Spectral Theory Behind Multiple Orthogonal Polynomials

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis
IIT IUPUI SCHOOL OF SCIENCE
Department of Mathematical Sciences

Department of Mathematical Sciences
University of Cincinnati
November 16th, 2023

Fourier Series

Consider the equation of heat distribution in a metal rod of length π :

$$
\begin{aligned}
& u_{t}(\theta, t)=k u_{\theta \theta}(\theta, t) \\
& u_{\theta}(0, t)=u_{\theta}(\pi, t)=0 \\
& u(\theta, 0)=f(\theta)
\end{aligned}
$$

When $f(\theta)=\cos (n \theta), n \in \mathbb{N}$, it can be easily checked that

$$
u(\theta, t)=\cos (n \theta) e^{-n^{2} k t}
$$

Fourier Series

Consider the equation of heat distribution in a metal rod of length π :

$$
\begin{aligned}
& u_{t}(\theta, t)=k u_{\theta \theta}(\theta, t) \\
& u_{\theta}(0, t)=u_{\theta}(\pi, t)=0 \\
& u(\theta, 0)=f(\theta)
\end{aligned}
$$

When $f(\theta)=\cos (n \theta), n \in \mathbb{N}$, it can be easily checked that

$$
u(\theta, t)=\cos (n \theta) e^{-n^{2} k t}
$$

In 1807 Fourier realized that if

$$
f(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta), \quad a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta
$$

where $f(-\theta)=f(\theta)$, then the solution of the heat equation is given by

$$
u(\theta, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta) e^{-n^{2} k t}
$$

If the Neumann condition $u_{\theta}(0, t)=u_{\theta}(\pi, t)=0$ is replaced with the Dirichlet condition $u(0, t)=u(\pi, t)=0$, then we must take odd extension of $f(\theta)$ and consider the series in sines. Fourier considered only series that were convergent.

Fourier Series

Given an integrable function $f(\theta)$ on $[-\pi, \pi]$, one can identify it with the series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

where $a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta$ and $b_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin (n \theta) d \theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Fourier Series

Given an integrable function $f(\theta)$ on $[-\pi, \pi]$, one can identify it with the series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

where $a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta$ and $b_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin (n \theta) d \theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Riesz-Fischer Theorem: If $f \in L^{2}$, then $\left\|f-S_{N}\right\|_{2} \rightarrow 0$ as $N \rightarrow \infty$.
Jackson's Theorem: If f is α-Hölder continuous, $\left|f(\theta)-S_{N}(\theta)\right| \leq C \frac{\log N}{N^{\alpha}}$.
Carleson's Theorem: If $f \in L^{2}$, then $S_{N}(\theta)$ converges to $f(\theta)$ a.e.

Given an integrable function $f(\theta)$ on $[-\pi, \pi]$, one can identify it with the series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

where $a_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta$ and $b_{n}:=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin (n \theta) d \theta$. A natural question arises: when does this series converge to $f(\theta)$ and in which sense?

Riesz-Fischer Theorem: If $f \in L^{2}$, then $\left\|f-S_{N}\right\|_{2} \rightarrow 0$ as $N \rightarrow \infty$.
Jackson's Theorem: If f is α-Hölder continuous, $\left|f(\theta)-S_{N}(\theta)\right| \leq C \frac{\log N}{N^{\alpha}}$.
Carleson's Theorem: If $f \in L^{2}$, then $S_{N}(\theta)$ converges to $f(\theta)$ a.e.

Observe that $\{\sin (n \theta), \cos (n \theta)\}$ is an orthogonal system on $[-\pi, \pi]$.

Chebyshëv Polynomials

First kind degree n Chebyshëv polynomial $T_{n}(x)$ is a solution of

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

It has a famous explicit expression

$$
T_{n}(x)=\cos (n \arccos x), \quad x \in[-1,1] .
$$

Moreover, it turns out to be an orthogonal polynomial:

$$
\int_{-1}^{1} x^{k} T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}=0, \quad k=\overline{0, n-1}
$$

Chebyshëv Polynomials

First kind degree n Chebyshëv polynomial $T_{n}(x)$ is a solution of

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

It has a famous explicit expression

$$
T_{n}(x)=\cos (n \arccos x), \quad x \in[-1,1] .
$$

Moreover, it turns out to be an orthogonal polynomial:

$$
\int_{-1}^{1} x^{k} T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}=0, \quad k=\overline{0, n-1}
$$

From the explicit expression it follows that

$$
T_{n}(\cos \theta)=\cos (n \theta), \quad \theta \in[-\pi, \pi] .
$$

Hence, to a function $f(x)$ on $[-1,1]$ we can associate

$$
f(x)=f(\cos \theta) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} T_{n}(x)
$$

where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\cos \theta) \cos (n \theta) d \theta=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

Jacobi Polynomials

Orthonormal Jacobi polynomials $\left\{p_{n}^{(\alpha, \beta)}(x)\right\}, \alpha, \beta>-1$, are defined by

$$
\int_{-1}^{1} p_{n}^{(\alpha, \beta)}(x) p_{m}^{(\alpha, \beta)}(x) w^{(\alpha, \beta)}(x) d x=\delta_{m n}, \quad w^{(\alpha, \beta)}(x):=(1+x)^{\alpha}(1-x)^{\beta}
$$

To every function $f(x)$ on $[-1,1]$, one can associate a series

$$
f(x) \sim \sum_{n=0}^{\infty} c_{n} p_{n}^{(\alpha, \beta)}(x), \quad c_{n}:=\int_{-1}^{1} f(x) p_{n}^{(\alpha, \beta)}(x) w^{(\alpha, \beta)}(x) d x
$$

Theorem (Szegő)

If $|f(x)|$ is integrable w.r.t. $w^{(\alpha, \beta)}(x)$ and $w^{(\alpha / 2-1 / 4, \beta / 2-1 / 4)}(x)$, then

$$
\lim _{N \rightarrow \infty}\left(S_{N}^{(\alpha, \beta)}(x)-w^{(-\alpha / 2-1 / 4,-\beta / 2-1 / 4)}(x) S_{N}(x)\right)=0
$$

uniformly on compact subsets of $(-1,1)$, where $S_{N}^{(\alpha, \beta)}(x)$ is the N-th Jacobi partial sum and $S_{N}(\cos \theta)$ is the N-th Fourier partial sum of $w^{(\alpha / 2+1 / 4, \beta / 2+1 / 4)}(\cos \theta) f(\cos \theta)$.

Orthogonal Polynomials

Let μ be a Borel measure with bounded infinite support on the real line. Orthonormal polynomials $\left\{p_{n}(x)\right\}$ are defined by

$$
\int p_{n}(x) p_{m}(x) d \mu(x)=\delta_{n m}
$$

Theorem (Freud 1953 + Mastroianni \& Totik 2000)

If the measure μ is absolutely continuous and doubling on some interval $[a, b](\mu(2 I) \leq c \mu(I)$, where $2 I \subseteq[a, b]$ is the interval with the same center and twice the length of an interval I) and $f(x)$ is Hölder continuous with index greater than $1 / 2$, then

$$
\sum_{n=0}^{N-1} c_{n}(f) p_{n}(x) \rightrightarrows f \quad \text { on } \quad[a, b], \quad c_{n}(f):=\int f(x) p_{n}(x) d \mu(x)
$$

Euclidean Algorithm

Let $p / q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of p and q :

$$
\begin{aligned}
p & =a_{0} q+r_{0} \\
q & =a_{1} r_{0}+r_{1} \\
r_{0} & =a_{2} r_{1}+r_{2} \\
& \cdots \\
r_{n-2} & =a_{n} r_{n-1}
\end{aligned}
$$

