Row Sequences 0000000	Ray Sequences 0000000	Algebraic Functions

Spurious Poles in Padé Approximation of Algebraic Functions

Maxim L. Yattselev

University of Oregon

0

Department of Mathematical Sciences Colloquium

Indiana University - Purdue University Fort Wayne

Introduction				Algebraic Functions
000000				
Transcendental Number Theory				

In 1844 Liouville¹ constructed the first example of a transcendental number by using continued fractions.

Carefully studying similarities between simultaneous diophantine approximation of real numbers and rational approximation of holomorphic functions, Hermite² proved in 1873 that *e* is transcendental.

¹ Sur des class trè étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques. C.R. Acad. Sci. Paris. 18:883–885. 910–911. 1844

²Sur la fonction exponentielle. C.R. Acad. Sci. Paris, 77:18--24, 74--79, 226--233, 285--293, 1873

Introduction		
000000		
Criterion		

Hermite's proof is based on the following criterion.

Lemma

a is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon > 0$ there exist m + 1 linearly independent vectors of integers $(q_j, p_{j1}, \ldots, p_{jm}), j = \overline{0, m}$, such that $|q_j a^k - p_{jk}| \le \varepsilon, k = \overline{1, m}$.

If a is algebraic, then for some $m \in \mathbb{N}$ there exist $a_k \in \mathbb{Z}$, $k = \overline{0, m}$, such that $\sum_{k=0}^{m} a_k a^k = 0$. Hence,

$$\sum_{k=1}^m a_k (q_j a^k - p_{jk}) + a_0 q_j + \sum_{k=1}^m a_k p_{jk} = 0.$$

Then for some $0 \le j_0 \le m$, it holds that

$$1 \leq \left|\sum_{k=1}^{m} a_k (q_{j_0} a^k - p_{j_0 k})\right| \leq \varepsilon \sum_{k=1}^{m} |a_k|.$$

Introduction		Algebraic Functions
000000		
Main Step		

Let n_0, n_1, \ldots, n_m be non-negative integers. Set $N := n_0 + \cdots + n_m$ and consider the following system:

$$Q(z)e^{kz}-P_k(z)=O(z^{N+1}),$$

where $\deg(Q) \leq N - n_0$ and $\deg(P_k) \leq N - n_k$.

Hermite proceeded to explicitly construct these polynomials, which as it turned out have integer coefficients. By evaluating these polynomials at 1 he succeeded in applying the above criterion.

Introduction		Algebraic Functions
000000		
Definition		

Let $F(z) = \sum_{k=0}^{\infty} f_k z^k$ be a function holomorphic at the origin. Consider the following system:

$$Q(z)F(z)-P(z)=O(z^{m+n+1}),$$

where $deg(Q) \le n$ and $deg(P) \le m$. This system always has a solution. Indeed,

$$Q(z)F(z) = \sum_{k=0}^{\infty} \left(\sum_{j+i=k, i \leq n} f_j q_i \right) z^k.$$

Introduction		
0000000		
Linear System		

Set $f_{-k} := 0$ for k > 0. Then

$$\begin{pmatrix} p_{0} \\ p_{1} \\ \vdots \\ p_{m} \end{pmatrix} = \begin{pmatrix} f_{0} & f_{-1} & \cdots & f_{-n} \\ f_{1} & f_{0} & \cdots & f_{1-n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m} & f_{m-1} & \cdots & f_{m-n} \end{pmatrix} \begin{pmatrix} q_{0} \\ q_{1} \\ \vdots \\ q_{n} \end{pmatrix}$$

and

$$\begin{pmatrix} 0\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} f_{m+1} & f_m & \cdots & f_{m+1-n}\\f_{m+2} & f_{m+1} & \cdots & f_{m+2-n}\\\vdots & \vdots & \ddots & \vdots\\f_{m+n+1} & f_{m+n} & \cdots & f_{m+1} \end{pmatrix} \begin{pmatrix} q_0\\q_1\\\vdots\\q_n \end{pmatrix}$$

The latter is a linear system of *n* equations with n + 1 unknowns. Such a system always has a solution. A solution may not be unique, but the ratio $[m/n]_F := P/Q$ always is.

