Spectral Theory Behind Multiple Orthogonal Polynomials

Maxim L. Yattselev

Indiana University-Purdue University Indianapolis

Department of Mathematical Sciences University of Cincinnati November 16th, 2023 Consider the equation of heat distribution in a metal rod of length π :

$$\begin{split} u_t(\theta,t) &= k u_{\theta\theta}(\theta,t) \\ u_{\theta}(0,t) &= u_{\theta}(\pi,t) = 0 \\ u(\theta,0) &= f(\theta). \end{split}$$

When $f(\theta) = \cos(n\theta)$, $n \in \mathbb{N}$, it can be easily checked that $u(\theta, t) = \cos(n\theta)e^{-n^2kt}$. Consider the equation of heat distribution in a metal rod of length π :

$$u_t(\theta, t) = k u_{\theta\theta}(\theta, t)$$
$$u_{\theta}(0, t) = u_{\theta}(\pi, t) = 0$$
$$u(\theta, 0) = f(\theta).$$

When $f(\theta) = \cos(n\theta)$, $n \in \mathbb{N}$, it can be easily checked that $u(\theta, t) = \cos(n\theta)e^{-n^2kt}$.

In 1807 Fourier realized that if

$$f(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\theta), \quad a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta,$$

where $f(-\theta) = f(\theta)$, then the solution of the heat equation is given by

$$u(\theta, t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\theta) e^{-n^2 k t}$$

If the Neumann condition $u_{\theta}(0, t) = u_{\theta}(\pi, t) = 0$ is replaced with the Dirichlet condition $u(0, t) = u(\pi, t) = 0$, then we must take odd extension of $f(\theta)$ and consider the series in sines. Fourier considered only series that were convergent.

Given an integrable function $f(\theta)$ on $[-\pi,\pi]$, one can identify it with the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\theta) + b_n \sin(n\theta) \right),$$

where $a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$ and $b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Given an integrable function $f(\theta)$ on $[-\pi,\pi]$, one can identify it with the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\theta) + b_n \sin(n\theta) \right),$$

where $a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$ and $b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Riesz-Fischer Theorem: If $f \in L^2$, then $||f - S_N||_2 \to 0$ as $N \to \infty$.

Jackson's Theorem: If f is α -Hölder continuous, $|f(\theta) - S_N(\theta)| \le C \frac{\log N}{N^{\alpha}}$.

Carleson's Theorem: If $f \in L^2$, then $S_N(\theta)$ converges to $f(\theta)$ a.e.

Given an integrable function $f(\theta)$ on $[-\pi,\pi]$, one can identify it with the series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\theta) + b_n \sin(n\theta) \right),$$

where $a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$ and $b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Riesz-Fischer Theorem: If $f \in L^2$, then $||f - S_N||_2 \to 0$ as $N \to \infty$.

Jackson's Theorem: If f is α -Hölder continuous, $|f(\theta) - S_N(\theta)| \le C \frac{\log N}{N^{\alpha}}$.

Carleson's Theorem: If $f \in L^2$, then $S_N(\theta)$ converges to $f(\theta)$ a.e.

Observe that $\{sin(n\theta), cos(n\theta)\}$ is an orthogonal system on $[-\pi, \pi]$.

First kind degree *n* Chebyshëv polynomial $T_n(x)$ is a solution of

$$(1-x^2)y''-xy'+n^2y=0.$$

It has a famous explicit expression

$$T_n(x) = \cos(n \arccos x), \quad x \in [-1, 1].$$

Moreover, it turns out to be an orthogonal polynomial:

$$\int_{-1}^{1} x^{k} T_{n}(x) \frac{dx}{\sqrt{1-x^{2}}} = 0, \quad k = \overline{0, n-1}.$$

First kind degree *n* Chebyshëv polynomial $T_n(x)$ is a solution of

$$(1-x^2)y''-xy'+n^2y=0.$$

It has a famous explicit expression

$$T_n(x) = \cos(n \arccos x), \quad x \in [-1, 1].$$

Moreover, it turns out to be an orthogonal polynomial:

$$\int_{-1}^{1} x^{k} T_{n}(x) \frac{dx}{\sqrt{1-x^{2}}} = 0, \quad k = \overline{0, n-1}.$$

From the explicit expression it follows that

$$T_n(\cos\theta) = \cos(n\theta), \quad \theta \in [-\pi,\pi].$$

Hence, to a function f(x) on [-1, 1] we can associate

$$f(x)=f(\cos\theta)\sim\frac{a_0}{2}+\sum_{n=1}^{\infty}a_n\cos(n\theta)=\frac{a_0}{2}+\sum_{n=1}^{\infty}a_nT_n(x),$$

where

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\cos \theta) \cos(n\theta) d\theta = \frac{2}{\pi} \int_{-1}^{1} f(x) T_n(x) \frac{dx}{\sqrt{1-x^2}}.$$

Orthonormal Jacobi polynomials $\{p_n^{(\alpha,\beta)}(x)\}$, $\alpha,\beta > -1$, are defined by

 $\int_{-1}^{1} p_{n}^{(\alpha,\beta)}(x) p_{m}^{(\alpha,\beta)}(x) w^{(\alpha,\beta)}(x) dx = \delta_{mn}, \quad w^{(\alpha,\beta)}(x) := (1+x)^{\alpha} (1-x)^{\beta}.$

To every function f(x) on [-1,1], one can associate a series

$$f(x) \sim \sum_{n=0}^{\infty} c_n p_n^{(\alpha,\beta)}(x), \quad c_n := \int_{-1}^1 f(x) \rho_n^{(\alpha,\beta)}(x) w^{(\alpha,\beta)}(x) dx.$$

Theorem (Szegő)

If |f(x)| is integrable w.r.t. $w^{(\alpha,\beta)}(x)$ and $w^{(\alpha/2-1/4,\beta/2-1/4)}(x)$, then

$$\lim_{N \to \infty} \left(S_N^{(\alpha,\beta)}(x) - w^{(-\alpha/2 - 1/4, -\beta/2 - 1/4)}(x) S_N(x) \right) = 0$$

uniformly on compact subsets of (-1, 1), where $S_N^{(\alpha, \beta)}(x)$ is the *N*-th Jacobi partial sum and $S_N(\cos \theta)$ is the *N*-th Fourier partial sum of $w^{(\alpha/2+1/4,\beta/2+1/4)}(\cos \theta)f(\cos \theta)$.

Let μ be a Borel measure with bounded infinite support on the real line. Orthonormal polynomials $\{p_n(x)\}$ are defined by

$$\int p_n(x)p_m(x)d\mu(x)=\delta_{nm}$$

Theorem (Freud 1953 + Mastroianni & Totik 2000)

If the measure μ is absolutely continuous and doubling on some interval [a, b] ($\mu(2I) \leq c\mu(I)$, where $2I \subseteq [a, b]$ is the interval with the same center and twice the length of an interval I) and f(x) is Hölder continuous with index greater than 1/2, then

$$\sum_{n=0}^{N-1} c_n(f) p_n(x) \rightrightarrows f \quad \text{on} \quad [a,b], \quad c_n(f) := \int f(x) p_n(x) d\mu(x).$$

Let $p/q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of p and q:

$$p = a_0 q + r_0$$

$$q = a_1 r_0 + r_1$$

$$r_0 = a_2 r_1 + r_2$$
...

 $r_{n-2} = a_n r_{n-1}.$

Let $p/q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of p and q:

$$p = a_0 q + r_0$$

$$q = a_1 r_0 + r_1$$

$$r_0 = a_2 r_1 + r_2$$
...

$$r_{n-2} = a_n r_{n-1}.$$

However, it also has the following consequence:

$$\frac{p}{q} = a_0 + \frac{r_0}{q} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{r_2}{r_1}}}$$
$$= a_0 + \frac{1}{a_1 + \frac{1}{a_1$$

Let now $x \in \mathbb{R}$. Then

$$x = [x] + \frac{1}{1/\{x\}} = [x] + \frac{1}{[1/\{x\}] + \frac{1}{1/\{1/\{x\}\}}} = \cdots$$
$$=: a_0(x) + \Phi_{k=1}^{\infty} \frac{1}{a_k(x)},$$

where $a_k(x) \in \mathbb{Z} \cup \{\infty\}$, which is called a *continued fraction* representation of x. Set

$$x_n := a_0(x) + \Phi_{k=1}^n \frac{1}{a_k(x)} = \frac{q_n}{p_n} \in \mathbb{Q}$$

to be the *n*-th convergent of the continued fraction.

Fact

Continued fraction

$$\mathsf{a}_0(x) + \Phi_{k=1}^\infty rac{1}{\mathsf{a}_k(x)}$$

is finite if and only if $x \in \mathbb{Q}$. Moreover, if $x \in \mathbb{R} \setminus \mathbb{Q}$, then

$$\frac{1}{p_n(p_n+p_{n+1})} \leq \left|x-\frac{q_n}{p_n}\right| \leq \frac{1}{p_np_{n+1}}$$

where q_n/p_n is the *n*-th convergent. Furthermore,

$$\left|x-rac{q}{p}
ight|<rac{1}{2p^{2}} \quad \Rightarrow \quad rac{q}{p}=rac{q_{m}}{p_{m}}$$

Continued Fraction of a Series

Start with a formal power series at infinity

$$f(z) = \sum_{k=1}^{\infty} f_k z^{-k}$$

such that the Hankel determinants of the coefficients $\{f_k\}$ are non-zero. Then

$$f(z) = \Phi_{k=1}^{\infty} \frac{b_k}{z - a_k}$$

for some well-defined constants $\{a_k, b_k\}$. Denote $[n/n]_f$ the *n*-th convergent:

$$[n/n]_f(z) := \Phi_{k=1}^n \frac{b_k}{z-a_k}.$$

Then it is known that

$$(f-[n/n]_f)(z)=\mathcal{O}\left(z^{-2n-1}\right)$$

and the above relation uniquely determines $[n/n]_f$. Moreover,

$$(P_n f - Q_n)(z) = \mathcal{O}\left(z^{-n-1}\right), \quad [n/n]_f =: Q_n/P_n.$$

Let f be a formal power series at infinity and polynomials Q_n, P_n be defined by

$$(P_nf-Q_n)(z)=\mathcal{O}\left(z^{-n-1}\right),$$

 $deg(Q_n), deg(P_n) \le n$. Such a pair of polynomials may not be unique, but their ratio *always is*. Thus, we normalize P_n to be *monic* and set

$$Q_n/P_n =: [n/n]_f$$

and call it the *diagonal Padé approximant* for **f** of order **n**.

Let f be a formal power series at infinity and polynomials Q_n , P_n be defined by

$$(P_nf-Q_n)(z)=\mathcal{O}\left(z^{-n-1}\right),$$

 $deg(Q_n), deg(P_n) \le n$. Such a pair of polynomials may not be unique, but their ratio *always is*. Thus, we normalize P_n to be *monic* and set

$$Q_n/P_n =: [n/n]_f$$

and call it the diagonal Padé approximant for f of order n.

Moreover, if the power series for f is convergent and Γ encircles infinity within the disk of convergence, then

$$0 = \oint_{\Gamma} z^{k} (P_{n}f - Q_{n})(z) dz = \oint_{\Gamma} z^{k} P_{n}(z) f(z) dz$$

for $k = \overline{0, n-1}$ and z belonging to the exterior of Γ . Thus,

$$f(z) = \int \frac{d\mu(x)}{z-x} \quad \Rightarrow \quad 0 = \int x^k P_n(x) d\mu(x).$$

