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Multiple Orthogonal Polynomials

Let ~µ = (µ1, . . . , µd) be a vector of measures supported on the real line, each

having infinitely many points in its support and finite moments of all orders.

Let ~n = (n1, . . . , nd) be a multi-index of non-negative integers.

Multiple orthogonal polynomial P~n(x) (type II) is a polynomial of degree at

most |~n| = n1 + · · ·+ nd satisfying∫
xkP~n(x)dµi (x) = 0, k = 0, ni − 1.

The multi-index ~n is called normal if degP~n = |~n|. In this case we normalize

P~n(x) to be monic. The vector ~µ is called perfect if all the multi-indices are

normal.



Angelesco and Nikishin Systems

Theorem (Angelesco, 1919)

Let ∆1 < ∆2 < · · · < ∆d , where ∆i is the convex hull of the support of µi .

Then ~µ, called an Angelesco system, is perfect.

Theorem (López Lagomasino–Fidalgo Prieto, 2011)

Let σi be d auxiliary measures and Fi be the convex hulls of their supports.

Assume that Fi ∩ Fi+1 = ∅. Write

d〈σ, ν〉(x) := ν̂(x)dσ(x), ν̂(x) :=

∫
(z − y)−1dν(y).

Let 〈σj , . . . , σk〉 := 〈σj , 〈σj+1, . . . , σk〉〉. Put

µ1 := σ1

µ2 := 〈σ1, σ2〉

· · ·

µd := 〈σ1, . . . , σd〉.

Then ~µ, called a Nikishin system, is perfect.
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Lattice Recurrence Relations

Let {~ei}di=1 be the standard basis in Rd . If ~n and ~n + ~ej are normal, then

xP~n(x) = P~n+~ej (x) + b~n,jP~n(x) +
d∑

i=1

a~n,iP~n−~ei (x)

for some coefficients b~n,i , a~n,i . These coefficients satisfy consistency conditions

b~n+~ei ,j − b~n+~ej ,i = b~n,j − b~n,i ,

d∑
k=1

a~n+~ej ,k −
d∑

k=1

a~n+~ei ,k = b~n+~ej ,ib~n,j − b~n+~ei ,jb~n,i ,

a~n,i (b~n,j − b~n,i ) = a~n+~ej ,i (b~n−~ei ,j − b~n−~ei ,i ).

When d = 1, these relations simply become classical recurrence relations for

monic orthogonal polynomials

xPn(x ;µ) = Pn+1(x ;µ) + bn(µ)Pn(x ;µ) + a2
n(µ)Pn−1(x ;µ).



Lattice Recurrence Relations

Theorem (Filipuk–Haneczok–Van Assche, 2015)

If the recurrence coefficients {a~n,ib~n,i} satisfy

• consistency conditions,

• an~ei ,i > 0 and an~ei ,j = 0, i 6= j ,

• b~n,i 6= b~n,j for i 6= j ,

then there exists ~µ for which {a~n,ib~n,i} are the recurrence coefficients.

Conversely, {a~n,ib~n,i} can be constructively recovered from {bn(µi ), a
2
n(µi )} and

the initial conditions

bn~ei ,i = bn(µi ), an~ei ,i = a2
n(µi ), an~ei ,j = 0, j 6= i ,

provided b~n,i 6= b~n,j for i 6= j .

The condition b~n,i 6= b~n,j holds for multiple Hermite (e−x2−ci x), Laguerre

(xαj e−x , xαe−cj x), and Charlier (aki /k!) polynomials as well as for Angelesco

systems where b~n,i < b~n,j , i < j (Aptekarev–Denisov-Ya., 2020).
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Ratio Asymptotics

Theorem (Van Assche, 2016)

Let ~n = (bc1nc, . . . bcdnc) for some ~c ∈ (0, 1)d with |~c| = 1. Assume that

lim
n→∞

n−2γa~n,i = A~c,i and lim
n→∞

n−γb~n,i = B~c,i

for some γ ≥ 0 with B~c,i 6= B~c,j . Then

lim
n→∞

P~n+~ei (n
γz)

nγP~n(nγz)
= χ~c(z)− B~c,i ,

where z = χ~c +
∑
i

A~c,i
χ~c − B~c,i

such that χ~c(z)− z → 0 as z →∞.

When a2
n(µ)→ A2, bn(µ)→ B, the theorem recovers

2χ(z) = (z + B) +
√

(z − B − 2A)(z − B + 2A).



Vector Equilibrium Problem

Theorem (Gonchar–Rakhmanov, 1985)

Let F = {Fi} be a collection of intervals, θ = {θi}, θi > 0, and A = [aij ] be a

positive definite symmetric matrix with aii > 0 and aij = 0 if Fi ∩ Fj 6= ∅, i 6= j .

Let Mθ(F ) be the set of vector measures ~ν = (ν1, . . . , νd) such that νi is

supported on Fi and |νi | = θi . Define

I (~ν) := −
∑

aij

∫∫
log |x − y |dνi (x)dνj(y).

Then there exists a unique ~ω ∈ Mθ(F ), the vector equilibrium measure, such

that I (~ω) = minMθ(F ) I (~ν).



GN Systems

Let G be a rooted tree with d + 1 vertices V0,V1, . . . ,Vd , where V0 is the root.

To each Vi , i > 0, associate an interval Fi such that Fi ∩ Fj = ∅ if Vi and Vj

are either siblings or one is a child of the other.

V3 V4 V5 V6

V1 V2

V0

V1,V2 are siblings and children of V0; F1 ∩ F2 = ∅;

V3,V4 are siblings and children of V1; Fi ∩ Fj = ∅, i , j ∈ {1, 3, 4};
V5,V6 are siblings and children of V2; Fi ∩ Fj = ∅, i , j ∈ {2, 5, 6}.



GN Systems

On each interval Fi , choose an auxiliary measure σi . Given Vm, let

V0 → Vi1 → Vi2 → · · · → Vik = Vm

be the path connecting V0 and Vm. A GN system is a vector ~µ with

µm := 〈σi1 , . . . , σik 〉.

V3 V4 V5 V6

V1 V2

V0

µ1 = σ1, µ2 = σ2, µ3 = 〈σ1, σ3〉, µ4 = 〈σ1, σ4〉, µ5 = 〈σ2, σ5〉, µ6 = 〈σ2, σ6〉.

Aptekarev-Lysov generalized this construction to graphs where multiple edges

between vertices are allowed.



GN Systems

Given ~c ∈ (0, 1)d , set θm = cm +
∑

ci , where the sum is over all descendants

Vi of Vm.

θ3 = c3 θ4 = c4 θ5 = c5 θ6 = c6

θ1 = c1 + c3 + c4 θ2 = c2 + c5 + c6

V0

Further, let aii = 2, aij = −1 if Vi ,Vj is a child/parent pair, aij = 1 if Vi ,Vj are

siblings, and otherwise aij = 0.



Theorem (Gonchar–Rakhmanov–Sorokin, 1997)

Assume that dσi/dx > 0 a.e. on Fi . Suppose further that ~n is such that

ni ≤ nj + 1 if Vi is a child of Vj and that ~n/|~n| → ~c as |~n| → ∞. Let ~ω~c be the

vector equilibrium measure. Then the normalized counting measures of zeros of

P~n(z) converge weak∗ to
∑
ω~c,i where the sum is taken over the children of V0.

Theorem (Gonchar–Rakhmanov, 1981)

For Angelesco systems it holds that the support of ω~c,i is an interval.

Aptekarev-Lysov claim that this is true for all GN systems.
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Riemann-Hilbert Problem

Theorem (Geronimo–Kuijlaars–Van Assche, 2001)

Let dµi (x) = ρi (x)dx . Consider the following Riemann-Hilbert problem for

(d + 1)× (d + 1) matrices:

(a) Y (z) is analytic in C \R and lim
z→∞

Y (z)z−σ(~n) = I , where I is the identity

matrix and σ(~n) := diag (|~n|,−n1, . . . ,−nd);

(b) on the real line it holds that Y +(x) = Y−(x)(I +
∑
ρi (x)E 1,i+1), where

E 1,i+1 has all zero entries except for (1, i + 1), which is 1.

This problem has a unique solution whose (1, 1)-entry is P~n(z).

The proof is the modification of the one by Fokas–Its–Kitaev in the case d = 1.



Strong Asymptotics in Angelesco Systems

Let ~µ be an Angelesco system corresponding to intervals ∆1 < ∆2 < · · · < ∆d .

Given ~c ∈ (0, 1)d , let ~ω~c be the vector equilibrium measure constructed before.

Denote by ∆~c,i ⊆ ∆i the support of ω~c,i , which is an interval.

We shall assume that dµi (x) = ρi (x)dx , where ρi (x) extends to a holomorphic

and non-vanishing function in a neighborhood of ∆i (we can also consider

Fisher-Hartwig perturbations).

When ~c = ~n/|~n|, we shall simply write write ~ω~n and ∆~n,i .



Strong Asymptotics in Angelesco Systems

R
(0)
~n

R
(1)
~n

R
(2)
~n

Φ~n(z (0)) ∼ z |~n|

Φ~n(z (1)) ∼ z−n1

Φ~n(z (2)) ∼ z−n2

The surface R~n constructed w.r.t to cuts ∆~n,i and has genus 0. Let Φ~n(z) be

the rational function on R~n such that

(Φ~n) = n1∞(1) + · · ·+ nd∞(d) − |~n|∞(0),
∏

Φ~n(z (k)) ≡ 1.



Strong Asymptotics in Angelesco Systems

Theorem (Ya., 16)

If ~n/|~n| → ~c ∈ (0, 1)d as |~n| → ∞, then

P~n(z) ∼
(
Φ~nS

)(
z (0)),

where S(z) is a Szegő-type function on R~c .

Similar result for Nikishin systems with d = 2 and ~n = n~c for ~c ∈ Q2 ∩ (0, 1)2

was proven by López Lagomasino–Van Assche, 2018.

Theorem (Aptekarev–Denisov–Ya., in prep.)

When d = 2, the condition ~n/|~n| → ~c ∈ (0, 1)d can be replaced by ni →∞.

There are many other results along the diagonal sequences (n, n, . . . , n).



Asymptotics of the Recurrence Coefficients in Angelesco Systems

Theorem (Aptekarev–Denisov–Ya., 2020)

Let χ~c : R~c → C be a conformal map such that

χ~c
(
z (0)) = z +O

(
z−1) as z →∞.

Define constants A~c,i ,B~c,i by

χc

(
z (i)) = B~c,i + A~c,iz

−1 +O
(
z−2) as z →∞.

Then, as |~n| → ∞, ~n/|~n| → ~c ∈ (0, 1)d , it holds that

lim a~n,i = A~c,i and lim b~n,i = B~c,i .

Theorem (Aptekarev–Denisov–Ya., in prep.)

When d = 2, the limits of A(c,1−c),i ,B(c,1−c),i as c → 0 or c → 1 exist and

lim a~n,i = A~c,i and lim b~n,i = B~c,i .

holds as |~n| → ∞, ~n/|~n| → ~c ∈ [0, 1]2.



Jacobi Operators

Let T be the rooted tree of all possible increasing paths on Nd starting at ~1.

(1, 1) ∼ O = Y(p)

(2, 1) ∼ O(ch),1 (1, 2) ∼ Y = O(ch),2

(3, 1) (2, 2) (2, 2) ∼ Y(ch),1 (1, 3) ∼ Y(ch),2

We denote the set of all vertices of T by V. We let

` : V → {1, . . . , d}, Y 7→ `Y such that Π(Y ) = Π(Y(p)) + ~e`Y ,

where Π is the natural projection of V onto Nd .



Jacobi Operators

Let ~κ ∈ Rd , |~κ| = 1. Define two interaction functions A,B : V → R by

AO := 1, BO :=
∑

κib~1−~ei ,i , Y = O,

AY := aΠ(Y(p)),`Y , BY := bΠ(Y(p)),`Y , Y 6= O.

Assume now that

0 < a~n,j for all ~n ∈ Zd
+ such that nj > 0,

sup a~n,j <∞ , sup |b~n,j | <∞.

This condition is satisfied by Angelesco systems (Aptekarev–Denisov–Ya., 20).

Then, for any function f ∈ `2(V), the action of the operator J~κ can be written

in the following form

(J~κf )O := (Bf )O +
∑
i

(A1/2f )O(ch),i
, Y = O,

(J~κf )Y := A
1/2
Y fY(p)

+ (Bf )Y +
∑
i

(A1/2f )Y(ch),i
, Y 6= O.

J~κ is a bounded and self-adjoint operator on `2(V).



Jacobi Operators for Angelesco Systems

Proposition (Aptekarev-Denisov-Ya., 2020)

Let υ~κ be the spectral measure of J~κ associated to an Angelesco system

(µ1, µ2). Then

Θυ~κ(z) = Ξ(µ1, µ2)
Θµ1 (z)−Θµ2 (z)

κ2Θµ1 (z) + κ1Θµ2 (z)
,

where Θµ(z) :=
∫

(x − z)−1dµ(x) and

Ξ(µ1, µ2) :=

(∫
t
(
dµ2(t)− dµ1(t)

))−1

.

If the measures µi are absolutely continuous w.r.t. the Lebesgue measure, then

υ′~κ(x) =
Θµ2 (x)µ′1(x)−Θµ1 (x)µ′2(x)∣∣κ1Θµ1 (x) + κ2Θµ2 (x)

∣∣2 .

Proposition (Aptekarev-Denisov-Ya., 2020)

If υ~κ and Ξ(µ1, µ2) are known, then µ1, µ2, and J~κ can be found uniquely.



Essential Spectrum of Jacobi Operators

Theorem (Aptekarev–Denisov–Ya., in prep.)

Let ∆1 < ∆2 be two intervals. Write ∆c,i for the support of the i-th

component of the vector equilibrium measure ~ωc,1−c .

Let χc(z) be the above constructed conformal map on Rc that defines

constants Ac,1,Ac,2,Bc,1,Bc,2 together with their limits as c → 0 and c → 1.

Let J~κ be a Jacobi operator corresponding to some constants {a~n,i , b~n,i}. If for

any c ∈ [0, 1] it holds that

lim a~n,i = Ac,i and lim b~n,i = Bc,i

where the limit is taken along any sequence ~n/|~n| → (c, 1− c) as |~n| → ∞,

then σess(J~κ) = ∆1 ∪∆2.



Symmetric Stahl Systems

We shall say that (µ1, µ2) forms a symmetric Stahl system if

supp(µ1) = [−1, a], supp(µ2) = [−a, 1], a ∈ (0, 1).

Let h be an algebraic function given by

A(z)h3 − 3B2(z)h − 2B1(z) = 0,

where A(z) := (z2 − 1)(z2 − a2), B2(z) := z2 − p2, and B1(z) := z , for some

parameter p > 0.



Symmetric Stahl Systems

Let R be the Riemann surface of h. We are looking for the surface such that

Re

(∫ z

h(t)dt

)
is a single-valued and harmonic function on R.

Theorem (Aptekarev–Van Assche–Ya., 2017)

(I) If a ∈
(
0, 1/
√

2
)
, then there exists p ∈

(
a,
√

(1 + a2)/3
)

such that the

condition is fulfilled. In this case R has 8 ramification points whose

projections are {±1,±a} and {±b,±ic} for some uniquely determined

b ∈ (a, p) and c > 0.

(II) If a = 1/
√

2, then the condition is fulfilled for p = 1/
√

2. In this case R

has 4 ramification points whose projections are
{
± 1,±1/

√
2
}

.

(III) If a ∈
(
1/
√

2, 1
)
, then the condition is fulfilled for p =

√
(1 + a2)/3. In

this case R has 6 ramification points whose projections are {±1,±a} and

{±b}, b ∈ (p, a).
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R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

R(1) $ R(2)

(a) Case I
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p

2 1/
p

2 1
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(b) Case II
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R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

(c) Case III



Symmetric Stahl Systems

Let Φ(z) := exp
{∫ z

h(t)dt
}

. It is a multiplicatively multi-valued function on

R with the divisor ∞(1) +∞(2) − 2∞(0).

Let ρ1 and ρ2 be functions holomorphic and non-vanishing in a neighborhood

of [−1, 1]. In Case I, assume also that the ratio ρ1/ρ2 extends holomorphically

to a non-vanishing function in a neighborhood of R(1) ∩R(2). Then Ψn ↔ Φn,

where 

(
Ψ

(1)
n

)±
= ±

(
Ψ

(0)
n

)∓
ρ1,(

Ψ
(2)
n

)±
= ∓

(
Ψ

(0)
n

)∓
ρ2,(

Ψ
(2)
n

)±
= ±

(
Ψ

(0)
n

)∓
ρ2,(

Ψ
(2)
n

)±
= ±

(
Ψ

(1)
n

)∓
(ρ2/ρ1).

Ψn(z) has a wandering zero (2 in Case I) and there exists a subsequence N∗
such that

• |Ψn| ≤ C(N∗) |Φn| uniformly away from the branch points of R;

• |Ψn| ≥ C(N∗)−1 |Φn| uniformly in a neighborhood of ∞(0).



Symmetric Stahl Systems

Theorem (Aptekarev-Van Assche-Ya., 2017)

Let dµi (x) = ρi (x)dx be a symmetric Stahl system, where ρi (x) are as before

and we assume in addition that the ratio (ρ2/ρ1)(x) extends from (−a, a) to a

holomorphic and non-vanishing function

• in a domain that contains in its interior the closure of all the bounded

components of the regions Ωijk in Case I;

• in a domain whose complement is compact and belongs to the right-hand

component of Ω021 in Cases II and IIIa;

• in the extended complex plane, i.e., the ratio is a non-zero constant, in

Case IIIb,

where

Ωijk :=
{
z :
∣∣Φ(i)(z)

∣∣ > ∣∣Φ(j)(z)
∣∣ > ∣∣Φ(k)(z)

∣∣} .
Then for multi-indices ~n = (n, n) it holds that

P~n(z) ∼ Ψ−1
n

(
∞(0))Ψn

(
z (0)), n ∈ N∗.



Symmetric Stahl Systems

Case I:

⌦012

⌦012

⌦012

⌦021

⌦021
⌦201 ⌦201

Case II:

⌦021 ⌦021

⌦012

⌦012



Symmetric Stahl Systems

Case IIIa:

⌦021 ⌦021

⌦012

⌦102 ⌦102

Case IIIb:

⌦012⌦102 ⌦102


