Nuttall’s Theorem for Padé Approximants

Maxim L. Yattselev
University of Oregon

Department of Mathematical Sciences, IUPUI
January 31st, 2013
In 1844 Liouville1 constructed the first example of a transcendental number by using continued fractions.

Studying similarities between simultaneous diophantine approximation of real numbers and rational approximation of holomorphic functions, Hermite2 proved in 1873 that e is transcendental.

1Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques, 1844

2Sur la fonction exponentielle. C.R. Acad. Sci. Paris, 1873
Hermite’s proof is based on the following criterion.

Lemma

\(\alpha \) is transcendental if for any \(m \in \mathbb{N} \) and any \(\varepsilon > 0 \) there exist \(m + 1 \) linearly independent vectors of integers \((q_j, p_{j1}, \ldots, p_{jm})\), \(j = 0, m \), such that \(|q_j \alpha^k - p_{jk}| \leq \varepsilon, \ k = 1, m \).

If \(\alpha \) is algebraic, then for some \(m \in \mathbb{N} \) there exist \(a_k \in \mathbb{Z}, \ k = 0, m \), such that \(\sum_{k=0}^{m} a_k \alpha^k = 0 \). Hence,

\[
\sum_{k=1}^{m} a_k (q_j \alpha^k - p_{jk}) + a_0 q_j + \sum_{k=1}^{m} a_k p_{jk} = 0.
\]

Then for some \(0 \leq j_0 \leq m \), it holds that

\[
1 \leq \left| \sum_{k=1}^{m} a_k (q_{j_0} \alpha^k - p_{j_0 k}) \right| \leq \varepsilon \sum_{k=1}^{m} |a_k|.
\]
Let n_0, n_1, \ldots, n_m be non-negative integers. Set $N := n_0 + \cdots + n_m$ and consider the following system:

$$Q(z)e^{kz} - P_k(z) = \mathcal{O}(z^{N+1}),$$

where $\deg(Q) \leq N - n_0$ and $\deg(P_k) \leq N - n_k$.

Hermite proceeded to explicitly construct these polynomials, which as it turned out have integer coefficients. By evaluating these polynomials at 1 he succeeded in applying the above criterion.
Let \(F(z) = \sum_{k=0}^{\infty} f_k z^k \) be a function holomorphic at the origin. Consider the following system:

\[
Q(z)F(z) - P(z) = \mathcal{O}(z^{m+n+1}),
\]

where \(\text{deg}(Q) \leq n \) and \(\text{deg}(P) \leq m \). This system always has a solution. Indeed,

\[
Q(z)F(z) = \sum_{k=0}^{\infty} \left(\sum_{j+i=k, i \leq n} f_j q_i \right) z^k.
\]
Set $f_{-k} := 0$ for $k > 0$. Then

$$\begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_m \end{pmatrix} = \begin{pmatrix} f_0 & f_{-1} & \cdots & f_{-n} \\ f_1 & f_0 & \cdots & f_{1-n} \\ \vdots & \vdots & \ddots & \vdots \\ f_m & f_{m-1} & \cdots & f_{m-n} \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix}$$

and

$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} f_{m+1} & f_m & \cdots & f_{m+1-n} \\ f_{m+2} & f_{m+1} & \cdots & f_{m+2-n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m+n+1} & f_{m+n} & \cdots & f_{m+1} \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ \vdots \\ q_n \end{pmatrix}$$

The latter is a linear system of n equations with $n + 1$ unknowns. Such a system always has a solution. A solution may not be unique, but the ratio $[m/n]_F := P/Q$ always is.
Indeed, let $Q_1(z), P_1(z)$ and $Q_2(z), P_2(z)$ be solutions. Then

\[
Q_2(z)(Q_1(z)F(z) - P_1(z)) = O(z^{m+n+1})
\]

and

\[
Q_1(z)(Q_2(z)F(z) - P_2(z)) = O(z^{m+n+1}).
\]

Therefore,

\[
Q_2(z)P_1(z) - Q_1(z)P_2(z) = O(z^{m+n+1}).
\]

However,

\[
\deg (Q_2P_1 - Q_1P_2) \leq m + n.
\]
Theorem (de Montessus de Ballore3)

Let $F(z)$ be a meromorphic function in $|z| \leq R$ with N poles contained in $0 < |z| < R$. Then $[m/N]F(z)$ converge to $F(z)$ in $|z| \leq R$ in the spherical metric as $m \to \infty$.