Let μ be a probability measure with bounded infinite support on the real line and $P_n(x)$ be the monic orthogonal polynomial of degree n, i.e.,

$$\int P_n(x)x^k d\mu(x) = 0, \quad k = \overline{0, n-1}.$$

These polynomials satisfy the three-term recurrence relations:

$$xP_n(x) = P_{n+1}(x) + b_n P_n(x) + a_{n-1}P_{n-1}(x)$$

with $P_{-1} := 0$, $P_0 = 1$, and $a_n > 0$. These relations can be symmetrized:

$$xp_n(x) = c_n p_{n+1}(x) + b_n p_n(x) + c_{n-1} p_{n-1}(x), \quad c_n := \sqrt{a_n},$$

where $p_n(x)$ is the *n*-th orthonormal polynomial. It holds that

$$c_n \leq |\Delta|/2$$
 and $|b_n| \leq \sup_{x \in \Delta} |x|,$

where Δ is the convex hull of the support of μ .

The Jacobi matrix \mathcal{J} , defined by

is symmetric in $\ell^2(\mathbb{Z}_+)$. Since the sequences $\{a_n\}$ and $\{b_n\}$ are both bounded, the operator \mathcal{J} is bounded and self-adjoint. If $p := (p_0, p_1, \ldots)$, then

$$\mathcal{J}p = xp$$
 and $(\mathcal{J} - z)r = e_0$,

where $r := (r_0, r_1, ...)$ and

$$r_n(z) = \int \frac{p_n(x)}{x-z} d\mu(x) = \int \left(\frac{x}{z}\right)^n \frac{p_n(x)}{x-z} d\mu(x).$$

Since $r \in \ell^2(\mathbb{Z}_+)$ for all z large,

$$r = (\mathcal{J} - z)^{-1} e_0, \quad z \notin \sigma(\mathcal{J}).$$

Therefore, μ is the spectral measure for \mathcal{J} as

$$\left\langle (\mathcal{J}-z)^{-1}e_0, e_0 \right\rangle = \int \frac{d\mu(x)}{x-z}$$

In this cycle we could have started with a bounded Jacobi operator.

In 1873 Hermite proved that *e* is transcendental.

Criterion

 α is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon > 0$ there exist m + 1 linearly independent vectors of integers $(p_j, q_{j1}, \ldots, q_{jm})$, $j = \overline{0, m}$, such that

$$p_j \alpha^k - q_{jk} \leq \varepsilon, \quad k = \overline{1, m}.$$

If α is algebraic, then for some $m \in \mathbb{N}$ there exist $a_k \in \mathbb{Z}$, $k = \overline{0, m}$, such that

$$\sum_{k=0}^m a_k \alpha^k = 0.$$

Hence,

$$\sum_{k=1}^{m} a_k (p_j \alpha^k - q_{jk}) + a_0 p_j + \sum_{k=1}^{m} a_k q_{jk} = 0.$$

Then for some $0 \leq j_0 \leq m$, it holds that

$$1 \leq \left|\sum_{k=1}^m a_k(p_{j_0}lpha^k - q_{j_0k})
ight| \leq arepsilon \sum_{k=1}^m |a_k|.$$

Set $N := n_0 + \cdots + n_m$, where n_0, n_1, \ldots, n_m are non-negative integers. Let $F_1(z), \ldots, F_m(z)$ be functions holomorphic at the origin. Consider

$$P(z)F_k(z) - Q_k(z) = \mathcal{O}\left(z^{N+1}\right),$$

where $deg(P) \leq N - n_0$ and $deg(Q_k) \leq N - n_k$.

Such polynomials exist (their coefficients are obtained from a linear system which is always solvable), but are not necessarily unique. The *m*-tuple $Q_1/P, \ldots, Q_m/P$ is called an *Hermite-Padé approximant of type II*.

Hermite's Genius

Theorem

The *m*-tuple of Hermite-Padé approximants to the system e^z, \ldots, e^{mz} is unique and is given up to the normalization by the formulae

$$P(z) = \mathcal{D}^{N}[f](0) + \mathcal{D}^{N-1}[f](0)z + \dots + \mathcal{D}^{n_{0}}[f](0)z^{N-n_{0}},$$

$$Q_{k}(z) = \mathcal{D}^{N}[f](k) + \mathcal{D}^{N-1}[f](k)z + \dots + \mathcal{D}^{n_{k}}[f](k)z^{N-n_{k}}$$

where $f(s) = s^{n_0}(s-1)^{n_1} \cdots (s-m)^{n_m}$ and \mathcal{D} is the diff. operator.

Hermite's Genius

Theorem

The *m*-tuple of Hermite-Padé approximants to the system e^z, \ldots, e^{mz} is unique and is given up to the normalization by the formulae

$$P(z) = \mathcal{D}^{N}[f](0) + \mathcal{D}^{N-1}[f](0)z + \dots + \mathcal{D}^{n_{0}}[f](0)z^{N-n_{0}},$$

$$Q_{k}(z) = \mathcal{D}^{N}[f](k) + \mathcal{D}^{N-1}[f](k)z + \dots + \mathcal{D}^{n_{k}}[f](k)z^{N-n_{k}}$$

where $f(s) = s^{n_0}(s-1)^{n_1} \cdots (s-m)^{n_m}$ and \mathcal{D} is the diff. operator.

Theorem

For any $m, n \in \mathbb{N}$, let $P_j, Q_{j1}, \ldots, Q_{jm}, j = \overline{0, m}$, be the *m*-tuples of the HP approximants to e^z, \ldots, e^{mz} associated with the indices $(n, n, \ldots, n) - \vec{e_j}$. Set

$$p_j := P_j(1)/(n-1)!$$
 and $q_{jk} := Q_{jk}(1)/(n-1)!.$

Then these numbers are integers, form m+1 linearly independent vectors, and satisfy $|p_j e^k - q_{jk}| \le c^n/(n-1)!$ for some constant c.

Let $f_1(z)$, $f_2(z)$ be functions holomorphic at infinity and $\vec{n} = (n_1, n_2) \in \mathbb{Z}^2_+$. Type II Hermite-Padé approximant for f_1, f_2 at infinity corresponding to \vec{n} is defined as a pair of rational functions $Q_{\vec{n},1}(z)/P_{\vec{n}}(z)$ and $Q_{\vec{n},2}(z)/P_{\vec{n}}(z)$, where

$$\left(P_{\vec{n}}f_{i}-Q_{\vec{n},i}\right)(z)=\mathcal{O}\left(z^{-n_{i}-1}\right),\quad i=1,2,$$

and deg $P_{\vec{n}} \leq |\vec{n}| := n_1 + n_2$. If functions $f_i(z)$ are Markov functions

$$f_i(z) = \int \frac{d\mu_i(x)}{z-x}$$

where each μ_i is a probability measure with bounded infinite support on the real line, then

$$\int x^k P_{\vec{n}}(x) d\mu_i(x) = 0, \quad k = \overline{0, n_i - 1}.$$

The multi-index \vec{n} is called *normal* if deg $P_{\vec{n}} = |\vec{n}|$. In this case we normalize $P_{\vec{n}}(x)$ to be monic. The pair (μ_1, μ_2) is called *perfect* if all the multi-indices are normal.

Let $\vec{e_1} = (1,0)$ and $\vec{e_2} = (0,1)$. If (μ_1, μ_2) is perfect, then

$$\begin{aligned} x P_{\vec{n}}(x) &= P_{\vec{n}+\vec{e}_1}(x) + b_{\vec{n},1} P_{\vec{n}}(x) + a_{\vec{n},1} P_{\vec{n}-\vec{e}_1}(x) + a_{\vec{n},2} P_{\vec{n}-\vec{e}_2}(x) \\ x P_{\vec{n}}(x) &= P_{\vec{n}+\vec{e}_2}(x) + b_{\vec{n},2} P_{\vec{n}}(x) + a_{\vec{n},1} P_{\vec{n}-\vec{e}_1}(x) + a_{\vec{n},2} P_{\vec{n}-\vec{e}_2}(x) \end{aligned}$$

for some coefficients $b_{\vec{n},1}, b_{\vec{n},2}, a_{\vec{n},1}, a_{\vec{n},2}$. These coefficients satisfy consistency conditions

