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Multiple Orthogonal Polynomials

Let /i = (pa, ..., ud) be a vector of measures supported on the real line, each
having infinitely many points in its support and finite moments of all orders.

—

Let 7= (ni,...,nq) be a multi-index of non-negative integers.

Multiple orthogonal polynomial Pz(x) (type Il) is a polynomial of degree at
most |A] = n + -+ - + ng satisfying

/ka,y(X)dp;(x) =0, k=0,nm—1.

The multi-index ' is called normal if deg P; = |A]. In this case we normalize
Ps(x) to be monic. The vector /i is called perfect if all the multi-indices are
normal.



Angelesco and Nikishin Systems

Theorem (Angelesco, 1919)

Let Ay < Ay < -+ < Ay, where A; is the convex hull of the support of ;.
Then ji, called an Angelesco system, is perfect.
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Theorem (Lépez Lagomasino—Fidalgo Prieto, 2011)

Let o; be d auxiliary measures and F; be the convex hulls of their supports.
Assume that F; N Fi.1 = @. Write

d{o,v)(x) :=v(x)do(x), v(x /(z —y) tdu(y).

Let<0'j,...,0'/<> = <{,Tj7<0'j-17...,(7k>>. Put
pooi= o1
p2 = (01,02)
ta = {01,...,04)-

Then [i, called a Nikishin system, is perfect.



Lattice Recurrence Relations

Let {&}% , be the standard basis in R?. If 7 and 77+ & are normal, then

d
XPﬁ(X) = P,y_gj.(X) + bﬁ}jPﬁ(X) + Z a;ﬂ;Pﬁ_a(X)

i=1
for some coefficients by ;, ar;. These coefficients satisfy consistency conditions
bi+g,j — bare,i = bsj — ba,

d

d
E Aiié k E asig,k = bire,ibsj — birg,jbais

k=1 k=1

ai(baj — b)) = anig,i(bi-g.; — bi-g.i)-

When d = 1, these relations simply become classical recurrence relations for
monic orthogonal polynomials

XPo(x; 1) = Pasa(5; ) 4 ba(1) Pa(x; 1) + an (1) Pa1(x; ).



Lattice Recurrence Relations

Theorem (Filipuk—Haneczok-Van Assche, 2015)

If the recurrence coefficients {az bs,;} satisfy

e consistency conditions,

®a,:;>0andan;=0,i#}j

® by # baj fori # j,

then there exists [i for which {az ;bs;} are the recurrence coefficients.
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Theorem (Filipuk—Haneczok-Van Assche, 2015)

If the recurrence coefficients {az bs,;} satisfy

e consistency conditions,

®a,:;>0andan;=0,i#}j

® by # baj fori # j,

then there exists [i for which {az ;bs;} are the recurrence coefficients.

Conversely, {abs;} can be constructively recovered from {b,(1;), aa(pi)} and
the initial conditions

bnE,-,i = b,,(,u,‘), ang;,i = ai(ﬂi)> ang;,j = 0, J 7é f;
provided by ; # by for i # j.
. . . 2
The condition by # by holds for multiple Hermite (e ™ ~“*), Laguerre

(x*e™, x*e~9%), and Charlier (a%/k!) polynomials as well as for Angelesco
systems where bs; < bz, i < j (Aptekarev—Denisov-Ya., 2020).



Ratio Asymptotics

Theorem (Van Assche, 2016)

Let i = (|cin|,...|cqan]) for some ¢ € (0,1)¢ with |¢| = 1. Assume that

. _2 . _
lim n~"ar; = Az; and |lim n "bs; = Bz;
) C, 5 Gy

n— oo n—oo

for some v > 0 with Bz; # Bzj. Then

Pria(n”
lim +&(n"z)

= xe(z) — Bz,
n—s o0 nWPﬁ(n"VZ) X (Z) ’

AS/'
where z = xz + E ———— such that xz(z) —z — 0 as z — oo.
— X¢ — De,i

When 25(1) — A%, b,(11) — B, the theorem recovers

2x(2) = (z+ B) + V/(z — B —2A)(z — B +2A).



Vector Equilibrium Problem

Theorem (Gonchar-Rakhmanov, 1985)

Let F = {F;} be a collection of intervals, 0 = {6;}, 0; > 0, and A = [a;] be a
positive definite symmetric matrix with a; > 0 and a; =0 if FFNF; # @, 1 # J.

Let My (F) be the set of vector measures U = (v1,...,vq) such that v; is
supported on F; and |vj| = 0;. Define

7)== 3 2 [ [ tog|x = yldu(x)dy(v).

Then there exists a unique & € Mg(F), the vector equilibrium measure, such
that () = miny, s (D).



GN Systems

Let G be a rooted tree with d + 1 vertices Vg, Vi, ..., Vy, where Vj is the root.

To each V;, i > 0, associate an interval F; such that /N F; = @ if V; and V;
are either siblings or one is a child of the other.

V3 Vi Vs Ve
V1 V2
Vo
Vi, V5 are siblings and children of Vg; FRNF =,
V4, Vs are siblings and children of V4; FinF=w,i,j€{1,3,4};

Vs, Vs are siblings and children of V5; FinF=uo,i,j€{25,6}.



GN Systems

On each interval F;, choose an auxiliary measure ;. Given V,,, let
Vo=V, —=>V,— =V, =V,
be the path connecting Vy and V,,,. A GN system is a vector /i with

tom 2= Ty ooy Ty )

V3 Vs Vs Ve

V1 V2

Vo
=01, pe =02, p3 = (01,03), pa = (01,04), ps = (02,05), pe = (02,0%).

Aptekarev-Lysov generalized this construction to graphs where multiple edges
between vertices are allowed.



GN Systems

Given ¢ € (0,1), set 0, = cm + 5. ¢i, where the sum is over all descendants
Vi of V.

93:C3 94:C4 65:C5 06:(36

91:C1+C3+C4 02:C2+C5+C6

Vo

Further, let a; = 2, a; = —1if V;, V; is a child/parent pair, a; = 1 if V;, V; are
siblings, and otherwise ajj = 0.



Theorem (Gonchar-Rakhmanov-Sorokin, 1997)

Assume that doj/dx > 0 a.e. on F;. Suppose further that i is such that

ni < nj+ 1 if Vi is a child of V; and that i/|n| — ¢ as |A] — co. Let &z be the
vector equilibrium measure. Then the normalized counting measures of zeros of
Ps(z) converge weak® to > wz; where the sum is taken over the children of V.
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Theorem (Gonchar-Rakhmanov, 1981)

For Angelesco systems it holds that the support of wc; is an interval.

Aptekarev-Lysov claim that this is true for all GN systems.



Riemann-Hilbert Problem

Theorem (Geronimo—Kuijlaars—Van Assche, 2001)
Let dui(x) = pi(x)dx. Consider the following Riemann-Hilbert problem for
(d +1) x (d + 1) matrices:

(@) Y(z) is analytic in C\R and lim Y(z)z ") = I, where I is the identity
Z— 00
matrix and o () := diag (|a], —n1, ..., —ng);
(b) on the real line it holds that Y | (x) =Y _(x)(I + > pi(x)E1,is1), where
E1,i11 has all zero entries except for (1,7 + 1), which is 1.
This problem has a unique solution whose (1,1)-entry is Py(z).

The proof is the modification of the one by Fokas—Its—Kitaev in the case d = 1.



Strong Asymptotics in Angelesco Systems

Let /i be an Angelesco system corresponding to intervals A; < Ay < -+ < Ay.
Given ¢ € (0,1)7, let &z be the vector equilibrium measure constructed before.
Denote by Az; C A; the support of wz;, which is an interval.

We shall assume that dpui(x) = pi(x)dx, where pj(x) extends to a holomorphic
and non-vanishing function in a neighborhood of A; (we can also consider
Fisher-Hartwig perturbations).

When ¢ = i/|n], we shall simply write write &7 and Az ;.




Strong Asymptotics in Angelesco Systems

- <

RO . ° — ®;(z) ~ 2!
; —_—
R : : ©:(z2W) ~ 2z~
i i

R ——e Os(2?) ~ 2z

a \»

The surface 93 constructed w.r.t to cuts Az ; and has genus 0. Let ®;(z) be
the rational function on 935 such that

(®7) = moo™ + -+ + ngool® — ﬁ]oo H da(



Strong Asymptotics in Angelesco Systems

Theorem (Ya., 16)

If ii/|i| — ¢ € (0,1)% as |A] — oo, then

|
Pﬁ(z) ~ (¢ﬁs) (Z(O)),
where S(z) is a Szegb-type function on Rz.

Similar result for Nikishin systems with d = 2 and 77 = nc for ¢ € Q%N (0,1)?
was proven by Lépez Lagomasino—Van Assche, 2018.

Theorem (Aptekarev—Denisov-Ya., in prep.)

When d = 2, the condition ii/|i| — ¢ € (0,1) can be replaced by n; — co.

There are many other results along the diagonal sequences (n, n,. ... n).



Asymptotics of the Recurrence Coefficients in Angelesco Systems

Theorem (Aptekarev—Denisov-Ya., 2020)
Let xz: 9z — C be a conformal map such that
Xa(z(o)) =z4+0(z') as z— oo
Define constants Az, Bz by
Xe (z(i)) =Bzi+ Aciz t + 0(272) as z — oo.
Then, as |A] — oo, ii/|A] — ¢ € (0,1)%, it holds that

limaz; = Az and limbz; = Bz;.

Theorem (Aptekarev—Denisov—Ya., in prep.)

When d = 2, the limits of Aic1—c),i, Bici—c),i as ¢ — 0 or c — 1 exist and

lim ami = Aa,‘ and lim bﬁ,,‘ = Ba,‘.

holds as |i| — oo, A/|A] — ¢ € [0,1]°.



Jacobi Operators

Let 7 be the rooted tree of all possible increasing paths on N starting at i

(1,1) ~ 0 =Y

(3,1) (2,2) (2,2) ~ Y(en) 1 (1,3) ~ Yien),2

We denote the set of all vertices of 7 by V. We let
€:V = {1,....d}, YLy suchthat N(Y)=N(Yy)+ &,

where [1 is the natural projection of V onto NY.



Jacobi Operators

k| = 1. Define two interaction functions A, B : V — R by
Ao =1, Bo:= ZH"bT*@/J’ Y =0,
Ay = aN(Y(p))sly > By := bn(y(p)),zy’ Y # 0.

Let & € RY,

Assume now that
0 < ay,j for all i'e Zi such that n; > 0,
sup az,j < 00, sup |bg ;| < 0.
This condition is satisfied by Angelesco systems (Aptekarev—Denisov-Ya., 20).

Then, for any function € EQ(V), the action of the operator 7z can be written
in the following form

(Jxf)o == (Bf)o + > (AY*Fo,,, Y =0,

(Taf)y 1= AV iy + (BF)y + 3 (A F)y Y #0.

J is a bounded and self-adjoint operator on /*(V).



Jacobi Operators for Angelesco Systems

Proposition (Aptekarev-Denisov-Ya., 2020)

Let vz be the spectral measure of [J associated to an Angelesco system
(p1, p2). Then

where ©,,(z) := [(x — z) " 'du(x) and

=)
(o) = ([ e(a(t) = din(s)))
If the measures j1; are absolutely continuous w.r.t. the Lebesgue measure, then

Oz ()i (x) = Oy (IHH(x)
|K10y () + 520, ()|

vr(x) =

Proposition (Aptekarev-Denisov-Ya., 2020)

If vz and =(pu1, p2) are known, then i1, 2, and 7z can be found uniquely.



Essential Spectrum of Jacobi Operators

Theorem (Aptekarev—Denisov-Ya., in prep.)

Let Ay < Ay be two intervals. Write A ; for the support of the i-th

component of the vector equilibrium measure ¢ 1.

Let xc(z) be the above constructed conformal map on R that defines
constants Ac 1, Ac, Bc 1, Be o together with their limits as ¢ — 0 and ¢ — 1.

Let Jz be a Jacobi operator corresponding to some constants {az ;, bs;}. If for
any c € [0,1] it holds that

limag; = Ac,i and limbg; = B.;

where the limit is taken along any sequence ii/|n] — (c,1 — ¢) as |A] — oo,
then (Tcss(:n?) == Al U AZ-



Symmetric Stahl Systems

We shall say that (p1, p2) forms a symmetric Stahl system if
supp(pa) = [-1,a], supp(p2) =[-a,1], a€(0,1).
Let h be an algebraic function given by
A(z)h* — 3Ba(z)h — 2By(z) = 0,

where A(z) := (2% — 1)(2* — a°), Ba(z) := 2> — p?, and Bi(z) := z, for some
parameter p > 0.



Symmetric Stahl Systems

Let 97 be the Riemann surface of h. We are looking for the surface such that

Re (/ h(t)dt> is a single-valued and harmonic function on 9A.

Theorem (Aptekarev—Van Assche-Ya., 2017)

(1) Ifae (0,1/V/2), then there exists p € (a,+/(1 + a%)/3) such that the
condition is fulfilled. In this case 93 has 8 ramification points whose
projections are {+1, +a} and {+b, +ic} for some uniquely determined
b€ (a,p) and c > 0.

(I) If a=1//2, then the condition is fulfilled for p = 1/+/2. In this case %%
has 4 ramification points whose projections are { +1,+1/\/2}.

() Ifa € (1/v/2,1), then the condition is fulfilled for p = \/(1+ a%)/3. In

this case R has 6 ramification points whose projections are {£1,+a} and
{£b}, b€ (p,a).



[ J)

— —iC

(a) Case |
—1 —1/v?2 1
RO o R RO 5 | RO 5 R
(b) Case ll
—1 —a —b b a 1
o—e ° ° *—e
RO 5 1) RO 5 1) RO 5 R1O

(c) Case Il



Symmetric Stahl Systems

Let ®(z) :=exp { [* h(t)dt}. It is a multiplicatively multi-valued function on
M with the divisor co® + 00 — 2000,

Let p1 and p> be functions holomorphic and non-vanishing in a neighborhood
of [-1,1]. In Case |, assume also that the ratio p1/p> extends holomorphically
to a non-vanishing function in a neighborhood of R N9 Then W, «» ®”,

a2
(w&”) - :t(W(nO))¥011

+ F
<\|1572 ) = F (w(nO)) P2,
SE

(@2) _ j[<,~|}(no)>]Fp2,
(V)" = = (v)T (oo/0).

W,(z) has a wandering zero (2 in Case |) and there exists a subsequence N.
such that

where

o |U,| < C(N,)|®"| uniformly away from the branch points of };
e |U,| > C(N.) ! |®"| uniformly in a neighborhood of co(®



Symmetric Stahl Systems

Theorem (Aptekarev-Van Assche-Ya., 2017)

Let dui(x) = pi(x)dx be a symmetric Stahl system, where p;(x) are as before
and we assume in addition that the ratio (p>/p1)(x) extends from (—a, a) to a
holomorphic and non-vanishing function

e in a domain that contains in its interior the closure of all the bounded
components of the regions Q. in Case I;

e in a domain whose complement is compact and belongs to the right-hand
component of Qo1 in Cases Il and Illa;

e in the extended complex plane, i.e., the ratio is a non-zero constant, in
Case llIb,
where
Qe = {z: |00(2)] > [69(2)| > [6(2)|} .

Then for multi-indices @ = (n, n) it holds that

Pi(z) ~ W, (0w, (2?), neN..



Symmetric Stahl Systems

Case I:

Case lI:

QOIZ

<o)
Qo21 \ B / Qo21
/ N



Symmetric Stahl Systems

Case llla:

QOIQ

Qo2 Qo2

Case Illb:




