Weak Convergence & Extremal Domain: 00000000 Uniform Convergence & Algebraic S-contours

Nuttall's Theorem for Padé Approximants

Maxim L. Yattselev

University of Oregon

Department of Mathematical Sciences, IUPUI

January 31st, 2013

In 1844 Liouville¹ constructed the first example of a transcendental number by using continued fractions.

Studying similarities between simultaneous diophantine approximation of real numbers and rational approximation of holomorphic functions, Hermite² proved in 1873 that e is transcendental.

 $^{^1}$ Sur des class trè étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques, 1844

²Sur la fonction exponentielle. C.R. Acad. Sci. Paris, 1873

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

Criterion

Hermite's proof is based on the following criterion.

Lemma

 α is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon > 0$ there exist m+1 linearly independent vectors of integers $(q_j, p_{j1}, \ldots, p_{jm})$, $j = \overline{0, m}$, such that $|q_j \alpha^k - p_{jk}| \le \varepsilon$, $k = \overline{1, m}$.

If α is algebraic, then for some $m \in \mathbb{N}$ there exist $a_k \in \mathbb{Z}$, $k = \overline{0, m}$, such that $\sum_{k=0}^{m} a_k \alpha^k = 0$. Hence,

$$\sum_{k=1}^{m} a_k (q_j \alpha^k - p_{jk}) + a_0 q_j + \sum_{k=1}^{m} a_k p_{jk} = 0.$$

Then for some $0 \le j_0 \le m$, it holds that

$$1 \le \left| \sum_{k=1}^m a_k (q_{j_0} \alpha^k - p_{j_0 k}) \right| \le \varepsilon \sum_{k=1}^m |a_k|.$$

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Convergence & Algebraic S-contours
000000		
Main Ston		

Let n_0, n_1, \ldots, n_m be non-negative integers. Set $N := n_0 + \cdots + n_m$ and consider the following system:

$$Q(z)e^{kz}-P_k(z)=\mathscr{O}(z^{N+1}),$$

where $\deg(Q) \leq N - n_0$ and $\deg(P_k) \leq N - n_k$.

Hermite proceeded to explicitly construct these polynomials, which as it turned out have integer coefficients. By evaluating these polynomials at 1 he succeeded in applying the above criterion.

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Convergence & Algebraic S-contours
0000000		
D (2.14)		

Let $F(z) = \sum_{k=0}^{\infty} f_k z^k$ be a function holomorphic at the origin. Consider the following system:

$$Q(z)F(z)-P(z)=\mathscr{O}(z^{m+n+1}),$$

where $deg(Q) \le n$ and $deg(P) \le m$. This system always has a solution. Indeed,

$$Q(z)F(z) = \sum_{k=0}^{\infty} \left(\sum_{j+i=k,i\leq n} f_j q_i\right) z^k.$$

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Linear System

Set $f_{-k} := 0$ for k > 0. Then

$$\begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_m \end{pmatrix} = \begin{pmatrix} f_0 & f_{-1} & \cdots & f_{-n} \\ f_1 & f_0 & \cdots & f_{1-n} \\ \vdots & \vdots & \ddots & \vdots \\ f_m & f_{m-1} & \cdots & f_{m-n} \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix}$$

and

$$\begin{pmatrix} 0\\0\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} f_{m+1} & f_m & \cdots & f_{m+1-n}\\f_{m+2} & f_{m+1} & \cdots & f_{m+2-n}\\\vdots & \vdots & \ddots & \vdots\\f_{m+n+1} & f_{m+n} & \cdots & f_{m+1} \end{pmatrix} \begin{pmatrix} q_0\\q_1\\\vdots\\q_n \end{pmatrix}$$

The latter is a linear system of *n* equations with n+1 unknowns. Such a system always has a solution. A solution may not be unique, but the ratio $[m/n]_F := P/Q$ always is.

Weak Convergence & Extremal Domain:

Uniform Convergence & Algebraic S-contours

Indeed, let $Q_1(z), P_1(z)$ and $Q_2(z), P_2(z)$ be solutions. Then

$$\begin{split} Q_2(z)\big(Q_1(z)F(z)-P_1(z)\big) &= \mathcal{O}\big(z^{m+n+1}\big)\\ \text{and}\\ Q_1(z)\big(Q_2(z)F(z)-P_2(z)\big) &= \mathcal{O}\big(z^{m+n+1}\big). \end{split}$$

Therefore,

$$Q_2(z)P_1(z) - Q_1(z)P_2(z) = O(z^{m+n+1}).$$

However,

$$\deg\left(Q_2P_1-Q_1P_2\right)\leq m+n.$$

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

de Montessus de Ballore Theorem and its Inverse

Theorem (de Montessus de Ballore³)

Let F(z) be a meromorphic function in $|z| \le R$ with N poles contained in 0 < |z| < R. Then $[m/N]_F(z)$ converge to F(z) in $|z| \le R$ in the spherical metric as $m \to \infty$.

³Sur les fractions continues algébriques, 1902.

⁴Poles of rows of the Padé table and meromorphic continuation of functions, 1982

⁵On poles of the *m*-th row of a Padé table, 1984

⁶On an inverse problem for the *m*-th row of a Padé table, 1985

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

de Montessus de Ballore Theorem and its Inverse

Theorem (de Montessus de Ballore³)

Let F(z) be a meromorphic function in $|z| \le R$ with N poles contained in 0 < |z| < R. Then $[m/N]_F(z)$ converge to F(z) in $|z| \le R$ in the spherical metric as $m \to \infty$.

Theorem (Gonchar⁴ and Suetin^{5,6})

Let F(z) be a holomorphic function at the origin. If the poles of Padé approximants $[m/N]_F(z)$ converge to the points z_1, \ldots, z_N as $m \to \infty$, then F(z) can be meromorphically continued to $|z| < R_N := \max |z_k|$ and all the points z_k are singularities of F(z) (polar if $|z_k| < R_N$).

³Sur les fractions continues algébriques, 1902.

⁴Poles of rows of the Padé table and meromorphic continuation of functions, 1982

⁵On poles of the *m*-th row of a Padé table, 1984

⁶On an inverse problem for the *m*-th row of a Padé table, 1985

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

Theorem (Lubinsky and Saff⁷)

They constructed a one-parameter family of functions F_q , holomorphic in $\{|z| < 1\}$ with the unit circle being the boundary of analyticity, such that the Padé approximants $[m/N]_{F_q}(z)$, $N \ge 1$, had poles clustering on $\{|z| = R_q < 1\}$ as $m \to \infty$.

 ⁷Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials, 1987.
 ⁸Convergence of Padé approximants in the general case, 1971.

Weak Convergence & Extremal Domain

Theorem (Lubinsky and Saff⁷)

They constructed a one-parameter family of functions F_q , holomorphic in $\{|z| < 1\}$ with the unit circle being the boundary of analyticity, such that the Padé approximants $[m/N]_{F_q}(z)$, $N \ge 1$, had poles clustering on $\{|z| = R_q < 1\}$ as $m \to \infty$.

Theorem (Zinn-Justin⁸)

Let F(z) be a meromorphic function in $|z| \le R$ with *n* poles contained in $0 < |z| \le R$. Then $[m/N]_F(z)$ converge to F(z) in measure in |z| < R for any $N \ge n$ as $m \to \infty$.

⁷Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials, 1987.

⁸Convergence of Padé approximants in the general case, 1971.

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Convergence & Algebraic S-contours
	0000000	
Radá Approvimente et Infinity		

Let f be a function holomorphic and vanishing at infinity:

$$f(z) = \frac{f_1}{z} + \frac{f_2}{z^2} + \dots + \frac{f_n}{z^n} + \dots$$

Further, let p_n, q_n be a pair of polynomials of degree at most n solving the linear system

$$(q_n f - p_n)(z) = \mathcal{O}(z^{-n-1}) \text{ as } z \to \infty.$$

Such a pair always exists but might not be unique. However, the rational function $[n/n]_f := p_n/q_n$ is unique and is called the *diagonal* Padé approximant to f of order n.

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Logarithmic Capacity

For any probability Borel measure on \mathbb{C} , say ν , set

$$I[v] := \int \log \frac{1}{|z-u|} \mathrm{d}v(z) \mathrm{d}v(u)$$

to be *logarithmic energy*. For any compact set K the *logarithmic capacity* of K is defined by

$$\operatorname{cp}(K) := \exp\left\{-\inf_{\operatorname{supp}(\nu)\subseteq K} I[\nu]\right\}.$$

It is known that either cp(K) = 0, i.e., K is *polar*, or there exists the unique measure ω_K , the *logarithmic equilibrium distribution* on K, that realizes the infimum. That is,

$$\operatorname{cp}(K) = \exp\left\{-I[\omega_K]\right\}.$$

In particular, if *D*, the unbounded component of the complement of *K*, is simply connected and Φ is the conformal map of *D* onto $\{|z| > 1\}$ such that $\Phi(\infty) = \infty$ and $\Phi'(\infty) > 0$, then

$$\Phi(z) = \frac{z}{\operatorname{cp}(K)} + \operatorname{terms}$$
 analytic at infinity.

For $K_r := \{|z| = r\}$, it holds that $\Phi(z) = z/r$ and therefore $cp(K_r) = r$.

It is said that a property holds *quasi everywhere* (q.e.) if it holds everywhere except on a polar set.

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Quasi Everywhere Single-Valued Functions

Theorem (Nuttall⁹ and Pommerenke¹⁰)

Let f be meromorphic function in the complement of a compact polar set F. Then for any $E \subset \mathbb{C} \setminus F$ and $\varepsilon > 0$, it holds that

$$\lim_{n\to\infty} \operatorname{cp}\left\{z\in E: |(f-[n/n]_f)(z)|^{1/2n}>\varepsilon\right\}=0.$$

In other words, Padé approximants $[n/n]_f$ converge to f in capacity and the convergence is faster than geometric.

In the case of Pólya frequency series¹¹ and entire functions of very slow and smooth growth¹² the convergence is, in fact, uniform.

⁹The convergence of Padé approximants of meromorphic functions, 1970

¹⁰Padé approximants and convergence in capacity, 1973

 $^{^{11}}$ Arms and Edrei. The Padé tables and continued fractions generated by totally positive sequences, 1970.

¹²Lubinsky. Padé tables of entire functions of very slow and smooth growth, II, 1988.

Weak Convergence & Extremal Domains

Functions Singular on Non-Polar Sets

Theorem (Rakhmanov¹³)

Let *D* be an unbounded domain such that $cp(\partial D) > 0$. Then there exists a function *f* holomorphic in *D* such that any $z \in D \setminus \{\infty\}$ has a neighborhood in which $[n/n]_f \rightrightarrows \infty$ for $n \in \mathbb{N}_z \subset \mathbb{N}$.

 $^{^{13}}$ On the convergence of Padé approximants in classes of holomorphic functions, 1980

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Multi-Valued Functions

Each of the three contours is a valid branch cut for this function.

Multi-Valued Functions

Weak Convergence & Extremal Domains

Theorem (Stahl^{14,15})

Let F(z) be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

(i) there exists the unique maximal domain D, such that $[n/n]_F(z)$ converge in capacity to F(z) in D as $n \to \infty$;

 $^{^{14}\}mathrm{Extremal}$ domains associated with an analytic function. I, II, 1985.

¹⁵Structure of extremal domains associated with an analytic function, 1985.