Introduction		Algebraic Functions
0000000		
Uniqueness		

Indeed, let $Q_1(z)$, $P_1(z)$ and $Q_2(z)$, $P_2(z)$ be solutions. Then

$$Q_2(z) (Q_1(z)F(z) - P_1(z)) = O(z^{m+n+1})$$

and
 $Q_1(z) (Q_2(z)F(z) - P_2(z)) = O(z^{m+n+1}).$

Therefore,

$$Q_2(z)P_1(z) - Q_1(z)P_2(z) = O(z^{m+n+1}).$$

However,

$$deg(Q_2P_1-Q_1P_2)\leq m+n.$$

Introduction		Algebraic Functions
000000		
Padé Table		

0-th row \rightarrow	$[0/0]_{F}$	[1/0] _F		$[m/0]_{F}$	
i-si iow →	[07 1] _F :	['/'] <i>F</i> :	·	[//// 1]F :	:
<i>n</i> -th row \rightarrow	[0/n] _F	[1/n] _F		[m/n] _F	
	:	:	•••	:	

	Row Sequences		Algebraic Functions
	000000		
Taylor Sections			

Theorem

Let F(z) be an analytic function in $|z| \le R$. Then $[m/0]_F(z)$ converge to F(z) uniformly in $|z| \le R$ as $m \to \infty$.

	Row Sequences			Algebraic Functions
	000000			
Padé Approximants with Fixed Number of Poles				

The following theorem is due to de Montessus de Ballore³.

Theorem

Let F(z) be a meromorphic function in $|z| \le R$ with N poles contained in 0 < |z| < R. Then $[m/N]_F(z)$ converge to F(z) in $|z| \le R$ in the spherical metric as $m \to \infty$.

³Sur les fractions continues algébriques. Bull. Soc. Math. de France, 30:28--36, 1902.

	Row Sequences			Algebraic Functions
	000000			
Inverse of de Montessus de Ballore Theorem				

The following theorem is due to Gonchar⁴ and Suetin⁵⁶.

Theorem

Let F(z) be a holomorphic function at the origin. If the poles of Padé approximants $[m/N]_F(z)$ converge to the points z_1, \ldots, z_N as $m \to \infty$, then F(z) can be meromorphically continued to $|z| < R_N := \max |z_k|$ and all the points z_k are singularities of F(z) (polar if $|z_k| < R_N$).

⁴Poles of rows of the Padé table and meromorphic continuation of functions, Math. USSR-Sb., 43(4):527--546, 1982

⁵On poles of the *m*-th row of a Padé table, Math. USSR-Sb., 48(2):493-497, 1984

⁶On an inverse problem for the *m*-th row of a Padé table, Math. USSR-Sb., 52(1):231–244, 1985

	Row Sequences			Algebraic Functions
	000000			
Padé Approximants with 1 Pole				

The following theorem is due to $Beardon^7$.

Theorem

Let F(z) be an analytic function in $|z| \le R$. Then an infinite subsequence of $[m/1]_F(z)$ converges to F(z) uniformly in $|z| \le R$ as $m \to \infty$.

⁷On the location of poles of Padé approximants. J. Math. Anal. Appl., 21:469-474, 1968.

	Row Sequences			Algebraic Functions	
	0000000				
An Example of Padé Approximants with Fixed Number of Poles					

The following example is due to Lubinsky and Saff⁸.

Theorem

Set $F_q(z) := 1 + z + qz^2 + q^3z^3 + q^6z^4 + \cdots$, where $q = e^{2\pi i\partial}$ with ∂ irrational. Then, for each fixed $N \ge 1$, Padé approximants $[m/N]_{F_q}(z)$ converge to $F_q(z)$ locally uniformly in $|z| < R_{q,N}$ as $m \to \infty$ for some $R_{N,q} < 1$. Moreover, the circle $|z| = R_{q,N}$ necessarily contains limit points of the poles of $[m/N]_{F_q}(z)$ and no subsequence of approximants converges to $F_q(z)$ locally uniformly in |z| < 1.

Observe that $F_q(z)$ is holomorphic in |z| < 1 with the unit circle being the natural boundary of analyticity.

⁸Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials. Constr. Approx., 3:331–361, 1987.

	Row Sequences			Algebraic Functions
	0000000			
Uniform Convergence of Rows				

The following theorem is due to Buslaev, Gonchar, and Suetin⁹.

