On multiple orthogonal polynomials

Maxim L. Yattselev

IUPUI
SCHOOL OF SCIENCE
Department of Mathematical Sciences

Isaac Newton Institute for Mathematical Sciences
October 29th, 2019
Let $\vec{\mu} = (\mu_1, \ldots, \mu_d)$ be a vector of measures supported on the real line, each having infinitely many points in its support and finite moments of all orders.

Let $\vec{n} = (n_1, \ldots, n_d)$ be a multi-index of non-negative integers.

Multiple orthogonal polynomial $P_{\vec{n}}(x)$ (type II) is a polynomial of degree at most $|\vec{n}| = n_1 + \cdots + n_d$ satisfying

$$\int x^k P_{\vec{n}}(x) d\mu_i(x) = 0, \quad k = 0, n_i - 1.$$

The multi-index \vec{n} is called normal if $\deg P_{\vec{n}} = |\vec{n}|$. In this case we normalize $P_{\vec{n}}(x)$ to be monic. The vector $\vec{\mu}$ is called perfect if all the multi-indices are normal.
Theorem (Angelesco, 1919)

Let $\Delta_1 < \Delta_2 < \cdots < \Delta_d$, where Δ_i is the convex hull of the support of μ_i. Then $\vec{\mu}$, called an Angelesco system, is perfect.
Theorem (Angelesco, 1919)

Let $\Delta_1 < \Delta_2 < \cdots < \Delta_d$, where Δ_i is the convex hull of the support of μ_i. Then $\vec{\mu}$, called an Angelesco system, is perfect.

Theorem (López Lagomasino–Fidalgo Prieto, 2011)

Let σ_i be d auxiliary measures and F_i be the convex hulls of their supports. Assume that $F_i \cap F_{i+1} = \emptyset$. Write

$$d \langle \sigma, \nu \rangle (x) := \hat{\nu}(x) d\sigma(x), \quad \hat{\nu}(x) := \int (z - y)^{-1} d\nu(y).$$

Let $\langle \sigma_j, \ldots, \sigma_k \rangle := \langle \sigma_j, \langle \sigma_{j+1}, \ldots, \sigma_k \rangle \rangle$. Put

$$\mu_1 := \sigma_1$$
$$\mu_2 := \langle \sigma_1, \sigma_2 \rangle$$
$$\ldots$$
$$\mu_d := \langle \sigma_1, \ldots, \sigma_d \rangle.$$

Then $\vec{\mu}$, called a Nikishin system, is perfect.
Let \(\{ \vec{e}_i \}_{i=1}^d \) be the standard basis in \(\mathbb{R}^d \). If \(\vec{n} \) and \(\vec{n} + \vec{e}_j \) are normal, then

\[
xP_{\vec{n}}(x) = P_{\vec{n}+\vec{e}_j}(x) + b_{\vec{n},j} P_{\vec{n}}(x) + \sum_{i=1}^{d} a_{\vec{n},i} P_{\vec{n}-\vec{e}_i}(x)
\]

for some coefficients \(b_{\vec{n},i}, a_{\vec{n},i} \). These coefficients satisfy consistency conditions

\[
b_{\vec{n}+\vec{e}_i,j} - b_{\vec{n}+\vec{e}_j,i} = b_{\vec{n},j} - b_{\vec{n},i},
\]

\[
\sum_{k=1}^{d} a_{\vec{n}+\vec{e}_j,k} - \sum_{k=1}^{d} a_{\vec{n}+\vec{e}_i,k} = b_{\vec{n}+\vec{e}_j,i} b_{\vec{n},j} - b_{\vec{n}+\vec{e}_i,j} b_{\vec{n},i},
\]

\[
a_{\vec{n},i}(b_{\vec{n},j} - b_{\vec{n},i}) = a_{\vec{n}+\vec{e}_j,i}(b_{\vec{n}-\vec{e}_i,j} - b_{\vec{n}-\vec{e}_i,i}).
\]

When \(d = 1 \), these relations simply become classical recurrence relations for monic orthogonal polynomials

\[
xP_n(x; \mu) = P_{n+1}(x; \mu) + b_n(\mu) P_n(x; \mu) + a_n^2(\mu) P_{n-1}(x; \mu).
\]
Theorem (Filipuk–Haneczok–Van Assche, 2015)

If the recurrence coefficients $\{a_{\vec{n},i}, b_{\vec{n},i}\}$ satisfy

- consistency conditions,
- $a_{n\vec{e},i} > 0$ and $a_{n\vec{e},j} = 0$, $i \neq j$,
- $b_{\vec{n},i} \neq b_{\vec{n},j}$ for $i \neq j$,

then there exists $\vec{\mu}$ for which $\{a_{\vec{n},i}, b_{\vec{n},i}\}$ are the recurrence coefficients.
Theorem (Filipuk–Haneczok–Van Assche, 2015)

If the recurrence coefficients \(\{a_{\vec{n},i} b_{\vec{n},i}\} \) satisfy

- consistency conditions,
- \(a_{n\vec{e},i} > 0 \) and \(a_{n\vec{e},j} = 0, \ i \neq j \),
- \(b_{\vec{n},i} \neq b_{\vec{n},j} \) for \(i \neq j \),

then there exists \(\vec{\mu} \) for which \(\{a_{\vec{n},i} b_{\vec{n},i}\} \) are the recurrence coefficients.

Conversely, \(\{a_{\vec{n},i} b_{\vec{n},i}\} \) can be constructively recovered from \(\{b_n(\mu_i), a_n^2(\mu_i)\} \) and the initial conditions

\[
b_{n\vec{e},i} = b_n(\mu_i), \quad a_{n\vec{e},i} = a_n^2(\mu_i), \quad a_{n\vec{e},j} = 0, \quad j \neq i,
\]

provided \(b_{\vec{n},i} \neq b_{\vec{n},j} \) for \(i \neq j \).

The condition \(b_{\vec{n},i} \neq b_{\vec{n},j} \) holds for multiple Hermite \((e^{-x^2-c_i x}) \), Laguerre \((x^{\alpha_j} e^{-x}, x^{\alpha} e^{-c_j x}) \), and Charlier \((a_i^k/k!) \) polynomials as well as for Angelesco systems where \(b_{\vec{n},i} < b_{\vec{n},j}, \ i < j \) (Aptekarev–Denisov-Ya., 2020).
Theorem (Van Assche, 2016)

Let \(\vec{n} = ([c_1 n], \ldots, [c_d n]) \) for some \(\vec{c} \in (0, 1)^d \) with \(|\vec{c}| = 1 \). Assume that

\[
\lim_{n \to \infty} n^{-2\gamma} a_{\vec{n}, i} = A_{\vec{c}, i} \quad \text{and} \quad \lim_{n \to \infty} n^{-\gamma} b_{\vec{n}, i} = B_{\vec{c}, i}
\]

for some \(\gamma \geq 0 \) with \(B_{\vec{c}, i} \neq B_{\vec{c}, j} \). Then

\[
\lim_{n \to \infty} \frac{P_{\vec{n} + \vec{e}_i}(n^\gamma z)}{n^\gamma P_{\vec{n}}(n^\gamma z)} = \chi_{\vec{c}}(z) - B_{\vec{c}, i},
\]

where \(z = \chi_{\vec{c}} + \sum_i \frac{A_{\vec{c}, i}}{\chi_{\vec{c}} - B_{\vec{c}, i}} \) such that \(\chi_{\vec{c}}(z) - z \to 0 \) as \(z \to \infty \).

When \(a_n^2(\mu) \to A^2, b_n(\mu) \to B \), the theorem recovers

\[
2\chi(z) = (z + B) + \sqrt{(z - B - 2A)(z - B + 2A)}.
\]
Theorem (Gonchar–Rakhmanov, 1985)

Let $F = \{F_i\}$ be a collection of intervals, $\theta = \{\theta_i\}$, $\theta_i > 0$, and $A = [a_{ij}]$ be a positive definite symmetric matrix with $a_{ii} > 0$ and $a_{ij} = 0$ if $F_i \cap F_j \neq \emptyset$, $i \neq j$.

Let $M_\theta(F)$ be the set of vector measures $\vec{\nu} = (\nu_1, \ldots, \nu_d)$ such that ν_i is supported on F_i and $|\nu_i| = \theta_i$. Define

$$I(\vec{\nu}) := - \sum a_{ij} \int \int \log |x - y| d\nu_i(x) d\nu_j(y).$$

Then there exists a unique $\vec{\omega} \in M_\theta(F)$, the vector equilibrium measure, such that $I(\vec{\omega}) = \min_{M_\theta(F)} I(\vec{\nu})$.
Let G be a rooted tree with $d + 1$ vertices V_0, V_1, \ldots, V_d, where V_0 is the root. To each V_i, $i > 0$, associate an interval F_i such that $F_i \cap F_j = \emptyset$ if V_i and V_j are either siblings or one is a child of the other.

V_1, V_2 are siblings and children of V_0;
$F_1 \cap F_2 = \emptyset$;

V_3, V_4 are siblings and children of V_1;
$F_i \cap F_j = \emptyset$, $i, j \in \{1, 3, 4\}$;

V_5, V_6 are siblings and children of V_2;
$F_i \cap F_j = \emptyset$, $i, j \in \{2, 5, 6\}$.

$\begin{align*}
V_3 & \quad V_4 \\
V_1 & \quad V_5 \\
V_0 & \quad V_2 \\
V_6 & \\
\end{align*}$
On each interval F_i, choose an auxiliary measure σ_i. Given V_m, let

$$V_0 \to V_{i_1} \to V_{i_2} \to \cdots \to V_{i_k} = V_m$$

be the path connecting V_0 and V_m. A **GN system** is a vector $\bar{\mu}$ with

$$\mu_m := \langle \sigma_{i_1}, \ldots, \sigma_{i_k} \rangle.$$

\[\begin{array}{c}
V_0 & \rightarrow & V_1 & \rightarrow & V_2 & \rightarrow & V_3 & \rightarrow & V_4 & \rightarrow & V_5 & \rightarrow & V_6
\end{array}\]

$\mu_1 = \sigma_1$, $\mu_2 = \sigma_2$, $\mu_3 = \langle \sigma_1, \sigma_3 \rangle$, $\mu_4 = \langle \sigma_1, \sigma_4 \rangle$, $\mu_5 = \langle \sigma_2, \sigma_5 \rangle$, $\mu_6 = \langle \sigma_2, \sigma_6 \rangle$.

Aptekarev-Lysov generalized this construction to graphs where multiple edges between vertices are allowed.
Given $\vec{c} \in (0, 1)^d$, set $\theta_m = c_m + \sum c_i$, where the sum is over all descendants V_i of V_m.

$$
\begin{align*}
\theta_3 &= c_3 \\
\theta_4 &= c_4 \\
\theta_5 &= c_5 \\
\theta_6 &= c_6 \\
\theta_1 &= c_1 + c_3 + c_4 \\
\theta_2 &= c_2 + c_5 + c_6
\end{align*}
$$

Further, let $a_{ii} = 2$, $a_{ij} = -1$ if V_i, V_j is a child/parent pair, $a_{ij} = 1$ if V_i, V_j are siblings, and otherwise $a_{ij} = 0$.
Theorem (Gonchar–Rakhmanov–Sorokin, 1997)

Assume that \(d\sigma_i/dx > 0 \) a.e. on \(F_i \). Suppose further that \(\vec{n} \) is such that \(n_i \leq n_j + 1 \) if \(V_i \) is a child of \(V_j \) and that \(\vec{n}/|\vec{n}| \to \vec{c} \) as \(|\vec{n}| \to \infty \). Let \(\vec{\omega}_{\vec{c}} \) be the vector equilibrium measure. Then the normalized counting measures of zeros of \(P_{\vec{n}}(z) \) converge weak* to \(\sum \omega_{\vec{c},i} \) where the sum is taken over the children of \(V_0 \).
Theorem (Gonchar–Rakhmanov–Sorokin, 1997)

Assume that $d\sigma_i/dx > 0$ a.e. on F_i. Suppose further that \vec{n} is such that $n_i \leq n_j + 1$ if V_i is a child of V_j and that $\vec{n}/|\vec{n}| \to \vec{c}$ as $|\vec{n}| \to \infty$. Let $\vec{\omega}_c$ be the vector equilibrium measure. Then the normalized counting measures of zeros of $P_{\vec{n}}(z)$ converge weak* to $\sum \omega_{\vec{c},i}$ where the sum is taken over the children of V_0.

Theorem (Gonchar–Rakhmanov, 1981)

For Angelesco systems it holds that the support of $\omega_{\vec{c},i}$ is an interval.

Aptekarev-Lysov claim that this is true for all GN systems.
Theorem (Geronimo–Kuijlaars–Van Assche, 2001)

Let $d\mu_i(x) = \rho_i(x)dx$. Consider the following Riemann-Hilbert problem for $(d+1) \times (d+1)$ matrices:

(a) $Y(z)$ is analytic in $\mathbb{C} \setminus \mathbb{R}$ and $\lim_{z \to \infty} Y(z)z^{-\sigma(\vec{n})} = I$, where I is the identity matrix and $\sigma(\vec{n}) := \text{diag}(|\vec{n}|, -n_1, \ldots, -n_d)$;

(b) on the real line it holds that $Y_+(x) = Y_-(x)(I + \sum \rho_i(x)E_{1,i+1})$, where $E_{1,i+1}$ has all zero entries except for $(1, i+1)$, which is 1.

This problem has a unique solution whose $(1, 1)$-entry is $P_{\vec{n}}(z)$.

The proof is the modification of the one by Fokas–Its–Kitaev in the case $d = 1$.
Let $\vec{\mu}$ be an Angelesco system corresponding to intervals $\Delta_1 < \Delta_2 < \cdots < \Delta_d$.

Given $\vec{c} \in (0, 1)^d$, let $\vec{\omega}_{\vec{c}}$ be the vector equilibrium measure constructed before. Denote by $\Delta_{\vec{c},i} \subseteq \Delta_i$ the support of $\omega_{\vec{c},i}$, which is an interval.

We shall assume that $d\mu_i(x) = \rho_i(x)dx$, where $\rho_i(x)$ extends to a holomorphic and non-vanishing function in a neighborhood of Δ_i (we can also consider Fisher-Hartwig perturbations).

When $\vec{c} = \vec{n}/|\vec{n}|$, we shall simply write $\vec{\omega}_{\vec{n}}$ and $\Delta_{\vec{n},i}$.
The surface $\mathcal{R}_{\vec{n}}$ constructed w.r.t to cuts $\Delta_{\vec{n},i}$ and has genus 0. Let $\Phi_{\vec{n}}(z)$ be the rational function on $\mathcal{R}_{\vec{n}}$ such that

$$\Phi_{\vec{n}}(z) \sim z^{\vec{n}}.$$

$$\Phi_{\vec{n}}(z^{(0)}) \sim z^{\vec{n}}$$

$$\Phi_{\vec{n}}(z^{(1)}) \sim z^{-n_1}$$

$$\Phi_{\vec{n}}(z^{(2)}) \sim z^{-n_2}$$

$$(\Phi_{\vec{n}}) = n_1 \infty^{(1)} + \cdots + n_d \infty^{(d)} - |\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}(z^{(k)}) \equiv 1.$$
Theorem (Ya., 16)

If \(\frac{\vec{n}}{|\vec{n}|} \to \vec{c} \in (0, 1)^d \) as \(|\vec{n}| \to \infty \), then

\[
P_{\vec{n}}(z) \sim \left(\Phi_{\vec{n}}S \right)(z^{(0)}),
\]

where \(S(z) \) is a Szegő-type function on \(\mathbb{H}_{\vec{c}} \).

Similar result for Nikishin systems with \(d = 2 \) and \(\vec{n} = n\vec{c} \) for \(\vec{c} \in \mathbb{Q}^2 \cap (0, 1)^2 \)
was proven by Lópex Lagomasino–Van Assche, 2018.

Theorem (Aptekarev–Denisov–Ya., in prep.)

When \(d = 2 \), the condition \(\frac{\vec{n}}{|\vec{n}|} \to \vec{c} \in (0, 1)^d \) can be replaced by \(n_i \to \infty \).

There are many other results along the diagonal sequences \((n, n, \ldots, n) \).
Asymptotics of the Recurrence Coefficients in Angelesco Systems

Theorem (Aptekarev–Denisov–Ya., 2020)

Let \(\chi_{\vec{c}} : \mathbb{H}_{\vec{c}} \to \overline{\mathbb{C}} \) be a conformal map such that

\[
\chi_{\vec{c}}(z^{(0)}) = z + \mathcal{O}(z^{-1}) \quad \text{as} \quad z \to \infty.
\]

Define constants \(A_{\vec{c},i}, B_{\vec{c},i} \) by

\[
\chi_{c}(z^{(i)}) = B_{\vec{c},i} + A_{\vec{c},i}z^{-1} + \mathcal{O}(z^{-2}) \quad \text{as} \quad z \to \infty.
\]

Then, as \(|\vec{n}| \to \infty, \vec{n}/|\vec{n}| \to \vec{c} \in (0, 1)^d \), it holds that

\[
\lim a_{\vec{n},i} = A_{\vec{c},i} \quad \text{and} \quad \lim b_{\vec{n},i} = B_{\vec{c},i}.
\]

Theorem (Aptekarev–Denisov–Ya., in prep.)

When \(d = 2 \), the limits of \(A_{(c,1-c),i}, B_{(c,1-c),i} \) as \(c \to 0 \) or \(c \to 1 \) exist and

\[
\lim a_{\vec{n},i} = A_{\vec{c},i} \quad \text{and} \quad \lim b_{\vec{n},i} = B_{\vec{c},i}.
\]

holds as \(|\vec{n}| \to \infty, \vec{n}/|\vec{n}| \to \vec{c} \in [0, 1]^2 \).
Let \mathcal{T} be the rooted tree of all possible increasing paths on \mathbb{N}^d starting at $\vec{1}$.

We denote the set of all vertices of \mathcal{T} by \mathcal{V}. We let

$$\ell : \mathcal{V} \to \{1, \ldots, d\}, \quad Y \mapsto \ell_Y$$

such that $\Pi(Y) = \Pi(Y_{(p)}) + \vec{e}_{\ell_Y}$,

where Π is the natural projection of \mathcal{V} onto \mathbb{N}^d.
Let $\vec{\kappa} \in \mathbb{R}^d$, $|\vec{\kappa}| = 1$. Define two interaction functions $A, B : \mathcal{V} \to \mathbb{R}$ by

\[
A_O := 1, \quad B_O := \sum \kappa_i b_{\vec{1} - \vec{e}_i,i}, \quad Y = O,
\]

\[
A_Y := a_{\Pi(\gamma(p)),\ell_Y}, \quad B_Y := b_{\Pi(\gamma(p)),\ell_Y}, \quad Y \neq O.
\]

Assume now that

\[
0 < a_{\vec{n},j} \text{ for all } \vec{n} \in \mathbb{Z}^d_+ \text{ such that } n_j > 0,
\]

\[
\sup a_{\vec{n},j} < \infty, \quad \sup |b_{\vec{n},j}| < \infty.
\]

This condition is satisfied by Angelesco systems (Aptekarev–Denisov–Ya., 20).

Then, for any function $f \in \ell^2(\mathcal{V})$, the action of the operator $\mathcal{J}_{\vec{\kappa}}$ can be written in the following form

\[
(\mathcal{J}_{\vec{\kappa}} f)_O := (Bf)_O + \sum_i (A^{1/2} f)_{O(\chi h),i}, \quad Y = O,
\]

\[
(\mathcal{J}_{\vec{\kappa}} f)_Y := A^{1/2}_Y f_{\gamma(p)} + (Bf)_Y + \sum_i (A^{1/2} f)_{Y(\chi h),i}, \quad Y \neq O.
\]

$\mathcal{J}_{\vec{\kappa}}$ is a bounded and self-adjoint operator on $\ell^2(\mathcal{V})$.
Proposition (Aptekarev-Denisov-Ya., 2020)

Let $\nu_{\vec{\kappa}}$ be the spectral measure of $J_{\vec{\kappa}}$ associated to an Angelesco system (μ_1, μ_2). Then

$$\Theta_{\nu_{\vec{\kappa}}}(z) = \Xi(\mu_1, \mu_2) \frac{\Theta_{\mu_1}(z) - \Theta_{\mu_2}(z)}{\kappa_2 \Theta_{\mu_1}(z) + \kappa_1 \Theta_{\mu_2}(z)},$$

where $\Theta_{\mu}(z) := \int (x - z)^{-1} d\mu(x)$ and

$$\Xi(\mu_1, \mu_2) := \left(\int t (d\mu_2(t) - d\mu_1(t)) \right)^{-1}.$$

If the measures μ_i are absolutely continuous w.r.t. the Lebesgue measure, then

$$\nu'_{\vec{\kappa}}(x) = \frac{\Theta_{\mu_2}(x)\mu_1'(x) - \Theta_{\mu_1}(x)\mu_2'(x)}{\left| \kappa_1 \Theta_{\mu_1}(x) + \kappa_2 \Theta_{\mu_2}(x) \right|^2}.$$

Proposition (Aptekarev-Denisov-Ya., 2020)

If $\nu_{\vec{\kappa}}$ and $\Xi(\mu_1, \mu_2)$ are known, then μ_1, μ_2, and $J_{\vec{\kappa}}$ can be found uniquely.
Theorem (Aptekarev–Denisov–Ya., in prep.)

Let $\Delta_1 < \Delta_2$ be two intervals. Write $\Delta_{c,i}$ for the support of the i-th component of the vector equilibrium measure $\vec{\omega}_{c,1-c}$.

Let $\chi_c(z)$ be the above constructed conformal map on \mathbb{C}_c that defines constants $A_{c,1}, A_{c,2}, B_{c,1}, B_{c,2}$ together with their limits as $c \to 0$ and $c \to 1$.

Let $\mathcal{J}_{\vec{\kappa}}$ be a Jacobi operator corresponding to some constants $\{a_{\vec{n},i}, b_{\vec{n},i}\}$. If for any $c \in [0, 1]$ it holds that

$$\lim a_{\vec{n},i} = A_{c,i} \quad \text{and} \quad \lim b_{\vec{n},i} = B_{c,i}$$

where the limit is taken along any sequence $\vec{n}/|\vec{n}| \to (c, 1 - c)$ as $|\vec{n}| \to \infty$, then $\sigma_{\text{ess}}(\mathcal{J}_{\vec{\kappa}}) = \Delta_1 \cup \Delta_2$.
We shall say that \((\mu_1, \mu_2)\) forms a symmetric Stahl system if

\[
\text{supp}(\mu_1) = [-1, a], \quad \text{supp}(\mu_2) = [-a, 1], \quad a \in (0, 1).
\]

Let \(h\) be an algebraic function given by

\[
A(z)h^3 - 3B_2(z)h - 2B_1(z) = 0,
\]

where \(A(z) := (z^2 - 1)(z^2 - a^2), \quad B_2(z) := z^2 - p^2, \quad \text{and} \quad B_1(z) := z,\) for some parameter \(p > 0.\)
Let \mathcal{R} be the Riemann surface of h. We are looking for the surface such that

$$\text{Re} \left(\int \mathfrak{z} h(t) \, dt \right)$$

is a single-valued and harmonic function on \mathcal{R}.

Theorem (Aptekarev–Van Assche–Ya., 2017)

(I) If $a \in (0, 1/\sqrt{2})$, then there exists $p \in (a, \sqrt{(1 + a^2)/3})$ such that the condition is fulfilled. In this case \mathcal{R} has 8 ramification points whose projections are $\{\pm 1, \pm a\}$ and $\{\pm b, \pm ic\}$ for some uniquely determined $b \in (a, p)$ and $c > 0$.

(II) If $a = 1/\sqrt{2}$, then the condition is fulfilled for $p = 1/\sqrt{2}$. In this case \mathcal{R} has 4 ramification points whose projections are $\{\pm 1, \pm 1/\sqrt{2}\}$.

(III) If $a \in (1/\sqrt{2}, 1)$, then the condition is fulfilled for $p = \sqrt{(1 + a^2)/3}$. In this case \mathcal{R} has 6 ramification points whose projections are $\{\pm 1, \pm a\}$ and $\{\pm b\}$, $b \in (p, a)$.
(a) Case I

(b) Case II

(c) Case III
Let $\Phi(z) := \exp \left\{ \int^z h(t) \, dt \right\}$. It is a multiplicatively multi-valued function on \mathbb{R} with the divisor $\infty^{(1)} + \infty^{(2)} - 2\infty^{(0)}$.

Let ρ_1 and ρ_2 be functions holomorphic and non-vanishing in a neighborhood of $[-1, 1]$. In Case I, assume also that the ratio ρ_1/ρ_2 extends holomorphically to a non-vanishing function in a neighborhood of $\mathbb{R}^{(1)} \cap \mathbb{R}^{(2)}$. Then $\Psi_n \leftrightarrow \Phi^n$, where

\[
\begin{align*}
(\Psi_n^{(1)})^\pm &= \pm (\Psi_n^{(0)})^\mp \rho_1, \\
(\Psi_n^{(2)})^\pm &= \mp (\Psi_n^{(0)})^\mp \rho_2, \\
(\Psi_n^{(2)})^\pm &= \pm (\Psi_n^{(0)})^\mp \rho_2, \\
(\Psi_n^{(2)})^\pm &= \pm (\Psi_n^{(1)})^\mp (\rho_2/\rho_1).
\end{align*}
\]

$\Psi_n(z)$ has a wandering zero (2 in Case I) and there exists a subsequence \mathbb{N}_* such that

- $|\Psi_n| \leq C(\mathbb{N}_*) |\Phi^n|$ uniformly away from the branch points of \mathbb{R};
- $|\Psi_n| \geq C(\mathbb{N}_*)^{-1} |\Phi^n|$ uniformly in a neighborhood of $\infty^{(0)}$.
Theorem (Aptekarev-Van Assche-Ya., 2017)

Let $d\mu_i(x) = \rho_i(x)dx$ be a symmetric Stahl system, where $\rho_i(x)$ are as before and we assume in addition that the ratio $(\rho_2/\rho_1)(x)$ extends from $(-a,a)$ to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions Ω_{ijk} in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of Ω_{021} in Cases II and IIIa;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb,

where

$$\Omega_{ijk} := \left\{ z : |\Phi^{(i)}(z)| > |\Phi^{(j)}(z)| > |\Phi^{(k)}(z)| \right\}.$$

Then for multi-indices $\vec{n} = (n,n)$ it holds that

$$P_{\vec{n}}(z) \sim \psi_n^{-1}(\infty^{(0)})\psi_n(z^{(0)}), \quad n \in \mathbb{N}_*.$$
Symmetric Stahl Systems

Case I:

\[\Omega_{012} \]

\[\Omega_{021} \]

\[\Omega_{201} \]

\[\Omega_{012} \]

\[\Omega_{021} \]

\[\Omega_{201} \]

Case II:

\[\Omega_{012} \]

\[\Omega_{021} \]

\[\Omega_{201} \]

\[\Omega_{012} \]
Case IIIa:

\[\Omega_{021} \quad \Omega_{102} \quad \Omega_{012} \quad \Omega_{021} \]

Case IIIb:

\[\Omega_{102} \quad \Omega_{012} \quad \Omega_{102} \]