{n}\right)(z) \mathrm{d} z=\oint_{\Gamma} z^{k} q_{n}(z) f(z) \mathrm{d} z
$$

for $k=\overline{0, n-1}$ and $z$ belonging to the exterior of $\Gamma$. This can be rewritten as

$$
0=\int x^{k} q_{n}(x) \mathrm{d} \mu(x), \quad f(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

where $\mu$ is in general complex measure.

## Markov's Theorem

Assume that $\mu$ is a positive measure on an interval $[a, b] \subset \mathbb{R}$. Since

$$
0=\int x^{k} q_{n}(x) \mathrm{d} \mu(x), \quad k=\overline{0, n-1}
$$

it holds that $q_{n}(x)=\prod_{i=1}^{n}\left(x-x_{n, i}\right)$ and $x_{n, i} \in[a, b]$. Therefore,

$$
[n / n]_{f}(z)=\frac{p_{n}(z)}{q_{n}(z)}=\sum_{i=1}^{n} \frac{\lambda_{n, i}}{z-x_{n, i}}=: \int \frac{\mathrm{d} \mu_{n}(x)}{z-x}
$$

Then the asymptotics

$$
\mathcal{O}\left(z^{-2 n-1}\right)=\int \frac{\mathrm{d}\left(\mu-\mu_{n}\right)(x)}{z-x}=\frac{1}{z} \int \sum_{k=0}^{\infty}\left(\frac{x}{z}\right)^{k} \mathrm{~d}\left(\mu-\mu_{n}\right)(x)
$$

implies that

$$
\int x^{k} \mathrm{~d} \mu(x)=\int x^{k} \mathrm{~d} \mu_{n}(x), \quad k=\overline{0,2 n}
$$

Since $(z-x)^{-1}$ is a continuous function of $x$ on $[a, b]$, it holds that

$$
[n / n]_{f}(z) \rightarrow f(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

locally uniformly in $\overline{\mathbb{C}} \backslash[a, b]$. Can we quantify this convergence?

## Equilibrium Measures

Let $\nu$ be a compactly supported positive Borel measure. A function

$$
V^{\nu}(z):=-\int \log |z-x| \mathrm{d} \nu(x)
$$

is called the logarithmic potential of $\nu$. Moreover, the number

$$
I[\mu]:=-\iint \log |z-x| \mathrm{d} \nu(x) \mathrm{d} \nu(z)
$$

is called the logarithmic energy of $\nu$.
Given a compact set $K$, either every Borel measure supported on $K$ has infinite logarithmic energy, in which case $K$ is called polar, or there exists the unique probability Borel measure $\omega_{K}$ such that

$$
I\left[\omega_{K}\right]=\inf I[\nu]
$$

where the infimum is taken over all probability Borel measures supported on $K$. The measure $\omega_{K}$ is called the equilibrium measure of $K$.

## Green's Function

Let $K$ be a non-polar compact set with connected complement $D$. There exists the unique function $g_{K}(z, \infty)$, which is called Green's function for $D$, such that

- $g_{K}(z, \infty)$ is positive and harmonic in $D \backslash\{\infty\}$;
- $g_{K}(z, \infty)-\log |z|$ is bounded near infinity;
- $g_{K}(z, \infty)=0$ for quasi every (up to a polar set) $z \in \partial D$.

The quantity

$$
\operatorname{cap}(K):=\exp \left\{\lim _{z \rightarrow \infty}\left(\log |z|-g_{K}(z, \infty)\right)\right\}
$$

is called the logarithmic capacity of $K$.

## Green's Function

Let $K$ be a non-polar compact set with connected complement $D$. There exists the unique function $g_{K}(z, \infty)$, which is called Green's function for $D$, such that

- $g_{K}(z, \infty)$ is positive and harmonic in $D \backslash\{\infty\}$;
- $g_{K}(z, \infty)-\log |z|$ is bounded near infinity;
- $g_{K}(z, \infty)=0$ for quasi every (up to a polar set) $z \in \partial D$.

The quantity

$$
\operatorname{cap}(K):=\exp \left\{\lim _{z \rightarrow \infty}\left(\log |z|-g_{K}(z, \infty)\right)\right\}
$$

is called the logarithmic capacity of $K$.
In fact, it holds that

$$
g_{K}(z, \infty)=I\left[\omega_{K}\right]-V^{\omega_{K}}(z) \quad \Rightarrow \quad \operatorname{cap}(K)=e^{-I\left[\omega_{K}\right]}
$$

Moreover, if $D$ is simply connected, we have that

$$
g_{K}(z, \infty)=\log |\Phi(z)|
$$

where $\Phi$ is a conformal map of $D$ onto $|z|>1$ such that $\Phi(\infty)=\infty$.

## Ullman-Stahl-Totik Regularity of Measures

Let $\mu$ be a positive Borel measure with compact support K. Let $Q_{n}$ be a monic polynomial of degree $n$ such that

$$
\int \bar{z}^{k} Q_{n}(z) \mathrm{d} \mu(z)=0, \quad k=\overline{0, n-1}
$$

The measure $\mu$ is called UST-regular if

$$
\lim _{n \rightarrow \infty}\left(\int\left|Q_{n}\right|^{2} \mathrm{~d} \mu\right)^{1 / 2 n}=\operatorname{cap}(K)
$$

Equivalently, $\mu$ is UST-regular if

$$
\lim _{n \rightarrow \infty}\left|Q_{n}(z)\right|^{1 / n}=e^{-V^{\omega} K(z)}
$$

locally uniformly outside of the convex hull of $K$.

## Ullman-Stahl-Totik Regularity of Measures

Let $\mu$ be a positive Borel measure with compact support K. Let $Q_{n}$ be a monic polynomial of degree $n$ such that

$$
\int \bar{z}^{k} Q_{n}(z) \mathrm{d} \mu(z)=0, \quad k=\overline{0, n-1}
$$

The measure $\mu$ is called UST-regular if

$$
\lim _{n \rightarrow \infty}\left(\int\left|Q_{n}\right|^{2} \mathrm{~d} \mu\right)^{1 / 2 n}=\operatorname{cap}(K)
$$

Equivalently, $\mu$ is UST-regular if

$$
\lim _{n \rightarrow \infty}\left|Q_{n}(z)\right|^{1 / n}=e^{-V^{\omega} K(z)}
$$

locally uniformly outside of the convex hull of $K$.
In particular, if

$$
\operatorname{cap}\left(\left\{z \in K: \limsup _{\delta \rightarrow 0+} \frac{\log \mu\{w:|w-z|<\delta\}}{\log \delta}<\infty\right\}\right)=\operatorname{cap}(K)
$$

the measure $\mu$ is UST-regular.

## Theorem (Stahl-Totik)

Let $\mu$ be a UST-regular positive Borel measure with compact support $K \subset \mathbb{R}$ and

$$
f(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

Write $q_{n}(z)=\prod_{i=0}^{n}\left(z-x_{n, i}\right)$. Then $\frac{1}{n} \sum_{i=0}^{n} \delta\left(x_{n, i}\right) \xrightarrow{*} \omega_{K}$. Moreover,

$$
\lim _{n \rightarrow \infty}\left|f(z)-[n / n]_{f}(z)\right|^{1 / 2 n}=e^{-g_{K}(z, \infty)}
$$

locally uniformly outside of the convex hull of $K$.

## Stahl's Class

Let $f$ be a holomorphic germ at infinity. We say that $f \in \mathcal{S}$ if it can be meromorphically continued along any path in $\overline{\mathbb{C}} \backslash E_{f}$, where $E_{f}$ is polar and there exists at least one point in $\overline{\mathbb{C}} \backslash E_{f}$ with distinct continuations.

Functions in class $\mathcal{S}$ are necessarily multi-valued, while Padé approximants are single-valued. Hence, if they converge at all, they need to select a single-valued branch. Which one?

## Minimal Capacity Contours

A compact set $K$ is called admissible for $f$ if $\overline{\mathbb{C}} \backslash K$ is connected and $f$ has a meromorphic and single-valued extension there.

## Theorem (Stahl)

Let $f \in \mathcal{S}$. There exists the "unique" admissible compact $\Delta_{f}$ such that

$$
\operatorname{cap}\left(\Delta_{f}\right) \leq \operatorname{cap}(K)
$$

for any admissible $K$. Moreover, for any compact set $F \subset D_{f}:=\overline{\mathbb{C}} \backslash \Delta_{f}$ and $\varepsilon>0$, it holds that

$$
\lim _{n \rightarrow \infty} \operatorname{cap}\left\{z \in F:\left|\left|f(z)-[n / n]_{f}(z)\right|^{1 / 2 n}-e^{-g_{\Delta_{f}}(z, \infty)}\right|>\varepsilon\right\}=0
$$

The domain $D_{f}$ is optimal in the sense that the convergence does not hold in any other domain $D$ such that $D \backslash D_{f} \neq \varnothing$.

## Theorem (Stahl)

The minimal capacity contour $\Delta_{f}$ can be decomposed as

$$
\Delta_{f}=E_{0} \cup E_{1} \cup \bigcup \Delta_{j}
$$

where $E_{0} \subseteq E_{f}, E_{1}$ consists of isolated points to which $f$ has unrestricted continuations from infinity leading to at least two distinct function elements, and $\Delta_{j}$ are open analytic arcs. Green's function for $D_{f}$ satisfies

$$
\frac{\partial g_{\Delta_{f}}}{\partial n_{+}}=\frac{\partial g_{\Delta_{f}}}{\partial n_{-}} \quad \text { on } \quad \bigcup \Delta_{j}
$$

where $\partial / \partial n_{ \pm}$are the one-sided normal derivatives on $\cup \Delta_{j}$.

## Multipoint Padé Approximants

Padé approximants $[n / n]_{f}$ interpolate $f$ at infinity with maximal order. What if we want to interpolate at more then one point?

## Multipoint Padé Approximants

Padé approximants $[n / n]_{f}$ interpolate $f$ at infinity with maximal order. What if we want to interpolate at more then one point?

We call a collection $\mathcal{I}=\left\{I_{n}\right\}, I_{n}=\left\{v_{n, i}\right\}_{i=1}^{2 n}$, an interpolation scheme if $v_{n, i}$ are not necessarily distinct nor finite and belong to the domain of analyticity of $f$.

Padé approximants $[n / n]_{f}$ interpolate $f$ at infinity with maximal order. What if we want to interpolate at more then one point?

We call a collection $\mathcal{I}=\left\{I_{n}\right\}, I_{n}=\left\{v_{n, i}\right\}_{i=1}^{2 n}$, an interpolation scheme if $v_{n, i}$ are not necessarily distinct nor finite and belong to the domain of analyticity of $f$.

A rational function $p_{n} / q_{n}=:[n / n ; \mathcal{I}]_{f}$ is called a multipoint Padé approximant of $f$ associated with and interpolation scheme $\mathcal{I}$ if

$$
\frac{q_{n}(z) f(z)-p_{n}(z)}{v_{n}(z)}=\mathcal{O}\left(z^{-n-1}\right)
$$

has the same region of analyticity as $f$, where $v_{n}(z):=\prod_{\left|v_{n, i}\right|<\infty}\left(z-v_{n, i}\right)$. Again, it holds that the rational function $[n / n ; \mathcal{I}]_{f}$ is uniquely defined.

## Green's Functions and Potentials

Let $K$ be a non-polar compact set with connected complement $D$. Given $w \in D \backslash\{\infty\}$, there exists the unique function $g_{K}(z, w)$, which is called Green's function for $D$ with pole at $w$, such that

- $g_{K}(z, w)$ is positive and harmonic in $D \backslash\{w\}$;
- $g_{K}(z, w)+\log |z-w|$ is bounded near $w$;
- $g_{K}(z, w)=0$ for quasi every $z \in \partial D$.


## Green's Functions and Potentials

Let $K$ be a non-polar compact set with connected complement $D$. Given $w \in D \backslash\{\infty\}$, there exists the unique function $g_{k}(z, w)$, which is called Green's function for $D$ with pole at $w$, such that

- $g_{K}(z, w)$ is positive and harmonic in $D \backslash\{w\}$;
- $g_{K}(z, w)+\log |z-w|$ is bounded near $w$;
- $g_{K}(z, w)=0$ for quasi every $z \in \partial D$.

Let $\omega$ be a positive Borel measure supported in $D$. Then

$$
G_{K}(z ; \omega):=\int g(z, w) \mathrm{d} \omega(w)
$$

is called the Green's potential of $\omega$ relative to $D$.

## Green's Functions and Potentials

Let $K$ be a non-polar compact set with connected complement $D$. Given $w \in D \backslash\{\infty\}$, there exists the unique function $g_{K}(z, w)$, which is called Green's function for $D$ with pole at $w$, such that

- $g_{K}(z, w)$ is positive and harmonic in $D \backslash\{w\}$;
- $g_{K}(z, w)+\log |z-w|$ is bounded near $w$;
- $g_{K}(z, w)=0$ for quasi every $z \in \partial D$.

Let $\omega$ be a positive Borel measure supported in $D$. Then

$$
G_{K}(z ; \omega):=\int g(z, w) \mathrm{d} \omega(w)
$$

is called the Green's potential of $\omega$ relative to $D$.
It is known that there exists the unique measure $\widehat{\omega}$ on $K$ such that

$$
G_{K}(z ; \omega)=V^{\omega}(z)-V^{\widehat{\omega}}(z)+c_{\omega}
$$

for some constant $c_{\omega}$. The measure $\widehat{\omega}$ is called the balayage measure of $\omega$ relative to $D$ (for measures with unbounded support one needs to spherically renormalize logarithmic potentials).

## Theorem (Stahl-Totik)

Let $\mu$ be a UST-regular positive Borel measure with compact support $K \subset \mathbb{R}$ and

$$
f(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

Let $I$ be a conjugate symmetric interpolation scheme for $f$ asymptotic to some measure $\omega$, i.e.,

$$
\frac{1}{2 n} \sum_{i=1}^{2 n} \delta\left(v_{n, i}\right) \xrightarrow{*} \omega
$$

which is supported in $\overline{\mathbb{C}} \backslash K$. Write $q_{n}(z)=\prod_{i=0}^{n}\left(z-x_{n, i}\right)$. Then

$$
\frac{1}{n} \sum_{i=0}^{n} \delta\left(x_{n, i}\right) \xrightarrow{*} \widehat{\omega} .
$$

Moreover,

$$
\lim _{n \rightarrow \infty}\left|f(z)-[n / n ; \mathcal{I}]_{f}(z)\right|^{1 / 2 n}=e^{-G_{K}(z ; \omega)}
$$

locally uniformly outside of the convex hull of $K$.

## Contours Symmetric w.r.t. a Measure

Let $f \in \mathcal{S}$ and $\omega$ be a probability measure supported in $\overline{\mathbb{C}} \backslash E_{f}$. An admissible compact $\Delta$ is called a symmetric contour for $f$ with respect to $\omega$ if it consists of open analytic arcs and their endpoints and

$$
\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{+}}=\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{-}}
$$

at every smooth point of $\Delta$.

Let $f \in \mathcal{S}$ and $\omega$ be a probability measure supported in $\overline{\mathbb{C}} \backslash E_{f}$. An admissible compact $\Delta$ is called a symmetric contour for $f$ with respect to $\omega$ if it consists of open analytic arcs and their endpoints and

$$
\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{+}}=\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{-}}
$$

at every smooth point of $\Delta$.

## Theorem (Gonchar-Rakhmanov)

Let $f \in S$ and $\Delta$ be symmetric for $f$ w.r.t. $\omega$ and the jump of $f$ across $\Delta$ be non-zero almost everywhere. If $\mathcal{I}$ is an interpolation scheme asymptotic to $\omega$, then for any compact set $F \subset \overline{\mathbb{C}} \backslash \Delta_{f}$ and $\varepsilon>0$, it holds that

$$
\lim _{n \rightarrow \infty} \operatorname{cap}\left\{z \in F:\left|\left|f(z)-[n / n ; \mathcal{I}]_{f}(z)\right|^{1 / 2 n}-e^{-G_{\Delta}(z ; \omega)}\right|>\varepsilon\right\}=0
$$

Let $f \in \mathcal{S}$ and $\omega$ be a probability measure supported in $\overline{\mathbb{C}} \backslash E_{f}$. An admissible compact $\Delta$ is called a symmetric contour for $f$ with respect to $\omega$ if it consists of open analytic arcs and their endpoints and

$$
\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{+}}=\frac{\partial G_{\Delta}(\cdot ; \omega)}{\partial n_{-}}
$$

at every smooth point of $\Delta$.

## Theorem (Gonchar-Rakhmanov)

Let $f \in S$ and $\Delta$ be symmetric for $f$ w.r.t. $\omega$ and the jump of $f$ across $\Delta$ be non-zero almost everywhere. If $\mathcal{I}$ is an interpolation scheme asymptotic to $\omega$, then for any compact set $F \subset \overline{\mathbb{C}} \backslash \Delta_{f}$ and $\varepsilon>0$, it holds that

$$
\lim _{n \rightarrow \infty} \operatorname{cap}\left\{z \in F:\left|\left|f(z)-[n / n ; \mathcal{I}]_{f}(z)\right|^{1 / 2 n}-e^{-G_{\Delta}(z ; \omega)}\right|>\varepsilon\right\}=0
$$

Unlike the case of classical Padé approximants, the existence of a symmetric contour is not shown but assumed.

## Contours Symmetric w.r.t. an Interpolation Scheme

Let $\Delta$ be a rectifiable Jordan arc connecting $\pm 1$. Further, let

$$
w(z)=\sqrt{z^{2}-1}
$$

be the branch holomorphic off $\Delta$ that behaves like $z$ at infinity. Define

$$
\Phi(z)=z+w(z)
$$

which is an analytic continuation of the standard conformal map of $\overline{\mathbb{C}} \backslash[-1,1]$ to the complement of the unit disk to $\overline{\mathbb{C}} \backslash \Delta$.

## Contours Symmetric w.r.t. an Interpolation Scheme

Let $\Delta$ be a rectifiable Jordan arc connecting $\pm 1$. Further, let

$$
w(z)=\sqrt{z^{2}-1}
$$

be the branch holomorphic off $\Delta$ that behaves like $z$ at infinity. Define

$$
\Phi(z)=z+w(z)
$$

which is an analytic continuation of the standard conformal map of $\overline{\mathbb{C}} \backslash[-1,1]$ to the complement of the unit disk to $\overline{\mathbb{C}} \backslash \Delta$. Set

$$
\Phi(z, v)=\frac{\Phi(z)-\Phi(v)}{1-\Phi(z) \Phi(v)}, \quad \Phi(z, \infty)=\frac{1}{\Phi(z)}
$$

Notice that $\Phi^{+}(x, v) \Phi^{-}(x, v) \equiv 1$ on $\Delta$.

Let $\Delta$ be a rectifiable Jordan arc connecting $\pm 1$. Further, let

$$
w(z)=\sqrt{z^{2}-1}
$$

be the branch holomorphic off $\Delta$ that behaves like $z$ at infinity. Define

$$
\Phi(z)=z+w(z)
$$

which is an analytic continuation of the standard conformal map of $\overline{\mathbb{C}} \backslash[-1,1]$ to the complement of the unit disk to $\overline{\mathbb{C}} \backslash \Delta$. Set

$$
\Phi(z, v)=\frac{\Phi(z)-\Phi(v)}{1-\Phi(z) \Phi(v)}, \quad \Phi(z, \infty)=\frac{1}{\Phi(z)}
$$

Notice that $\Phi^{+}(x, v) \Phi^{-}(x, v) \equiv 1$ on $\Delta$.
It is said that $\Delta$ is symmetric w.r.t. an interpolation scheme $\mathcal{I} \subset D:=\overline{\mathbb{C}} \backslash \Delta$ if

$$
\left|\Phi_{n}^{ \pm}\right|=\mathcal{O}(1) \quad \text { and } \quad\left|\Phi_{n}\right|=o(1) \quad \text { as } \quad n \rightarrow \infty
$$

uniformly on $\Delta$ and locally uniformly in $D$, where $\Phi_{n}(z)=\prod_{i=1}^{2 n} \Phi\left(z, v_{n, i}\right)$.

## Theorem (Baratchart-Ya.)

Let $\Delta$ be a rectifiable Jordan arc connecting $\pm 1$ with additional technical condition around around the endpoints. Then the following are equivalent:
(a) there exists an interpolation scheme $\mathcal{I}$, supported in $D$, such that $\Delta$ is symmetric w.r.t. $\mathcal{I}$;
(b) there exists a positive compactly supported Borel measure $\omega$, supported in $D$, such that $\Delta$ is symmetric w.r.t. $\omega$;
(c) $\Delta$ is an analytic Jordan arc, i.e., there exists a univalent function $\equiv(z)$ holomorphic in some neighborhood of $[-1,1]$ such that $\Delta=\equiv([-1,1])$.

## Strong Asymptotics

## Theorem (Baratchart-Ya.)

Let $\Delta$ be an analytic Jordan arc connecting $\pm 1$ that is symmetric w.r.t. I. Let

$$
f_{\rho}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Delta} \frac{\rho(t)}{t-z} \frac{\mathrm{~d} t}{w^{+}(t)}
$$

where $\rho$ is a non-vanishing Lipschitz continuous, generally complex-valued, function on $\Delta$. Then

$$
f_{\rho}(z)-[n / n ; \mathcal{I}]_{f_{\rho}}(z)=\frac{1+o(1)}{w(z)} S_{\rho}^{2}(z) \Phi_{n}(z)
$$

locally uniformly in $D=\overline{\mathbb{C}} \backslash \Delta$, where

$$
S_{\rho}(z):=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}} \int_{F} \frac{\log \rho(t)}{t-z} \frac{\mathrm{~d} t}{w^{+}(t)}\right\}
$$

is the Szegő function of $\rho$.

## Strong Asymptotics



Zeros of $q_{8}$ and $q_{24}$ when $\rho(t)=e^{t}$ and the interpolation points are equally distributed between 0 and $-4 i / 3$. In this case

$$
\Delta=\left\{\frac{\mathrm{i}-2 x}{2-\mathrm{i} x}: x \in[-1,1]\right\}
$$

## Strong Asymptotics



Zeros of $q_{24}$ and $q_{66}$ when $\rho(t)=t$ if $\operatorname{Im}(t) \geq 0$ and $\rho(t)=\bar{t}$ if $\operatorname{Im}(t)<0$. The interpolation points are equally distributed between $(i-3) / 4$, $(87+6 i) / 104$, and $-\mathrm{i} / 10$.

## Symmetric Contours for Algebraic Functions

## Theorem (Stahl)

Let $f \in \mathcal{S}$ and $\Delta_{f}=E \cup \bigcup \Delta_{j}$ be its minimal capacity (symmetric) contour. Define

$$
h(z):=\partial_{z} g_{\Delta_{f}}(z), \quad 2 \partial_{z}:=\partial_{x}-\mathrm{i} \partial_{y}
$$

The function $h^{2}$ is holomorphic in $\overline{\mathbb{C}} \backslash E$ with a double zero at infinity and the $\operatorname{arcs} \Delta_{j}$ are orthogonal critical trajectories of the quadratic differential $h^{2}(z) \mathrm{d} z^{2}$.

Assume in addition that $f$ is a germ of an algebraic function ( $E_{f}$ is necessarily finite). For each point $e \in E$ denote by $i(e)$ the bifurcation index of $e$, that is, the number of different arcs $\Delta_{j}$ incident with e. Then

$$
h^{2}(z)=\prod_{e \in E}(z-e)^{i(e)-2} \prod_{e \in E_{2}}(z-e)^{2 j(e)}
$$

where $E_{2}$ is the set of critical points of $g_{\Delta_{f}}$ and $j(e)$ is the order of $e \in E_{2}$.

## Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

Let $\Re$ be the Riemann surface of $h$ and $E$ be the set of its ramification points. Let symbol .* stand for the conformal involution $z^{*}=(z,-h)$ if $z=(z, h)$. If $E$ has $2 g+2$ points, then the genus of $\Re$ is $g$.

## Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

Let $\Re$ be the Riemann surface of $h$ and $E$ be the set of its ramification points. Let symbol .* stand for the conformal involution $z^{*}=(z,-h)$ if $z=(z, h)$. If $E$ has $2 g+2$ points, then the genus of $\Re$ is $g$.

Given $v \in \mathfrak{R} \backslash E$, denote by $g(\cdot, v)$ a function that is harmonic in $\mathfrak{R} \backslash\left\{v, v^{*}\right\}$, normalized so that $g(e, v)=0$ for $e \in E$, and such that

$$
g(z, v) \pm\left\{\begin{aligned}
\log |z-v|, & |v|<\infty \\
-\log |z|, & v=\infty
\end{aligned}\right.
$$

are harmonic around $v(+)$ and $v^{*}(-)$, respectively.

## Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

Let $\Re$ be the Riemann surface of $h$ and $E$ be the set of its ramification points. Let symbol .* stand for the conformal involution $z^{*}=(z,-h)$ if $z=(z, h)$. If $E$ has $2 g+2$ points, then the genus of $\Re$ is $g$.

Given $v \in \mathfrak{R} \backslash E$, denote by $g(\cdot, v)$ a function that is harmonic in $\mathfrak{R} \backslash\left\{\boldsymbol{v}, \boldsymbol{v}^{*}\right\}$, normalized so that $g(e, v)=0$ for $e \in E$, and such that

$$
g(z, v) \pm\left\{\begin{aligned}
\log |z-v|, & |v|<\infty \\
-\log |z|, & v=\infty
\end{aligned}\right.
$$

are harmonic around $v(+)$ and $v^{*}(-)$, respectively.
Let $\Delta$ be a system of open analytic arcs and their endpoints and $\mathcal{I}$ be an interpolation scheme in $\overline{\mathbb{C}} \backslash \Delta$. We say that $\Delta$ is symmetric w.r.t. $(\Re, \mathcal{I})$ if

- $\mathfrak{R} \backslash \boldsymbol{\Delta}, \boldsymbol{\Delta}:=\pi^{-1}(\Delta)$, consists of two disjoint domains, say $D^{(0)}$ and $D^{(1)}$, and no closed subset of $\Delta$ has this property;
- the sums $\sum_{i=0}^{2 n} g\left(\cdot, v_{n, i}^{(0)}\right)$ are uniformly bounded above and below on $\Delta$ and go to $-\infty$ locally uniformly in $D^{(1)}$, where $z^{(i)}=\pi^{-1}(z) \cap D^{(i)}$.


## Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

## Fact

If $\Delta$ is symmetric w.r.t. $(\Re, \mathcal{I})$ and $\mathcal{I}$ is asymptotic to some measure $\omega$, then $\Delta$ is symmetric w.r.t. $\omega$.

## Algebraic Contours Symmetric w.r.t. an Interpolation Scheme

## Fact

If $\Delta$ is symmetric w.r.t. $(\mathfrak{R}, \mathcal{I})$ and $\mathcal{I}$ is asymptotic to some measure $\omega$, then $\Delta$ is symmetric w.r.t. $\omega$.

## Theorem (Ya.)

Let $c>0$ be a constant such that $L_{c}:=\left\{s: g_{\Delta_{f}}(s)=c\right\}$ is a smooth Jordan curve. If $\equiv(z)$ is a conformal function in the interior of $L_{c}$ such that $\equiv(e)=e$ for every $e \in E$, then there exists an interpolation scheme $\mathcal{I}$ in $\mathbb{\mathbb { C }} \backslash \equiv(\Delta)$ such that $\equiv\left(\Delta_{f}\right)$ is symmetric with respect to $(\mathfrak{R}, \mathcal{I})$.

## Nuttall-Szegő Functions

## Proposition (Ya.)

Let $\rho$ be a Lipschitz continuous and non-vanishing function on $\Delta$. There exists a sectionally meromorphic in $\mathfrak{R} \backslash \Delta$ function $\Psi_{n}(z)$ with the zero/pole divisor

$$
(n-g) \infty^{(1)}+z_{n, 1}+\cdots+z_{n, g}-n \infty^{(0)}
$$

for some set of $g$ points $z_{n, i}$ on $\Re$, and whose traces on $\Delta$ are continuous and satisfy

$$
\Psi_{n-}(s)=\left(\rho(s) / v_{n}(s)\right) \Psi_{n+}(s), \quad s \in \Delta
$$

If functions $\Psi(z), \Psi_{*}(z)$ have these properties, then $\Psi(z) / \Psi_{*}(z)=R(\pi(z))$ for some rational function $R(z)$ with at most $g / 2$ poles. In particular, if $\left\{z_{n, i}\right\}$ does not contain involution-symmetric pairs $\left(z_{n, i}=z_{n, j}^{*}\right.$ for some $\left.i \neq j\right)$, then $\Psi_{n}(z)$ is unique up to a multiplicative constant.

## Strong-Type Asymptotics

## Theorem (Ya.)

Let $\Delta$ be symmetric w.r.t. $(\Re, \mathcal{I})$ and set $w^{2}(z)=\prod_{e \in E}(z-e)$. Assume that there exists an infinite subsequence $\mathbb{N}_{*}$ such that the closure of $\left\{\left\{z_{n, i}\right\}_{i=1}^{g}\right\}_{n \in \mathbb{N}_{*}}$ contains no divisor with an involution-symmetric pair nor with $\infty^{(0)}$. Let

$$
f_{\rho}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Delta} \frac{\rho(t)}{t-z} \frac{\mathrm{~d} t}{w^{+}(t)}
$$

where $\rho$ is a non-vanishing Lipschitz smooth function on $\Delta$. Then

$$
f_{\rho}(z)-[n / n ; \mathcal{I}]_{f_{\rho}}(z)=\frac{v_{n}(z)}{w(z)} \frac{\Psi_{n}\left(z^{(1)}\right)}{\Psi_{n}\left(z^{(0)}\right)} \frac{1+\varepsilon_{n 1}(z)+\varepsilon_{n 2}(z) \Upsilon_{n}\left(z^{(1)}\right)}{1+\varepsilon_{n 1}(z)+\varepsilon_{n 2}(z) \Upsilon_{n}\left(z^{(0)}\right)}
$$

where $\varepsilon_{n i}(z)=o(1)$ locally uniformly in $D$ and vanish at infinity and $\Upsilon_{n}$ is a rational function on $\Re$ that vanishes at $\infty^{(0)}$ and whose divisor of poles is equal to $z_{n, 1}+\cdots+z_{n, g}+\infty^{(1)}$. Moreover,

$$
\left|\frac{v_{n}(z)}{w(z)} \frac{\Psi_{n}\left(z^{(1)}\right)}{\Psi_{n}\left(z^{(0)}\right)}\right| \leq C_{K} \exp \left\{\sum_{i=1}^{2 n} g\left(z^{(1)}, v_{n, i}^{(0)}\right)\right\}=o(1)
$$

for every closed subset $K \subset D$.


Zeros of $q_{36}, q_{60}$, and $q_{34}$ to $\left(z^{4}-1\right)^{-1 / 2}$ corresponding to the interpolation schemes $\{ \pm 1 \pm i\},\{1 / 4+i,-1 / 4-i, 1-i / 4,-1+i / 4\}$, and $\{1+i,-1-i\}$.


Zeros of $q_{36}, q_{60}$, and $q_{34}$ to $\left(z^{4}-1\right)^{-1 / 4}$ corresponding to the interpolation schemes $\{ \pm 1 \pm i\},\{1 / 4+i,-1 / 4-i, 1-i / 4,-1+i / 4\}$, and $\{1+i,-1-i\}$.