Theorem

Let F(z) be a holomorphic function in |z| < R. Then for each N there exists $R_N < R$ such that some subsequence of $[m/N]_F(z)$ converges to F(z) uniformly in $|z| \le R_N$ as $m \to \infty$.

⁹On convergence of subsequences of the *m*-th row of a Padé table, Math. USSR-Sb., 48(2):535--540, 1984

	Row Sequences			Algebraic Functions	
	000000				
Padé Approximants with Slowly Increasing Number of Poles					

The following theorem is due to Zinn-Justin¹⁰.

Theorem

Let F(z) be a meromorphic function in $|z| \le R$ with N poles contained in $0 < |z| \le R$. Then $[m_k/n_k]_F(z)$ converge to F(z) in measure in |z| < R for $n_k \ge N$ as $k \to \infty$ and $m_k/n_k \to \infty$.

¹⁰Convergence of Padé approximants in the general case. In Colloquium on Advanced Computing Methods in Theoretical Physics, A. Visconti (ed.), pp. 88–102, C.R.N.S., Marseille, 1971.

	Row Sequences 0000000	Ray Sequences	Algebraic Functions
Pólya Frequency Series			

The following theorem is due to Arms and Edrei¹¹.

Theorem

Let

$$F(z) = e^{cz} \prod_{k=1}^{\infty} (1 + a_k z) (1 - b_k z)^{-1},$$

where $c, a_k, b_k \ge 0$, and $\sum_{k=1}^{\infty} (a_k + b_k) < \infty$. If $m_k/n_k \to \mathfrak{J} \in (0, \infty)$ as $k \to \infty$, then

$$P_{m_k}(z) \rightarrow \exp\left\{\frac{cz}{1+\hat{\jmath}}\right\} \prod_{k=1}^{\infty} \left(1+a_k z\right)$$
$$Q_{n_k}(z) \rightarrow \exp\left\{\frac{-c\hat{\jmath} z}{1+\hat{\jmath}}\right\} \prod_{k=1}^{\infty} \left(1-b_k z\right)$$

locally uniformly in the complex plane, where $[m_k/n_k]_F = P_{m_k}/Q_{n_k}$.

¹¹ The Padé tables and continued fractions generated by totally positive sequences. In Mathematical Essays, H. Shankar (ed.), pp. 1–21, Ohio University Press, Athens, Ohio, 1970.

		Ray Sequences		Algebraic Functions
		000000		
Entire Functions of Very Slow and Smooth Growth				

The following theorem is due to Lubinsky¹².

Theorem

Let $F(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ be such that $a_{k-1} a_{k+1} / a_k^2 \to a$, |a| < 1, as $k \to \infty$. Then $[m_k / n_k]_F(z)$ converge to F(z) locally uniformly in the complex plane as $k \to \infty$ and $m_k \to \infty$.

¹²Padé tables of entire functions of very slow and smooth growth, II. Constr. Approx., 4(1):321–339, 1988.

		Ray Sequences		Algebraic Functions
		000000		
Padé Approximants at Infinity				

Let $F(z) = \sum_{k=1}^{\infty} f_k z^{-k}$ be a function holomorphic at infinity. Consider the following system:

$$Q_n(z)F(z) - P_n(z) = O(z^{-(n+1)}),$$

where $\deg(Q_n)$, $\deg(P_n) \le n$. This system always has a solution and for any solution the rational function $[n/n]_F = P_n/Q_n$ is unique.

	Ray Sequences	Algebraic Functions
	0000000	
Orthogonality		

From the equality $Q_n(z)F(z) - P_n(z) = O(z^{-(n+1)})$, it follows that

$$0 = \oint_{\Gamma} z^{k} \Big(Q_{n}(z) F(z) - P_{n}(z) \Big) dz$$

for $k \in \{0, ..., n-1\}$, where Γ is any Jordan curve in the domain of holomorphy of F(z) encircling the point at infinity. However, since $z^k P_n(z)$ is holomorphic in the interior domain of Γ , it holds that

$$0=\oint_{\Gamma}z^{k}Q_{n}(z)F(z)\mathrm{d}z.$$

	Ray Sequences	Algebraic Functions
	0000000	
Markov Functions		

In particular, if $F(z) = \int \frac{d\mu(x)}{z-x}$, where μ is a positive measure compactly supported on the real line (F(z) is a Markov function), then

$$0=\int x^{k}Q_{n}(x)\mathrm{d}\mu(x), \quad k\in\{0,\ldots,n-1\}.$$

Using the above orthogonality Markov¹³ showed the following.

