On Hermite-Padé approximants for a pair of Cauchy

 transforms with overlapping symmetric supportsMaxim L. Yattselev

凹IUPUI
SCHOOL OF SCIENCE
Department of Mathematical Sciences

OPSFOTA Seminar
October 29th, 2020

Hermite-Padé Approximants: Definition

Let $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ be a vector of functions holomorphic and vanishing at infinity:

$$
f_{i}(z)=\frac{f_{i 1}}{z}+\frac{f_{i 2}}{z^{2}}+\cdots+\frac{f_{i n}}{z^{n}}+\cdots
$$

Let $\vec{n} \in \mathbb{N}^{m}$ be a multi-index, while $P_{\vec{n}}^{(1)}(z), \ldots, P_{\vec{n}}^{(m)}(z)$ and $Q_{\vec{n}}(z)$ be polynomials such that $\operatorname{deg}\left(Q_{\vec{n}}\right) \leq|\vec{n}|:=n_{1}+\cdots+n_{m}$ and

$$
R_{\vec{n}}^{(i)}(z):=\left(Q_{\vec{n}} f_{i}-P_{\vec{n}}^{(i)}\right)(z)=\mathcal{O}\left(z^{-n_{i}-1}\right) \quad \text { as } \quad z \rightarrow \infty
$$

The vector of rational functions

$$
\left(P_{\vec{n}}^{(1)} / Q_{\vec{n}}, \ldots, P_{\vec{n}}^{(m)} / Q_{\vec{n}}\right)
$$

is called the type II Hermite-Padé approximant to $\vec{f}(z)$ corresponding to \vec{n}.

Hermite-Padé Approximants: Orthogonality

It follows from Cauchy integral formula that

$$
f_{i}(z)=\int \frac{\mathrm{d} \mu_{i}(s)}{z-s}
$$

for some compactly supported Borel generally speaking complex measure μ_{i}. Since $R_{\vec{n}}^{(i)}(z)=\mathcal{O}\left(z^{-n_{i}-1}\right)$, it holds that

$$
0=\int_{\Gamma} z^{k} R_{\vec{n}}^{(i)}(z) \mathrm{d} z=\int_{\Gamma} z^{k} Q_{\vec{n}}(z) f_{i}(z) \mathrm{d} z=\int s^{k} Q_{\vec{n}}(s) \mathrm{d} \mu_{i}(s)
$$

for $k=\overline{0, n_{i}-1}$, where Γ is any Jordan curve encircling the support of μ_{i}. In what follows, it assumed that $Q_{\vec{n}}(z)$ is the monic polynomial of minimal degree.

Padé Approximants: Markov Functions

Let μ be a positive Borel measure compactly supported on the real line. Then

$$
f(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

is called a Markov function. The n-th Pade approximant is defined by the condition

$$
R_{n}(z)=\left(Q_{n} f-P_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right)
$$

In this case it holds that

$$
\int x^{k} Q_{n}(x) \mathrm{d} \mu(x)=0, \quad k=\overline{0, n-1}
$$

That is, $Q_{n}(z)$ is the n-th orthogonal polynomial with respect to the measure μ.

Padé Approximants: Distribution of Poles

Denote by σ_{n} the normalized counting measure of zeros of $Q_{n}(z)$. That is,

$$
\sigma_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x_{n, i}\right), \quad Q_{n}(x)=\prod_{i=1}^{n}\left(x-x_{n, i}\right),
$$

where $\delta(x)$ is the Dirac δ-distribution with mass at x. Recall that a sequence of measures converges weak ${ }^{*}, \nu_{n} \xrightarrow{*} \nu$, if $\int F \mathrm{~d} \nu_{n} \rightarrow \int F \mathrm{~d} \nu$ for any function F continuous on a compact set containing the supports of ν_{n}.

Theorem

If $\operatorname{supp}(\mu)=[-1,1]$ and $\mu^{\prime}>0$ a.e. on $[-1,1]$, then $\sigma_{n} \xrightarrow{*} \omega$, where

$$
\mathrm{d} \omega(x)=\frac{\mathrm{d} x}{\pi \sqrt{1-x^{2}}} .
$$

Padé Approximants: Strong Asymptotics

Theorem (Szegó)

Let $\rho(x)$ be a non-negative function satisfying $\int_{[-1,1]} \log \rho \mathrm{d} \omega>-\infty$. Set

$$
f(z):=\frac{1}{2 \pi} \int_{[-1,1]} \frac{1}{z-x} \frac{\rho(x) \mathrm{d} x}{\sqrt{1-x^{2}}}
$$

Then it holds locally uniformly in $\overline{\mathbb{C}} \backslash[-1,1]$ that

$$
\left\{\begin{aligned}
Q_{n}(z) & \approx \gamma_{n}\left(\Phi^{n} S_{\rho}\right)(z) \\
R_{n}(z) & \approx \gamma_{n}\left(h \Phi^{n} S_{\rho}\right)^{-1}(z)
\end{aligned}\right.
$$

where $h(z)=1 / \sqrt{z^{2}-1}, \gamma_{n}$ is the normalizing constant, $S_{\rho}(z)$ is the Szegö function of $\rho(x)$ (non-vanishing and holomorphic with traces satisfying $S_{\rho+}(x) S_{\rho-}(x)=\rho^{-1}(x)$ on $\left.[-1,1]\right)$ and

$$
\Phi(z)=z+\sqrt{z^{2}-1}
$$

Padé Approximants: Function $\Phi(z)$

- $-\log |\Phi(z)|$ is the logarithmic potential of the logarithmic equilibrium measure for $[-1,1]$

Logarithmic potential and energy of a compactly supported Borel measure ν are defined by $V^{\nu}(z)=-\int \log |z-w| d \nu(w)$ and $I[\nu]=\int V^{\nu}(z) d \nu(z)$.

Given a compact set K, either every Borel measure supported on K has infinite logarithmic energy, in which case K is called polar, or there exists the unique probability Borel measure ω_{K} such that $I\left[\omega_{K}\right]=\inf I[\nu]$, where the infimum is taken over all probability Borel measures supported on K. The measure ω_{K} is called the equilibrium measure of K.

It holds that $\omega_{[-1,1]}=\omega$ and $I[\omega]=0$.

Padé Approximants: Function $\Phi(z)$

- $-\log |\Phi(z)|$ is the logarithmic potential of the logarithmic equilibrium measure for $[-1,1]$
- $\log |\Phi(z)|$ is the Green's function for $\overline{\mathbb{C}} \backslash[-1,1]$ with poles at infinity

Let K be a compact set and D be the unbounded component of $\overline{\mathbb{C}} \backslash K$. Then $g_{K}(z ; \infty)$, Green's function for K with pole at ∞, is uniquely characterized by

- $g_{K}(z ; \infty)$ is harmonic in $D \backslash\{\infty\}$
- $g_{K}(z ; \infty)-\log |z|$ is bounded near ∞
- $g_{K}(z ; \infty)=0$ for quasi every (up to a polar set) $z \in \partial D$

It holds that $g(z ; \infty)=I\left[\omega_{K}\right]-V^{\omega_{K}}(z)$. The constant $\operatorname{cap}(K)=e^{-I\left[\omega_{K}\right]}$ is called the logarithmic capacity of K.

Padé Approximants: Function $\Phi(z)$

- $-\log |\Phi(z)|$ is the logarithmic potential of the logarithmic equilibrium measure for $[-1,1]$
- $\log |\Phi(z)|$ is the Green's function for $\overline{\mathbb{C}} \backslash[-1,1]$ with poles at infinity
- $\log |\Phi(z)|=\operatorname{Re}\left(\int_{1}^{z} h(s) \mathrm{d} s\right)$

Let $h(z)=1 / \sqrt{z^{2}-1}$ be the branch holomorphic in $\overline{\mathbb{C}} \backslash[-1,1]$ and such that $h(z)=1 / z+\mathcal{O}\left(z^{-2}\right)$ as $z \rightarrow \infty$. Then

$$
d \omega_{[-1,1]}(x)=d \omega(x)=-\frac{1}{\pi \mathrm{i}} h_{+}(x) \mathrm{d} x
$$

Padé Approximants: Function $\Phi(z)$

- $-\log |\Phi(z)|$ is the logarithmic potential of the logarithmic equilibrium measure for $[-1,1]$
- $\log |\Phi(z)|$ is the Green's function for $\overline{\mathbb{C}} \backslash[-1,1]$ with poles at infinity
- $\log |\Phi(z)|=\operatorname{Re}\left(\int_{1}^{z} h(s) \mathrm{d} s\right)$
- part of a rational function on a certain Riemann surface

Let $\Re^{(0)}$ and $\Re^{(1)}$ be two copies of $\overline{\mathbb{C}} \backslash[-1,1]$ cut across $[-1,1]$ and \Re be the surface obtained by gluing $\Re^{(0)}$ and $\Re^{(1)}$ crosswise across the cuts to each other. Denote by z a point on \Re with natural projection $\pi(\mathbf{z})=z$. Put

$$
\Phi(\mathbf{z})=\left\{\begin{aligned}
\Phi(z), & \mathbf{z} \in \mathfrak{R}^{(0)} \\
\Phi^{-1}(z), & \mathbf{z} \in \mathfrak{R}^{(1)}
\end{aligned}\right.
$$

Notice that $\Phi^{-1}(z)=z-\sqrt{z^{2}-1}$. Then $\Phi(\mathbf{z})$ is a rational function on \mathfrak{R} with the zero/pole divisor $\infty^{(1)}-\infty^{(0)}$.

Padé Approximants: Function $\Phi(z)$

- $-\log |\Phi(z)|$ is the logarithmic potential of the logarithmic equilibrium measure for $[-1,1]$
- $\log |\Phi(z)|$ is the Green's function for $\overline{\mathbb{C}} \backslash[-1,1]$ with poles at infinity
- $\log |\Phi(z)|=\operatorname{Re}\left(\int_{1}^{z} h(s) \mathrm{d} s\right)$
- part of a rational function on a certain Riemann surface

Observe also that $\log |\Phi(\mathbf{z})|$ is harmonic on $\Re \backslash\left\{\infty^{(0)}, \infty^{(1)}\right\}$ for which the cycle $\Delta:=\pi^{-1}([-1,1])$ is the zero level line.

Padé Approximants: Minimal Capacity Contours

It is said that $f \in \mathcal{S}$ if it can be meromorphically continued along any path in $\overline{\mathbb{C}} \backslash E_{f}$, where E_{f} is polar and there exists at least one point in $\overline{\mathbb{C}} \backslash E_{f}$ with distinct continuations.

Padé Approximants: Minimal Capacity Contours

It is said that $f \in \mathcal{S}$ if it can be meromorphically continued along any path in $\mathbb{C} \backslash E_{f}$, where E_{f} is polar and there exists at least one point in $\mathbb{C} \backslash E_{f}$ with distinct continuations.

A compact set K is called admissible for $f(z)$ if $\overline{\mathbb{C}} \backslash K$ is connected and $f(z)$ has a meromorphic and single-valued extension there.

Padé Approximants: Minimal Capacity Contours

It is said that $f \in \mathcal{S}$ if it can be meromorphically continued along any path in $\overline{\mathbb{C}} \backslash E_{f}$, where E_{f} is polar and there exists at least one point in $\overline{\mathbb{C}} \backslash E_{f}$ with distinct continuations.

A compact set K is called admissible for $f(z)$ if $\overline{\mathbb{C}} \backslash K$ is connected and $f(z)$ has a meromorphic and single-valued extension there.

Theorem (Stahl)

Let $f \in \mathcal{S}$. There exists a unique admissible compact Δ_{f} such that

$$
\operatorname{cap}\left(\Delta_{f}\right) \leq \operatorname{cap}(K)
$$

for any admissible K. The normalized counting measures of zeros of $Q_{n}(z)$ converge to $\omega_{\Delta_{f}}$ in the weak* sense and it holds that

$$
\left|f(z)-\left(P_{n} / Q_{n}\right)(z)\right|^{1 / 2 n} \approx e^{-g_{\Delta_{f}}(z ; \infty)}
$$

on compact subsets of $\mathbb{C} \backslash \Delta_{f}$.

Padé Approximants: Symmetry Property

Theorem (Stahl)

The minimal capacity contour Δ_{f} can be decomposed as

$$
\Delta_{f}=E_{0} \cup E_{1} \cup \bigcup \Delta_{j}
$$

where $E_{0} \subseteq E_{f}, E_{1}$ consists of isolated points to which f has unrestricted continuations from infinity leading to at least two distinct function elements, and Δ_{j} are open analytic arcs. Green's function for Δ_{f} satisfies

$$
\frac{\partial g_{\Delta_{f}}}{\partial n_{+}}=\frac{\partial g_{\Delta_{f}}}{\partial n_{-}} \quad \text { on } \quad \bigcup \Delta_{j}
$$

where $\partial / \partial n_{ \pm}$are the one-sided normal derivatives on $\bigcup \Delta_{j}$.

Padé Approximants: Symmetric Contours for Algebraic Functions

Theorem (Stahl)

Let $f \in \mathcal{S}$ and Δ_{f} be its minimal capacity (symmetric) contour. Define

$$
h(z):=\partial_{z} g_{\Delta_{f}}(z), \quad 2 \partial_{z}:=\partial_{x}-\mathrm{i} \partial_{y} .
$$

The function $h^{2}(z)$ is holomorphic in $\overline{\mathbb{C}} \backslash\left(E_{0} \cup E_{1}\right)$ with a double zero at infinity and the arcs Δ_{j} are orthogonal critical trajectories of the quadratic differential $h^{2}(z) \mathrm{d} z^{2}$ (that is, $\left.h^{2}(z(t))\left(z^{\prime}(t)\right)^{2}<0\right)$.

Assume in addition that E_{f} is finite. For each point $e \in E_{0} \cup E_{1}$ denote by $i(e)$ the bifurcation index of e, that is, the number of different arcs Δ_{j} incident with e. Then

$$
h^{2}(z)=\prod_{e \in E_{0} \cup E_{1}}(z-e)^{i(e)-2} \prod_{e \in E_{2}}(z-e)^{2 j(e)}
$$

where E_{2} is the set of critical points of $g_{\Delta_{f}}(z ; \infty)$ and $j(e)$ is the order of $e \in E_{2}$.

Padé Approximants: Function $\Phi(z)$

Let $f \in \mathcal{S}$ be such that E_{f} is finite.
Let $\Re^{(0)}$ and $\Re^{(1)}$ be two copies of $\overline{\mathbb{C}} \backslash \Delta_{f}$ cut across Δ_{f} and \mathfrak{R} be the surface obtained by gluing $\Re^{(0)}$ and $\Re^{(1)}$ crosswise across the cuts to each other.

Set $h(\mathbf{z})=(-1)^{k} h(z), \mathbf{z} \in \Re^{(k)}$, which is a rational function on \Re. Put

$$
\Phi(\mathbf{z})=\exp \left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d} s\right\}
$$

Then $\Phi(\mathbf{z})$ is meromorphic on \Re expect for the unimodular jumps on a homology basis for \Re with the zero/pole divisor $\infty^{(1)}-\infty^{(0)}$ and such that

- $\log |\Phi(\mathbf{z})|$ is harmonic in $\Re \backslash\left\{\infty^{(0)}, \infty^{(1)}\right\}$
- $\pi^{-1}\left(\Delta_{f}\right)$ is the zero level line of $\log |\Phi(\mathbf{z})|$
- $\log |\Phi(\mathbf{z})|=g_{\Delta_{f}}(z ; \infty)$ for $\mathbf{z} \in \mathfrak{R}^{(0)}$

Padé Approximants: Symmetric Contours through Riemann Surfaces

Take $\mathfrak{R}:=\left\{w^{2}=P(z)\right\}$, where $P(z)$ has degree $2 g+2$. It is a hyperelliptic surface of genus $g(\pi(\mathbf{z})=z, \mathbf{z}=(z, w))$.

There exists a function $g(\mathbf{z})$ on \Re that is harmonic in $\mathfrak{R} \backslash\left\{\infty^{(0)}, \infty^{(1)}\right\}$ and behaves like $(-1)^{k} \log |z|$ as $\mathrm{z} \rightarrow \infty^{(k)}$. This function is involution-symmetric, i.e, $g((z, w))=g((z,-w))$. Define

$$
\Delta:=\pi(\{\mathbf{z} \in \Re: g(\mathbf{z})=0\})
$$

Then Δ is a symmetric (minimal capacity) contour for some function and $g_{\Delta}(z)=g(\mathbf{z}), \mathbf{z} \in \Re^{(0)}$, where $\mathfrak{R}^{(0)}$ is the closure of the connected component of $\mathfrak{R} \backslash\{g(\mathbf{z})=0\}$ containing $\infty^{(0)}$.

Padé Approximants: Strong Asymptotics

Theorem (Aptekarev-Ya.)

Let $f \in \mathcal{S}$ be such that E_{f} is finite and $\left(P_{n} / Q_{n}\right)(z)$ be the n-th diagonal Padé approximant. Then

$$
\begin{array}{ll}
Q_{n}(z) & \approx \gamma_{n} \Psi_{n}(\mathbf{z}) \approx \operatorname{cap}^{n}\left(\Delta_{f}\right) \Phi^{n}(\mathbf{z}), \\
R_{n}(z) & \approx \mathfrak{R}^{(0)} \\
\gamma_{n} \Psi_{n}(\mathbf{z}) \approx \operatorname{cap}^{n}\left(\Delta_{f}\right) \Phi^{n}(\mathbf{z}), & \mathbf{z} \in \mathfrak{R}^{(1)}
\end{array}
$$

where $\Psi_{n}(\mathbf{z})$ is meromorphic in $\Re \backslash \pi^{-1}\left(\Delta_{f}\right)$ with the zero/pole divisor $(n-g) \infty^{(1)}+\sum_{i=1}^{g} \mathbf{z}_{n, i}-n \infty^{(0)}$ that solves a certain boundary value problem on $\pi^{-1}\left(\Delta_{f}\right)(g$ is the genus of $\mathfrak{R})$ and γ_{n} is a normalizing constant.

Angelesco Systems: Orthogonality

We shall say that a vector function $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ forms an Angelesco system if

$$
f_{i}(z)=\int \frac{\mathrm{d} \mu_{i}(x)}{z-x}, \quad \mu_{i}>0, \quad \operatorname{supp}\left(\mu_{i}\right)=\left[a_{i}, b_{i}\right], \quad\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right]=\varnothing .
$$

Given a multi-index $\vec{n}=\left(n_{1}, \ldots, n_{m}\right),|\vec{n}|=n_{1}+\cdots+n_{m}$, we can write

$$
\int x^{k} Q_{\vec{n}}(x) \mathrm{d} \mu_{i}(x)=0, \quad k=\overline{0, n_{i}-1}
$$

Hence, $Q_{\vec{n}}(z)$ has n_{i} simple zeros on $\left[a_{i}, b_{i}\right]$. Denote by $\sigma_{\vec{n}, i}$ their counting measure normalized by $|\vec{n}|$. That is, $\left|\sigma_{\vec{n}, i}\right|=n_{i} /|\vec{n}|$.

Angelesco Systems: Weak Asymptotics

Theorem (Gonchar-Rakhmanov)

Assume that $\mu_{i}^{\prime}>0$ a.e. on $\left[a_{i}, b_{i}\right]$. Let $\{\vec{n}\}$ be a sequence of multiindices such that $\vec{n}|\vec{n}|^{-1} \rightarrow \vec{c} \in(0,1)^{m},|\vec{c}|=1$. Then there exists a vector equilibrium measure $\left(\omega_{\vec{c}, 1}, \ldots, \omega_{\vec{c}, m}\right)$ (unique minimizer of a certain energy functional) such that

$$
\sigma_{\vec{n}, i} \xrightarrow{*} \omega_{\vec{c}, i} .
$$

Moreover, it holds that $\operatorname{supp}\left(\omega_{\vec{c}, i}\right)=\left[a_{\vec{c}, i}, b_{\vec{c}, i}\right] \subseteq\left[a_{i}, b_{i}\right]$ and

$$
\left\{\begin{aligned}
|\vec{n}|^{-1} \log \left|Q_{\vec{n}}(z)\right| & \approx-V^{\omega_{\vec{c}}}(z), \quad \omega_{\vec{c}}=\omega_{\vec{c}, 1}+\cdots+\omega_{\vec{c}, m} \\
|\vec{n}|^{-1} \log \left|R_{\vec{n}}^{(i)}(z)\right| & \approx V^{\omega_{\vec{c}, i}}(z)-\ell_{\vec{c}, i}, \quad i=\overline{1, m}
\end{aligned}\right.
$$

for some constants $\ell_{\vec{c}, i}$.

Angelesco Systems: Divergence Domains

It follows from the previous theorem that

$$
|\vec{n}|^{-1} \log \left|f_{i}(z)-\left(P_{\vec{n}}^{(i)} / Q_{\vec{n}}\right)(z)\right|=V^{\omega_{\vec{c}}+\omega_{\vec{c}, i}}(z)-\ell_{\vec{c}, i}
$$

Define the divergence domain by

$$
D_{\vec{c}, i}^{-}=\left\{z: \ell_{\vec{c}, i}-V^{\omega_{\vec{c}}+\omega_{\vec{c}, i}}(z)<0\right\}
$$

It might happen that $D_{\vec{c}, i}^{-}$is non-empty, but it is always bounded.

$$
\stackrel{b_{\vec{c}, 1}}{a_{1}=a_{\vec{c}, 1}} \dot{b}_{1} \underset{a_{2}=a_{\vec{c}, 2} \quad b_{2}^{-}}{=b_{\vec{c}, 2}}
$$

Angelesco Systems: Riemann Surface

Let $\vec{\omega}_{\vec{n}}$ be the vector equilibrium measure for $\vec{n} /|\vec{n}|$. Define $\Re_{\vec{n}}$ w.r.t. $\vec{\omega}_{\vec{n}}$ by

Angelesco Systems: Function $\Phi_{\vec{n}}(\mathbf{z})$

The surface $\Re_{\vec{n}}$ has genus 0 . Let $\Phi_{\vec{n}}(\mathbf{z})$ be the rational function on $\Re_{\vec{n}}$ with the zero/pole divisor and normalization given by

$$
\left(\Phi_{\vec{n}}\right)=n_{1} \infty^{(1)}+\cdots+n_{m} \infty^{(m)}-|\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}^{(k)}(z) \equiv 1 .
$$

There exist points $\mathbf{z}_{i}, i=\overline{1, m-1}$, "in the gaps" on $\mathfrak{R}^{(0)}$ and a rational function $h_{\vec{n}}(\mathbf{z})$ with the zero pole/divisor and normalization

$$
\left(h_{\vec{n}}\right)=\sum_{i=1}^{m-1} \mathbf{z}_{i}+\sum_{k=0}^{m} \infty^{(k)}-\sum_{i=1}^{m}\left(\mathbf{a}_{\vec{n}, i}+\mathbf{b}_{\vec{n}, i}\right), \quad h^{(0)}(z) \sim 1 / z
$$

such that

$$
\Phi_{\vec{n}}(\mathbf{z})=\exp \left\{\int^{\mathbf{z}} h_{\vec{n}}(\mathbf{s}) \mathrm{d} s\right\} .
$$

Angelesco Systems: Function $\Phi_{\vec{n}}(\mathbf{z})$

Moreover, it holds that

$$
\frac{1}{|\vec{n}|} \log \left|\Phi_{\vec{n}}(\mathbf{z})\right|= \begin{cases}-V^{\omega_{\vec{n}}}(z)+\frac{1}{m+1} \sum_{i=1}^{m} \ell_{\vec{n}, i}, & \mathbf{z} \in \mathfrak{R}^{(0)} \\ V^{\omega_{\vec{n}, k}}(z)-\ell_{\vec{n}, k}+\frac{1}{m+1} \sum_{i=1}^{m} \ell_{\vec{n}, i}, & \mathbf{z} \in \mathfrak{R}^{(k)}\end{cases}
$$

and

$$
\mathrm{d} \omega_{\vec{n}}(x)=\left(h_{\vec{n}-}^{(0)}(x)-h_{\vec{n}+}^{(0)}(x)\right) \frac{\mathrm{d} x}{2 \pi \mathrm{i}} .
$$

In particular, the boundary between convergence and divergence domains can be described as

$$
\partial D_{\vec{n}, i}^{-}=\left\{s:\left|\Phi_{\vec{n}}^{(0)}(s)\right|=\left|\Phi_{\vec{n}}^{(i)}(s)\right|\right\}
$$

That is, it is an orthogonal trajectory of $\left(h_{\vec{n}}^{(0)}(s)-h_{\vec{n}}^{(i)}(s)\right)^{2} \mathrm{~d} s^{2}$.

Angelesco Systems: Strong Asymptotics

Theorem (Ya.)

Let $\rho_{i}(x)$ be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on $\left[a_{i}, b_{i}\right]$ and

$$
f_{i}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\left[a_{i}, b_{i}\right]} \frac{\rho_{i}(x) \mathrm{d} x}{x-z} .
$$

Further, let $\{\vec{n}\}$ be a sequence of multi-indices such that $\vec{n} /|\vec{n}| \rightarrow \vec{c} \in$ $(0,1)^{m}$. Then

$$
\begin{cases}Q_{\vec{n}}(z) & \approx\left(\Phi_{\vec{n}} S\right)^{(0)}(\mathbf{z}) \\ R_{\vec{n}}^{(i)}(z) & \approx\left(\Phi_{\vec{n}} S\right)^{(i)}(\mathbf{z})\end{cases}
$$

where $S(\mathbf{z})$ is a Szegő-type function on $\Re_{\vec{c}}$.

Previous works by Kalyagin, Aptekarev, Aptekarev-Lysov, and subsequent work by Aptekarev-Denisov-Ya. $\left(\vec{c} \in[0,1]^{2}\right.$ for $\left.m=2\right)$.

Symmetric Stahl Systems

We say that a vector function $\vec{f}=\left(f_{1}, f_{2}\right)$ forms a symmetric Stahl system if

$$
f_{i} \leftrightarrow \mu_{i}, \quad \operatorname{supp}\left(\mu_{1}\right)=[-1, a], \quad \operatorname{supp}\left(\mu_{2}\right)=[-a, 1], \quad a \in(0,1)
$$

Let h be an algebraic function given by

$$
A(z) h^{3}-3 B_{2}(z) h-2 B_{1}(z)=0
$$

where, for some parameter $p>0$, we set

$$
\left\{\begin{aligned}
A(z) & :=\left(z^{2}-1\right)\left(z^{2}-a^{2}\right) \\
B_{2}(z) & :=z^{2}-p^{2} \\
B_{1}(z) & :=z
\end{aligned}\right.
$$

Symmetric Stahl Systems: Riemann Surface

Denote by \Re the Riemann surface of h. We are looking \Re such that

$$
\operatorname{Re}\left(\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d} s\right) \text { is single-valued and harmonic on } \Re \quad(*)
$$

Theorem (Aptekarev-Van Assche-Ya.)

(I) If $a \in(0,1 / \sqrt{2})$, then there exists $p \in\left(a, \sqrt{\left(1+a^{2}\right) / 3}\right)$ such that condition $(*)$ is fulfilled. In this case \Re has 8 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b, \pm \mathrm{i} c\}$ for some uniquely determined $b \in(a, p)$ and $c>0$.
(II) If $a=1 / \sqrt{2}$, then $(*)$ is fulfilled with $p=1 / \sqrt{2}$. In this case \Re has 4 ramification points whose projections are $\{ \pm 1, \pm 1 / \sqrt{2}\}$.
(III) If $a \in(1 / \sqrt{2}, 1)$, then $(*)$ is fulfilled for $p=\sqrt{\left(1+a^{2}\right) / 3}$. In this case \Re has 6 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b\}, b \in(p, a)$.

Symmetric Stahl Systems: Riemann Surface

Symmetric Stahl Systems: Nuttall-Szeg冗 Functions

Put

$$
\Phi(\mathbf{z})=\exp \left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d} s\right\}
$$

Then $\Phi(\mathbf{z})$ is meromorphic on \Re expect for the unimodular jumps on a homology basis for \Re with the zero/pole divisor $\infty^{(1)}+\infty^{(2)}-2 \infty^{(0)}$. Moreover, $\log |\Phi(\mathbf{z})|$ is harmonic on $\Re \backslash\left\{\infty^{(0)}, \infty^{(1)}, \infty^{(2)}\right\}$.

Symmetric Stahl Systems: Nuttall-Szeg冗 Functions

Put

$$
\Phi(\mathbf{z})=\exp \left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d} s\right\}
$$

Then $\Phi(\mathbf{z})$ is meromorphic on \Re expect for the unimodular jumps on a homology basis for \Re with the zero/pole divisor $\infty^{(1)}+\infty^{(2)}-2 \infty^{(0)}$. Moreover, $\log |\Phi(\mathbf{z})|$ is harmonic on $\Re \backslash\left\{\infty^{(0)}, \infty^{(1)}, \infty^{(2)}\right\}$.

To $\Phi^{n}(\mathbf{z})$ and $\rho_{1}(z), \rho_{2}(z)$ there corresponds a function $\Psi_{n}(\mathbf{z})$ that is meromorphic away from the cycles that separate sheets $\Re^{(0)}, \mathfrak{R}^{(1)}, \mathfrak{R}^{(2)}$ and on those cycles it solve a certain boundary value problem (in Case I the jump on $\mathfrak{R}^{(1)} \cap \mathfrak{R}^{(2)}$ depends on $\left.\left(\rho_{1} / \rho_{2}\right)(z)\right)$.

Each of the functions $\Psi_{n}(\mathbf{z})$ has a wandering zero (two in Case I) and there exists a subsequence \mathbb{N}_{*} such that

- $\left|\Psi_{n}\right| \leq C\left(\mathbb{N}_{*}\right)\left|\Phi^{n}\right|$ uniformly away from the branch points of \Re
- $\left|\Psi_{n}\right| \geq C\left(\mathbb{N}_{*}\right)^{-1}\left|\Phi^{n}\right|$ uniformly in a neighborhood of $\infty^{(0)}$

Symmetric Stahl Systems: Strong-type Asymptotics

Theorem (Aptekarev-Van Assche-Ya.)

Let $f_{i}(z) \leftrightarrow \mu_{i}, \mathrm{~d} \mu_{i}(x)=\rho_{i}(x) \mathrm{d} x /(2 \pi \mathrm{i})$, where $\rho_{i}(z)$ are as before and we assume in addition that the ratio $\left(\rho_{2} / \rho_{1}\right)(z)$ extends from $(-a, a)$ to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions $\Omega_{i j k}$ in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of Ω_{021} in Cases II and IIIa;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb,
where $\Omega_{i j k}:=\left\{z:\left|\Phi^{(i)}(z)\right|>\left|\Phi^{(j)}(z)\right|>\left|\Phi^{(k)}(z)\right|\right\}$. Then it holds that

$$
\left\{\begin{array}{l}
Q_{(n, n)}(z) \approx \gamma_{n} \Psi_{n}^{(0)}(z), \\
R_{(n, n)}^{(i)}(z)
\end{array} \quad n \in \mathbb{N}_{*}\right.
$$

Symmetric Stahl Systems: Strong-type Asymptotics

Case IIIb: $\gamma:=\left(\rho_{2} / \rho_{1}\right)(z)$ is a constant.

$$
\widehat{\Psi}_{n}^{(1)}(z)=\Psi_{n}^{(1)}(z) \quad \text { and } \quad \widehat{\Psi}_{n}^{(2)}(z)=\gamma \Psi_{n}^{(1)}(z)
$$

The functions $f_{i}(z)-\left(P_{(n, n)}^{(i)} / Q_{(n, n)}\right)(z)$ diverge in both components of Ω_{102}.

Symmetric Stahl Systems: Strong-type Asymptotics

Case IIIa: extension to a domain whose complement belongs to the right-hand component of Ω_{021}.

Again, divergence in both components of Ω_{102}.

Symmetric Stahl Systems: Strong-type Asymptotics

Case II: extension to a domain whose complement compactly belongs to the right-hand component of Ω_{021}.

Symmetric Stahl Systems: Strong-type Asymptotics

Case I: extension to a domain that contains in its interior the closure of the bounded components of $\Omega_{i j k}$.