$$b_{\vec{n}+\vec{e}_{1},2} - b_{\vec{n}+\vec{e}_{2},1} = b_{\vec{n},2} - b_{\vec{n},1},$$

$$\sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{j},k} - \sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{i},k} = b_{\vec{n}+\vec{e}_{j},i}b_{\vec{n},j} - b_{\vec{n}+\vec{e}_{i},j}b_{\vec{n},i},$$

$$a_{\vec{n},i}(b_{\vec{n},j} - b_{\vec{n},i}) = a_{\vec{n}+\vec{e}_{j},i}(b_{\vec{n}-\vec{e}_{i},j} - b_{\vec{n}-\vec{e}_{i},i}).$$

Homogeneous Rooted Tree

Let \mathcal{T} be the rooted tree of all possible increasing paths on \mathbb{N}^2 starting at (1, 1).

We denote the set of all vertices of \mathcal{T} by \mathcal{V} . We let

 $\ell: \mathcal{V} \to \{1, 2\}, \quad Y \mapsto \ell_Y \text{ such that } \Pi(Y) = \Pi(Y_{(p)}) + \vec{e}_{\ell_Y},$

where Π is the natural projection of \mathcal{V} onto \mathbb{N}^2 .

Let $\vec{\kappa} \in \mathbb{R}^2$, $\kappa_1 + \kappa_2 = 1$. Define two interaction functions $A, B : \mathcal{V} \to \mathbb{R}$ by

$$\begin{aligned} &A_{O} := 1, \quad B_{O} := \kappa_{1} b_{(0,1),1} + \kappa_{2} b_{(1,0),2}, \quad Y = O, \\ &A_{Y} := a_{\Pi(Y_{(p)}),\ell_{Y}}, \quad B_{Y} := b_{\Pi(Y_{(p)}),\ell_{Y}}, \quad Y \neq O. \end{aligned}$$

Assume now that

$$\begin{split} 0 < a_{\vec{n},j} \text{ for all } \vec{n} \in \mathbb{Z}_+^2 \text{ such that } n_j > 0, \\ \sup a_{\vec{n},j} < \infty, \sup |b_{\vec{n},j}| < \infty. \end{split}$$

Then, for any function $f \in \ell^2(\mathcal{V})$, the action of the operator $\mathcal{J}_{\vec{\kappa}}$ can be written in the following form

$$(\mathcal{J}_{\vec{\kappa}}f)_{O} := (Bf)_{O} + (A^{1/2}f)_{O_{(ch),1}} + (A^{1/2}f)_{O_{(ch),2}}, \quad Y = O,$$

$$(\mathcal{J}_{\vec{\kappa}}f)_{Y} := A_{Y}^{1/2}f_{Y_{(p)}} + (Bf)_{Y} + (A^{1/2}f)_{Y_{(ch),1}} + (A^{1/2}f)_{Y_{(ch),2}}, \quad Y \neq O.$$

 $\mathcal{J}_{\vec{\kappa}}$ is a bounded and self-adjoint operator on $\ell^2(\mathcal{V})$.

The measures (μ_1, μ_2) form an *Angelesco system* if the convex hulls of their supports, Δ_1 and Δ_2 , are disjoint. We assume that $\Delta_1 < \Delta_2$.

Theorem (Aptekarev & Denisov & Ya.)

If (μ_1, μ_2) is an Angelesco system, then it is perfect and $0 < a_{\vec{n},j}$ for all $\vec{n} \in \mathbb{Z}^2_+$ with $n_j > 0$ while $\sup a_{\vec{n},j} < \infty$, $\sup |b_{\vec{n},j}| < \infty$. Moreover, $b_{\vec{n},1} < b_{\vec{n},2}$, $\vec{n} \in \mathbb{Z}^2_+$.

AS: Asymptotics of the Recurrence Coefficients

Assume now that $\operatorname{supp}(\mu_i) = \Delta_i = [\alpha_i, \beta_i]$ and let $\mathcal{N}_c \subset \mathbb{Z}^2_+$ be a such that $\frac{n_1}{n_1 + n_2} \to c \in [0, 1]$ and therefore $\frac{n_2}{n_1 + n_2} \to 1 - c$.

There is a function $\zeta : [0,1] \to [\alpha_1, \beta_2]$, which comes from a certain energy minimization problem, that continuously increases from α_1 to β_2 . Put

$$\Delta_{c,1} := \Delta_1 \cap [\alpha_1, \zeta(c)] \quad \text{and} \quad \Delta_{c,2} := \Delta_2 \cap [\zeta(c) \cap \beta_2].$$

Define \Re_c to be the following Riemann surface:

Theorem (Aptekarev & Denisov & Ya.)

For each $c \in (0, 1)$, let \Re_c be as before and $\chi_c : \Re_c \to \overline{\mathbb{C}}$ be a conformal map such that

$$\chi_c\left(z^{(0)}
ight) = z + \mathcal{O}\left(z^{-1}
ight) \quad \text{as} \quad z o \infty.$$

Define constants $A_{c,1}, A_{c,2}, B_{c,1}, B_{c,2}$ by

$$\chi_{c}\left(z^{(i)}
ight)=B_{c,i}+A_{c,i}z^{-1}+\mathcal{O}\left(z^{-2}
ight) \quad \text{as} \quad z
ightarrow\infty.$$

Assume that $\mu'_i(x)$ is analytic and non-vanishing on Δ_i . Then it holds that

$$\lim_{\mathcal{N}_c} a_{\vec{n},i} = A_{c,i} \quad \text{and} \quad \lim_{\mathcal{N}_c} b_{\vec{n},i} = B_{c,i}.$$

The constants $A_{c,i}$ and $B_{c,i}$ are continuous functions of the parameter c and have well defined limits as $c \to 0$ and $c \to 1$.

Theorem (Aptekarev & Denisov & Ya.)

Let constants $A_{c,1}, A_{c,2}, B_{c,1}, B_{c,2}$ be as above (coming from some intervals $\Delta_1 < \Delta_2$). Further, let $\mathcal{J}_{\vec{\kappa}}$ be a Jacobi operator constructed as before for some constants $\{a_{\vec{n},1}, a_{\vec{n},2}, b_{\vec{n},1}, b_{\vec{n},2}\}_{\vec{n}\in\mathbb{Z}^2}$. If

$$\lim_{\mathcal{N}_c} a_{\vec{n},i} = A_{c,i} \quad \text{and} \quad \lim_{\mathcal{N}_c} b_{\vec{n},i} = B_{c,i}$$

for any \mathcal{N}_c and $c \in [0, 1]$, then $\sigma_{ess}(\mathcal{J}_{\vec{\kappa}}) = \Delta_1 \cup \Delta_2$.

Theorem (Denisov & Ya.)

Let $\mathcal{J}_{\vec{\kappa}}$ be a Jacobi operator constructed as before for the recurrence coefficients $\{a_{\vec{n},1}, a_{\vec{n},2}, b_{\vec{n},1}, b_{\vec{n},2}\}_{\vec{n}\in\mathbb{Z}^2_+}$ coming from an Angelesco system. Then $\ell^2(\mathcal{V})$ can be decomposed as an infinite orthogonal sum of cyclic subspaces of $\mathcal{J}_{\vec{\kappa}}$ whose spectral measures admit a semi-explicit expressions. In particular, it holds that

$$\sigma(\mathcal{J}_{\vec{\kappa}}) \subseteq \Delta_1 \cup \Delta_2 \cup E_{\vec{\kappa}},$$

where $E_{\vec{k}}$ is either a single real point or is empty. If $\sup \mu_i = \Delta_i$, $i \in \{1,2\}$, then inclusion becomes equality. If $d\mu_i(x) = \mu'_i(x)dx$ and $(\mu'_i)^{-1} \in L^{\infty}(\Delta_i)$, $i \in \{1,2\}$, then the spectrum of $\mathcal{J}_{\vec{e}_k}$ is purely absolutely continuous.