Theorem

Let *F* be as above. Padé approximants $[n/n]_F(z)$ converge to F(z) locally uniformly (including at infinity) outside of the convex hull of $\operatorname{supp}(\mu)$.

¹³Deux demonstrations de la convergence de certaines fractions continues. Act. Math., 19:93-104, 1895.

	Ray Sequences	Algebraic Functions
	0000000	
Padé Conjecture		

Based on the analytical and numerical evidence, Baker, Gammel, and Wills¹⁴ put forward the following conjecture.

Padé Conjecture

Let F(z) be a holomorphic function in |z| < R except for N poles contained in 0 < |z| < R and one point on the boundary |z| = R where it is continuous. Then at least a subsequence of $[n/n]_F(z)$ converges locally uniformly to F(z) in { |z| < R } \ { poles of F }.

¹⁴An investigation of the applicability of the Padé approximant method. J. Math. Anal. Appl., 2:405–418, 1961.

	Ray Sequences	Algebraic Functions
	000000	
Lubinsky's Counterexample		

For q which is not a root of unity and |q| = 1, define

$$H_q(z) = 1 + \frac{qz|}{|1|} + \frac{q^2z|}{|1|} + \frac{q^3z|}{|1|} + \cdots$$

The following result is due to Lubinsky¹⁵.

Theorem

Let $q = e^{2\pi i \partial}$, where $\partial = 2/(99 + \sqrt{5})$. Then $H_q(z)$ is meromorphic in |z| < 1 and holomorphic at the origin. Moreover, there does not exist any subsequence of $[n/n]_{H_q}(z)$ that converges to $H_q(z)$ uniformly on compact subsets of $\{|z| < 0.46\} \setminus \{\text{ poles of } H_q \}$.

¹⁵Rogers-Ramanujan and the Baker-Gammel-Wills (Padé) conjecture. Ann. of Math., 157:847--889, 2003.

		Extremal Domains	Algebraic Functions
		00000000	
Logarithmic Capacity			

Let ω be a compactly supported probability Borel measure. The logarithmic energy of ω is defined by

$$f[\omega] := \iint \log \frac{1}{|z-u|} \mathrm{d}\omega(u) \mathrm{d}\omega(z).$$

Let K be a compact set. The logarithmic capacity of K is defined as

$$\operatorname{cp}(K) := \exp\{-\inf I[\omega]\},\$$

where infimum is taken over all probability Borel measures on K.

		Extremal Domains	Algebraic Functions
		00000000	
Logarithmic Capacity			

In particular, if *D*, the unbounded component of the complement of *K*, is simply connected and Φ is the conformal map of *D* onto |z| > 1 such that $\Phi(\infty) = \infty$ and $\Phi'(\infty) > 0$, then

$$\Phi(z)=rac{z}{\operatorname{cp}({\mathcal K})}+ ext{terms}$$
 analytic at infinity.

A polar set is a set that cannot support a single positive Borel measure with finite logarithmic energy. Polar sets are totally disconnected.

A property is said to hold quasi everywhere (q.e.) if it holds everywhere except on a polar set.

	Row Sequences	Ray Sequences	Extremal Domains	Algebraic Functions
			0000000	
Quasi Everywhere Single-Valued Functions				

From now on, all the Padé approximants interpolate at infinity.

The following result is due to Nuttall¹⁶ and Pommerenke¹⁷.

Theorem

Let F(z) be a meromorphic and single-valued function in the extended complex plane except for a compact polar set. Then, as $n \to \infty$, the diagonal Padé approximants $[n/n]_F(z)$ converge in capacity to F(z) in the domain of meromorphy of F(z) and the convergence is faster than geometric.

¹⁶The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31, 129--140, 1970

¹⁷Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41, 775–780, 1973

		Extremal Domains	Algebraic Functions
		00000000	
Functions with Branch Point	s		

A tremendous step forward in the investigation of the behavior of Padé approximants was done by Herbert Stahl¹⁸.

Theorem

Let F(z) be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

- (i) there exists the unique maximal domain *D*, such that $[n/n]_F(z)$ converge in capacity to F(z) in *D* as $n \to \infty$;
- (ii) $\Delta := \overline{\mathbb{C}} \setminus D$ is characterized as the set of the smallest logarithmic capacity among all compact sets that make F(z) single-valued in their complement.

¹⁸The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139–204, 1997

	Row Sequences 0000000	Ray Sequences 0000000	Extremal Domains	Algebraic Functions
Quadratic Differentials				

Moreover, it holds that¹⁹

$$\Delta = E \cup E_0 \cup \bigcup \Delta_j,$$

where E_0 is finite and Δ_j are open analytic arcs connecting the points in $E \cup E_0$.

¹⁹H. Stahl, The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4, 339–354, 1985

		Extremal Domains	Algebraic Functions
		000000000	
Quadratic Differentials			

Let F be holomorphic in the extended complex plane except at finitely many finite points where it has algebro-logarithmic branching. Then

$$\Delta = \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \cup \bigcup \Delta_j,$$

where $\{a_1, \ldots, a_p\}$ are some of the branch points of F (the ones that belong to the considered sheet of the Riemann surface), $\{b_1, \ldots, b_{p-2}\}$ are not necessarily distinct, and the arcs Δ_j are the negative critical trajectories of the quadratic differential

$$\frac{(z-b_1)\cdot\ldots\cdot(z-b_{p-2})}{(z-a_1)\cdot\ldots\cdot(z-a_p)}(\mathrm{d} z)^2.$$

That is, for any smooth parametrization z(t), $t \in [0, 1]$, of Δ_j , it holds

$$\frac{(z(t)-b_1)\cdot\ldots\cdot(z(t)-b_{p-2})}{(z(t)-a_1)\cdot\ldots\cdot(z(t)-a_p)}(z'(t))^2<0, \qquad t\in(0,1).$$

		Extremal Domains	Algebraic Functions
		000000000	
Reduced Padé Conjecture	,		

A function is called hyperelliptic if it is of the form $r_1 + r_2 \sqrt{p}$, where p is a polynomial and r_1 , r_2 are rational functions.

Herbert Stahl raised the following question²⁰: is the Padé conjecture true for hyperelliptic functions?

²⁰Orthogonal polynomials with respect to complex-valued measures. Ann. Comput. Appl. Math., pages 139–154, 1991. IMACS 1990.

		Extremal Domains	Algebraic Functions
		000000000	
Reduced Padé Conjecture			

This question was settled in negative by $Buslaev^{21}$.

Theorem

Let $j := (-1 + \sqrt{3}i)/2$ and set

$$F(z) = \frac{-27 + 6z^2 + 3(9+j)z^3 + \sqrt{81(3-(3+j)z^3)^2 + 4z^6}}{2z(9+9z+(9+j)z^2)}$$

There does not exist a subsequence of Padé approximants at the origin $[n/n]_F(z)$ that converges to F(z) simultaneously at z, jz, and j^2z , |z| < 1.

²¹On the Baker-Gammel-Wills conjecture in the theory of Padé approximants. Mat Sb., 193(6):25--38, 2002.

The poles²² of Padé approximant $[63/63]_F$ to function

$$F(z) = \sqrt[4]{\prod_{k=1}^{4} (1-z_k/z)} + \sqrt[3]{\prod_{k=5}^{7} (1-z_k/z)}.$$

 22 The picture is taken from H. Stahl, Sets of Minimal Capacity and Extremal Domains, manuscript, 2006

		Algebraic Functions
		0000000
Jon von Neumann		

Young man, in mathematics you don't understand things. You just get used to them.

Jon von Neumann

The following is an ``explanation'' of what is going wrong with the uniform convergence of Padé approximants to generic algebraic, in particular, hyperelliptic functions.

		Algebraic Functions
		000000
Class of Functions		

Let F(z) be a holomorphic function in the extended complex plane except at finitely many finite points where it has algebro-logarithmic branching of integrable order. Then

$$\Delta = \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \cup \left(\int \Delta_j, \right)$$

The arcs Δ_j are the negative critical trajectories of the quadratic differential $h^2(z)dz^2$, where

$$h^2(z):=\frac{(z-b_1)\cdot\ldots\cdot(z-b_{p-2})}{(z-a_1)\cdot\ldots\cdot(z-a_p)},$$

where $h(z)z \rightarrow 1$ as $z \rightarrow \infty$.

		Algebraic Functions
		0000000
Class of Functions		

Assume that each $b_k \in \Delta$ is incident with exactly three arcs Δ_j .

	Row Sequences 0000000	Ray Sequences 0000000	Algebraic Functions
Riemann Surface			

Let \Re be the Riemann surface of h(z) and g be the genus \Re .

Further, let *L* be the chain on \Re that lies above Δ .

	Row Sequences 0000000	Ray Sequences 0000000	Algebraic Functions
Boundary Value Problem			

Behind the question of convergence of Padé approximants to algebraic functions lies a certain boundary value problem on *L*.

Boundary Value Problem

For each $n \in \mathbb{N}$, find S_n holomorphic in $\Re \setminus (L \cup \{\infty^{(0)}\})$ and such that it has a pole of order n at $\infty^{(0)}$, a zero of order n at $\infty^{(1)}$ and satisfies

$$S_n^- = JS_n^+$$
 on L

with prescribed behavior at the branching points of \Re , where J is the jump of F across Δ lifted to L.

	Row Sequences 0000000	Ray Sequences 0000000		Algebraic Functions			
Rational Functions on \Re							

- (i) Generically, given {P₁,..., P_k} and {Z₁,..., Z_{k-g}} on ℜ there exist a unique (up to normalization) rational function on ℜ with poles P_j and zeros Z_j as the ratio of two such functions will have at most g poles.
- (ii) A collection of points {P₁,..., P_l}, l ≤ g, is called special if there exists a rational function on ℜ with poles only among the points P_j counting multiplicities.
- (iii) Generically, the function S_n is unique and has g additional zeros on \Re (the ratio S_n/S_{n-1} is a rational function on \Re and therefore generically should have at least g + 1 poles and g + 1 zeros).

		Algebraic Functions
		00000000
Main Theorem		

``Theorem''

Denote by \mathbb{N}_{ni} the subsequence of indices for which the function S_n uniquely exists in a proper sense. The gaps in \mathbb{N}_{ni} are at most of size g + 1. Let $\{Z_{n1}, \ldots, Z_{ng}\}$ be the additional zeros of S_n , $n \in \mathbb{N}_{ni}$. Then

- (i) if Z_{nj} belongs to $D^{(0)}$, then $[n/n]_F$ has a pole next to the projection of Z_{nj} ;
- (ii) if Z_{nj} belongs to $D^{(1)}$, then $[n/n]_F$ overinterpolates F at a point next to the projection of Z_{nj} ;
- (iii) the rest of the poles of $[n/n]_F$ converge to Δ and uniform type formulae can be provided.

				Algebraic Functions
0000000	0000000	0000000	00000000	0000000
Contributors				

Akhiezer²³ and Widom²⁴: Szegő densities on disjoint subintervals of \mathbb{R} Nuttall²⁵: $F(z) = \prod_{j=1}^{3} (z - a_j)^{a_j}$, $\sum_{j=1}^{3} a_j = 0$ Suetin²⁶: Hölder-continuous/Chebyshëv weight for disjoint arcs Baratchart-Ya.²⁷: Dini-continuous/Chebyshëv weight for $\{a_1, a_2, a_3\}$ Martínez Finkelstein-Rakhmanov-Suetin²⁸: $F(z) = \prod_{j=1}^{p} (z - a_j)^{a_j}$, $\sum_{j=1}^{p} a_j = 0$

Aptekarev-Ya.²⁹: the above described setting + Cauchy-type integrals

²⁴Extremal polynomials associated with a system of curves in the complex plane. Adv. Math., 3:127–232, 1969.

²³Orthogonal polynomials on several intervals. Soviet Math. Dokl., 1:989–992, 1960.

²⁵Asymptotics of generalized Jacobi polynomials. Constr. Approx., 2:59–77, 1986

²⁶Uniform convergence of Padé diagonal approximants for hyperelliptic functions. Mat. Sb., 191(9):81-114, 2000

²⁷Asymptotics of Padé approximants to a certain class of elliptic-type functions, arXiv

²⁸Heine, Hilbert, Padé, Riemann, and Stieltjes: a John Nuttall's work 25 years later, arXiv

²⁹Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials, arXiv