Multi-Valued Functions

Theorem (Stahl^{14,15})

Let F(z) be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

- (i) there exists the unique maximal domain D, such that $[n/n]_F(z)$ converge in capacity to F(z) in D as $n \to \infty$;
- (ii) ∆ := C \ D is characterized as the set of the smallest logarithmic capacity among all compact sets that make F(z) single-valued in their complement;

¹⁴Extremal domains associated with an analytic function. I, II, 1985.

¹⁵Structure of extremal domains associated with an analytic function, 1985.

Weak Convergence & Extremal Domains

Multi-Valued Functions

Theorem (Stahl^{14,15})

Let F(z) be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

- (i) there exists the unique maximal domain D, such that $[n/n]_F(z)$ converge in capacity to F(z) in D as $n \to \infty$;
- (ii) ∆ := C \ D is characterized as the set of the smallest logarithmic capacity among all compact sets that make F(z) single-valued in their complement;

(iii) it holds that $\Delta = E_0 \cup E_1 \cup \bigcup \Delta_j$, where $E_0 \subseteq E$, E_1 is finite, and Δ_j are open analytic arcs connecting the points in $E_0 \cup E_1$.

¹⁴Extremal domains associated with an analytic function. I, II, 1985.

¹⁵Structure of extremal domains associated with an analytic function, 1985.

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Algebraic Functions

In particular, if F(z) is an algebraic function, then

$$\Delta = \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \cup \bigcup \Delta_j,$$

where a_j are some of the branch points, b_j are not necessarily distinct, and the arcs Δ_j are the negative critical trajectories of the rational quadratic differential

$$\frac{(z-b_1)\cdots(z-b_{p-2})}{(z-a_1)\cdots(z-a_p)}(\mathrm{d} z)^2.$$

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Example

The following examples are due to Herbert Stahl¹⁶. Take

$$f(z) = \sqrt{\sqrt{\prod_{j=1}^{4} \left(1 - rac{z_j}{z}
ight)} - c}, \quad f(z) \sim rac{1}{z} \quad ext{as} \quad z o \infty,$$

 $z_j = e^{i\phi_j}, \ \phi_j \in \left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\right\}. \text{ Then for } c = \sqrt{.70} \text{ and } c = \sqrt{.74}$

 $^{^{16}\}ensuremath{\mathsf{Sets}}$ of minimal capacity and extremal domains, manuscript, 2006

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

Orthogonality Relations

It follows from the Cauchy theorem that

$$0 = \int_{\Gamma} z^{k} (q_{n}f - p_{n})(z) dz = \int_{\Gamma} z^{k} (q_{n}f)(z) dz, \quad k \in \{0, \dots, n-1\},$$

if f is holomorphic in the exterior domain of a Jordan curve Γ .

Weak Convergence & Extremal Domain: 00000000 Uniform Convergence & Algebraic S-contours

Orthogonality Relations

It follows from the Cauchy theorem that

$$0=\int_{\Gamma}z^{k}(q_{n}f-p_{n})(z)\mathrm{d}z=\int_{\Gamma}z^{k}(q_{n}f)(z)\mathrm{d}z,\quad k\in\{0,\ldots,n-1\},$$

if f is holomorphic in the exterior domain of a Jordan curve Γ . Hence, if

$$f(z) = \int \frac{\mathrm{d}\mu(x)}{x-z}$$

is a Markov function (μ is a positive measure compactly supported on \mathbb{R}), then

$$x^{k}q_{n}(x)d\mu(x) = 0, \quad k \in \{0, \dots, n-1\}.$$

Weak Convergence & Extremal Domain: 00000000 Uniform Convergence & Algebraic S-contours

Bernstein-Szegő Theorem

Theorem (Bernstein¹⁷ and Szegő¹⁸)

If p(x) is a positive polynomial on [-1,1] and $d\mu(x) = \frac{dx}{\pi p(x)\sqrt{1-x^2}}$, then

$$\left(f_{p}-[n/n]_{f_{p}}\right)(z)=\frac{2}{\sqrt{z^{2}-1}}\frac{\Psi_{n}^{(1)}(z)}{\left(\Psi_{n}^{(0)}+p\Psi_{n}^{(1)}\right)(z)}$$

where S_p is the unique holomorphic and non-vanishing function in $\overline{\mathbb{C}} \setminus [-1,1]$ such that $|S_p^{\pm}|^2 = p$ on [-1,1] and

$$\begin{cases} \Psi_n^{(0)}(z) &:= (z + \sqrt{z^2 - 1})^n S_p(z) \\ \Psi_n^{(1)}(z) &:= (z - \sqrt{z^2 - 1})^n / S_p(z) \end{cases}, \quad z \in \overline{\mathbb{C}} \setminus [-1, 1]$$

¹⁷Selected papers, volume 1, 1952

¹⁸Orthogonal Polynomials, volume 23 of Colloquium Publications, 1999

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Convergence & Algebraic S-contours
Bernstein-Szegő Theorem		

Notice that

- (i) f_p is an algebraic function with two branch points ±1 and the segment [-1,1] is the minimal capacity contour for f_p;
- (ii) the function $\Psi_n^{(0)}$ has a pole of order *n* at infinity, the function $\Psi_n^{(1)}$ has a zero of order *n* there, and $(\Psi_n^{(0)})^{\pm} = p(\Psi_n^{(1)})^{\mp}$ on [-1,1];
- (iii) the Padé approximants $[n/n]_{f_p}$ converge to f_p locally uniformly in $\overline{\mathbb{C}} \setminus [-1,1]$.

Strategy

Take an arbitrary algebraic function together with its minimal capacity contour. Find analogs of $\Psi_n^{(k)}$.

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Chebyshëv-type Weight

Weak Convergence & Extremal Domains

Uniform Convergence & Algebraic S-contours

Chebyshëv-type Weight

$$w_{\Delta}^{2}(z) := \prod_{e \in E_{\Delta}} (z - e),$$

where $E_{\Delta} \subseteq \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\}$ is the subset of points with odd bifurcation index, and the function is normalized so

$$z^{-g-1}w_{\Delta}(z) \rightarrow 1$$
 as $z \rightarrow \infty$.

Bernstein-Szegő Theorem

Theorem (Nuttall-Singh¹⁹ and unknowingly Y)

Let Δ be the minimal capacity contour for some algebraic function *F*. Further, let *p* be a non-vanishing polynomial on Δ and

$$f_{\rho}(z) := \frac{1}{\pi i} \int_{\Delta} \frac{1}{x-z} \frac{\mathrm{d}x}{\rho(x)w_{\Delta}^+(x)}$$

Then

$$f_{p} - [n/n]_{f_{p}} = \frac{2}{w_{\Delta}} \frac{\Psi_{n}^{(1)}}{\Psi_{n}^{(0)} + p\Psi_{n}^{(1)}}.$$

 $^{^{19}}$ Orthogonal polynomials and Padé approximants associated with a system of arcs, 1977

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Convergence & Algebraic S-contours
		000000000
Riemann Surface		

Denote by \mathfrak{R} be the Riemann surface of w_{Δ} . The genus of \mathfrak{R} is g.

Further, let Δ be the chain on \mathfrak{R} that lies above Δ .

Weak Convergence & Extremal Domain

Uniform Convergence & Algebraic S-contours

Jacobi Inversion Problem

(i) Given {P₁,...,P_k} and {Z₁,...,Z_{k-g}} for some k > g, there exist {Z_{k-g+1},...,Z_g} such that the divisor D = ∑_{j=1}^k Z_j - ∑_{j=1}^k P_j is principal. The collection {Z_{k-g+1},...,Z_g} is either unique or special.

Weak Convergence & Extremal Domain: 00000000

Jacobi Inversion Problem

- (i) Given {P₁,...,P_k} and {Z₁,...,Z_{k-g}} for some k > g, there exist {Z_{k-g+1},...,Z_g} such that the divisor D = ∑_{j=1}^k Z_j ∑_{j=1}^k P_j is principal. The collection {Z_{k-g+1},...,Z_g} is either unique or special.
- (ii) A collection of points {P₁,...,P_l}, l≤g, from ℜ is called *special* if there exists a rational function on ℜ with poles only among the points P_j counting multiplicities. On ℜ as described, it happens iff it contains at least one pair of involution-symmetric points.

Weak Convergence & Extremal Domain: 00000000

Jacobi Inversion Problem

- (i) Given {P₁,...,P_k} and {Z₁,...,Z_{k-g}} for some k > g, there exist {Z_{k-g+1},...,Z_g} such that the divisor D = ∑_{j=1}^k Z_j ∑_{j=1}^k P_j is principal. The collection {Z_{k-g+1},...,Z_g} is either unique or special.
- (ii) A collection of points {P₁,..., P_l}, l ≤ g, from ℜ is called *special* if there exists a rational function on ℜ with poles only among the points P_j counting multiplicities. On ℜ as described, it happens iff it contains at least one pair of involution-symmetric points.
- (iii) The problem of finding $\{Z_{k-g+1}, ..., Z_g\}$, given $\{P_1, ..., P_k\}$ and $\{Z_1, ..., Z_{k-g}\}$, is a particular case of the more general Jacobi Inversion Problem. Solution of JIP is either special or unique.

Boundary Value Problem

Proposition

Denote by \mathcal{D}_n the unique solutions of a special JIP that depends on the periods of Green and holomorphic differentials on \mathfrak{R} , the weight p, and the index n whenever the solution is unique. Denote further by \mathbb{N}_{JIP} the subsequence of indices for which JIP is uniquely solvable and does not contain $\infty^{(0)}$. It holds that \mathbb{N}_{IIP} has gaps of size at most g.

Boundary Value Problem

Proposition

Denote by \mathcal{D}_n the unique solutions of a special JIP that depends on the periods of Green and holomorphic differentials on \mathfrak{R} , the weight p, and the index n whenever the solution is unique. Denote further by \mathbb{N}_{JIP} the subsequence of indices for which JIP is uniquely solvable and does not contain $\infty^{(0)}$. It holds that \mathbb{N}_{IIP} has gaps of size at most g.

Let $n \in \mathbb{N}_{JIP}$. Then there exists unique (up to normalization) function Ψ_n , sectionally meromorphic in $\mathfrak{R} \setminus \Delta$, whose zeros and poles are described by the divisor $(n-g)\infty^{(1)} + \mathcal{D}_n - n\infty^{(0)}$, and which has continuous traces on $\Delta \setminus E_{\Delta}$ that satisfy $\Psi_n^+ = p\Psi_n^-$. For $n \notin \mathbb{N}_{JIP}$, set $\Psi_n := \Psi_{\tilde{n}}$, where \tilde{n} is the largest integer in \mathbb{N}_{JIP} smaller than n.

Definitions & Classical Results	Weak Convergence & Extr
Nearly Uniform Convergence	

Recall that

$$f_{p} - [n/n]_{f_{p}} = \frac{2}{w_{\Delta}} \frac{\Psi_{n}^{(1)}}{\Psi_{n}^{(0)} + p\Psi_{n}^{(1)}},$$

where $\Psi_n^{(k)} := \Psi_{n|D^{(k)}}$.

Definitions & Classical Results	Weak Convergence & Extremal Domains	Uniform Converg
Nearly Uniform Convergence	00000000	000000000000000000000000000000000000000

Recall that

$$f_p - [n/n]_{f_p} = \frac{2}{w_{\Delta}} \frac{\Psi_n^{(1)}}{\Psi_n^{(0)} + p \Psi_n^{(1)}},$$

ence & Algebraic S-contours

where
$$\Psi_n^{(k)} := \Psi_{n|D^{(k)}}$$
. Write $\mathscr{D}_n = \sum_{j=1}^g Z_{nj}$. Therefore,

(i) if Z_{nj} ∈ D⁽¹⁾, then [n/n]_{f_p} overinterpolates f_p at the projection of Z_{nj};
(ii) if Z_{nj} ∈ D⁽⁰⁾, then [n/n]_{f_p} has a pole next to the projection of Z_{nj}.

Generically, the collection $\{\{Z_{nj}\}_{j=1}^{g}\}_{n}$ is dense in \mathfrak{R} .

Weak Convergence & Extremal Domain

Nuttall's Theorem

Almost a Theorem

Let Δ be the minimal capacity contour for some algebraic function F. Further, let ρ be a non-vanishing Hölder continuous function on Δ and

$$f_{\rho}(z) := rac{1}{\pi \mathrm{i}} \int_{\Delta} rac{1}{x-z} rac{\mathrm{d}x}{\rho(x)w_{\Delta}^+(x)}.$$

Then for $n \in \mathbb{N}_{JIP}$ it holds that

$$f_{\rho} - [n/n]_{f_{\rho}} = \frac{2}{w_{\Delta}} \frac{\Psi_n^{(1)} \left[1 + E_n^{(1)}\right]}{\Psi_n^{(0)} \left[1 + E_n^{(0)}\right] + p_n \Psi_n^{(1)} \left[1 + E_n^{(1)}\right]},$$

where p_n , $\deg(p_n) \le n$, is the polynomial of best uniform approximation to ρ on Δ , E_n is sectionally meromorphic on $\mathfrak{R} \setminus \Delta$ with at most gpoles only among the elements of \mathcal{D}_n , and $||L_n E_n^{\pm}||_{2,\Delta} \ll ||\rho - p_n||_{\Delta}$. The previous theorem has been verified when

- (i) $\Delta = [-1, 1]$ by Nuttall²⁰;
- (ii) Δ consists of disjoint arcs by Suetin²¹;
- (iii) \triangle consists of 3 arc with a common endpoint by Baratchart-Y²²;
- (iv) Δ is any algebraic S-contour tentatively by Y.

²⁰Padé polynomial asymptotic from a singular integral equation, 1990

²¹Uniform convergence of Padé diagonal approximants for hyperelliptic functions, 2000

²²Asymptotics of Padé approximants to a certain class of elliptic-type functions, 2013

Weak Convergence & Extremal Domains

Algebraic-Like Functions

Theorem (Aptekarev- Y^{24})

Let

- (i) Δ be a minimal capacity contour such that no more than three arcs Δ_i have a common endpoint;
- (ii) the weight ρ be such that $\rho_{|\Delta_j}$ is a Jacobi weight modified by a non-vanishing holomorphic function;
- (iii) $\mathbb{N}_{JIP}^* \subset \mathbb{N}_{JIP}$ be such that the elements of \mathscr{D}_{n-1} and \mathscr{D}_n are uniformly bounded away from $\infty^{(1)}$ and $\infty^{(0)}$, respectively.

Then for $n \in \mathbb{N}^*_{JIP}$ it holds that

$$f_{\rho} - [n/n]_{f_{\rho}} = \left[1 + \mathcal{O}(1/n)\right] \frac{2}{w_{\Delta}} \frac{\Psi_n^{(1)}}{\Psi_n^{(0)}}$$

in $D \setminus \bigcup U_{\epsilon}(Z_{nj})$, where $U_{\epsilon}(Z)$ is the ϵ -neighborhood of the projection of Z in and $\mathcal{O}(1/n)$ is uniform for each fixed $\epsilon > 0$.

 $^{^{24}}$ Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials.