# Root statistics of random polynomials with bounded Mahler measure 

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis

AMS Sectional Meeting
Bloomington, IN
April 1st, 2017

## Mahler Measure

The Mahler measure of a polynomial $P(z)=a \prod_{n=1}^{N}\left(z-\alpha_{n}\right)$ is defined as

$$
\begin{aligned}
M(P) & :=|a| \prod_{n=1}^{N} \max \left\{1,\left|\alpha_{n}\right|\right\} \\
& =\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right\}
\end{aligned}
$$

The Mahler measure of a polynomial $P(z)=a \prod_{n=1}^{N}\left(z-\alpha_{n}\right)$ is defined as

$$
\begin{aligned}
M(P) & :=|a| \prod_{n=1}^{N} \max \left\{1,\left|\alpha_{n}\right|\right\} \\
& =\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right\}
\end{aligned}
$$

## Theorem (Kronecker, 1857)

$M(P)=1$ for a polynomial $P$ with integer coefficients iff $P$ is a product of monomials and cyclotomic polynomials (divisors of $z^{n}-1$ ). Necessarily, such a polynomial has all its roots in $\mathbb{T} \cup\{0\}$.

The Mahler measure of a polynomial $P(z)=a \prod_{n=1}^{N}\left(z-\alpha_{n}\right)$ is defined as

$$
\begin{aligned}
M(P) & :=|a| \prod_{n=1}^{N} \max \left\{1,\left|\alpha_{n}\right|\right\} \\
& =\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right\}
\end{aligned}
$$

## Theorem (Kronecker, 1857)

$M(P)=1$ for a polynomial $P$ with integer coefficients iff $P$ is a product of monomials and cyclotomic polynomials (divisors of $z^{n}-1$ ). Necessarily, such a polynomial has all its roots in $\mathbb{T} \cup\{0\}$.

## Conjecture (Lehmer, 1933)

Is 1 an isolated point of the range of $M(\cdot)$ on integer polynomials?
Lehmer himself constructed the smallest known example:

$$
M\left(z^{10}+z^{9}-z^{7}-z^{6}-z^{5}-z^{4}-z^{3}+z+1\right) \approx 1.18
$$

## Number of Integer Polynomials

## Theorem (Chern-Vaaler, 2001)

The number of integer polynomials of height at most $T$ behaves as

$$
\operatorname{vol}\left(B_{N}\right) T^{N+1}+\mathcal{O}\left(T^{N}\right), \quad T \rightarrow \infty
$$

where $B_{N}$ is the Mahler measure unit star body. Moreover,

$$
\operatorname{vol}\left(B_{N}\right)=\frac{2}{N+1} F_{N}(N+1)
$$

where

$$
F_{N}(s)=C_{N} \prod_{m=0}^{\lfloor(N-1) / 2\rfloor} \frac{s}{s-(N-2 m)}
$$

and $C_{N}$ is an explicit constant.
Notice that Lehmer's conjecture asks what happens when $T \rightarrow 1$.
Observe also that both $(z-1)^{N}$ and $z^{N}-1$ belong to $B_{N}$ but have drastically different coefficient vectors.

## Volumes of Star Bodies

More generally, the $\lambda$-homogeneous Mahler measure is given by

$$
M^{\lambda}(P)=|a|^{\lambda} \prod_{n=1}^{N} \max \left\{1,\left|\alpha_{n}\right|\right\}
$$

The corresponding unit star body is defined as

$$
B_{N}^{\lambda}:=\left\{\left(a_{1}, \ldots, a_{N+1}\right) \in \mathbb{R}^{N+1}: M^{\lambda}\left(\sum_{n=0}^{N} a_{n+1} z^{n}\right) \leq 1\right\}
$$

Theorem (Chern-Vaaler, 2001)

$$
\operatorname{vol}\left(B_{N}^{\lambda}\right)=\frac{2}{N+1} F_{N}\left(\frac{N+1}{\lambda}\right) .
$$

$$
\begin{aligned}
\operatorname{vol}\left(B_{N}^{\lambda}\right) & =\int_{-\infty}^{\infty} \operatorname{vol}\left\{\boldsymbol{b}: M^{\lambda}\left(c z^{N}+\sum_{n=0}^{N-1} b_{n+1} z^{n}\right) \leq 1\right\} \mathrm{d} c \\
& =\int_{-\infty}^{\infty} \operatorname{vol}\left\{c b: M^{\lambda}\left(c z^{N}+\sum_{n=0}^{N-1} c b_{n+1} z^{n}\right) \leq 1\right\} \mathrm{d} c
\end{aligned}
$$

