Spectral Theory Behind Multiple Orthogonal Polynomials

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis

IUPUI SCHOOL OF SCIENCE

Department of Mathematical Sciences

Department of Mathematical Sciences
University of Cincinnati
November 16th, 2023



Fourier Series

Consider the equation of heat distribution in a metal rod of length 7:
ue (0, t) = kueo (0, t)
up(0,t) = up(m,t) =0
u(6,0) = £(6).

When f(0) = cos(nf)), n € N, it can be easily checked that
u(,t) = cos(n@)e_"zkt.




Fourier Series

Consider the equation of heat distribution in a metal rod of length 7:
ue (0, t) = kueo (0, t)
up(0,t) = up(m,t) =0
u(6,0) = ().
When f(0) = cos(nf)), n € N, it can be easily checked that
u(,t) = cos(n@)e_"zkt.

In 1807 Fourier realized that if

f(6) = + Z ancos(nf), a,:= 1 f(0) cos(nf)db,

™

J—m

where f(—0) = f(0), then the solution of the heat equation is given by

a0 =
=3 + ; ap cos(nb)e

If the Neumann condition us (0, t) = ug(m, t) = 0 is replaced with the Dirichlet
condition u(0, t) = u(m, t) = 0, then we must take odd extension of () and

consider the series in sines. Fourier considered only series that were convergent.



Fourier Series

Given an integrable function () on [, 7], one can identify it with the series

w\o

Z an cos(nB) + by sin(nh)),

where a, := * j ) cos(nf)df and b, := j f(0)sin(n)d. A natural
question arises: When does this series converge to f( ) and in which sense?
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question arises: when does this series converge to f( ) and in which sense?

Riesz-Fischer Theorem: If f € L2, then ||f — Sy|[> — 0 as N — occ.

log N
Ne -

Jackson’s Theorem: If 7 is a-Hdlder continuous, |f(6) — Sn(0)| < C

Carleson’s Theorem: If f € L?, then Sy(0) converges to f(0) a.e.



Fourier Series

Given an integrable function () on [, 7], one can identify it with the series

w\o

Z an cos(nB) + by sin(nh)),

where a, := 1 ["_£(0)cos(nf)d6 and b, := L [T £(6)sin(nf)d6. A natural
question arises: when does this series converge to f( ) and in which sense?

Riesz-Fischer Theorem: If f € L2, then ||f — Sy|[> — 0 as N — occ.

log N
Ne -

Jackson’s Theorem: If 7 is a-Hdlder continuous, |f(6) — Sn(0)| < C

Carleson’s Theorem: If f € L?, then Sy(0) converges to f(0) a.e.

Observe that {sin(n0), cos(nf)} is an orthogonal system on [—7, 7].



Chebyshév Polynomials

First kind degree n Chebyshév polynomial T,(x) is a solution of
(1-x%y" —xy' +n’y =0.
It has a famous explicit expression
Ta(x) = cos(narccosx), x € [—1,1].

Moreover, it turns out to be an orthogonal polynomial:

1
dx I
XK To(x 0, k=0,n—1.
/, ()\/1—X2



Chebyshév Polynomials

First kind degree n Chebyshév polynomial T,(x) is a solution of
(1-x%y" —xy' +n’y =0.
It has a famous explicit expression
Ta(x) = cos(narccosx), x € [—1,1].

Moreover, it turns out to be an orthogonal polynomial:

1
dx _
[XT(X)W 0, k=0,n—-1

From the explicit expression it follows that
Ta(cosO) = cos(nb), 0 € [—m,m].

Hence, to a function f(x) on [—1,1] we can associate

f(x) = f(cosQ)NEqLZancosnO —+Zan 2(x),

n=1
where
dx

By = % /7r f(cos ) cos(nf)do = %[1 f(X)Tn(X)ﬁ-

J—m



Jacobi Polynomials
Orthonormal Jacobi polynomials {pff"g)(x)}, a, 3 > —1, are defined by
[ B 00p P 0w A () = b, W) = (14201~ )
-1
To every function f(x) on [—1, 1], one can associate a series

o 1
)~ S ad™ 0, eri= [ AR (w ™ (.
n=0

Theorem (Szegd)

If |f(x)| is integrable w.r.t. w(®)(x) and w(®/2=1/%8/2=1/4)(x) then

. a, —a/2-1/4,—B/2—1
NILmoo (5/(\/ ﬁ)(x) — wlme/2=4=8/ /4)()()5/\/()()) =0

uniformly on compact subsets of (—1,1), where Sf\,a"s)(x) is the N-th
Jacobi partial sum and Sy(cosf) is the N-th Fourier partial sum of
w(/ 2L/ 4B/241/8) (o5 0) f (cos 0).




Orthogonal Polynomials

Let ;2 be a Borel measure with bounded infinite support on the real line.
Orthonormal polynomials {p,(x)} are defined by

[ o9 (x)dn(x) = 5.

Theorem (Freud 1953 + Mastroianni & Totik 2000)

If the measure p is absolutely continuous and doubling on some interval
[a, b] ((21) < cu(l), where 2] C [a, b] is the interval with the same
center and twice the length of an interval /) and f(x) is Holder contin-
uous with index greater than 1/2, then

N—-1

Zc,,(f)pn(x)ﬂf on [a,b], ca(f) ::/f(x)p,,(x)d,u(x).

n=0




Euclidean Algorithm

Let p/g € Q. The Euclidean Algorithm is used to find the gecd of p and g:

p = aq-+trn
q = anh-+tn
n = an+n

rh—2 = anhn—1.



Euclidean Algorithm

Let p/g € Q. The Euclidean Algorithm is used to find the gecd of p and g:

p = aq+n

g = an+tn

n = an-+tn
rn—2 = anln—1.

However, it also has the following consequence:

P ro 1 1
— = a+ —=ao+ = ao +
q q r 1
ar+ — air +
(1) r
a+ —
n
1 n
= ao+ =ap+ Py_1—
ak
air +
1



Continued Fractions

Let now x € R. Then

M+ 577 = b :
X = X+ ——— = |x| + = o000
N i e
1/{1/{X}}
b2 !
= ao(x) + k=12 )
where ai(x) € Z U {co}, which is called a continued fraction representation of
x. Set
Xn = ao(x) + Py L:ﬁe(@
n - 0 k=1 ak(X) Pn

to be the n-th convergent of the continued fraction.



Continued Fractions

Continued fraction

1
BO(X) = Q)Eo:li

ak(x)

is finite if and only if x € @. Moreover, if x € R\ @, then

1

= an
Pn(Pn + Pni1)

Pn

< L )
PnPn+1

<|x-

where g,/p, is the n-th convergent. Furthermore,




Continued Fraction of a Series

Start with a formal power series at infinity

f(z) = Z foz ¥
k=1
such that the Hankel determinants of the coefficients {f;} are non-zero. Then

by

Z — ak

f(z) = &
for some well-defined constants {ax, br}. Denote [n/n]s the n-th convergent:

b

[n/n]e(2) := ¢Z:12 —

Then it is known that

(F=[n/nl) (2) =0 (z77)
and the above relation uniquely determines [n/n]s. Moreover,

(Pf = Q) (2) =0 (27"7%), [n/nlr = Qu/Pn.



Padé Approximants

Let 7 be a formal power series at infinity and polynomials Q,, P, be defined by
(Pof = Qui)(2) =0 (z7"7),

deg(Qn), deg(P,) < n. Such a pair of polynomials may not be unique, but their
ratio always is. Thus, we normalize P, to be monic and set

Qn/Pn =:[n/n]f

and call it the diagonal Padé approximant for f of order n.



Padé Approximants

Let 7 be a formal power series at infinity and polynomials Q,, P, be defined by
(Pof = Qui)(2) =0 (z7"7),

deg(Qn), deg(P,) < n. Such a pair of polynomials may not be unique, but their
ratio always is. Thus, we normalize P, to be monic and set

Qn/Pn =:[n/n]f
and call it the diagonal Padé approximant for f of order n.

Moreover, if the power series for f is convergent and [ encircles infinity within
the disk of convergence, then

0= ]{zk(Pnf — Qu)(2)dz = f{szn(z)f(z)dz

for k =0,n— 1 and z belonging to the exterior of I". Thus,

f(z)Z/dL(X) = Oz/ka,,(x)du(x).

zZ—X



Three-term Recurrence Relations

Let 12 be a probability measure with bounded infinite support on the real line
and P,(x) be the monic orthogonal polynomial of degree n, i.e.,

/Pn(x)xkdu(x) =0, k=0,n—1.
These polynomials satisfy the three-term recurrence relations:
XPn(x) = Pny1(x) 4 bnPn(x) + an—1Pr-1(x)
with P_; :=0, Po = 1, and a, > 0. These relations can be symmetrized:
xpn(x) = cnpns1(X) + bnpn(x) + cr—1pn—1(x), cn:= +/an,
where p,(x) is the n-th orthonormal polynomial. It holds that

¢ < |A]/2 and  |bn| < sup x|,
xXEA

where A is the convex hull of the support of 1.



Jacobi Matrices

The Jacobi matrix 7, defined by

bo Co 0
L Co b1 @l
j T 0 C1 b2 ’

is symmetric in ¢*(Z.). Since the sequences {a,} and {b,} are both bounded,
the operator 7 is bounded and self-adjoint. If p := (po, p1,...), then
Jp=xp and (J —z)r= ey,
where r := (ro, r1,...) and
w2 = [ a0 = [ (2)" 2 gy,
Since r € (*(Z,) for all z large,
r=(J—z)"'e, z¢&o(J).

Therefore, 1 is the spectral measure for 7 as
=0 _ [ du(x)
<(~7 z) 607eo>f/x_z-

In this cycle we could have started with a bounded Jacobi operator.



Criterion for Transcendence

In 1873 Hermite proved that e is transcendental.

o is transcendental if for any m € N and any ¢ > 0 there exist m + 1
linearly independent vectors of integers (p;, gj1,- - -, qjm), j = 0, m, such
that

piot — qi| < e =1,m.

If o is algebraic, then for some m € N there exist ax € Z, k = 0, m, such that

m
Z akak =]()
k=0
Hence,
m m
Z ak(Pjak - Cljk) + aop; + Z akqjk = 0.
k=1 k=1

Then for some 0 < jo < m, it holds that

m

Z k(P — gjok)

m
< EZ |ak].
k=1



Hermite-Padé Approximants

Set N :=no+ -+ nm, where no, ni, ..., nm are non-negative integers. Let

Fi(z),..., Fi(z) be functions holomorphic at the origin. Consider
P(2)F(z) — Qu(z) = 0 (),

where deg(P) < N — ng and deg(Q«x) < N — ny.

Such polynomials exist (their coefficients are obtained from a linear system

which is always solvable), but are not necessarily unique. The m-tuple
Q1/P,...,Qmn/P is called an Hermite-Padé approximant of type II.



Hermite’s Genius

The m-tuple of Hermite-Padé approximants to the system e*, ... e™ is

unique and is given up to the normalization by the formulae

P(z) = D"[f](0) + D" [f](0)z + -+ D™[f](0)2""",
Qu(z) = DV[fI(k) +D " [f](K)z+ - - - + D"[F] (k)" ™,

where f(s) =s™(s —1)™---(s — m)" and D is the diff. operator.




The m-tuple of Hermite-Padé approximants to the system e*, ... e™ is
unique and is given up to the normalization by the formulae

P(z) D"[f](0) + D" [f](0)z + - - - + D™[F](0)" ™,
Q(z) = DY[FI(k) + D" FI(k)z + - - + D™[F](k)z" ™,

where f(s) =s™(s —1)™---(s — m)" and D is the diff. operator.

L J
Theorem

For any m,n € N, let P, Qj1,...,Qjm, j = 0, m, be the m-tuples
of the HP approximants to e”,...,e"* associated with the indices
(n,n,...,n)— §&. Set

pi == P;(1)/(n—1)! and qu = Qi(1)/(n— 1)L

Then these numbers are integers, form m-1 linearly independent vectors,
and satisfy |pje* — gi| < c"/(n — 1)! for some constant c.




Multiple Orthogonal Polynomials

Let fi(z), f2(z) be functions holomorphic at infinity and 7= (n, n») € 7.
Type Il Hermite-Padé approximant for fi, f> at infinity corresponding to ' is
defined as a pair of rational functions Q;1(z)/P#(z) and Qs 2(z)/P#(z), where

(P+f — Qs:) (2) = © (z_"’_l) )

and deg Pz < |i] := n1 + no. If functions f;(z) are Markov functions
dpi(x)
fi(z) = )
()= [

where each i is a probability measure with bounded infinite support on the
real line, then

/XkPﬁ(X)dl,L,‘(X) =0, k=0,n—1.

The multi-index ' is called normal if deg P; = |n]. In this case we normalize
Ps(x) to be monic. The pair (y1, 12) is called perfect if all the multi-indices are
normal.



Lattice Recurrence Relations

Let & = (1,0) and & = (0,1). If (u1, p2) is perfect, then

xPi(x) = Paia(x) + bs1Pa(x) + ai1Pi-g (x) + 372 P& ()
xPz(x) = Prig(x) + br2Pr(x) + as1Pi—g (x) + ar2Pr—s(x)

for some coefficients bz 1, b2, as1, as». These coefficients satisfy consistency

conditions
bﬁ+€1,2 - bﬁ+€z,1 = bﬁ,z - bﬁ,1,
2 2
> " amigk— D ansa .k = barg,ibrj — brra b,
k=1 k=1

ani(brj — bri) = amre,i(bi—g,j — bi-s,i)-



Homogeneous Rooted Tree

Let 7 be the rooted tree of all possible increasing paths on N? starting at (1, 1).

(1,1) ~ O = Y,

(3~ 1) (2 2) (2 2) ~ Y(ch),l (1 3) ~ Y(ch).2

We denote the set of all vertices of 7 by V. We let
£:V —{1,2}, Y =Ly such that N(Y) = N(Y{,) + é,,

where [ is the natural projection of V onto N



Jacobi Operator on

Let © € R?, k1 + ko = 1. Define two interaction functions A, B : )V — R by
Ao =1, Bo:=kibp),1+ kabag2 Y =0,
Ay = an(y(p))ygv, By = bl‘I(Y(p)),Zw Y # 0.
Assume now that
0 < a, for all 7€ Z2 such that n; > 0,
sup ag,j < 00, sup |bg;| < oco.
Then, for any function f € £?()), the action of the operator Jx can be written

in the following form

(Jzf)o == (Bf)o + (Al/zf)o(cn),l + (A1/2f)0(ch),z’ Y =0,
(jﬁf)y = Aly/2fv(p) + (Bf)y + (A1/2f)y(ch)71 + (AI/Zf)Y(ch),z’ Y # 0.

Jr is a bounded and self-adjoint operator on /?())).



Angelesco Systems

The measures (p1, 12) form an Angelesco system if the convex hulls of their
supports, A1 and Ay, are disjoint. We assume that A; < Ao.

Theorem (Aptekarev & Denisov & Ya.)

If (11, p2) is an Angelesco system, then it is perfect and 0 < aj; for
all @ € Z3 with n; > 0 while sup a7; < oo, sup|bsj| < co. Moreover,
ba1 < b2, A€ Z5.




AS: Asymptotics of the Recurrence Coefficients

Assume now that supp(s;) = A; = [, ] and let NV, C Z% be a such that

ny np
—1—c.

— ¢ €[0,1] and therefore
ni + n n + n2

There is a function ¢ : [0,1] — [cu1, £2], which comes from a certain energy

minimization problem, that continuously increases from a; to ». Put
Aci:=A1NJa1,¢(c)] and Acp:= AN [¢(c)N B

Define 9. to be the following Riemann surface:

R
O1g, :51 C(C)._.dz
: : ; : R
I e i | |
—— e




AS: Asymptotics of the Recurrence Coefficients

Theorem (Aptekarev & Denisov & Ya.)

For each ¢ € (0, 1), let 3. be as before and x. : R — C be a conformal
map such that

Xec (2(0)) =z+0 (z_l) as z — 0.
Define constants Ac 1, Ac2, Bc1, Beo by
Xec (z(i)) =Bi+A,iz ' +0 (272) as z — oo.

Assume that z/(x) is analytic and non-vanishing on A;. Then it holds
that
Iji\r[? a5 = Ac,i and Ijl\r/n bsi = Be,i.

The constants Ac; and Bc; are continuous functions of the parameter
¢ and have well defined limits as ¢ — 0 and ¢ — 1.




Quasi AS: Essential Spectrum

Theorem (Aptekarev & Denisov & Ya.)

Let constants Ac1,Ac2, Be1, Be» be as above (coming from some in-
tervals A1 < A). Further, let 7z be a Jacobi operator constructed as
before for some constants {a; 1, an2, b1, bﬁ‘z}ﬁez/:% Cf

Iji\[r? an;i = Ac,i and |jl\rf1: bsi = Be,i

for any Nc and ¢ € [0, 1], then gess(Jz) = A1 U Ao.




AS: Spectral Theorem

Theorem (Denisov & Ya.)

Let 7z be a Jacobi operator constructed as before for the recurrence
coefficients {az1, as 2, b1, bm}ﬁezi coming from an Angelesco system.
Then £*(V) can be decomposed as an infinite orthogonal sum of cyclic
subspaces of 7z whose spectral measures admit a semi-explicit expres-
sions. In particular, it holds that

o(Jz) C A1 UA U Eg,

where Ej is either a single real point or is empty. If suppp; = Aj,
i € {1,2}, then inclusion becomes equality. If du;(x) = pi(x)dx and
!

(1)~ € L>=(A)), i € {1,2}, then the spectrum of Js, is purely abso-
lutely continuous.