3Sur les fractions continues algébriques, 1902.
4Poles of rows of the Padé table and meromorphic continuation of functions, 1982
5On poles of the m-th row of a Padé table, 1984
6On an inverse problem for the m-th row of a Padé table, 1985
Theorem (de Montessus de Ballore3)

Let $F(z)$ be a meromorphic function in $|z| \leq R$ with N poles contained in $0 < |z| < R$. Then $[m/N]F(z)$ converge to $F(z)$ in $|z| \leq R$ in the spherical metric as $m \to \infty$.

Theorem (Gonchar4 and Suetin5,6)

Let $F(z)$ be a holomorphic function at the origin. If the poles of Padé approximants $[m/N]F(z)$ converge to the points z_1, \ldots, z_N as $m \to \infty$, then $F(z)$ can be meromorphically continued to $|z| < R_N := \max |z_k|$ and all the points z_k are singularities of $F(z)$ (polar if $|z_k| < R_N$).

3 Sur les fractions continues algébriques, 1902.
4 Poles of rows of the Padé table and meromorphic continuation of functions, 1982
5 On poles of the m-th row of a Padé table, 1984
6 On an inverse problem for the m-th row of a Padé table, 1985
Theorem (Lubinsky and Saff7)

They constructed a one-parameter family of functions F_q, holomorphic in $\{|z| < 1\}$ with the \textit{unit circle being the boundary of analyticity}, such that the Padé approximants $[m/N]_{F_q}(z), \ N \geq 1$, had poles clustering on $\{|z| = R_q < 1\}$ as $m \to \infty$.

7 Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials, 1987.

8 Convergence of Padé approximants in the general case, 1971.
Theorem (Lubinsky and Saff7)

They constructed a one-parameter family of functions F_q, holomorphic in $\{|z| < 1\}$ with the \textbf{unit circle being the boundary of analyticity}, such that the Padé approximants $[m/N]_{F_q}(z)$, $N \geq 1$, had poles clustering on $\{|z| = R_q < 1\}$ as $m \to \infty$.

Theorem (Zinn-Justin8)

Let $F(z)$ be a meromorphic function in $|z| \leq R$ with n poles contained in $0 < |z| \leq R$. Then $[m/N]_{F}(z)$ converge to $F(z)$ in measure in $|z| < R$ for any $N \geq n$ as $m \to \infty$.

7 Convergence of Padé approximants of partial theta function and Rogers-Szegő polynomials, 1987.

8 Convergence of Padé approximants in the general case, 1971.
Let f be a function holomorphic and vanishing at infinity:

$$f(z) = \frac{f_1}{z} + \frac{f_2}{z^2} + \cdots + \frac{f_n}{z^n} + \cdots.$$

Further, let p_n, q_n be a pair of polynomials of degree at most n solving the linear system

$$(q_n f - p_n)(z) = O\left(z^{-n-1}\right) \quad \text{as} \quad z \to \infty.$$

Such a pair always exists but might not be unique. However, the rational function $[n/n]_f := p_n / q_n$ is unique and is called the diagonal Padé approximant to f of order n.

For any probability Borel measure on \mathbb{C}, say ν, set

$$I[\nu] := \int \log \frac{1}{|z-u|} \, d\nu(z) d\nu(u)$$

to be \textit{logarithmic energy}. For any compact set K the \textit{logarithmic capacity} of K is defined by

$$cp(K) := \exp \left\{ - \inf_{\text{supp}(\nu) \subseteq K} I[\nu] \right\}.$$

It is known that either $cp(K) = 0$, i.e., K is polar, or there exists the unique measure ω_K, the \textit{logarithmic equilibrium distribution} on K, that realizes the infimum. That is,

$$cp(K) = \exp \left\{ - I[\omega_K] \right\}.$$
In particular, if D, the unbounded component of the complement of K, is simply connected and Φ is the conformal map of D onto $\{|z| > 1\}$ such that $\Phi(\infty) = \infty$ and $\Phi'(\infty) > 0$, then

$$\Phi(z) = \frac{z}{\text{cp}(K)} + \text{terms analytic at infinity}.$$

For $K_r := \{|z| = r\}$, it holds that $\Phi(z) = z/r$ and therefore $\text{cp}(K_r) = r$.

It is said that a property holds quasi everywhere (q.e.) if it holds everywhere except on a polar set.
Theorem (Nuttall\(^9\) and Pommerenke\(^{10}\))

Let \(f \) be meromorphic function in the complement of a compact polar set \(F \). Then for any \(E \subset \mathbb{C} \setminus F \) and \(\varepsilon > 0 \), it holds that

\[
\lim_{n \to \infty} \text{cp} \left\{ z \in E : |(f - [n/n]_f)(z)|^{1/2n} > \varepsilon \right\} = 0.
\]

In other words, Padé approximants \([n/n]_f\) converge to \(f \) in capacity and the convergence is faster than geometric.

In the case of Pólya frequency series\(^{11}\) and entire functions of very slow and smooth growth\(^{12}\) the convergence is, in fact, uniform.

\(^9\) The convergence of Padé approximants of meromorphic functions, 1970

\(^{10}\) Padé approximants and convergence in capacity, 1973

\(^{11}\) Arms and Edrei. The Padé tables and continued fractions generated by totally positive sequences, 1970.

Theorem (Rakhmanov13)

Let D be an unbounded domain such that $cp(\partial D) > 0$. Then there exists a function f holomorphic in D such that any $z \in D \setminus \{\infty\}$ has a neighborhood in which $[n/n]_f \Rightarrow \infty$ for $n \in \mathbb{N}_z \subset \mathbb{N}$.

13On the convergence of Padé approximants in classes of holomorphic functions, 1980
Each of the three contours is a valid branch cut for this function.
Theorem (Stahl14,15)

Let $F(z)$ be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

(i) there exists the unique maximal domain D, such that $[n/n]_{F(z)}$ converge in capacity to $F(z)$ in D as $n \to \infty$;

15 Structure of extremal domains associated with an analytic function, 1985.
Theorem (Stahl14,15)

Let $F(z)$ be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

(i) there exists the unique maximal domain D, such that $[n/n] F(z)$ converge in capacity to $F(z)$ in D as $n \to \infty$;

(ii) $\Delta := \overline{\mathbb{C}} \setminus D$ is characterized as the set of the smallest logarithmic capacity among all compact sets that make $F(z)$ single-valued in their complement;

15 Structure of extremal domains associated with an analytic function, 1985.
Theorem (Stahl14,15)

Let $F(z)$ be holomorphic at infinity, multi-valued, and with all its singularities contained in a compact polar set E. Then

(i) there exists the unique maximal domain D, such that $[n/n] F(z)$ converge in capacity to $F(z)$ in D as $n \to \infty$;

(ii) $\Delta := \overline{\mathbb{C}} \setminus D$ is characterized as the set of the smallest logarithmic capacity among all compact sets that make $F(z)$ single-valued in their complement;

(iii) it holds that $\Delta = E_0 \cup E_1 \cup \bigcup \Delta_j$, where $E_0 \subseteq E$, E_1 is finite, and Δ_j are open analytic arcs connecting the points in $E_0 \cup E_1$.

15 Structure of extremal domains associated with an analytic function, 1985.
In particular, if $F(z)$ is an algebraic function, then

$$\Delta = \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \cup \bigcup \Delta_j,$$

where a_j are some of the branch points, b_j are not necessarily distinct, and the arcs Δ_j are the negative critical trajectories of the rational quadratic differential

$$\frac{(z - b_1) \cdots (z - b_{p-2})}{(z - a_1) \cdots (z - a_p)} (dz)^2.$$
The following examples are due to Herbert Stahl16. Take

\[
f(z) = \sqrt{\left(\prod_{j=1}^{4} \left(1 - \frac{z_j}{z} \right) \right) - c}, \quad f(z) \sim \frac{1}{z} \quad \text{as} \quad z \to \infty,
\]

\[z_j = e^{i\phi_j}, \quad \phi_j \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}.
\]

Then for \(c = \sqrt{.70} \) and \(c = \sqrt{.74} \).

16 Sets of minimal capacity and extremal domains, manuscript, 2006
It follows from the Cauchy theorem that

\[0 = \int_{\Gamma} z^k (q_n f - p_n)(z) \, dz = \int_{\Gamma} z^k (q_n f)(z) \, dz, \quad k \in \{0, \ldots, n-1\}, \]

if \(f \) is holomorphic in the exterior domain of a Jordan curve \(\Gamma \).
It follows from the Cauchy theorem that

\[0 = \int_{\Gamma} z^k (q_n f - p_n)(z) \, dz = \int_{\Gamma} z^k (q_n f)(z) \, dz, \quad k \in \{0, \ldots, n-1\}, \]

if \(f \) is holomorphic in the exterior domain of a Jordan curve \(\Gamma \). Hence, if

\[f(z) = \int \frac{d\mu(x)}{x - z} \]

is a Markov function (\(\mu \) is a positive measure compactly supported on \(\mathbb{R} \)), then

\[\int x^k q_n(x) d\mu(x) = 0, \quad k \in \{0, \ldots, n-1\}. \]
Theorem (Bernstein17 and Szeg\text{"o}18)

If $p(x)$ is a positive polynomial on $[-1, 1]$ and $d\mu(x) = \frac{dx}{\pi p(x) \sqrt{1-x^2}}$, then

$$
\left(f_p - \left[\frac{n}{n} \right]_{f_p} \right)(z) = \frac{2}{\sqrt{z^2 - 1}} \frac{\Psi_n^{(1)}(z)}{\left(\Psi_n^{(0)} + p \Psi_n^{(1)} \right)(z)},
$$

where S_p is the unique holomorphic and non-vanishing function in $\overline{\mathbb{C}} \setminus [-1, 1]$ such that $|S_p^\pm|^2 = p$ on $[-1, 1]$ and

$$
\begin{align*}
\Psi_n^{(0)}(z) &:= (z + \sqrt{z^2 - 1})^n S_p(z), \\
\Psi_n^{(1)}(z) &:= (z - \sqrt{z^2 - 1})^n / S_p(z),
\end{align*}
$$

\textit{17 Selected papers, volume 1, 1952}
\textit{18 Orthogonal Polynomials, volume 23 of Colloquium Publications, 1999}
Notice that

(i) f_p is an algebraic function with two branch points ± 1 and the segment $[-1, 1]$ is the minimal capacity contour for f_p;
(ii) the function $\psi_n^{(0)}$ has a pole of order n at infinity, the function $\psi_n^{(1)}$ has a zero of order n there, and $(\psi_n^{(0)})^\pm = p(\psi_n^{(1)})^\mp$ on $[-1, 1]$;
(iii) the Padé approximants $[n/n]_{f_p}$ converge to f_p locally uniformly in $\mathbb{C} \setminus [-1, 1]$.

Strategy

Take an arbitrary algebraic function together with its minimal capacity contour. Find analogs of $\psi_n^{(k)}$.
Definitions & Classical Results
Weak Convergence & Extremal Domains
Uniform Convergence & Algebraic S-contours

Chebyshëv-type Weight

\[w_{\Delta}(z) := \prod_{e \in E} \Delta(z - e), \]
where \(E_{\Delta} \subseteq \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \) is the subset of points with odd bifurcation index, and the function is normalized so \(z - g^{-1} w_{\Delta}(z) \to 1 \) as \(z \to \infty \).
Chebyšëv-type Weight

\[w^2_\Delta(z) := \prod_{e \in E_\Delta} (z - e), \]

where \(E_\Delta \subseteq \{a_1, \ldots, a_p\} \cup \{b_1, \ldots, b_{p-2}\} \) is the subset of points with odd bifurcation index, and the function is normalized so

\[z^{-g-1}w_\Delta(z) \to 1 \quad \text{as} \quad z \to \infty. \]
Theorem (Nuttall-Singh19 and unknowingly Y)

Let Δ be the minimal capacity contour for some algebraic function F. Further, let p be a non-vanishing polynomial on Δ and

$$f_p(z) := \frac{1}{\pi i} \int_{\Delta} \frac{1}{x - z} \frac{\text{d}x}{p(x)w_\Delta^+(x)}.$$

Then

$$f_p - \left[\frac{n}{n} \right] f_p = \frac{2}{w_\Delta} \frac{\psi_1^{(1)}}{\psi_0^{(0)} + p \psi_1^{(1)}}.$$

19Orthogonal polynomials and Padé approximants associated with a system of arcs, 1977
Denote by \mathcal{R} be the Riemann surface of w_Δ. The genus of \mathcal{R} is g.

Further, let Δ be the chain on \mathcal{R} that lies above Δ.
(i) Given \(\{P_1, \ldots, P_k\} \) and \(\{Z_1, \ldots, Z_{k-g}\} \) for some \(k > g \), there exist \(\{Z_{k-g+1}, \ldots, Z_g\} \) such that the divisor \(\mathcal{D} = \sum_{j=1}^{k} Z_j - \sum_{j=1}^{k} P_j \) is principal. The collection \(\{Z_{k-g+1}, \ldots, Z_g\} \) is either unique or special.
(i) Given \(\{P_1, \ldots, P_k\} \) and \(\{Z_1, \ldots, Z_{k-g}\} \) for some \(k > g \), there exist \(\{Z_{k-g+1}, \ldots, Z_g\} \) such that the divisor \(D = \sum_{j=1}^{k} Z_j - \sum_{j=1}^{k} P_j \) is principal. The collection \(\{Z_{k-g+1}, \ldots, Z_g\} \) is either unique or special.

(ii) A collection of points \(\{P_1, \ldots, P_l\} \), \(l \leq g \), from \(\mathcal{R} \) is called special if there exists a rational function on \(\mathcal{R} \) with poles only among the points \(P_j \) counting multiplicities. On \(\mathcal{R} \) as described, it happens iff it contains at least one pair of involution-symmetric points.
(i) Given \(\{P_1, \ldots, P_k\} \) and \(\{Z_1, \ldots, Z_{k-g}\} \) for some \(k > g \), there exist \(\{Z_{k-g+1}, \ldots, Z_g\} \) such that the divisor \(\mathcal{D} = \sum_{j=1}^{k} Z_j - \sum_{j=1}^{k} P_j \) is principal. The collection \(\{Z_{k-g+1}, \ldots, Z_g\} \) is either unique or special.

(ii) A collection of points \(\{P_1, \ldots, P_l\}, l \leq g \), from \(\mathbb{R} \) is called special if there exists a rational function on \(\mathbb{R} \) with poles only among the points \(P_j \) counting multiplicities. On \(\mathbb{R} \) as described, it happens iff it contains at least one pair of involution-symmetric points.

(iii) The problem of finding \(\{Z_{k-g+1}, \ldots, Z_g\} \), given \(\{P_1, \ldots, P_k\} \) and \(\{Z_1, \ldots, Z_{k-g}\} \), is a particular case of the more general Jacobi Inversion Problem. Solution of JIP is either special or unique.
Proposition

Denote by \mathcal{D}_n the unique solutions of a special JIP that depends on the periods of Green and holomorphic differentials on \mathcal{R}, the weight p, and the index n whenever the solution is unique. Denote further by \mathbb{N}_{JIP} the subsequence of indices for which JIP is uniquely solvable and does not contain $\infty^{(0)}$. It holds that \mathbb{N}_{JIP} has gaps of size at most g.
Proposition

Denote by D_n the unique solutions of a special JIP that depends on the periods of Green and holomorphic differentials on \mathcal{H}, the weight p, and the index n whenever the solution is unique. Denote further by N_{JIP} the subsequence of indices for which JIP is uniquely solvable and does not contain $\infty^{(0)}$. It holds that N_{JIP} has gaps of size at most g.

Let $n \in N_{JIP}$. Then there exists unique (up to normalization) function ψ_n, sectionally meromorphic in $\mathcal{H} \setminus \Delta$, whose zeros and poles are described by the divisor $(n - g)\infty^{(1)} + D_n - n\infty^{(0)}$, and which has continuous traces on $\Delta \setminus E_{\Delta}$ that satisfy $\psi^+_n = p\psi^-_n$. For $n \notin N_{JIP}$, set $\psi_n := \psi_{\tilde{n}}$, where \tilde{n} is the largest integer in N_{JIP} smaller than n.
Recall that

\[f_p - \left[\frac{n}{n} \right] f_p = \frac{2}{\omega \Delta} \frac{\Psi_n^{(1)}}{\Psi_n^{(0)} + p \Psi_n^{(1)}}, \]

where \(\Psi_n^{(k)} := \Psi_n|_{D^{(k)}} \).
Recall that
\[
f_p - \left[\frac{n}{n} \right]_{f_p} = \frac{2}{w_\Delta} \frac{\Psi_n^{(1)}}{\Psi_n^{(0)} + p \Psi_n^{(1)}},
\]
where \(\Psi_n^{(k)} := \Psi_n|_{D^{(k)}} \). Write \(D_n = \sum_{j=1}^{g} Z_{nj} \). Therefore,

(i) if \(Z_{nj} \in D^{(1)} \), then \(\left[\frac{n}{n} \right]_{f_p} \) overinterpolates \(f_p \) at the projection of \(Z_{nj} \);

(ii) if \(Z_{nj} \in D^{(0)} \), then \(\left[\frac{n}{n} \right]_{f_p} \) has a pole next to the projection of \(Z_{nj} \).

Generically, the collection \(\left\{ \left\{ Z_{nj} \right\}_{j=1}^{g} \right\}_n \) is dense in \(\mathcal{M} \).
Almost a Theorem

Let Δ be the minimal capacity contour for some algebraic function F. Further, let ρ be a non-vanishing Hölder continuous function on Δ and

$$f_{\rho}(z) := \frac{1}{\pi i} \int_{\Delta} \frac{1}{x - z} \rho(x) w_{\Delta}^+(x).$$

Then for $n \in \mathbb{N}_{JIP}$ it holds that

$$f_{\rho} - \left[\frac{n}{n} \right] f_{\rho} = \frac{2}{\psi_n^{(0)} 1 + E_n^{(0)}} + p_n \psi_n^{(1)} \left[1 + E_n^{(1)} \right],$$

where p_n, $\deg(p_n) \leq n$, is the polynomial of best uniform approximation to ρ on Δ, E_n is sectionally meromorphic on $\mathcal{H} \setminus \Delta$ with at most g poles only among the elements of \mathcal{D}_n, and $\|L_n E_n^\pm\|_{2, \Delta} \ll \|\rho - p_n\|_{\Delta}$.
The previous theorem has been verified when

(i) $\Delta = [-1, 1]$ by Nuttall20;
(ii) Δ consists of disjoint arcs by Suetin21;
(iii) Δ consists of 3 arc with a common endpoint by Baratchart-Y22;
(iv) Δ is any algebraic S-contour tentatively by Y.

20 Padé polynomial asymptotic from a singular integral equation, 1990
21 Uniform convergence of Padé diagonal approximants for hyperelliptic functions, 2000
22 Asymptotics of Padé approximants to a certain class of elliptic-type functions, 2013
Theorem (Aptekarev-Y24)

Let

(i) Δ be a minimal capacity contour such that no more than three arcs Δ_j have a common endpoint;

(ii) the weight ρ be such that $\rho|_{\Delta_j}$ is a Jacobi weight modified by a non-vanishing holomorphic function;

(iii) $\mathbb{N}_{JIP}^* \subset \mathbb{N}_{JIP}$ be such that the elements of \mathcal{D}_{n-1} and \mathcal{D}_n are uniformly bounded away from $\infty^{(1)}$ and $\infty^{(0)}$, respectively.

Then for $n \in \mathbb{N}_{JIP}^*$ it holds that

$$f_\rho - \left[\frac{n}{n}\right] f_\rho = \left[1 + O(1/n)\right] \frac{2}{\mathcal{W}_\Delta} \frac{\Psi_n^{(1)}}{\psi_n^{(0)}}$$

in $\mathcal{D} \setminus \bigcup U_\epsilon(Z_{nj})$, where $U_\epsilon(Z)$ is the ϵ-neighborhood of the projection of Z in and $O(1/n)$ is uniform for each fixed $\epsilon > 0$.

24Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials.