On multiple orthogonal polynomials

Maxim L. Yattselev
IIT IUPUI
SCHOOL OF SCIENCE
Department of Mathematical Sciences

Isaac Newton Institute for Mathematical Sciences
October 29th, 2019

Let $\vec{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)$ be a vector of measures supported on the real line, each having infinitely many points in its support and finite moments of all orders.

Let $\vec{n}=\left(n_{1}, \ldots, n_{d}\right)$ be a multi-index of non-negative integers.

Multiple orthogonal polynomial $P_{\vec{n}}(x)$ (type II) is a polynomial of degree at most $|\vec{n}|=n_{1}+\cdots+n_{d}$ satisfying

$$
\int x^{k} P_{\vec{n}}(x) d \mu_{i}(x)=0, \quad k=\overline{0, n_{i}-1}
$$

The multi-index \vec{n} is called normal if $\operatorname{deg} P_{\vec{n}}=|\vec{n}|$. In this case we normalize $P_{\vec{n}}(x)$ to be monic. The vector $\vec{\mu}$ is called perfect if all the multi-indices are normal.

Angelesco and Nikishin Systems

Theorem (Angelesco, 1919)
Let $\Delta_{1}<\Delta_{2}<\cdots<\Delta_{d}$, where Δ_{i} is the convex hull of the support of μ_{i}. Then $\vec{\mu}$, called an Angelesco system, is perfect.

Angelesco and Nikishin Systems

Theorem (Angelesco, 1919)

Let $\Delta_{1}<\Delta_{2}<\cdots<\Delta_{d}$, where Δ_{i} is the convex hull of the support of μ_{i}. Then $\vec{\mu}$, called an Angelesco system, is perfect.

Theorem (López Lagomasino-Fidalgo Prieto, 2011)

Let σ_{i} be d auxiliary measures and F_{i} be the convex hulls of their supports. Assume that $F_{i} \cap F_{i+1}=\varnothing$. Write

$$
\begin{aligned}
& d\langle\sigma, \nu\rangle(x):=\widehat{\nu}(x) d \sigma(x), \quad \widehat{\nu}(x):=\int(z-y)^{-1} d \nu(y) \\
& \text { Let }\left\langle\sigma_{j}, \ldots, \sigma_{k}\right\rangle:=\left\langle\sigma_{j},\left\langle\sigma_{j+1}, \ldots,\right.\right.\left.\left.\sigma_{k}\right\rangle\right\rangle . \text { Put } \\
& \mu_{1}:=\sigma_{1} \\
& \mu_{2}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \\
& \cdots \\
& \mu_{d}:=\left\langle\sigma_{1}, \ldots, \sigma_{d}\right\rangle
\end{aligned}
$$

Then $\vec{\mu}$, called a Nikishin system, is perfect.

Lattice Recurrence Relations

Let $\left\{\vec{e}_{i}\right\}_{i=1}^{d}$ be the standard basis in \mathbb{R}^{d}. If \vec{n} and $\vec{n}+\vec{e}_{j}$ are normal, then

$$
x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{j}}(x)+b_{\vec{n}, j} P_{\vec{n}}(x)+\sum_{i=1}^{d} a_{\vec{n}, i} P_{\vec{n}-\vec{e}_{i}}(x)
$$

for some coefficients $b_{\vec{n}, i}, a_{\vec{n}, i}$. These coefficients satisfy consistency conditions

$$
\begin{array}{r}
b_{\vec{n}+\vec{e}_{i}, j}-b_{\vec{n}+\vec{e}_{j}, i}=b_{\vec{n}, j}-b_{\vec{n}, i}, \\
\sum_{k=1}^{d} a_{\vec{n}+\vec{e}_{j}, k}-\sum_{k=1}^{d} a_{\vec{n}+\vec{e}_{i}, k}=b_{\vec{n}+\vec{e}_{j}, i} b_{\vec{n}, j}-b_{\vec{n}+\vec{e}_{i}, j} b_{\vec{n}, i}, \\
a_{\vec{n}, i}\left(b_{\vec{n}, j}-b_{\vec{n}, i}\right)=a_{\vec{n}+\vec{e}_{j}, i}\left(b_{\vec{n}-\vec{e}_{i}, j}-b_{\vec{n}-\vec{e}_{i}, i}\right) .
\end{array}
$$

When $d=1$, these relations simply become classical recurrence relations for monic orthogonal polynomials

$$
x P_{n}(x ; \mu)=P_{n+1}(x ; \mu)+b_{n}(\mu) P_{n}(x ; \mu)+a_{n}^{2}(\mu) P_{n-1}(x ; \mu)
$$

Lattice Recurrence Relations

Theorem (Filipuk-Haneczok-Van Assche, 2015)

If the recurrence coefficients $\left\{a_{\vec{n}, i} b_{\vec{n}, i}\right\}$ satisfy

- consistency conditions,
- $a_{n \vec{e}_{i}, i}>0$ and $a_{n \vec{e}_{i}, j}=0, i \neq j$,
- $b_{\vec{n}, i} \neq b_{\vec{n}, j}$ for $i \neq j$,
then there exists $\vec{\mu}$ for which $\left\{a_{\vec{n}, i} b_{\vec{n}, i}\right\}$ are the recurrence coefficients.

Theorem (Filipuk-Haneczok-Van Assche, 2015)

If the recurrence coefficients $\left\{a_{\vec{n}, i} b_{\vec{n}, i}\right\}$ satisfy

- consistency conditions,
- $a_{n \vec{e}_{i}, i}>0$ and $a_{n \vec{e}_{i}, j}=0, i \neq j$,
- $b_{\vec{n}, i} \neq b_{\vec{n}, j}$ for $i \neq j$,
then there exists $\vec{\mu}$ for which $\left\{a_{\vec{n}, i} b_{\vec{n}, i}\right\}$ are the recurrence coefficients.
Conversely, $\left\{a_{\vec{n}, i} b_{\vec{n}, i}\right\}$ can be constructively recovered from $\left\{b_{n}\left(\mu_{i}\right), a_{n}^{2}\left(\mu_{i}\right)\right\}$ and the initial conditions

$$
b_{n \vec{e}_{i}, i}=b_{n}\left(\mu_{i}\right), \quad a_{n \vec{e}_{i}, i}=a_{n}^{2}\left(\mu_{i}\right), \quad a_{n \vec{e}_{i}, j}=0, \quad j \neq i
$$

provided $b_{\vec{n}, i} \neq b_{\vec{n}, j}$ for $i \neq j$.

The condition $b_{\vec{n}, i} \neq b_{\vec{n}, j}$ holds for multiple Hermite ($e^{-x^{2}-c_{i} x}$), Laguerre ($x^{\alpha_{j}} e^{-x}, x^{\alpha} e^{-c_{j} x}$), and Charlier ($a_{i}^{k} / k!$) polynomials as well as for Angelesco systems where $b_{\vec{n}, i}<b_{\vec{n}, j}, i<j$ (Aptekarev-Denisov-Ya., 2020).

Theorem (Van Assche, 2016)
Let $\vec{n}=\left(\left\lfloor c_{1} n\right\rfloor, \ldots\left\lfloor c_{d} n\right\rfloor\right)$ for some $\vec{c} \in(0,1)^{d}$ with $|\vec{c}|=1$. Assume that

$$
\lim _{n \rightarrow \infty} n^{-2 \gamma} a_{\vec{n}, i}=A_{\vec{c}, i} \quad \text { and } \quad \lim _{n \rightarrow \infty} n^{-\gamma} b_{\vec{n}, i}=B_{\vec{c}, i}
$$

for some $\gamma \geq 0$ with $B_{\vec{c}, i} \neq B_{\vec{c}, j}$. Then

$$
\lim _{n \rightarrow \infty} \frac{P_{\vec{n}+\vec{e}_{i}}\left(n^{\gamma} z\right)}{n^{\gamma} P_{\vec{n}}\left(n^{\gamma} z\right)}=\chi_{\vec{c}}(z)-B_{\vec{c}, i}
$$

where $z=\chi_{\vec{c}}+\sum_{i} \frac{A_{\vec{c}, i}}{\chi_{\vec{c}}-B_{\vec{c}, i}}$ such that $\chi_{\vec{c}}(z)-z \rightarrow 0$ as $z \rightarrow \infty$.
When $a_{n}^{2}(\mu) \rightarrow A^{2}, b_{n}(\mu) \rightarrow B$, the theorem recovers

$$
2 \chi(z)=(z+B)+\sqrt{(z-B-2 A)(z-B+2 A)}
$$

Vector Equilibrium Problem

Theorem (Gonchar-Rakhmanov, 1985)

Let $F=\left\{F_{i}\right\}$ be a collection of intervals, $\theta=\left\{\theta_{i}\right\}, \theta_{i}>0$, and $A=\left[a_{i j}\right]$ be a positive definite symmetric matrix with $a_{i i}>0$ and $a_{i j}=0$ if $F_{i} \cap F_{j} \neq \varnothing, i \neq j$.

Let $M_{\theta}(F)$ be the set of vector measures $\vec{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right)$ such that ν_{i} is supported on F_{i} and $\left|\nu_{i}\right|=\theta_{i}$. Define

$$
I(\vec{\nu}):=-\sum a_{i j} \iint \log |x-y| d \nu_{i}(x) d \nu_{j}(y)
$$

Then there exists a unique $\vec{\omega} \in M_{\theta}(F)$, the vector equilibrium measure, such that $I(\vec{\omega})=\min _{M_{\theta}(F)} I(\vec{\nu})$.

GN Systems

Let \mathcal{G} be a rooted tree with $d+1$ vertices $V_{0}, V_{1}, \ldots, V_{d}$, where V_{0} is the root. To each $V_{i}, i>0$, associate an interval F_{i} such that $F_{i} \cap F_{j}=\varnothing$ if V_{i} and V_{j} are either siblings or one is a child of the other.

V_{1}, V_{2} are siblings and children of V_{0};
V_{3}, V_{4} are siblings and children of V_{1};
V_{5}, V_{6} are siblings and children of V_{2};

$$
\begin{aligned}
& F_{1} \cap F_{2}=\varnothing \\
& F_{i} \cap F_{j}=\varnothing, i, j \in\{1,3,4\} ; \\
& F_{i} \cap F_{j}=\varnothing, i, j \in\{2,5,6\}
\end{aligned}
$$

GN Systems

On each interval F_{i}, choose an auxiliary measure σ_{i}. Given V_{m}, let

$$
V_{0} \rightarrow V_{i_{1}} \rightarrow V_{i_{2}} \rightarrow \cdots \rightarrow V_{i_{k}}=V_{m}
$$

be the path connecting V_{0} and V_{m}. A GN system is a vector $\vec{\mu}$ with

$$
\mu_{m}:=\left\langle\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}\right\rangle
$$

$\mu_{1}=\sigma_{1}, \mu_{2}=\sigma_{2}, \mu_{3}=\left\langle\sigma_{1}, \sigma_{3}\right\rangle, \mu_{4}=\left\langle\sigma_{1}, \sigma_{4}\right\rangle, \mu_{5}=\left\langle\sigma_{2}, \sigma_{5}\right\rangle, \mu_{6}=\left\langle\sigma_{2}, \sigma_{6}\right\rangle$.
Aptekarev-Lysov generalized this construction to graphs where multiple edges between vertices are allowed.

GN Systems

Given $\vec{c} \in(0,1)^{d}$, set $\theta_{m}=c_{m}+\sum c_{i}$, where the sum is over all descendants V_{i} of V_{m}.

Further, let $a_{i i}=2, a_{i j}=-1$ if V_{i}, V_{j} is a child/parent pair, $a_{i j}=1$ if V_{i}, V_{j} are siblings, and otherwise $a_{i j}=0$.

Theorem (Gonchar-Rakhmanov-Sorokin, 1997)

Assume that $d \sigma_{i} / d x>0$ a.e. on F_{i}. Suppose further that \vec{n} is such that $n_{i} \leq n_{j}+1$ if V_{i} is a child of V_{j} and that $\vec{n} /|\vec{n}| \rightarrow \vec{c}$ as $|\vec{n}| \rightarrow \infty$. Let $\vec{\omega}_{\vec{c}}$ be the vector equilibrium measure. Then the normalized counting measures of zeros of $P_{\vec{n}}(z)$ converge weak* to $\sum \omega_{\vec{c}, i}$ where the sum is taken over the children of V_{0}.

Theorem (Gonchar-Rakhmanov-Sorokin, 1997)

Assume that $d \sigma_{i} / d x>0$ a.e. on F_{i}. Suppose further that \vec{n} is such that $n_{i} \leq n_{j}+1$ if V_{i} is a child of V_{j} and that $\vec{n} /|\vec{n}| \rightarrow \vec{c}$ as $|\vec{n}| \rightarrow \infty$. Let $\vec{\omega}_{\vec{c}}$ be the vector equilibrium measure. Then the normalized counting measures of zeros of $P_{\vec{n}}(z)$ converge weak* to $\sum \omega_{\vec{c}, i}$ where the sum is taken over the children of V_{0}.

Theorem (Gonchar-Rakhmanov, 1981)

For Angelesco systems it holds that the support of $\omega_{\vec{c}, i}$ is an interval.

Aptekarev-Lysov claim that this is true for all GN systems.

Theorem (Geronimo-Kuijlaars-Van Assche, 2001)
Let $d \mu_{i}(x)=\rho_{i}(x) d x$. Consider the following Riemann-Hilbert problem for $(d+1) \times(d+1)$ matrices:
(a) $Y(z)$ is analytic in $\mathbb{C} \backslash \mathbb{R}$ and $\lim _{z \rightarrow \infty} Y(z) z^{-\sigma(\vec{n})}=I$, where I is the identity matrix and $\sigma(\vec{n}):=\operatorname{diag}\left(|\vec{n}|,-n_{1}, \ldots,-n_{d}\right)$;
(b) on the real line it holds that $Y_{+}(x)=Y_{-}(x)\left(I+\sum \rho_{i}(x) E_{1, i+1}\right)$, where $E_{1, i+1}$ has all zero entries except for $(1, i+1)$, which is 1 .

This problem has a unique solution whose $(1,1)$-entry is $P_{\vec{n}}(z)$.
The proof is the modification of the one by Fokas-Its-Kitaev in the case $d=1$.

Strong Asymptotics in Angelesco Systems

Let $\vec{\mu}$ be an Angelesco system corresponding to intervals $\Delta_{1}<\Delta_{2}<\cdots<\Delta_{d}$. Given $\vec{c} \in(0,1)^{d}$, let $\vec{\omega}_{\vec{c}}$ be the vector equilibrium measure constructed before. Denote by $\Delta_{\vec{c}, i} \subseteq \Delta_{i}$ the support of $\omega_{\vec{c}, i}$, which is an interval.

We shall assume that $d \mu_{i}(x)=\rho_{i}(x) d x$, where $\rho_{i}(x)$ extends to a holomorphic and non-vanishing function in a neighborhood of Δ_{i} (we can also consider Fisher-Hartwig perturbations).

When $\vec{c}=\vec{n} /|\vec{n}|$, we shall simply write write $\vec{\omega}_{\vec{n}}$ and $\Delta_{\vec{n}, i}$.

Strong Asymptotics in Angelesco Systems

The surface $\mathfrak{R}_{\vec{n}}$ constructed w.r.t to cuts $\Delta_{\vec{n}, i}$ and has genus 0 . Let $\Phi_{\vec{n}}(z)$ be the rational function on $\mathfrak{R}_{\vec{n}}$ such that

$$
\left(\Phi_{\vec{n}}\right)=n_{1} \infty^{(1)}+\cdots+n_{d} \infty^{(d)}-|\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}\left(z^{(k)}\right) \equiv 1 .
$$

Strong Asymptotics in Angelesco Systems

Theorem (Ya., 16)

If $\vec{n} /|\vec{n}| \rightarrow \vec{c} \in(0,1)^{d}$ as $|\vec{n}| \rightarrow \infty$, then

$$
P_{\vec{n}}(z) \sim\left(\Phi_{\vec{n}} S\right)\left(z^{(0)}\right)
$$

where $S(z)$ is a Szegö-type function on $\mathfrak{R}_{\vec{c}}$.

Similar result for Nikishin systems with $d=2$ and $\vec{n}=n \vec{c}$ for $\vec{c} \in \mathbb{Q}^{2} \cap(0,1)^{2}$ was proven by López Lagomasino-Van Assche, 2018.

Theorem (Aptekarev-Denisov-Ya., in prep.)

When $d=2$, the condition $\vec{n} /|\vec{n}| \rightarrow \vec{c} \in(0,1)^{d}$ can be replaced by $n_{i} \rightarrow \infty$.

There are many other results along the diagonal sequences (n, n, \ldots, n).

Asymptotics of the Recurrence Coefficients in Angelesco Systems

Theorem (Aptekarev-Denisov-Ya., 2020)
Let $\chi_{\vec{c}}: \Re_{\vec{c}} \rightarrow \overline{\mathbb{C}}$ be a conformal map such that

$$
\chi_{\vec{c}}\left(z^{(0)}\right)=z+\mathcal{O}\left(z^{-1}\right) \quad \text { as } \quad z \rightarrow \infty
$$

Define constants $A_{\vec{c}, i}, B_{\vec{c}, i}$ by

$$
\chi_{c}\left(z^{(i)}\right)=B_{\vec{c}, i}+A_{\vec{c}, i} z^{-1}+\mathcal{O}\left(z^{-2}\right) \quad \text { as } \quad z \rightarrow \infty
$$

Then, as $|\vec{n}| \rightarrow \infty, \vec{n} /|\vec{n}| \rightarrow \vec{c} \in(0,1)^{d}$, it holds that

$$
\lim a_{\vec{n}, i}=A_{\vec{c}, i} \quad \text { and } \quad \lim b_{\vec{n}, i}=B_{\vec{c}, i}
$$

Theorem (Aptekarev-Denisov-Ya., in prep.)
When $d=2$, the limits of $A_{(c, 1-c), i}, B_{(c, 1-c), i}$ as $c \rightarrow 0$ or $c \rightarrow 1$ exist and

$$
\lim a_{\vec{n}, i}=A_{\vec{c}, i} \quad \text { and } \quad \lim b_{\vec{n}, i}=B_{\vec{c}, i}
$$

holds as $|\vec{n}| \rightarrow \infty, \vec{n} /|\vec{n}| \rightarrow \vec{c} \in[0,1]^{2}$.

Jacobi Operators

Let \mathcal{T} be the rooted tree of all possible increasing paths on \mathbb{N}^{d} starting at $\overrightarrow{1}$.

We denote the set of all vertices of \mathcal{T} by \mathcal{V}. We let

$$
\ell: \mathcal{V} \rightarrow\{1, \ldots, d\}, \quad Y \mapsto \ell_{Y} \text { such that } \Pi(Y)=\Pi\left(Y_{(p)}\right)+\vec{e}_{\ell_{Y}}
$$

where Π is the natural projection of \mathcal{V} onto \mathbb{N}^{d}.

Jacobi Operators

Let $\vec{\kappa} \in \mathbb{R}^{d},|\vec{k}|=1$. Define two interaction functions $A, B: \mathcal{V} \rightarrow \mathbb{R}$ by

$$
\begin{array}{rrr}
A_{0}:=1, \quad B_{0}:=\sum \kappa_{i} b_{\overrightarrow{1}-\vec{e}_{i} ;}, & Y=0, \\
A_{Y}:=a_{\Pi\left(Y_{(P)}\right), e_{Y}}, \quad B_{Y}:=b_{\Pi\left(Y_{(P)}\right), \ell_{Y}}, \quad Y \neq 0 .
\end{array}
$$

Assume now that

$$
\begin{array}{r}
0<a_{\vec{n}, j} \text { for all } \vec{n} \in \mathbb{Z}_{+}^{d} \text { such that } n_{j}>0, \\
\text { sup } a_{\vec{n}, j}<\infty, \text { sup }\left|b_{\vec{n}, j}\right|<\infty .
\end{array}
$$

This condition is satisfied by Angelesco systems (Aptekarev-Denisov-Ya., 20).
Then, for any function $f \in \ell^{2}(\mathcal{V})$, the action of the operator $\mathcal{J}_{\vec{k}}$ can be written in the following form

$$
\begin{aligned}
\left(\mathcal{J}_{\mathcal{K}} f\right)_{O}:=(B f)_{O}+\sum_{i}\left(A^{1 / 2} f\right)_{O_{(c h), i}}, \quad Y=0, \\
\left(\mathcal{J}_{\mathcal{F}} f\right)_{Y}:=A_{Y}^{1 / 2} f_{Y_{(p)}}+(B f)_{Y}+\sum_{i}\left(A^{1 / 2} f\right)_{Y_{(c h), i}}, \quad Y \neq 0 .
\end{aligned}
$$

$\mathcal{J}_{\vec{k}}$ is a bounded and self-adjoint operator on $\ell^{2}(\mathcal{V})$.

Jacobi Operators for Angelesco Systems

Proposition (Aptekarev-Denisov-Ya., 2020)

Let $v_{\vec{k}}$ be the spectral measure of $\mathcal{J}_{\vec{k}}$ associated to an Angelesco system $\left(\mu_{1}, \mu_{2}\right)$. Then

$$
\Theta_{v_{\vec{k}}}(z)=\equiv\left(\mu_{1}, \mu_{2}\right) \frac{\Theta_{\mu_{1}}(z)-\Theta_{\mu_{2}}(z)}{\kappa_{2} \Theta_{\mu_{1}}(z)+\kappa_{1} \Theta_{\mu_{2}}(z)}
$$

where $\Theta_{\mu}(z):=\int(x-z)^{-1} d \mu(x)$ and

$$
\equiv\left(\mu_{1}, \mu_{2}\right):=\left(\int t\left(d \mu_{2}(t)-d \mu_{1}(t)\right)\right)^{-1}
$$

If the measures μ_{i} are absolutely continuous w.r.t. the Lebesgue measure, then

$$
v_{\vec{k}}^{\prime}(x)=\frac{\Theta_{\mu_{2}}(x) \mu_{1}^{\prime}(x)-\Theta_{\mu_{1}}(x) \mu_{2}^{\prime}(x)}{\left|\kappa_{1} \Theta_{\mu_{1}}(x)+\kappa_{2} \Theta_{\mu_{2}}(x)\right|^{2}}
$$

Proposition (Aptekarev-Denisov-Ya., 2020)

If $v_{\vec{k}}$ and $\equiv\left(\mu_{1}, \mu_{2}\right)$ are known, then μ_{1}, μ_{2}, and $\mathcal{J}_{\vec{k}}$ can be found uniquely.

Essential Spectrum of Jacobi Operators

Theorem (Aptekarev-Denisov-Ya., in prep.)

Let $\Delta_{1}<\Delta_{2}$ be two intervals. Write $\Delta_{c, i}$ for the support of the i-th component of the vector equilibrium measure $\vec{\omega}_{c, 1-c}$.

Let $\chi_{c}(z)$ be the above constructed conformal map on \mathfrak{R}_{c} that defines constants $A_{c, 1}, A_{c, 2}, B_{c, 1}, B_{c, 2}$ together with their limits as $c \rightarrow 0$ and $c \rightarrow 1$.

Let $\mathcal{J}_{\vec{k}}$ be a Jacobi operator corresponding to some constants $\left\{a_{\vec{n}, i}, b_{\vec{n}, i}\right\}$. If for any $c \in[0,1]$ it holds that

$$
\lim a_{\vec{n}, i}=A_{c, i} \quad \text { and } \quad \lim b_{\vec{n}, i}=B_{c, i}
$$

where the limit is taken along any sequence $\vec{n} /|\vec{n}| \rightarrow(c, 1-c)$ as $|\vec{n}| \rightarrow \infty$, then $\sigma_{\text {ess }}\left(\mathcal{J}_{\vec{k}}\right)=\Delta_{1} \cup \Delta_{2}$.

Symmetric Stahl Systems

We shall say that $\left(\mu_{1}, \mu_{2}\right)$ forms a symmetric Stahl system if

$$
\operatorname{supp}\left(\mu_{1}\right)=[-1, a], \quad \operatorname{supp}\left(\mu_{2}\right)=[-a, 1], \quad a \in(0,1)
$$

Let h be an algebraic function given by

$$
A(z) h^{3}-3 B_{2}(z) h-2 B_{1}(z)=0
$$

where $A(z):=\left(z^{2}-1\right)\left(z^{2}-a^{2}\right), B_{2}(z):=z^{2}-p^{2}$, and $B_{1}(z):=z$, for some parameter $p>0$.

Let \Re be the Riemann surface of h. We are looking for the surface such that $\operatorname{Re}\left(\int^{z} h(t) \mathrm{d} t\right)$ is a single-valued and harmonic function on \Re.

Theorem (Aptekarev-Van Assche-Ya., 2017)

(I) If $a \in(0,1 / \sqrt{2})$, then there exists $p \in\left(a, \sqrt{\left(1+a^{2}\right) / 3}\right)$ such that the condition is fulfilled. In this case \Re has 8 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b, \pm \mathrm{i} c\}$ for some uniquely determined $b \in(a, p)$ and $c>0$.
(II) If $a=1 / \sqrt{2}$, then the condition is fulfilled for $p=1 / \sqrt{2}$. In this case \mathfrak{R} has 4 ramification points whose projections are $\{ \pm 1, \pm 1 / \sqrt{2}\}$.
(III) If $a \in(1 / \sqrt{2}, 1)$, then the condition is fulfilled for $p=\sqrt{\left(1+a^{2}\right) / 3}$. In this case $\mathfrak{\Re}$ has 6 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b\}, b \in(p, a)$.

(a) Case I

(c) Case III

Symmetric Stahl Systems

Let $\Phi(z):=\exp \left\{\int^{z} h(t) d t\right\}$. It is a multiplicatively multi-valued function on \mathfrak{R} with the divisor $\infty^{(1)}+\infty^{(2)}-2 \infty^{(0)}$.

Let ρ_{1} and ρ_{2} be functions holomorphic and non-vanishing in a neighborhood of $[-1,1]$. In Case I, assume also that the ratio ρ_{1} / ρ_{2} extends holomorphically to a non-vanishing function in a neighborhood of $\mathfrak{R}^{(1)} \cap \mathfrak{R}^{(2)}$. Then $\Psi_{n} \leftrightarrow \Phi^{n}$, where

$$
\left\{\begin{array}{l}
\left(\Psi_{n}^{(1)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{1} \\
\left(\Psi_{n}^{(2)}\right)^{ \pm}=\mp\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{2} \\
\left(\Psi_{n}^{(2)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{2} \\
\left(\Psi_{n}^{(2)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(1)}\right)^{\mp}\left(\rho_{2} / \rho_{1}\right)
\end{array}\right.
$$

$\Psi_{n}(z)$ has a wandering zero (2 in Case I) and there exists a subsequence \mathbb{N}_{*} such that

- $\left|\Psi_{n}\right| \leq C\left(\mathbb{N}_{*}\right)\left|\Phi^{n}\right|$ uniformly away from the branch points of \Re;
- $\left|\Psi_{n}\right| \geq C\left(\mathbb{N}_{*}\right)^{-1}\left|\Phi^{n}\right|$ uniformly in a neighborhood of $\infty^{(0)}$.

Symmetric Stahl Systems

Theorem (Aptekarev-Van Assche-Ya., 2017)

Let $d \mu_{i}(x)=\rho_{i}(x) d x$ be a symmetric Stahl system, where $\rho_{i}(x)$ are as before and we assume in addition that the ratio $\left(\rho_{2} / \rho_{1}\right)(x)$ extends from $(-a, a)$ to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions $\Omega_{i j k}$ in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of Ω_{021} in Cases II and IIla;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb,
where

$$
\Omega_{i j k}:=\left\{z:\left|\Phi^{(i)}(z)\right|>\left|\Phi^{(j)}(z)\right|>\left|\Phi^{(k)}(z)\right|\right\}
$$

Then for multi-indices $\vec{n}=(n, n)$ it holds that

$$
P_{\vec{n}}(z) \sim \Psi_{n}^{-1}\left(\infty^{(0)}\right) \Psi_{n}\left(z^{(0)}\right), \quad n \in \mathbb{N}_{*}
$$

Symmetric Stahl Systems

Case I:

Case II:

Case IIIa:

Case IIIb:

