# On Hermite-Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports

# Maxim L. Yattselev



# **OPSFOTA Seminar**

October 29th, 2020

#### Hermite-Padé Approximants: Definition

Let  $\vec{f} = (f_1, \dots, f_m)$  be a vector of functions holomorphic and vanishing at infinity:

$$f_i(z) = \frac{f_{i1}}{z} + \frac{f_{i2}}{z^2} + \dots + \frac{f_{in}}{z^n} + \dots$$

Let  $\vec{n} \in \mathbb{N}^m$  be a multi-index, while  $P_{\vec{n}}^{(1)}(z), \ldots, P_{\vec{n}}^{(m)}(z)$  and  $Q_{\vec{n}}(z)$  be polynomials such that  $\deg(Q_{\vec{n}}) \leq |\vec{n}| := n_1 + \cdots + n_m$  and

$$R_{\vec{n}}^{(i)}(z) := \left(Q_{\vec{n}}f_i - P_{\vec{n}}^{(i)}\right)(z) = \mathcal{O}\left(z^{-n_i-1}\right) \text{ as } z \to \infty.$$

The vector of rational functions

$$\left(P_{\vec{n}}^{(1)}/Q_{\vec{n}},\ldots,P_{\vec{n}}^{(m)}/Q_{\vec{n}}\right)$$

is called the *type II Hermite-Padé approximant* to  $\vec{f}(z)$  corresponding to  $\vec{n}$ .

It follows from Cauchy integral formula that

$$f_i(z) = \int \frac{\mathrm{d}\mu_i(s)}{z-s}$$

for some compactly supported Borel generally speaking complex measure  $\mu_i$ . Since  $R_{\vec{n}}^{(i)}(z) = \mathcal{O}(z^{-n_i-1})$ , it holds that

$$0 = \int_{\Gamma} z^k R_{\vec{n}}^{(i)}(z) \mathrm{d}z = \int_{\Gamma} z^k Q_{\vec{n}}(z) f_i(z) \mathrm{d}z = \int s^k Q_{\vec{n}}(s) \mathrm{d}\mu_i(s)$$

for  $k = \overline{0, n_i - 1}$ , where  $\Gamma$  is any Jordan curve encircling the support of  $\mu_i$ . In what follows, it assumed that  $Q_{\vec{n}}(z)$  is the *monic polynomial of minimal degree*.

Let  $\mu$  be a positive Borel measure compactly supported on the real line. Then

$$f(z) = \int \frac{\mathrm{d}\mu(x)}{z-x}$$

is called a *Markov function*. The *n*-th Padé approximant is defined by the condition

$$R_n(z) = (Q_n f - P_n)(z) = \mathcal{O}(z^{-n-1})$$

In this case it holds that

$$\int x^k Q_n(x) \mathrm{d}\mu(x) = 0, \quad k = \overline{0, n-1}.$$

That is,  $Q_n(z)$  is the *n*-th *orthogonal polynomial* with respect to the measure  $\mu$ .

#### Padé Approximants: Distribution of Poles

Denote by  $\sigma_n$  the normalized *counting measure of zeros* of  $Q_n(z)$ . That is,

$$\sigma_n := \frac{1}{n} \sum_{i=1}^n \delta(x_{n,i}), \quad Q_n(x) = \prod_{i=1}^n (x - x_{n,i}),$$

where  $\delta(x)$  is the Dirac  $\delta$ -distribution with mass at x. Recall that a sequence of measures converges weak<sup>\*</sup>,  $\nu_n \stackrel{*}{\to} \nu$ , if  $\int F d\nu_n \to \int F d\nu$  for any function F continuous on a compact set containing the supports of  $\nu_n$ .

#### Theorem

If supp $(\mu) = [-1, 1]$  and  $\mu' > 0$  a.e. on [-1, 1], then  $\sigma_n \xrightarrow{*} \omega$ , where

$$\mathrm{d}\omega(x) = \frac{\mathrm{d}x}{\pi\sqrt{1-x^2}}.$$

# Theorem (Szegő)

Let  $\rho(x)$  be a non-negative function satisfying  $\int_{[-1,1]} \log \rho d\omega > -\infty$ . Set

$$f(z) := \frac{1}{2\pi} \int_{[-1,1]} \frac{1}{z - x} \frac{\rho(x) dx}{\sqrt{1 - x^2}}.$$

Then it holds locally uniformly in  $\overline{\mathbb{C}} \setminus [-1, 1]$  that

$$\begin{pmatrix} Q_n(z) \approx \gamma_n (\Phi^n S_\rho)(z), \\ R_n(z) \approx \gamma_n (h \Phi^n S_\rho)^{-1}(z), \end{pmatrix}$$

where  $h(z) = 1/\sqrt{z^2 - 1}$ ,  $\gamma_n$  is the normalizing constant,  $S_{\rho}(z)$  is the *Szegő function* of  $\rho(x)$  (non-vanishing and holomorphic with traces satisfying  $S_{\rho+}(x)S_{\rho-}(x) = \rho^{-1}(x)$  on [-1, 1]) and

$$\Phi(z) = z + \sqrt{z^2 - 1}.$$

•  $-\log |\Phi(z)|$  is the logarithmic potential of the logarithmic equilibrium measure for [-1, 1]

Logarithmic potential and energy of a compactly supported Borel measure  $\nu$  are defined by  $V^{\nu}(z) = -\int \log |z - w| d\nu(w)$  and  $I[\nu] = \int V^{\nu}(z) d\nu(z)$ .

Given a compact set *K*, either every Borel measure supported on *K* has infinite logarithmic energy, in which case *K* is called *polar*, or there exists the unique probability Borel measure  $\omega_K$  such that  $I[\omega_K] = \inf I[\nu]$ , where the infimum is taken over all probability Borel measures supported on *K*. The measure  $\omega_K$  is called the *equilibrium measure* of *K*.

It holds that  $\omega_{[-1,1]} = \omega$  and  $I[\omega] = 0$ .

•  $-\log |\Phi(z)|$  is the logarithmic potential of the logarithmic equilibrium measure for [-1, 1]

•  $\log |\Phi(z)|$  is the Green's function for  $\overline{\mathbb{C}} \setminus [-1, 1]$  with poles at infinity

Let *K* be a compact set and *D* be the unbounded component of  $\overline{\mathbb{C}} \setminus K$ . Then  $g_K(z; \infty)$ , *Green's function for K with pole at*  $\infty$ , is uniquely characterized by

- $g_K(z;\infty)$  is harmonic in  $D \setminus \{\infty\}$
- $g_K(z;\infty) \log |z|$  is bounded near  $\infty$
- $g_K(z;\infty) = 0$  for quasi every (up to a polar set)  $z \in \partial D$

It holds that  $g(z; \infty) = I[\omega_K] - V^{\omega_K}(z)$ . The constant  $\operatorname{cap}(K) = e^{-I[\omega_K]}$  is called the *logarithmic capacity* of *K*.

#### **Padé Approximants: Function** $\Phi(z)$

•  $-\log |\Phi(z)|$  is the logarithmic potential of the logarithmic equilibrium measure for [-1, 1]

- $\log |\Phi(z)|$  is the Green's function for  $\overline{\mathbb{C}} \setminus [-1,1]$  with poles at infinity
- $\log |\Phi(z)| = \operatorname{Re} \left( \int_{1}^{z} h(s) \mathrm{d}s \right)$

Let  $h(z) = 1/\sqrt{z^2 - 1}$  be the branch holomorphic in  $\overline{\mathbb{C}} \setminus [-1, 1]$  and such that  $h(z) = 1/z + \mathcal{O}(z^{-2})$  as  $z \to \infty$ . Then

$$d\omega_{[-1,1]}(x) = d\omega(x) = -\frac{1}{\pi i}h_+(x)dx$$

•  $-\log |\Phi(z)|$  is the logarithmic potential of the logarithmic equilibrium measure for [-1, 1]

- $\log |\Phi(z)|$  is the Green's function for  $\overline{\mathbb{C}} \setminus [-1,1]$  with poles at infinity
- $\log |\Phi(z)| = \operatorname{Re} \left( \int_{1}^{z} h(s) ds \right)$

• part of a rational function on a certain Riemann surface

Let  $\mathfrak{R}^{(0)}$  and  $\mathfrak{R}^{(1)}$  be two copies of  $\overline{\mathbb{C}} \setminus [-1, 1]$  cut across [-1, 1] and  $\mathfrak{R}$  be the surface obtained by gluing  $\mathfrak{R}^{(0)}$  and  $\mathfrak{R}^{(1)}$  crosswise across the cuts to each other. Denote by  $\mathbf{z}$  a point on  $\mathfrak{R}$  with natural projection  $\pi(\mathbf{z}) = z$ . Put

$$\Phi(\mathbf{z}) = \begin{cases} \Phi(z), & \mathbf{z} \in \mathfrak{R}^{(0)}, \\ \Phi^{-1}(z), & \mathbf{z} \in \mathfrak{R}^{(1)}. \end{cases}$$

Notice that  $\Phi^{-1}(z) = z - \sqrt{z^2 - 1}$ . Then  $\Phi(\mathbf{z})$  is a rational function on  $\mathfrak{R}$  with the zero/pole divisor  $\infty^{(1)} - \infty^{(0)}$ .

#### **Padé Approximants: Function** $\Phi(z)$

•  $-\log |\Phi(z)|$  is the logarithmic potential of the logarithmic equilibrium measure for [-1, 1]

- $\log |\Phi(z)|$  is the Green's function for  $\overline{\mathbb{C}} \setminus [-1,1]$  with poles at infinity
- $\log |\Phi(z)| = \operatorname{Re} \left( \int_{1}^{z} h(s) \mathrm{d}s \right)$

part of a rational function on a certain Riemann surface



Observe also that  $\log |\Phi(\mathbf{z})|$  is harmonic on  $\Re \setminus \{\infty^{(0)}, \infty^{(1)}\}$  for which the cycle  $\Delta := \pi^{-1}([-1, 1])$  is the zero level line.

It is said that  $f \in S$  if it can be meromorphically continued along any path in  $\overline{\mathbb{C}} \setminus E_f$ , where  $E_f$  is polar and there exists at least one point in  $\overline{\mathbb{C}} \setminus E_f$  with distinct continuations.

## Padé Approximants: Minimal Capacity Contours

It is said that  $f \in S$  if it can be meromorphically continued along any path in  $\overline{\mathbb{C}} \setminus E_f$ , where  $E_f$  is polar and there exists at least one point in  $\overline{\mathbb{C}} \setminus E_f$  with distinct continuations.

A compact set *K* is called *admissible* for f(z) if  $\overline{\mathbb{C}} \setminus K$  is connected and f(z) has a meromorphic and single-valued extension there.

It is said that  $f \in S$  if it can be meromorphically continued along any path in  $\overline{\mathbb{C}} \setminus E_f$ , where  $E_f$  is polar and there exists at least one point in  $\overline{\mathbb{C}} \setminus E_f$  with distinct continuations.

A compact set *K* is called *admissible* for f(z) if  $\overline{\mathbb{C}} \setminus K$  is connected and f(z) has a meromorphic and single-valued extension there.

#### Theorem (Stahl)

Let  $f \in S$ . There exists a unique admissible compact  $\Delta_f$  such that

 $\operatorname{cap}(\Delta_f) \le \operatorname{cap}(K)$ 

for any admissible K. The normalized counting measures of zeros of  $Q_n(z)$  converge to  $\omega_{\Delta_f}$  in the weak<sup>\*</sup> sense and it holds that

$$|f(z) - (P_n/Q_n)(z)|^{1/2n} \approx e^{-g_{\Delta f}(z;\infty)}$$

on compact subsets of  $\mathbb{C} \setminus \Delta_f$ .

#### Theorem (Stahl)

The minimal capacity contour  $\Delta_f$  can be decomposed as

$$\Delta_f = E_0 \cup E_1 \cup \bigcup \Delta_j,$$

where  $E_0 \subseteq E_f$ ,  $E_1$  consists of isolated points to which f has unrestricted continuations from infinity leading to at least two distinct function elements, and  $\Delta_j$  are open analytic arcs. Green's function for  $\Delta_f$  satisfies

$$\frac{\partial g_{\Delta_f}}{\partial n_+} = \frac{\partial g_{\Delta_f}}{\partial n_-} \quad \text{on} \quad \bigcup \Delta_j,$$

where  $\partial/\partial n_{\pm}$  are the one-sided normal derivatives on  $\bigcup \Delta_j$ .

#### Theorem (Stahl)

Let  $f \in S$  and  $\Delta_f$  be its minimal capacity (symmetric) contour. Define

$$h(z) := \partial_z g_{\Delta_f}(z), \quad 2\partial_z := \partial_x - \mathrm{i}\partial_y.$$

The function  $h^2(z)$  is holomorphic in  $\overline{\mathbb{C}} \setminus (E_0 \cup E_1)$  with a double zero at infinity and the arcs  $\Delta_j$  are *orthogonal critical trajectories* of the quadratic differential  $h^2(z)dz^2$  (that is,  $h^2(z(t))(z'(t))^2 < 0$ ).

Assume in addition that  $E_f$  is finite. For each point  $e \in E_0 \cup E_1$  denote by i(e) the bifurcation index of e, that is, the number of different arcs  $\Delta_i$  incident with e. Then

$$h^{2}(z) = \prod_{e \in E_{0} \cup E_{1}} (z - e)^{i(e) - 2} \prod_{e \in E_{2}} (z - e)^{2j(e)},$$

where  $E_2$  is the set of critical points of  $g_{\Delta_f}(z; \infty)$  and j(e) is the order of  $e \in E_2$ .

Let  $f \in S$  be such that  $E_f$  is finite.

Let  $\mathfrak{R}^{(0)}$  and  $\mathfrak{R}^{(1)}$  be two copies of  $\overline{\mathbb{C}} \setminus \Delta_f$  cut across  $\Delta_f$  and  $\mathfrak{R}$  be the surface obtained by gluing  $\mathfrak{R}^{(0)}$  and  $\mathfrak{R}^{(1)}$  crosswise across the cuts to each other.

Set  $h(\mathbf{z}) = (-1)^k h(z)$ ,  $\mathbf{z} \in \mathfrak{R}^{(k)}$ , which is a rational function on  $\mathfrak{R}$ . Put

$$\Phi(\mathbf{z}) = \exp\left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d}s\right\}.$$

Then  $\Phi(\mathbf{z})$  is meromorphic on  $\Re$  expect for the unimodular jumps on a homology basis for  $\Re$  with the zero/pole divisor  $\infty^{(1)} - \infty^{(0)}$  and such that

- $\log |\Phi(\mathbf{z})|$  is harmonic in  $\Re \setminus \{\infty^{(0)}, \infty^{(1)}\}$
- $\pi^{-1}(\Delta_f)$  is the zero level line of  $\log |\Phi(\mathbf{z})|$

• 
$$\log |\Phi(\mathbf{z})| = g_{\Delta_f}(z; \infty)$$
 for  $\mathbf{z} \in \mathfrak{R}^{(0)}$ 

Take  $\Re := \{w^2 = P(z)\}$ , where P(z) has degree 2g + 2. It is a hyperelliptic surface of genus  $g(\pi(\mathbf{z}) = z, \mathbf{z} = (z, w))$ .

There exists a function  $g(\mathbf{z})$  on  $\mathfrak{R}$  that is harmonic in  $\mathfrak{R} \setminus \{\infty^{(0)}, \infty^{(1)}\}$  and behaves like  $(-1)^k \log |z|$  as  $\mathbf{z} \to \infty^{(k)}$ . This function is involution-symmetric, i.e, g((z, w)) = g((z, -w)). Define

$$\Delta := \pi \left( \{ \mathbf{z} \in \Re : g(\mathbf{z}) = 0 \} \right)$$

Then  $\Delta$  is a symmetric (minimal capacity) contour for some function and  $g_{\Delta}(z) = g(\mathbf{z}), \mathbf{z} \in \mathfrak{R}^{(0)}$ , where  $\mathfrak{R}^{(0)}$  is the closure of the connected component of  $\mathfrak{R} \setminus \{g(\mathbf{z}) = 0\}$  containing  $\infty^{(0)}$ .

#### Theorem (Aptekarev-Ya.)

Let  $f \in S$  be such that  $E_f$  is finite and  $(P_n/Q_n)(z)$  be the *n*-th diagonal Padé approximant. Then

$$Q_n(z) \approx \gamma_n \Psi_n(\mathbf{z}) \approx \operatorname{cap}^n(\Delta_f) \Phi^n(\mathbf{z}), \quad \mathbf{z} \in \mathfrak{R}^{(0)},$$
  

$$R_n(z) \approx \gamma_n \Psi_n(\mathbf{z}) \approx \operatorname{cap}^n(\Delta_f) \Phi^n(\mathbf{z}), \quad \mathbf{z} \in \mathfrak{R}^{(1)},$$

where  $\Psi_n(\mathbf{z})$  is meromorphic in  $\Re \setminus \pi^{-1}(\Delta_f)$  with the zero/pole divisor  $(n-g)\infty^{(1)} + \sum_{i=1}^{g} \mathbf{z}_{n,i} - n\infty^{(0)}$  that solves a certain boundary value problem on  $\pi^{-1}(\Delta_f)$  (*g* is the genus of  $\Re$ ) and  $\gamma_n$  is a normalizing constant.

We shall say that a vector function  $\vec{f} = (f_1, \ldots, f_m)$  forms an Angelesco system if

$$f_i(z) = \int \frac{\mathrm{d}\mu_i(x)}{z-x}, \quad \mu_i > 0, \ \operatorname{supp}(\mu_i) = [a_i, b_i], \ [a_i, b_i] \cap [a_j, b_j] = \varnothing.$$

Given a multi-index  $\vec{n} = (n_1, ..., n_m)$ ,  $|\vec{n}| = n_1 + \cdots + n_m$ , we can write

$$\int x^k Q_{\vec{n}}(x) \mathrm{d}\mu_i(x) = 0, \quad k = \overline{0, n_i - 1}.$$

Hence,  $Q_{\vec{n}}(z)$  has  $n_i$  simple zeros on  $[a_i, b_i]$ . Denote by  $\sigma_{\vec{n},i}$  their counting measure normalized by  $|\vec{n}|$ . That is,  $|\sigma_{\vec{n},i}| = n_i/|\vec{n}|$ .

#### Theorem (Gonchar-Rakhmanov)

Assume that  $\mu'_i > 0$  a.e. on  $[a_i, b_i]$ . Let  $\{\vec{n}\}$  be a sequence of multiindices such that  $\vec{n}|\vec{n}|^{-1} \rightarrow \vec{c} \in (0, 1)^m$ ,  $|\vec{c}| = 1$ . Then there exists a vector equilibrium measure  $(\omega_{\vec{c},1}, \ldots, \omega_{\vec{c},m})$  (unique minimizer of a certain energy functional) such that

$$\sigma_{\vec{n},i} \stackrel{*}{\to} \omega_{\vec{c},i}.$$

Moreover, it holds that  $\operatorname{supp}(\omega_{\vec{c},i}) = [a_{\vec{c},i}, b_{\vec{c},i}] \subseteq [a_i, b_i]$  and

$$\begin{cases} |\vec{n}|^{-1} \log |Q_{\vec{n}}(z)| \approx -V^{\omega_{\vec{c}}}(z), \quad \omega_{\vec{c}} = \omega_{\vec{c},1} + \dots + \omega_{\vec{c},m}, \\ |\vec{n}|^{-1} \log |R_{\vec{n}}^{(i)}(z)| \approx V^{\omega_{\vec{c},i}}(z) - \ell_{\vec{c},i}, \quad i = \overline{1,m}, \end{cases}$$

for some constants  $\ell_{\vec{c},i}$ .

# **Angelesco Systems: Divergence Domains**

It follows from the previous theorem that

$$|\vec{n}|^{-1} \log \left| f_i(z) - (P_{\vec{n}}^{(i)}/Q_{\vec{n}})(z) \right| = V^{\omega_{\vec{c}} + \omega_{\vec{c},i}}(z) - \ell_{\vec{c},i}$$

Define the divergence domain by

$$D_{\vec{c},i}^{-} = \left\{ z : \ell_{\vec{c},i} - V^{\omega_{\vec{c}} + \omega_{\vec{c},i}}(z) < 0 \right\}$$

It might happen that  $D_{\vec{c},i}^-$  is non-empty, but it is always bounded.

$$a_1 = a_{\vec{c},1}$$
  $b_{\vec{c},1}$   $b_1$   $a_2 = a_{\vec{c},2}$   $b_2 = b_{\vec{c},2}$ 

Let  $\vec{\omega}_{\vec{n}}$  be the vector equilibrium measure for  $\vec{n}/|\vec{n}|$ . Define  $\Re_{\vec{n}}$  w.r.t.  $\vec{\omega}_{\vec{n}}$  by



#### Angelesco Systems: Function $\Phi_{\vec{n}}(\mathbf{z})$

The surface  $\Re_{\vec{n}}$  has genus 0. Let  $\Phi_{\vec{n}}(\mathbf{z})$  be the rational function on  $\Re_{\vec{n}}$  with the zero/pole divisor and normalization given by

$$(\Phi_{\vec{n}}) = n_1 \infty^{(1)} + \dots + n_m \infty^{(m)} - |\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}^{(k)}(z) \equiv 1.$$

There exist points  $\mathbf{z}_i$ ,  $i = \overline{1, m - 1}$ , "in the gaps" on  $\mathfrak{R}^{(0)}$  and a rational function  $h_{\vec{n}}(\mathbf{z})$  with the zero pole/divisor and normalization

$$(h_{\vec{n}}) = \sum_{i=1}^{m-1} \mathbf{z}_i + \sum_{k=0}^m \infty^{(k)} - \sum_{i=1}^m \left( \mathbf{a}_{\vec{n},i} + \mathbf{b}_{\vec{n},i} \right), \quad h^{(0)}(z) \sim 1/z,$$

such that

$$\Phi_{\vec{n}}(\mathbf{z}) = \exp\left\{\int^{\mathbf{z}} h_{\vec{n}}(\mathbf{s}) \mathrm{d}s\right\}.$$

#### Angelesco Systems: Function $\Phi_{\vec{n}}(\mathbf{z})$

Moreover, it holds that

$$\frac{1}{|\vec{n}|} \log |\Phi_{\vec{n}}(\mathbf{z})| = \begin{cases} -V^{\omega_{\vec{n}}}(z) + \frac{1}{m+1} \sum_{i=1}^{m} \ell_{\vec{n},i}, & \mathbf{z} \in \mathfrak{R}^{(0)}, \\ V^{\omega_{\vec{n},k}}(z) - \ell_{\vec{n},k} + \frac{1}{m+1} \sum_{i=1}^{m} \ell_{\vec{n},i}, & \mathbf{z} \in \mathfrak{R}^{(k)}, \end{cases}$$

and

$$d\omega_{\vec{n}}(x) = \left(h_{\vec{n}-}^{(0)}(x) - h_{\vec{n}+}^{(0)}(x)\right) \frac{dx}{2\pi i}.$$

In particular, the boundary between convergence and divergence domains can be described as

$$\partial D^{-}_{\vec{n},i} = \left\{ s : |\Phi^{(0)}_{\vec{n}}(s)| = |\Phi^{(i)}_{\vec{n}}(s)| \right\}$$

That is, it is an orthogonal trajectory of  $\left(h_{\vec{n}}^{(0)}(s) - h_{\vec{n}}^{(i)}(s)\right)^2 ds^2$ .

## Theorem (Ya.)

Let  $\rho_i(x)$  be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on  $[a_i, b_i]$  and

$$f_i(z) := \frac{1}{2\pi i} \int_{[a_i, b_i]} \frac{\rho_i(x) dx}{x - z}.$$

Further, let  $\{\vec{n}\}$  be a sequence of multi-indices such that  $\vec{n}/|\vec{n}| \rightarrow \vec{c} \in (0,1)^m$ . Then

| ſ | $Q_{\vec{n}}(z)$       | $\approx$ | $\left(\Phi_{\vec{n}}S\right)^{(0)}(\mathbf{z}),$ |
|---|------------------------|-----------|---------------------------------------------------|
| J | $R_{\vec{n}}^{(i)}(z)$ | $\approx$ | $\left(\Phi_{\vec{n}}S\right)^{(i)}(\mathbf{z}),$ |

where  $S(\mathbf{z})$  is a Szegő-type function on  $\Re_{\vec{c}}$ .

Previous works by Kalyagin, Aptekarev, Aptekarev–Lysov, and subsequent work by Aptekarev-Denisov-Ya. ( $\vec{c} \in [0, 1]^2$  for m = 2).

We say that a vector function  $\vec{f} = (f_1, f_2)$  forms a *symmetric Stahl system* if

 $f_i \leftrightarrow \mu_i$ ,  $\operatorname{supp}(\mu_1) = [-1, a]$ ,  $\operatorname{supp}(\mu_2) = [-a, 1]$ ,  $a \in (0, 1)$ .

Let h be an algebraic function given by

$$A(z)h^3 - 3B_2(z)h - 2B_1(z) = 0$$

where, for some parameter p > 0, we set

$$\begin{cases} A(z) & := (z^2 - 1)(z^2 - a^2), \\ B_2(z) & := z^2 - p^2, \\ B_1(z) & := z, \end{cases}$$

#### Symmetric Stahl Systems: Riemann Surface

Denote by  $\mathfrak{R}$  the Riemann surface of *h*. We are looking  $\mathfrak{R}$  such that

$$\mathsf{Re}\left(\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d}s\right)$$
 is *single-valued* and harmonic on  $\mathfrak{R}$  (\*)

#### Theorem (Aptekarev-Van Assche-Ya.)

- (I) If a ∈ (0, 1/√2), then there exists p ∈ (a, √(1 + a²)/3) such that condition (\*) is fulfilled. In this case ℜ has 8 ramification points whose projections are {±1, ±a} and {±b, ±ic} for some uniquely determined b ∈ (a, p) and c > 0.
- (II) If  $a = 1/\sqrt{2}$ , then (\*) is fulfilled with  $p = 1/\sqrt{2}$ . In this case  $\Re$  has 4 ramification points whose projections are  $\{\pm 1, \pm 1/\sqrt{2}\}$ .
- (III) If  $a \in (1/\sqrt{2}, 1)$ , then (\*) is fulfilled for  $p = \sqrt{(1 + a^2)/3}$ . In this case  $\Re$  has 6 ramification points whose projections are  $\{\pm 1, \pm a\}$  and  $\{\pm b\}, b \in (p, a)$ .

## Symmetric Stahl Systems: Riemann Surface



## Symmetric Stahl Systems: Nuttall-Szegő Functions

Put

$$\Phi(\mathbf{z}) = \exp\left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d}s\right\}$$

Then  $\Phi(\mathbf{z})$  is meromorphic on  $\mathfrak{R}$  expect for the unimodular jumps on a homology basis for  $\mathfrak{R}$  with the zero/pole divisor  $\infty^{(1)} + \infty^{(2)} - 2\infty^{(0)}$ . Moreover,  $\log |\Phi(\mathbf{z})|$  is harmonic on  $\mathfrak{R} \setminus \{\infty^{(0)}, \infty^{(1)}, \infty^{(2)}\}$ .

# Symmetric Stahl Systems: Nuttall-Szegő Functions

Put

$$\Phi(\mathbf{z}) = \exp\left\{\int^{\mathbf{z}} h(\mathbf{s}) \mathrm{d}s\right\}$$

Then  $\Phi(\mathbf{z})$  is meromorphic on  $\mathfrak{R}$  expect for the unimodular jumps on a homology basis for  $\mathfrak{R}$  with the zero/pole divisor  $\infty^{(1)} + \infty^{(2)} - 2\infty^{(0)}$ . Moreover,  $\log |\Phi(\mathbf{z})|$  is harmonic on  $\mathfrak{R} \setminus \{\infty^{(0)}, \infty^{(1)}, \infty^{(2)}\}$ .

To  $\Phi^n(\mathbf{z})$  and  $\rho_1(z), \rho_2(z)$  there corresponds a function  $\Psi_n(\mathbf{z})$  that is meromorphic away from the cycles that separate sheets  $\mathfrak{R}^{(0)}, \mathfrak{R}^{(1)}, \mathfrak{R}^{(2)}$  and on those cycles it solve a certain boundary value problem (in Case I the jump on  $\mathfrak{R}^{(1)} \cap \mathfrak{R}^{(2)}$  depends on  $(\rho_1/\rho_2)(z)$ ).

Each of the functions  $\Psi_n(\mathbf{z})$  has a wandering zero (*two* in Case I) and there exists a subsequence  $\mathbb{N}_*$  such that

- $|\Psi_n| \leq C(\mathbb{N}_*) |\Phi^n|$  uniformly away from the branch points of  $\mathfrak{R}$
- $|\Psi_n| \ge C(\mathbb{N}_*)^{-1} |\Phi^n|$  uniformly in a neighborhood of  $\infty^{(0)}$

## Theorem (Aptekarev-Van Assche-Ya.)

Let  $f_i(z) \leftrightarrow \mu_i$ ,  $d\mu_i(x) = \rho_i(x)dx/(2\pi i)$ , where  $\rho_i(z)$  are as before and we assume in addition that the ratio  $(\rho_2/\rho_1)(z)$  extends from (-a, a) to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions Ω<sub>ijk</sub> in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of  $\Omega_{021}$  in Cases II and IIIa;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb,

where  $\Omega_{ijk} := \left\{ z : |\Phi^{(i)}(z)| > |\Phi^{(j)}(z)| > |\Phi^{(k)}(z)| \right\}$ . Then it holds that

$$\begin{cases} Q_{(n,n)}(z) \approx \gamma_n \Psi_n^{(0)}(z), \\ R_{(n,n)}^{(i)}(z) \approx \gamma_n \widehat{\Psi}_n^{(i)}(z), \end{cases} \quad n \in \mathbb{N}_* \end{cases}$$

Case IIIb:  $\gamma := (\rho_2/\rho_1)(z)$  is a constant.



The functions  $f_i(z) - \left( P_{(n,n)}^{(i)} / Q_{(n,n)} \right)(z)$  diverge in both components of  $\Omega_{102}$ .

Case IIIa: extension to a domain whose complement belongs to the right-hand component of  $\Omega_{021}$ .



Again, divergence in both components of  $\Omega_{102}$ .

Case II: extension to a domain whose complement compactly belongs to the right-hand component of  $\Omega_{021}$ .



# Symmetric Stahl Systems: Strong-type Asymptotics

Case I: extension to a domain that contains in its interior the closure of the bounded components of  $\Omega_{ijk}$ .