Euclidean Algorithm

Let $p / q \in \mathbb{Q}$. The Euclidean Algorithm is used to find the gcd of p and q :

$$
\begin{aligned}
p & =a_{0} q+r_{0} \\
q & =a_{1} r_{0}+r_{1} \\
r_{0} & =a_{2} r_{1}+r_{2} \\
& \cdots \\
r_{n-2} & =a_{n} r_{n-1} .
\end{aligned}
$$

However, it also has the following consequence:

$$
\begin{gathered}
\frac{p}{q}=a_{0}+\frac{r_{0}}{q}=a_{0}+\frac{1}{a_{1}+\frac{r_{1}}{r_{0}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{r_{2}}{r_{1}}}} \\
=a_{0}+\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{n}}}}=a_{0}+\Phi_{k=1}^{n} \frac{1}{a_{k}} .
\end{gathered}
$$

Let now $x \in \mathbb{R}$. Then

$$
\begin{aligned}
x & =[x]+\frac{1}{1 /\{x\}}=[x]+\frac{1}{[1 /\{x\}]+\frac{1}{1 /\{1 /\{x\}\}}}=\cdots \\
& =: \quad a_{0}(x)+\Phi_{k=1}^{\infty} \frac{1}{a_{k}(x)},
\end{aligned}
$$

where $a_{k}(x) \in \mathbb{Z} \cup\{\infty\}$, which is called a continued fraction representation of x. Set

$$
x_{n}:=a_{0}(x)+\Phi_{k=1}^{n} \frac{1}{a_{k}(x)}=\frac{q_{n}}{p_{n}} \in \mathbb{Q}
$$

to be the n-th convergent of the continued fraction.

Continued Fractions

Fact

Continued fraction

$$
a_{0}(x)+\Phi_{k=1}^{\infty} \frac{1}{a_{k}(x)}
$$

is finite if and only if $x \in \mathbb{Q}$. Moreover, if $x \in \mathbb{R} \backslash \mathbb{Q}$, then

$$
\frac{1}{p_{n}\left(p_{n}+p_{n+1}\right)} \leq\left|x-\frac{q_{n}}{p_{n}}\right| \leq \frac{1}{p_{n} p_{n+1}}
$$

where q_{n} / p_{n} is the n-th convergent. Furthermore,

$$
\left|x-\frac{q}{p}\right|<\frac{1}{2 p^{2}} \quad \Rightarrow \quad \frac{q}{p}=\frac{q_{m}}{p_{m}}
$$

Continued Fraction of a Series

Start with a formal power series at infinity

$$
f(z)=\sum_{k=1}^{\infty} f_{k} z^{-k}
$$

such that the Hankel determinants of the coefficients $\left\{f_{k}\right\}$ are non-zero. Then

$$
f(z)=\Phi_{k=1}^{\infty} \frac{b_{k}}{z-a_{k}}
$$

for some well-defined constants $\left\{a_{k}, b_{k}\right\}$. Denote $[n / n]_{f}$ the n-th convergent:

$$
[n / n]_{f}(z):=\Phi_{k=1}^{n} \frac{b_{k}}{z-a_{k}}
$$

Then it is known that

$$
\left(f-[n / n]_{f}\right)(z)=\mathcal{O}\left(z^{-2 n-1}\right)
$$

and the above relation uniquely determines $[n / n]_{f}$. Moreover,

$$
\left(P_{n} f-Q_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right), \quad[n / n]_{f}=: Q_{n} / P_{n}
$$

Padé Approximants

Let f be a formal power series at infinity and polynomials Q_{n}, P_{n} be defined by

$$
\left(P_{n} f-Q_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right)
$$

$\operatorname{deg}\left(Q_{n}\right), \operatorname{deg}\left(P_{n}\right) \leq n$. Such a pair of polynomials may not be unique, but their ratio always is. Thus, we normalize P_{n} to be monic and set

$$
Q_{n} / P_{n}=:[n / n]_{f}
$$

and call it the diagonal Padé approximant for f of order n.

Let f be a formal power series at infinity and polynomials Q_{n}, P_{n} be defined by

$$
\left(P_{n} f-Q_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right)
$$

$\operatorname{deg}\left(Q_{n}\right), \operatorname{deg}\left(P_{n}\right) \leq n$. Such a pair of polynomials may not be unique, but their ratio always is. Thus, we normalize P_{n} to be monic and set

$$
Q_{n} / P_{n}=:[n / n]_{f}
$$

and call it the diagonal Padé approximant for f of order n.
Moreover, if the power series for f is convergent and 「 encircles infinity within the disk of convergence, then

$$
0=\oint_{\Gamma} z^{k}\left(P_{n} f-Q_{n}\right)(z) d z=\oint_{\Gamma} z^{k} P_{n}(z) f(z) d z
$$

for $k=\overline{0, n-1}$ and z belonging to the exterior of Γ. Thus,

$$
f(z)=\int \frac{d \mu(x)}{z-x} \Rightarrow 0=\int x^{k} P_{n}(x) d \mu(x)
$$

Three-term Recurrence Relations

Let μ be a probability measure with bounded infinite support on the real line and $P_{n}(x)$ be the monic orthogonal polynomial of degree n, i.e.,

$$
\int P_{n}(x) x^{k} d \mu(x)=0, \quad k=\overline{0, n-1}
$$

These polynomials satisfy the three-term recurrence relations:

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n-1} P_{n-1}(x)
$$

with $P_{-1}:=0, P_{0}=1$, and $a_{n}>0$. These relations can be symmetrized:

$$
x p_{n}(x)=c_{n} p_{n+1}(x)+b_{n} p_{n}(x)+c_{n-1} p_{n-1}(x), \quad c_{n}:=\sqrt{a_{n}},
$$

where $p_{n}(x)$ is the n-th orthonormal polynomial. It holds that

$$
c_{n} \leq|\Delta| / 2 \quad \text { and } \quad\left|b_{n}\right| \leq \sup _{x \in \Delta}|x|
$$

where Δ is the convex hull of the support of μ.

Jacobi Matrices

The Jacobi matrix \mathcal{J}, defined by

$$
\mathcal{J}:=\left[\begin{array}{cccc}
b_{0} & c_{0} & 0 & \ldots \\
c_{0} & b_{1} & c_{1} & \ldots \\
0 & c_{1} & b_{2} & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right]
$$

is symmetric in $\ell^{2}\left(\mathbb{Z}_{+}\right)$. Since the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both bounded, the operator \mathcal{J} is bounded and self-adjoint. If $p:=\left(p_{0}, p_{1}, \ldots\right)$, then

$$
\mathcal{J} p=x p \quad \text { and } \quad(\mathcal{J}-z) r=e_{0}
$$

where $r:=\left(r_{0}, r_{1}, \ldots\right)$ and

$$
r_{n}(z)=\int \frac{p_{n}(x)}{x-z} d \mu(x)=\int\left(\frac{x}{z}\right)^{n} \frac{p_{n}(x)}{x-z} d \mu(x)
$$

Since $r \in \ell^{2}\left(\mathbb{Z}_{+}\right)$for all z large,

$$
r=(\mathcal{J}-z)^{-1} e_{0}, \quad z \notin \sigma(\mathcal{J})
$$

Therefore, μ is the spectral measure for \mathcal{J} as

$$
\left\langle(\mathcal{J}-z)^{-1} e_{0}, e_{0}\right\rangle=\int \frac{d \mu(x)}{x-z} .
$$

In this cycle we could have started with a bounded Jacobi operator.

Criterion for Transcendence

In 1873 Hermite proved that e is transcendental.

Criterion

α is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon>0$ there exist $m+1$ linearly independent vectors of integers $\left(p_{j}, q_{j 1}, \ldots, q_{j m}\right), j=\overline{0, m}$, such that

$$
\left|p_{j} \alpha^{k}-q_{j k}\right| \leq \varepsilon, \quad k=\overline{1, m}
$$

If α is algebraic, then for some $m \in \mathbb{N}$ there exist $a_{k} \in \mathbb{Z}, k=\overline{0, m}$, such that

$$
\sum_{k=0}^{m} a_{k} \alpha^{k}=0
$$

Hence,

$$
\sum_{k=1}^{m} a_{k}\left(p_{j} \alpha^{k}-q_{j k}\right)+a_{0} p_{j}+\sum_{k=1}^{m} a_{k} q_{j k}=0
$$

Then for some $0 \leq j_{0} \leq m$, it holds that

$$
1 \leq\left|\sum_{k=1}^{m} a_{k}\left(p_{j_{0}} \alpha^{k}-q_{j 0} k\right)\right| \leq \varepsilon \sum_{k=1}^{m}\left|a_{k}\right| .
$$

Set $N:=n_{0}+\cdots+n_{m}$, where $n_{0}, n_{1}, \ldots, n_{m}$ are non-negative integers. Let $F_{1}(z), \ldots, F_{m}(z)$ be functions holomorphic at the origin. Consider

$$
P(z) F_{k}(z)-Q_{k}(z)=\mathcal{O}\left(z^{N+1}\right)
$$

where $\operatorname{deg}(P) \leq N-n_{0}$ and $\operatorname{deg}\left(Q_{k}\right) \leq N-n_{k}$.

Such polynomials exist (their coefficients are obtained from a linear system which is always solvable), but are not necessarily unique. The m-tuple $Q_{1} / P, \ldots, Q_{m} / P$ is called an Hermite-Padé approximant of type II.

Theorem

The m-tuple of Hermite-Padé approximants to the system $e^{z}, \ldots, e^{m z}$ is unique and is given up to the normalization by the formulae

$$
\begin{aligned}
P(z) & =\mathcal{D}^{N}[f](0)+\mathcal{D}^{N-1}[f](0) z+\cdots+\mathcal{D}^{n_{0}}[f](0) z^{N-n_{0}}, \\
Q_{k}(z) & =\mathcal{D}^{N}[f](k)+\mathcal{D}^{N-1}[f](k) z+\cdots+\mathcal{D}^{n_{k}}[f](k) z^{N-n_{k}}
\end{aligned}
$$

where $f(s)=s^{n_{0}}(s-1)^{n_{1}} \cdots(s-m)^{n_{m}}$ and \mathcal{D} is the diff. operator.

Theorem

The m-tuple of Hermite-Padé approximants to the system $e^{z}, \ldots, e^{m z}$ is unique and is given up to the normalization by the formulae

$$
\begin{aligned}
P(z) & =\mathcal{D}^{N}[f](0)+\mathcal{D}^{N-1}[f](0) z+\cdots+\mathcal{D}^{n_{0}}[f](0) z^{N-n_{0}}, \\
Q_{k}(z) & =\mathcal{D}^{N}[f](k)+\mathcal{D}^{N-1}[f](k) z+\cdots+\mathcal{D}^{n_{k}}[f](k) z^{N-n_{k}}
\end{aligned}
$$

where $f(s)=s^{n_{0}}(s-1)^{n_{1}} \cdots(s-m)^{n_{m}}$ and \mathcal{D} is the diff. operator.

Theorem

For any $m, n \in \mathbb{N}$, let $P_{j}, Q_{j 1}, \ldots, Q_{j m}, j=\overline{0, m}$, be the m-tuples of the HP approximants to $e^{z}, \ldots, e^{m z}$ associated with the indices $(n, n, \ldots, n)-\vec{e}_{j}$. Set

$$
p_{j}:=P_{j}(1) /(n-1)!\quad \text { and } \quad q_{j k}:=Q_{j k}(1) /(n-1)!.
$$

Then these numbers are integers, form $m+1$ linearly independent vectors, and satisfy $\left|p_{j} e^{k}-q_{j k}\right| \leq c^{n} /(n-1)$! for some constant c.

Let $f_{1}(z), f_{2}(z)$ be functions holomorphic at infinity and $\vec{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$. Type II Hermite-Padé approximant for f_{1}, f_{2} at infinity corresponding to \vec{n} is defined as a pair of rational functions $Q_{\vec{n}, 1}(z) / P_{\vec{n}}(z)$ and $Q_{\vec{n}, 2}(z) / P_{\vec{n}}(z)$, where

$$
\left(P_{\vec{n}} f_{i}-Q_{\vec{n}, i}\right)(z)=\mathcal{O}\left(z^{-n_{i}-1}\right), \quad i=1,2
$$

and $\operatorname{deg} P_{\vec{n}} \leq|\vec{n}|:=n_{1}+n_{2}$. If functions $f_{i}(z)$ are Markov functions

$$
f_{i}(z)=\int \frac{d \mu_{i}(x)}{z-x}
$$

where each μ_{i} is a probability measure with bounded infinite support on the real line, then

$$
\int x^{k} P_{\vec{n}}(x) d \mu_{i}(x)=0, \quad k=\overline{0, n_{i}-1}
$$

The multi-index \vec{n} is called normal if $\operatorname{deg} P_{\vec{n}}=|\vec{n}|$. In this case we normalize $P_{\vec{n}}(x)$ to be monic. The pair $\left(\mu_{1}, \mu_{2}\right)$ is called perfect if all the multi-indices are normal.

Let $\vec{e}_{1}=(1,0)$ and $\overrightarrow{e_{2}}=(0,1)$. If $\left(\mu_{1}, \mu_{2}\right)$ is perfect, then

$$
\begin{aligned}
& x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{1}}(x)+b_{\vec{n}, 1} P_{\vec{n}}(x)+a_{\vec{n}, 1} P_{\vec{n}-\vec{e}_{1}}(x)+a_{\vec{n}, 2} P_{\vec{n}-\vec{e}_{2}}(x) \\
& x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{2}}(x)+b_{\vec{n}, 2} P_{\vec{n}}(x)+a_{\vec{n}, 1} P_{\vec{n}-\vec{e}_{1}}(x)+a_{\vec{n}, 2} P_{\vec{n}-\vec{e}_{2}}(x)
\end{aligned}
$$

for some coefficients $b_{\vec{n}, 1}, b_{\vec{n}, 2}, a_{\vec{n}, 1}, a_{\vec{n}, 2}$. These coefficients satisfy consistency conditions

$$
\begin{array}{r}
b_{\vec{n}+\vec{e}_{1}, 2}-b_{\vec{n}+\vec{e}_{2}, 1}=b_{\vec{n}, 2}-b_{\vec{n}, 1}, \\
\sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{j}, k}-\sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{i}, k}=b_{\vec{n}+\vec{e}_{j}, i} b_{\vec{n}, j}-b_{\vec{n}+\vec{e}_{i}, j} b_{\vec{n}, i}, \\
a_{\vec{n}, i}\left(b_{\vec{n}, j}-b_{\vec{n}, i}\right)=a_{\vec{n}+\vec{e}_{j}, i}\left(b_{\vec{n}-\vec{e}_{i}, j}-b_{\vec{n}-\vec{e}_{i}, i}\right) .
\end{array}
$$

Let \mathcal{T} be the rooted tree of all possible increasing paths on \mathbb{N}^{2} starting at (1, 1).

We denote the set of all vertices of \mathcal{T} by \mathcal{V}. We let

$$
\ell: \mathcal{V} \rightarrow\{1,2\}, \quad Y \mapsto \ell_{Y} \text { such that } \Pi(Y)=\Pi\left(Y_{(p)}\right)+\vec{e}_{\ell_{Y}}
$$

where Π is the natural projection of \mathcal{V} onto \mathbb{N}^{2}.

Let $\vec{\kappa} \in \mathbb{R}^{2}, \kappa_{1}+\kappa_{2}=1$. Define two interaction functions $A, B: \mathcal{V} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& A_{O}:=1, \quad B_{O}:=\kappa_{1} b_{(0,1), 1}+\kappa_{2} b_{(1,0), 2}, \quad Y=O, \\
& A_{Y}:=a_{\Pi\left(Y_{(p)}\right), \ell_{Y}}, \quad B_{Y}:=b_{\Pi\left(Y_{(p)}\right), \ell_{Y}}, \quad Y \neq 0 .
\end{aligned}
$$

Assume now that

$$
\begin{aligned}
& 0<a_{\vec{n}, j} \text { for all } \vec{n} \in \mathbb{Z}_{+}^{2} \text { such that } n_{j}>0 \\
& \sup a_{\vec{n}, j}<\infty, \sup \left|b_{\vec{n}, j}\right|<\infty
\end{aligned}
$$

Then, for any function $f \in \ell^{2}(\mathcal{V})$, the action of the operator $\mathcal{J}_{\vec{k}}$ can be written in the following form

$$
\begin{aligned}
\left(\mathcal{J}_{\vec{k}} f\right)_{O}:=(B f)_{O}+\left(A^{1 / 2} f\right)_{O_{(c h), 1}}+\left(A^{1 / 2} f\right)_{O_{(c h), 2}}, & Y=O \\
\left(\mathcal{J}_{\vec{k}} f\right)_{Y}:=A_{Y}^{1 / 2} f_{Y_{(p)}}+(B f)_{Y}+\left(A^{1 / 2} f\right)_{Y_{(c h), 1}}+\left(A^{1 / 2} f\right)_{Y_{(c h), 2}}, & Y \neq O
\end{aligned}
$$

$\mathcal{J}_{\vec{k}}$ is a bounded and self-adjoint operator on $\ell^{2}(\mathcal{V})$.

Angelesco Systems

The measures $\left(\mu_{1}, \mu_{2}\right)$ form an Angelesco system if the convex hulls of their supports, Δ_{1} and Δ_{2}, are disjoint. We assume that $\Delta_{1}<\Delta_{2}$.

Theorem (Aptekarev \& Denisov \& Ya.)

If $\left(\mu_{1}, \mu_{2}\right)$ is an Angelesco system, then it is perfect and $0<a_{\vec{n}, j}$ for all $\vec{n} \in \mathbb{Z}_{+}^{2}$ with $n_{j}>0$ while sup $a_{\vec{n}, j}<\infty$, sup $\left|b_{\vec{n}, j}\right|<\infty$. Moreover, $b_{\vec{n}, 1}<b_{\vec{n}, 2}, \vec{n} \in \mathbb{Z}_{+}^{2}$.

AS: Asymptotics of the Recurrence Coefficients

Assume now that $\operatorname{supp}\left(\mu_{i}\right)=\Delta_{i}=\left[\alpha_{i}, \beta_{i}\right]$ and let $\mathcal{N}_{c} \subset \mathbb{Z}_{+}^{2}$ be a such that

$$
\frac{n_{1}}{n_{1}+n_{2}} \rightarrow c \in[0,1] \text { and therefore } \frac{n_{2}}{n_{1}+n_{2}} \rightarrow 1-c
$$

There is a function $\zeta:[0,1] \rightarrow\left[\alpha_{1}, \beta_{2}\right]$, which comes from a certain energy minimization problem, that continuously increases from α_{1} to β_{2}. Put

$$
\Delta_{c, 1}:=\Delta_{1} \cap\left[\alpha_{1}, \zeta(c)\right] \quad \text { and } \quad \Delta_{c, 2}:=\Delta_{2} \cap\left[\zeta(c) \cap \beta_{2}\right] .
$$

Define \Re_{c} to be the following Riemann surface:

AS: Asymptotics of the Recurrence Coefficients

Theorem (Aptekarev \& Denisov \& Ya.)

For each $c \in(0,1)$, let \Re_{c} be as before and $\chi_{c}: \Re_{c} \rightarrow \overline{\mathbb{C}}$ be a conformal map such that

$$
\chi_{c}\left(z^{(0)}\right)=z+\mathcal{O}\left(z^{-1}\right) \quad \text { as } \quad z \rightarrow \infty .
$$

Define constants $A_{c, 1}, A_{c, 2}, B_{c, 1}, B_{c, 2}$ by

$$
\chi_{c}\left(z^{(i)}\right)=B_{c, i}+A_{c, i} z^{-1}+\mathcal{O}\left(z^{-2}\right) \quad \text { as } \quad z \rightarrow \infty
$$

Assume that $\mu_{i}^{\prime}(x)$ is analytic and non-vanishing on Δ_{i}. Then it holds that

$$
\lim _{\mathcal{N}_{c}} a_{\vec{n}, i}=A_{c, i} \quad \text { and } \quad \lim _{\mathcal{N}_{c}} b_{\vec{n}, i}=B_{c, i} .
$$

The constants $A_{c, i}$ and $B_{c, i}$ are continuous functions of the parameter c and have well defined limits as $c \rightarrow 0$ and $c \rightarrow 1$.

Theorem (Aptekarev \& Denisov \& Ya.)
Let constants $A_{c, 1}, A_{c, 2}, B_{c, 1}, B_{c, 2}$ be as above (coming from some intervals $\Delta_{1}<\Delta_{2}$). Further, let $\mathcal{J}_{\vec{k}}$ be a Jacobi operator constructed as before for some constants $\left\{a_{\vec{n}, 1}, a_{\vec{n}, 2}, b_{\vec{n}, 1}, b_{\vec{n}, 2}\right\}_{\vec{n} \in \mathbb{Z}_{+}^{2}}$. If

$$
\lim _{\mathcal{N}_{c}} a_{\vec{n}, i}=A_{c, i} \quad \text { and } \quad \lim _{\mathcal{N}_{c}} b_{\vec{n}, i}=B_{c, i}
$$

for any \mathcal{N}_{c} and $c \in[0,1]$, then $\sigma_{\text {ess }}\left(\mathcal{J}_{\vec{k}}\right)=\Delta_{1} \cup \Delta_{2}$.

AS: Spectral Theorem

Theorem (Denisov \& Ya.)

Let $\mathcal{J}_{\vec{k}}$ be a Jacobi operator constructed as before for the recurrence coefficients $\left\{a_{\vec{n}, 1}, a_{\vec{n}, 2}, b_{\vec{n}, 1}, b_{\vec{n}, 2}\right\}_{\vec{n} \in \mathbb{Z}_{+}^{2}}$ coming from an Angelesco system. Then $\ell^{2}(\mathcal{V})$ can be decomposed as an infinite orthogonal sum of cyclic subspaces of $\mathcal{J}_{\vec{k}}$ whose spectral measures admit a semi-explicit expressions. In particular, it holds that

$$
\sigma\left(\mathcal{J}_{\vec{k}}\right) \subseteq \Delta_{1} \cup \Delta_{2} \cup E_{\vec{k}}
$$

where $E_{\vec{\kappa}}$ is either a single real point or is empty. If supp $\mu_{i}=\Delta_{i}$, $i \in\{1,2\}$, then inclusion becomes equality. If $d \mu_{i}(x)=\mu_{i}^{\prime}(x) d x$ and $\left(\mu_{i}^{\prime}\right)^{-1} \in L^{\infty}\left(\Delta_{i}\right), i \in\{1,2\}$, then the spectrum of $\mathcal{J}_{\vec{e}_{k}}$ is purely absolutely continuous.

