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Transcendental Number Theory

In 1844 Liouville1 constructed the first example of a transcendental

number by using continued fractions.

Carefully studying similarities between simultaneous diophantine

approximation of real numbers and rational approximation of

holomorphic functions, Hermite2 proved in 1873 that e is transcendental.

1
Sur des class trè étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques.

C.R. Acad. Sci. Paris, 18:883--885, 910--911, 1844

2
Sur la fonction exponentielle. C.R. Acad. Sci. Paris, 77:18--24, 74--79, 226--233, 285--293, 1873
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Criterion

Hermite’s proof is based on the following criterion.

Lemma

α is transcendental if for any m ∈ N and any ε > 0 there exist m + 1

linearly independent vectors of integers (qj , pj1, . . . , pjm), j = 0,m,

such that
∣∣∣qjαk − pjk

∣∣∣ ≤ ε, k = 1,m.

If α is algebraic, then for some m ∈ N there exist ak ∈ Z, k = 0,m, such

that
∑

m
k=0

akαk = 0. Hence,

m∑
k=1

ak(qjα
k − pjk) + a0qj +

m∑
k=1

akpjk = 0.

Then for some 0 ≤ j0 ≤ m, it holds that

1 ≤

∣∣∣∣∣∣∣
m∑

k=1

ak(qj0α
k − pj0k)

∣∣∣∣∣∣∣ ≤ ε
m∑

k=1

|ak |.



Introduction Row Sequences Ray Sequences Extremal Domains Algebraic Functions

Main Step

Let n0, n1, . . . , nm be non-negative integers. Set N := n0 + · · ·+ nm

and consider the following system:

Q(z)e
kz − Pk(z) = O

(
z

N+1
)
,

where deg(Q) ≤ N − n0 and deg(Pk) ≤ N − nk .

Hermite proceeded to explicitly construct these polynomials, which as it

turned out have integer coefficients. By evaluating these polynomials at

1 he succeeded in applying the above criterion.
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Definition

Let F(z) =
∑∞

k=0
fkzk be a function holomorphic at the origin. Consider

the following system:

Q(z)F(z) − P(z) = O
(
z

m+n+1
)
,

where deg(Q) ≤ n and deg(P) ≤ m. This system always has a solution.

Indeed,

Q(z)F(z) =
∞∑

k=0

 ∑
j+i=k,i≤n

fjqi

 z
k .
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Linear System

Set f−k := 0 for k > 0. Then
p0

p1

...
pm

 =


f0 f−1 · · · f−n

f1 f0 · · · f1−n

...
...

. . .
...

fm fm−1 · · · fm−n




q0

q1

...
qn


and 

0

0

...
0

 =


fm+1 fm · · · fm+1−n

fm+2 fm+1 · · · fm+2−n

...
...

. . .
...

fm+n+1 fm+n · · · fm+1




q0

q1

...
qn


The latter is a linear system of n equations with n + 1 unknowns. Such a

system always has a solution. A solution may not be unique, but the

ratio [m/n]F := P/Q always is.
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Uniqueness

Indeed, let Q1(z), P1(z) and Q2(z), P2(z) be solutions. Then

Q2(z)
(
Q1(z)F(z) − P1(z)

)
= O

(
zm+n+1

)
and

Q1(z)
(
Q2(z)F(z) − P2(z)

)
= O

(
zm+n+1

)
.

Therefore,

Q2(z)P1(z) − Q1(z)P2(z) = O
(
z

m+n+1
)
.

However,

deg
(
Q2P1 − Q1P2

)
≤ m + n.
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Padé Table

0-th row→ [0/0]F [1/0]F · · · [m/0]F · · ·

1-st row→ [0/1]F [1/1]F · · · [m/1]F · · ·
...

...
...

. . .
...

...
n-th row→ [0/n]F [1/n]F · · · [m/n]F · · ·

...
...

...
. . .

...
...
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Taylor Sections

Theorem

Let F(z) be an analytic function in |z | ≤ R. Then [m/0]F (z) converge to

F(z) uniformly in |z | ≤ R as m→ ∞.
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Padé Approximants with Fixed Number of Poles

The following theorem is due to de Montessus de Ballore3.

Theorem

Let F(z) be a meromorphic function in |z | ≤ R with N poles contained in

0 < |z | < R. Then [m/N]F (z) converge to F(z) in |z | ≤ R in the spherical

metric as m→ ∞.

3
Sur les fractions continues algébriques. Bull. Soc. Math. de France, 30:28--36, 1902.
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Inverse of de Montessus de Ballore Theorem

The following theorem is due to Gonchar4 and Suetin56.

Theorem

Let F(z) be a holomorphic function at the origin. If the poles of Padé

approximants [m/N]F (z) converge to the points z1, . . . , zN as m→ ∞,

then F(z) can be meromorphically continued to |z | < RN := max |zk |

and all the points zk are singularities of F(z) (polar if |zk | < RN).

4
Poles of rows of the Padé table and meromorphic continuation of functions, Math. USSR-Sb., 43(4):527--546, 1982

5
On poles of the m-th row of a Padé table, Math. USSR-Sb., 48(2):493--497, 1984

6
On an inverse problem for the m-th row of a Padé table, Math. USSR-Sb., 52(1):231--244, 1985
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Padé Approximants with 1 Pole

The following theorem is due to Beardon7.

Theorem

Let F(z) be an analytic function in |z | ≤ R. Then an infinite subsequence

of [m/1]F (z) converges to F(z) uniformly in |z | ≤ R as m→ ∞.

7
On the location of poles of Padé approximants. J. Math. Anal. Appl., 21:469--474, 1968.
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An Example of Padé Approximants with Fixed Number of Poles

The following example is due to Lubinsky and Saff8.

Theorem

Set Fq(z) := 1 + z + qz2 + q3z3 + q6z4 + · · · , where q = e2πiθ with θ
irrational. Then, for each fixed N ≥ 1, Padé approximants [m/N]Fq

(z)
converge to Fq(z) locally uniformly in |z | < Rq,N as m→ ∞ for some

RN,q < 1. Moreover, the circle |z | = Rq,N necessarily contains limit points

of the poles of [m/N]Fq
(z) and no subsequence of approximants

converges to Fq(z) locally uniformly in |z | < 1.

Observe that Fq(z) is holomorphic in |z | < 1 with the unit circle being

the natural boundary of analyticity.

8
Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials. Constr. Approx., 3:331--361, 1987.
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Uniform Convergence of Rows

The following theorem is due to Buslaev, Gonchar, and Suetin9.

Theorem

Let F(z) be a holomorphic function in |z | < R. Then for each N there

exists RN < R such that some subsequence of [m/N]F (z) converges to

F(z) uniformly in |z | ≤ RN as m→ ∞.

9
On convergence of subsequences of the m-th row of a Padé table, Math. USSR-Sb., 48(2):535--540, 1984
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Padé Approximants with Slowly Increasing Number of Poles

The following theorem is due to Zinn-Justin10.

Theorem

Let F(z) be a meromorphic function in |z | ≤ R with N poles contained in

0 < |z | ≤ R. Then [mk/nk ]F (z) converge to F(z) in measure in |z | < R for

nk ≥ N as k → ∞ and mk/nk → ∞.

10
Convergence of Padé approximants in the general case. In Colloquium on Advanced Computing Methods in Theoretical

Physics, A. Visconti (ed.), pp. 88--102, C.R.N.S., Marseille, 1971.
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Pólya Frequency Series

The following theorem is due to Arms and Edrei11.

Theorem

Let

F(z) = e
cz

∞∏
k=1

(
1 + akz

)(
1 − bkz

)−1

,

where c, ak , bk ≥ 0, and
∑∞

k=1
(ak + bk) < ∞. If mk/nk → λ ∈ (0,∞)

as k → ∞, then

Pmk
(z) → exp

{
cz

1 + λ

} ∞∏
k=1

(
1 + akz

)
Qnk

(z) → exp

{
−cλz

1 + λ

} ∞∏
k=1

(
1 − bkz

)
locally uniformly in the complex plane, where [mk/nk ]F = Pmk

/Qnk
.

11
The Padé tables and continued fractions generated by totally positive sequences. In Mathematical Essays, H. Shankar (ed.),

pp. 1--21, Ohio University Press, Athens, Ohio, 1970.
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Entire Functions of Very Slow and Smooth Growth

The following theorem is due to Lubinsky12.

Theorem

Let F(z) = a0 + a1z + a2z2 + · · · be such that ak−1ak+1/a2
k
→ a,

|a| < 1, as k → ∞. Then [mk/nk ]F (z) converge to F(z) locally uniformly

in the complex plane as k → ∞ and mk → ∞.

12
Padé tables of entire functions of very slow and smooth growth, II. Constr. Approx., 4(1):321--339, 1988.
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Padé Approximants at Infinity

Let F(z) =
∑∞

k=1
fkz−k be a function holomorphic at infinity. Consider

the following system:

Qn(z)F(z) − Pn(z) = O
(
z
−(n+1)

)
,

where deg(Qn), deg(Pn) ≤ n. This system always has a solution and for

any solution the rational function [n/n]F = Pn/Qn is unique.
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Orthogonality

From the equality Qn(z)F(z) − Pn(z) = O
(
z−(n+1)

)
, it follows that

0 =

∮
Γ

z
k
(
Qn(z)F(z) − Pn(z)

)
dz

for k ∈ {0, . . . , n − 1}, where Γ is any Jordan curve in the domain of

holomorphy of F(z) encircling the point at infinity. However, since

zkPn(z) is holomorphic in the interior domain of Γ, it holds that

0 =

∮
Γ

z
k
Qn(z)F(z)dz.
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Markov Functions

In particular, if F(z) =

∫
dµ(x)

z − x
, where µ is a positive measure

compactly supported on the real line (F(z) is a Markov function), then

0 =

∫
x

k
Qn(x)dµ(x), k ∈ {0, . . . , n − 1}.

Using the above orthogonality Markov13 showed the following.

Theorem

Let F be as above. Padé approximants [n/n]F (z) converge to F(z)
locally uniformly (including at infinity) outside of the convex hull of

supp(µ).

13
Deux demonstrations de la convergence de certaines fractions continues. Act. Math., 19:93--104, 1895.
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Padé Conjecture

Based on the analytical and numerical evidence, Baker, Gammel, and

Wills14 put forward the following conjecture.

Padé Conjecture

Let F(z) be a holomorphic function in |z | < R except for N poles

contained in 0 < |z | < R and one point on the boundary |z | = R where

it is continuous. Then at least a subsequence of [n/n]F (z) converges

locally uniformly to F(z) in { |z | < R } \ { poles of F }.

14
An investigation of the applicability of the Padé approximant method. J. Math. Anal. Appl., 2:405--418, 1961.
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Lubinsky’s Counterexample

For q which is not a root of unity and |q| = 1, define

Hq(z) = 1 +
qz |

|1
+

q2z |

|1
+

q3z |

|1
+ · · · .

The following result is due to Lubinsky15.

Theorem

Let q = e2πiθ, where θ = 2/(99 +
√

5). Then Hq(z) is meromorphic in

|z | < 1 and holomorphic at the origin. Moreover, there does not exist

any subsequence of [n/n]Hq
(z) that converges to Hq(z) uniformly on

compact subsets of { |z | < 0.46 } \ { poles of Hq }.

15
Rogers-Ramanujan and the Baker-Gammel-Wills (Padé) conjecture. Ann. of Math., 157:847--889, 2003.
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Logarithmic Capacity

Let ω be a compactly supported probability Borel measure. The

logarithmic energy of ω is defined by

I[ω] :=

"
log

1

|z − u|
dω(u)dω(z).

Let K be a compact set. The logarithmic capacity of K is defined as

cp(K ) := exp
{
− inf I[ω]

}
,

where infimum is taken over all probability Borel measures on K .
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Logarithmic Capacity

In particular, if D, the unbounded component of the complement of K ,

is simply connected and Φ is the conformal map of D onto |z | > 1 such

that Φ(∞) = ∞ and Φ′(∞) > 0, then

Φ(z) =
z

cp(K )
+ terms analytic at infinity.

A polar set is a set that cannot support a single positive Borel measure

with finite logarithmic energy. Polar sets are totally disconnected.

A property is said to hold quasi everywhere (q.e.) if it holds everywhere

except on a polar set.
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Quasi Everywhere Single-Valued Functions

From now on, all the Padé approximants interpolate at infinity.

The following result is due to Nuttall16 and Pommerenke17.

Theorem

Let F(z) be a meromorphic and single-valued function in the extended

complex plane except for a compact polar set. Then, as n→ ∞, the

diagonal Padé approximants [n/n]F (z) converge in capacity to F(z) in

the domain of meromorphy of F(z) and the convergence is faster than

geometric.

16
The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31, 129--140, 1970

17
Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41, 775--780, 1973
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Functions with Branch Points

A tremendous step forward in the investigation of the behavior of Padé

approximants was done by Herbert Stahl18.

Theorem

Let F(z) be holomorphic at infinity, multi-valued, and with all its

singularities contained in a compact polar set E . Then

(i) there exists the unique maximal domain D, such that [n/n]F (z)
converge in capacity to F(z) in D as n→ ∞;

(ii) ∆ := C \ D is characterized as the set of the smallest logarithmic

capacity among all compact sets that make F(z) single-valued in

their complement.

18
The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139--204, 1997



Introduction Row Sequences Ray Sequences Extremal Domains Algebraic Functions

Quadratic Differentials

Moreover, it holds that19

∆ = E ∪ E0 ∪
⋃

∆j ,

where E0 is finite and ∆j are open analytic arcs connecting the points

in E ∪ E0.

a1

a2

a3a4

a5 a6

b1b2
∆1

∆2∆4

∆3∆5 ∆6

19
H. Stahl, The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4, 339--354,

1985
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Quadratic Differentials

Let F be holomorphic in the extended complex plane except at finitely

many finite points where it has algebro-logarithmic branching. Then

∆ = {a1, . . . , ap} ∪ {b1, . . . , bp−2} ∪
⋃

∆j ,

where {a1, . . . , ap} are some of the branch points of F (the ones that

belong to the considered sheet of the Riemann surface), {b1, . . . , bp−2}

are not necessarily distinct, and the arcs ∆j are the negative critical

trajectories of the quadratic differential

(z − b1) · . . . · (z − bp−2)

(z − a1) · . . . · (z − ap)
(dz)2.

That is, for any smooth parametrization z(t), t ∈ [0, 1], of ∆j , it holds

(z(t) − b1) · . . . · (z(t) − bp−2)

(z(t) − a1) · . . . · (z(t) − ap)
(z
′(t))2 < 0, t ∈ (0, 1).



Introduction Row Sequences Ray Sequences Extremal Domains Algebraic Functions

Reduced Padé Conjecture

A function is called hyperelliptic if it is of the form r1 + r2
√

p, where p is

a polynomial and r1, r2 are rational functions.

Herbert Stahl raised the following question20: is the Padé conjecture

true for hyperelliptic functions?

20
Orthogonal polynomials with respect to complex-valued measures. Ann. Comput. Appl. Math., pages 139--154, 1991. IMACS

1990.
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Reduced Padé Conjecture

This question was settled in negative by Buslaev21.

Theorem

Let j := (−1 +
√

3i)/2 and set

F(z) =
−27 + 6z2 + 3(9 + j)z3 +

√
81(3 − (3 + j)z3)2 + 4z6

2z(9 + 9z + (9 + j)z2)
.

There does not exist a subsequence of Padé approximants at the origin

[n/n]F (z) that converges to F(z) simultaneously at z, jz, and j2z, |z | < 1.

21
On the Baker-Gammel-Wills conjecture in the theory of Padé approximants. Mat Sb., 193(6):25--38, 2002.
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An Example

!"#$%& '( )*& +,-&. ,/ 0*& 1234& 2++%,5"6270 89:!9;<! 0, 0*& /$7=0",7 >'? 2%&
%&+%&.&70&3 @A .02%.B 273 0*& 2..,="20&3 6"7"62- .&0 "!>#$ ? ". %&+%&.&70&3 @A
C $7@%,D&7 -"7&.E

F&G&%2- &-&6&70. ,/ 0*& 620&%"2- "7 0*& +%&.&70 2%0"=-& *2G& 2-%&23A @&&7
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1234& 2++%,5"620",7B K& =,7."3&% 2 =,7=%&0& &526+-&E M&0 # @& 0*& 2-#&@%2"=
/$7=0",7 3&!7&3 @A

#>%? (N !

!""

"#$
>' %"!%? O

"

!"%

"#&
>' %"!%? >'?

K"0* P @%27=* +,"70. %$$ & & & $ %% 0*20 *2G& @&&7 =*,.&7 %20*&% 2%@"0%2%"-AB @$0
K"0* 0*& "70&70",7 0, #&0 2 =-&2%-A 2%%27#&3 =,7!#$%20",7E )*& .&G&7 G2-$&. 2%&
#"G&7 "7 >:C?B /$%0*&% @&-,KB @$0 0*&"% -,=20",7 =27 %&23"-A @& %&23 /%,6 !"#$%&
'E
)*& %20*&% ."6+-& =,7.0%$=0",7 ,/ 0*& /$7=0",7 # 62D&. "0 &2.A 0, $73&%.0273

2-- +,.."@-& 6&%,6,%+*"= 273 ."7#-&QG2-$&3 =,70"7$20",7. ,/ # E R73&&3B # +,.Q
.&..&. 2 ."7#-&QG2-$&3 =,70"7$20",7 0*%,$#*,$0 2 3,62"7 ' ! "/B 273 ,7-A "/B

' 273 "/ &2=* ,/ 0*& 0K, .&0. !%$$ & & & $ %"" 273 !%&$ %'$ %%" ,/ @%27=* +,"70.
". =,77&=0&3 "7 0*& =,6+-&6&70 ! #'E )*& /$7=0",7 # .*,$-3 @& =,7."3&%&3 2.
2 ."6+-"!&3 +%,0,0A+& /,% 6,%& =,6+-&5 &526+-&.E
)*& $7",7 ,/ 0*& C 2%=. "7 !"#$%& ' /,%6 0*& .&0 ,/ 6"7"62- =2+2="0A /,% 0*&

/$7=0",7 # B K*"=* K& 3&7,0& @A "!>#$ ?B 273 @A '!>#$ ? (N ! #"!>#$ ? K&

H

The poles22 of Padé approximant [63/63]F to function

F(z) =
4

√√
4∏

k=1

(1 − zk/z) +
3

√√
7∏

k=5

(1 − zk/z).

22
The picture is taken from H. Stahl, Sets of Minimal Capacity and Extremal Domains, manuscript, 2006
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Jon von Neumann

Young man, in mathematics you don’t understand things. You just get

used to them.

Jon von Neumann

The following is an ‘‘explanation’’ of what is going wrong with the

uniform convergence of Padé approximants to generic algebraic, in

particular, hyperelliptic functions.
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Class of Functions

Let F(z) be a holomorphic function in the extended complex plane

except at finitely many finite points where it has algebro-logarithmic

branching of integrable order. Then

∆ = {a1, . . . , ap} ∪ {b1, . . . , bp−2} ∪
⋃

∆j ,

The arcs ∆j are the negative critical trajectories of the quadratic

differential h2(z)dz2, where

h
2(z) :=

(z − b1) · . . . · (z − bp−2)

(z − a1) · . . . · (z − ap)
,

where h(z)z → 1 as z → ∞.
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Class of Functions

Assume that each bk ∈ ∆ is incident with exactly three arcs ∆j .

a1

a2

a3a4

a5 a6

b1b2
∆1

∆2∆4

∆3∆5 ∆6
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Riemann Surface

Let R be the Riemann surface of h(z) and g be the genus R.

D(0)

D(1)

L−

L+

∆− ∆+

Further, let L be the chain on R that lies above ∆.
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Boundary Value Problem

Behind the question of convergence of Padé approximants to

algebraic functions lies a certain boundary value problem on L.

Boundary Value Problem

For each n ∈ N, find Sn holomorphic in R \
(
L ∪ {∞(0)}

)
and such that it

has a pole of order n at∞(0), a zero of order n at∞(1) and satisfies

S
−
n = JS

+
n on L

with prescribed behavior at the branching points of R, where J is the

jump of F across ∆ lifted to L.
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Rational Functions on R

(i) Generically, given {P1, . . . , Pk } and {Z1, . . . , Zk−g} on R there exist

a unique (up to normalization) rational function on R with poles Pj

and zeros Zj as the ratio of two such functions will have at most g

poles.

(ii) A collection of points {P1, . . . , Pl}, l ≤ g, is called special if there

exists a rational function on R with poles only among the points Pj

counting multiplicities.

(iii) Generically, the function Sn is unique and has g additional zeros

on R (the ratio Sn/Sn−1 is a rational function on R and therefore

generically should have at least g + 1 poles and g + 1 zeros).



Introduction Row Sequences Ray Sequences Extremal Domains Algebraic Functions

Main Theorem

‘‘Theorem’’

Denote by Nni the subsequence of indices for which the function Sn

uniquely exists in a proper sense. The gaps in Nni are at most of size

g + 1. Let {Zn1, . . . , Zng} be the additional zeros of Sn, n ∈ Nni. Then

(i) if Znj belongs to D(0), then [n/n]F has a pole next to the projection

of Znj ;

(ii) if Znj belongs to D(1), then [n/n]F overinterpolates F at a point next

to the projection of Znj ;

(iii) the rest of the poles of [n/n]F converge to ∆ and uniform type

formulae can be provided.
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Contributors

Akhiezer23 and Widom24: Szegő densities on disjoint subintervals of R

Nuttall25: F(z) =
∏

3

j=1
(z − aj)

αj ,
∑

3

j=1
αj = 0

Suetin26: Hölder-continuous/Chebyshëv weight for disjoint arcs

Baratchart-Ya.27: Dini-continuous/Chebyshëv weight for {a1, a2, a3}

Mart́ınez Finkelstein-Rakhmanov-Suetin28: F(z) =
∏p

j=1
(z − aj)

αj ,∑p

j=1
αj = 0

Aptekarev-Ya.29: the above described setting + Cauchy-type integrals

23
Orthogonal polynomials on several intervals. Soviet Math. Dokl., 1:989--992, 1960.

24
Extremal polynomials associated with a system of curves in the complex plane. Adv. Math., 3:127--232, 1969.

25
Asymptotics of generalized Jacobi polynomials. Constr. Approx., 2:59--77, 1986

26
Uniform convergence of Padé diagonal approximants for hyperelliptic functions. Mat. Sb., 191(9):81--114, 2000

27
Asymptotics of Padé approximants to a certain class of elliptic-type functions, arXiv

28
Heine, Hilbert, Padé, Riemann, and Stieltjes: a John Nuttall’s work 25 years later, arXiv

29
Padé approximants for functions with branch points -- strong asymptotics of Nuttall-Stahl polynomials, arXiv
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