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Introduction

Transcendental Number Theory

In 1844 Liouville' constructed the first example of a transcendental
number by using continued fractions.

Carefully studying similarities between simultaneous diophantine
approximation of real numbers and rational approximation of
holomorphic functions, Hermite? proved in 1873 that e is transcendental.

]Sur des class tré étendues de quantités dont la valeur n’est ni algébrique, ni méme réductible & des irrationelles algébriques.
C.R. Acad. Sci. Paris, 18:883--885, 910--911, 1844
2Sur la fonction exponentielle. C.R. Acad. Sci. Paris, 77:18-24, 74--79, 226--233, 285--293, 1873



Hermite’s proof is based on the following criterion.

Lemma

a is tfranscendental if for any m € N and any € > 0 there exist m + 1
linearly independent vectors of integers (g, pji. - . .. pm).j = 0, m,
such that |gia* — py| < e.k =T, m.

If a is algebraic, then for some m € N there exist a, € Z, k = 0, m, such
that 377, axa® = 0. Hence,

m

m
Z ak(ga” - px) + g + Z Py = 0.
k=1 k=1

Then for some 0 < jy < m, it holds that

1<

m
Z k(9@ ~ Pex)

k=1

m
< SZ |akl.
k=1




Let ng, Ny, ..., Nm be non-negative integers. Set N := ng + - - + npy,
and consider the following system:

Q(z)e” - P(z) = O(zN‘H), J

where deg(Q) < N — np and deg(Py) < N — ny.

Hermite proceeded to explicitly construct these polynomials, which as it
turned out have integer coefficients. By evaluating these polynomials at
1 he succeeded in applying the above criterion.
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Definition

Let F(z) = Y,° fz" be a function holomorphic at the origin. Consider
the following system:

Q(2)F(2) - P(z) = O(z™), |

where deg(Q) < nand deg(P) < m. This system always has a solution.
Indeed,

Q(2)F(2) :iL Z GCI:] g
0 \j+i=




Po fo 1 f-n o
P fi fo fi-n d
Pm fm T fm-n an
and
0 Tm+1 m fm+1-n Qo
0 fnto  fmi fnto-n ai
0 fm+ n+1 fm+n fm+ 1 an

The latter is a linear system of n equations with n 4 1 unknowns. Such a
system always has a solution. A solution may not be unique, but the

ratio [m/n|r 1= P/Q always is.
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Uniqueness

Indeed, let @,(z). P1(z) and &;(z). P»(z) be solutions. Then

Q(2)(@(@)F(2) - Pi(2) = 0fzm")

and

& (Z)(Qz(Z)F(Z) — P2(z)) = O(zm—i-n—H)‘

Therefore,

(2)P1(2) — @(2)P2(2) = 0(zm+n+1).

However,

deg (Q:P1 -~ QP < m+n. J




Padé Table

Othrow — [0/0] [1/0]¢ --- [m/O]¢
Tstrow — [0/1] [1/1]¢ -+ [m/1]¢

n—’rhrc')w—> [O/n]p [1/”],: [m)n],.—




Row Sequences
°

Taylor Sections

Let F(z) be an analytic function in |z| < R. Then [m/0]¢(z) converge to
F(z) uniformly in |z]| < R as m — oo.




Row Sequences
o

Padé Approximants with Fixed Number of Poles

The following theorem is due to de Montessus de Ballore3.

Let F(z) be a meromorphic function in [z| < R with N poles contained in
0 < |z| < R. Then [m/N]¢(z) converge to F(z) in |z| < R in the spherical
meftric as m — oo,

3Sur les fractions continues algébriques. Bull. Soc. Math. de France, 30:28--36, 1902.



Row Sequences

Inverse of de Montessus de Ballore Theorem

The following theorem is due to Gonchar* and Suetin®®.

Let F (z) be a holomorphic function at the origin. If the poles of Padé
approximants [m/N]q(z) converge to the points z;, . . ., zy as m — oo,
then F(z) can be meromorphically continued to |z| < Ry := max |z|
and all the points z, are singularities of F(z) (polar if |z,| < Ry).

4Poles of rows of the Padé table and meromorphic continuation of functions, Math. USSR-Sb., 43(4):527--546, 1982
5On poles of the m-th row of a Padé table, Math. USSR-Sb., 48(2):493--497, 1984
6On an inverse problem for the m-th row of a Padé table, Math. USSR-Sb., 52(1):231--244, 1985



Row Sequences
o

Padé Approximants with 1 Pole

The following theorem is due to Beardon’.

Let F (z) be an analytic function in |z| < R. Then an infinite subsequence
of [m/1]¢(z) converges to F(z) uniformly in |z| < R as m — co.

7On the location of poles of Padé approximants. J. Math. Anal. Appl., 21:469--474, 1968.



Row Sequences

An Example of Padé Approximants with Fixed Number of Poles

The following example is due to Lubinsky and Saffe.

Theorem

Set Fy(2) := 1+ z+ gz + ¢°2 + °Z* + - - -, where g = &*™? with &
irational. Then, for each fixed N > 1, Padé approximants [m/N|r, (2)
converge to F4(z) locally uniformly in |z| < Ry as m — oo for some
Rn,q < 1. Moreover, the circle |z| = R,y necessarily contains limit points
of the poles of [m/N]¢, (z) and no subsequence of approximants
converges to F4(z) locally uniformly in |z| < 1.

Observe that F4(z) is holomorphic in |z| < 1 with the unit circle being
the natural boundary of analyticity.

8Convergence of Padé approximants of partial theta function and Rogers-Szegd polynomials. Constr. Approx., 3:331--361, 1987.



Row Sequences

Uniform Convergence of Rows

The following theorem is due to Buslaev, Gonchar, and Suetin’.

Let F(z) be a holomorphic function in |z| < R. Then for each N there
exists Ry < R such that some subsequence of [m/N|(z) converges to
F(z) uniformly in |z| < Ry as m — co.

OOn convergence of subsequences of the m-th row of a Padé table, Math. USSR-Sb., 48(2):535--540, 1984



Row Sequences

Padé Approximants with Slowly Increasing Number of Poles

The following theorem is due to Zinn-Justin'.

Let F(z) be a meromorphic function in [z| < R with N poles contained in
0 < |z| £ R.Then [my /n]¢(z) converge to F(z) in measure in |z| < R for
ng > N as k — oo and my/ng — oo,

IOConvergence of Padé approximants in the general case. In Colloquium on Advanced Computing Methods in Theoretical

Physics, A. Visconti (ed.), pp. 88--102, C.R.N.S., Marseille, 1971.



Ray Sequences
°

Pdlya Frequency Series

The following theorem is due to Arms and Edrei'’

Theorem
Let

eczﬁ 1+ akz 1 - bkz)_],
k=1

where ¢, ay, by = 0,and Y7 (ax + by) < 0. If m/ne — A € (0, o)
as k — oo, then

(o)

Pm(z) — exp{f}_—iq}ﬁ@ +akz)
k=1

Q,(z2) — exp{;iﬂ;} - (1 —bkz)
k=1

locally uniformly in the complex plane, where [mk Vi nk]F = Pm, / Qp, .

" The Padé tables and continued fractions generated by totally positive sequences. In Mathematical Essays, H. Shankar (ed.),

pp. 1--21, Ohio University Press, Athens, Ohio, 1970.



Ray Sequences
°

Entire Functions of Very Slow and Smooth Growth

The following theorem is due fo Lubinskym.

Let F(z) = ap + a1z + @z + - - - be such that ax_1akt1 /a2 — a.
lal < 1, as k — co. Then [my/ni|£(z) converge to F(z) locally uniformly
in the complex plane as k — co and my, — ©o.

]2Padé tables of entire functions of very slow and smooth growth, Il. Constr. Approx., 4(1):321--339, 1988.



Ray Sequences
.

Padé Approximants at Infinity

Let F(z) = Y,° | fiz ¥ be a function holomorphic at infinity. Consider
the following system:

Qu(2)F(2) - P(2) = Oz ), J

where deg(Q,). deg(P,) < n. This system always has a solution and for
any solution the rational function [n/n]p = P,/Q, is unique.



Orthogonality

From the equality @, (2)F(2) = P,(z) = O(z (")), it follows that

0= 9§ 2(Qu(2)F(z) - Po(2))dz }

fork € {0,..., n— 1}, where [ is any Jordan curve in the domain of
holomorphy of F(z) encircling the point at infinity. However, since
7¥P,(z) is holomorphic in the interior domain of I', it holds that

0= ﬁszn(z)F(z)dz. }




Markov Functions

ey [ dB() . "
In particular, if F(z) = | ——, where 1 is a positive measure
- X

compactly supported on the real line (F(z) is @ Markov function), then

OzkaQn(x)du(x), ke{0,...,n—1}. J

Using the above orthogonality Markov'? showed the following.

Let F be as above. Padé approximants [n/n]r(z) converge to F(z)
locally uniformly (including at infinity) outside of the convex hull of

supp(u).

lsDeux demonstrations de la convergence de certaines fractions continues. Act. Math., 19:93-104, 1895.



Ray Sequences

Padé Conjecture

Based on the analytical and numerical evidence, Baker, Gammel, and
Wills' put forward the following conjecture.

Padé Conjecture

Let F(z) be a holomorphic function in |z| < R except for N poles
contained in 0 < |z| < R and one point on the boundary |z| = R where
it is continuous. Then at least a subsequence of [n/n|((z) converges
locally uniformly to F(z) in { |z < R} \ { poles of F }.

MAn investigation of the applicability of the Padé approximant method. J. Math. Anal. Appl., 2:405--418, 1961.



Lubinsky’s Counterexample

For g which is not a root of unity and |g| = 1, define

Z y4 32
Hq(z):1+7—]|+%+ql—1l+~--.

The following result is due to Lubinsky'®.

Let g = €°™?, where & = 2/(99 + /5). Then Hy(z) is meromorphic in
|z] < 1 and holomorphic at the origin. Moreover, there does not exist
any subsequence of [n/n]y,(z) that converges fo H(z) uniformly on
compact subsets of { |z| < 0.46 } \ { poles of H }.

lsRogers-Romonujcn and the Baker-Gammel-Wills (Padé) conjecture. Ann. of Math., 157:847--889, 2003.



Logarithmic Capacity

Let @ be a compactly supported probability Borel measure. The
logarithmic energy of w is defined by

o] = f f - lzluldw(u)dw(z). J

Let K be a compact set. The logarithmic capacity of K is defined as

cp(K) = exp{—infl[a)]}, J

where infimum is taken over all probability Borel measures on K.



Logarithmic Capacity

In particular, if D, the unbounded component of the complement of K,
is simply connected and ® is the conformal map of D onto |z| > 1 such
that ®(co) = co and ¢’(c0) > 0, then

d(z) =

——— + terms analytic at infinity.
cp(K) J

A polar set is a set that cannot support a single positive Borel measure
with finite logarithmic energy. Polar sets are totally disconnected.

A property is said to hold quasi everywhere (qg.e.) if it holds everywhere
except on a polar set.



Extremal Domains

Quasi Everywhere Single-Valued Functions

From now on, all the Padé approximants interpolate at infinity.

The following result is due to Nuttall'® and Pommerenke'”.

Let F(z) be a meromorphic and single-valued function in the extended
complex plane except for a compact polar set. Then, as n — oo, the
diagonal Padé approximants [n/n|r(z) converge in capacity to F(z) in
the domain of meromorphy of F(z) and the convergence is faster than
geometric.

]6The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31, 129140, 1970

nPadé approximants and convergence in capacity, J. Math. Anal. Appl. 41, 775--780, 1973



Functions with Branch Points

A tfremendous step forward in the investigation of the behavior of Padé
approximants was done by Herbert Stahl'8.

Theorem

Let F(z) be holomorphic at infinity, multi-valued, and with all its
singularities contained in a compact polar set E. Then

() there exists the unique maximal domain D, such that [n/n]¢(z)
converge in capacity to F(z) in D as n — oo;

Gy A = C \ D is characterized as the set of the smallest logarithmic
capacity among all compact sets that make F(z) single-valued in
their complement.

]BThe convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139--204, 1997



Extremal Domains

Quadratic Differentials

Moreover, it holds that'?

A:EUEOUUA-, J

where £ is finite and Aj are open analytic arcs connecting the points
in EU Eo.

ag

WH. Stahl, The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4, 339--354,

1985



Quadratic Differentials

Let F be holomorphic in the extended complex plane except at finitely
many finite points where it has algebro-logarithmic branching. Then

A={a....a} Ulbr.....bo 2l U| A, J
where {ay. ..., ap} are some of the branch points of F (the ones that
belong to the considered sheet of the Riemann surface), {by, . . ., bp_o}

are not necessarily distinct, and the arcs A; are the negative critical
trajectories of the quadratic differential

(z—b1)~...~(z—bp_2)(dz)2. J

(z=a)) ... (z—ap)

That is, for any smooth parametrization z(1), t € [0, 1], of A\, it holds

(z(t) = 1) - ... - (2(t) = bp-2)
(2(t) —an) - ... - (2(t) - 0p)

(Z(t)?* <0, te(01). J




Extremal Domains

@00
Reduced Padé Conjecture

A function is called hyperelliptic if it is of the form r; + > \/5 where pis
a polynomial and ry, r, are rational functions.

Herbert Stahl raised the following ques’rion20: is the Padé conjecture
true for hyperelliptic functions?

20Or‘rhogonal polynomials with respect to complex-valued measures. Ann. Comput. Appl. Math., pages 139--154, 1991. IMACS

1990.



Reduced Padé Conjecture

This question was seftled in negative by Buslaev?'.

Theorem

Letj := (=1 + V3i)/2 and set

27 + 622 +3(9 + j)Z + \/81(3 - (34+)2%)? + 420
229+ 92+ (9 +))7) '

F(z) =

There does not exist a subsequence of Padé approximants at the origin
[n/n]¢(z) that converges to F(z) simultaneously at z, jz, and j°z, |z| < 1.

2 On the Baker-Gammel-Wills conjecture in the theory of Padé approximants. Mat Sb., 193(6):25--38, 2002.



An Example

5
4 z Zg
A spurious pole
z
3 / !
*

Z

2
Zs

;
o * Systematic pole

4 2 0 2 4

The poles®? of Padé approximant [63 /63]r to function
4 7
F) = [ [0 -2/ + 7] [0 -272).
k=1 k=5

22The picture is taken from H. Stahl, Sets of Minimal Capacity and Extremal Domains, manuscript, 2006



Jon von Neurnann

Young man, in mathematics you don’t understand things. You just get
used to them.

Jon von Neumann

The following is an *‘explanation’” of what is going wrong with the
uniform convergence of Padé approximants to generic algebraic, in
particular, hyperelliptic functions.



Class of Functions

Let F(z) be a holomorphic function in the extended complex plane
except at finitely many finite points where it has algebro-logarithmic
branching of integrable order. Then

A={a....a} Ulbr.....bo 2l U| A, J

The arcs A/- are the negative critical trajectories of the quadratic
differential h?(z)dz?, where

h2(z):: (z—b1)-...-(z—bp_2) J

(z=a) i (z=ap)

where h(z)z — 1asz — oo,



Class of Functions




Algebraic Functions
°

Riemann Surface

Let R be the Riemann surface of h(z) and g be the genus k.

L+

)

Further, let L be the chain on R that lies above A.



Boundary Value Problem

Behind the question of convergence of Padé approximants 1o
algebraic functions lies a certain boundary value problem on L.

Boundary Value Problem

For each n € N, find S, holomorphic in R \ (L U {oo(o)}) and such that it

has a pole of order n at oo(o), a zero of order n at co(!) and satisfies
- _ jot
S, =JS; on L

with prescribed behavior at the branching points of ‘R, where J is the
jump of F across A liffed to L.




Rational Functions on R

®

@i

@i

Generically, given {Py, . . ., P and {7;, ..., Zi—g} on N there exist
a unique (up to normalization) rational function on R with poles P,
and zeros Z; as the ratio of two such functions will have at most g
poles.

A collection of points {P;, ..., P}, < g, is called special if there
exists a rational function on R with poles only among the points P;
counting multiplicities.

Generically, the function S, is unique and has g additional zeros
on R (the ratio S,/S,_1 is a rational function on R and therefore
generically should have af least g + 1 poles and g + 1 zeros).



Main Theorem

“Theorem®’

Denote by IN,;; the subsequence of indices for which the function S,
uniquely exists in a proper sense. The gaps in N,,; are at most of size
g+ 1.Let{Z,.....Z,y} be the additional zeros of S,, n € N,;. Then

(@) if Z,; belongs fo D), then [n/n]F has a pole next to the projection
of Z:

@D if Z, belongs to pM , then [n / n]F overinterpolates F at a point next
to the projection of Z,;;

(ii) the rest of the poles of [n/ n] F converge to A and uniform type
formulae can be provided.




Contributors

Akhiezer?® and Widom?*: Szegd densities on disjoin’r subintervals of R
Nuttall®: F(z) = Hjs:](z - q)¥ 2,71 a =

Suetin?®: Holder-continuous/Chebyshév weight for disjoint arcs
Baratchart-Ya.?’: Dini-continuous/Chebyshév weight for {a;, as, as)
Martinez Finkelstein-Rakhmanov-Suetin®: F(z) = [, (z — o)) %,

Z;,‘le a =0

Aptekarev-Ya.??: the above described setting + Cauchy-type integrals

23Or‘rhogoncl polynomials on several intervals. Soviet Math. Dokl., 1:989-992, 1960.

Extremal polynomials associated with a system of curves in the complex plane. Adv. Math., 3:127--232, 1969.
25Asymp'rotics of generalized Jacobi polynomials. Constr. Approx., 2:59--77, 1986
26,
27
28

Uniform convergence of Padé diagonal approximants for hypereliiptic functions. Mat. Sb., 191(9):81-114, 2000
Asymptotics of Padé approximants to a certain class of elliptic-type functions, arXiv
Heine, Hilbert, Padé, Riemann, and Stieltjes: a John Nuttall’s work 25 years later, arXiv

Padé approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials, arXiv
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