Using the $\lambda$-homogeneity of $M^{\lambda}$ one then gets

$$
\begin{aligned}
\operatorname{vol}\left(B_{N}^{\lambda}\right) & =2 \int_{0}^{\infty} c^{N} \operatorname{vol}\left\{\boldsymbol{b}: M(\boldsymbol{b}) \leq c^{-\lambda}\right\} \mathrm{d} c \\
& =\frac{2}{\lambda} \int_{0}^{\infty} \xi^{-(N+1) / \lambda} \operatorname{vol}\{\boldsymbol{b}: M(\boldsymbol{b}) \leq \xi\} \frac{\mathrm{d} \xi}{\xi}
\end{aligned}
$$

where $M(\boldsymbol{b})$ is the Mahler measure of $z^{N}+\sum_{n=0}^{N-1} b_{n+1} z^{n}$. Integration by parts then gives

$$
\begin{aligned}
\operatorname{vol}\left(B_{N}^{\lambda}\right) & =\frac{2}{N+1} \int_{0}^{\infty} \xi^{-(N+1) / \lambda} \mathrm{dvol}\{\boldsymbol{b}: M(\boldsymbol{b}) \leq \xi\} \\
& =\frac{2}{N+1} \int_{\mathbb{R}^{N}} M(\boldsymbol{b})^{-(N+1) / \lambda} \mathrm{d} \mu_{\mathbb{R}}^{N}(\boldsymbol{b})
\end{aligned}
$$

## Volumes of Star Bodies

Making a change of variables from coefficients of polynomials to their roots gives

$$
F_{N}(s):=\int_{\mathbb{R}^{N}} M(b)^{-s} \mathrm{~d} \mu_{\mathbb{R}}^{N}(b)=\sum_{L+2 M=N} \frac{Z_{L, M}(s)}{L!M!},
$$

where $L$ and $M$ stand for the number of real and complex roots, and

$$
Z_{L, M}(s)=\int_{\mathbb{R}^{L}} \int_{\mathbb{C}^{M}} \prod_{l=1}^{L} \Phi\left(\alpha_{l}\right)^{-s} \prod_{m=1}^{M} \Phi\left(\beta_{m}\right)^{-2 s}|\Delta(\alpha, \beta)| \mathrm{d} \mu_{\mathbb{R}}^{L}(\alpha) \mathrm{d} \mu_{\mathbb{C}}^{M}(\beta)
$$

with $\Delta(\alpha, \beta)$ being the Vandermonde of $\alpha_{1}, \ldots, \alpha_{L}, \beta_{1}, \bar{\beta}_{1}, \ldots, \beta_{M}, \bar{\beta}_{M}$.

The summands $Z_{L, M}(s)$ are not simple and Chern-Vaaler went through a dozen pages of rational function identities to show that

$$
F_{N}(s)=C_{N} \prod_{m=0}^{\lfloor(N-1) / 2\rfloor} \frac{s}{s-(N-2 m)}
$$

## Complex Star Bodies

In fact, one could consider polynomials with complex coefficients. Set

$$
B_{N}^{\lambda}(\mathbb{C}):=\left\{\left(a_{1}, \ldots, a_{N+1}\right) \in \mathbb{C}^{N+1}: M^{\lambda}\left(\sum_{n=0}^{N} a_{n+1} z^{n}\right) \leq 1\right\}
$$

Then

$$
\begin{aligned}
\operatorname{vol}\left(B_{N}^{\lambda}(\mathbb{C})\right) & =\int_{\mathbb{C}} \operatorname{vol}\left\{\boldsymbol{b}: M^{\lambda}\left(c z^{N}+\sum_{n=0}^{N-1} b_{n+1} z^{n}\right) \leq 1\right\} \mathrm{d} c \\
& =\int_{\mathbb{C}}|c|^{2 N} \operatorname{vol}\left\{\boldsymbol{b}: M(\boldsymbol{b}) \leq|c|^{-\lambda}\right\} \mathrm{d} c \\
& =\frac{\pi}{N+1} \int_{0}^{\infty} \xi^{-2(N+1) / \lambda} \operatorname{dvol}\{\boldsymbol{b}: M(\boldsymbol{b}) \leq 1\} \\
& =\frac{\pi}{N+1} \int_{\mathbb{C}^{N}} M(\boldsymbol{b})^{-2(N+1) / \lambda} \mu_{\mathbb{C}}^{N}(\boldsymbol{b})
\end{aligned}
$$

## Complex Star Bodies

As before, making a change of variables from the coefficients to the roots gives

$$
G_{N}(s):=\int_{\mathbb{C}^{N}} M(b)^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}^{N}(b)=\frac{Z_{N}(s)}{N!}
$$

where

$$
\begin{aligned}
Z_{N}(s) & =\int_{\mathbb{C}^{N}} \prod_{n=1}^{N} \Phi\left(\lambda_{n}\right)^{-2 s}|\Delta(\lambda)|^{2} \mathrm{~d} \mu_{\mathbb{C}}^{N}(\lambda) \\
& =(2 \pi)^{N} \sum_{\sigma}\left(\prod_{n=1}^{N} \int_{0}^{\infty} \Phi\left(\rho_{n}\right)^{-2 s} \rho_{n}^{2 \sigma(n)-1} \mathrm{~d} \rho_{n}\right) \\
& =(2 \pi)^{N} \sum_{\sigma}\left(\prod_{n=1}^{N} \frac{s}{2 \sigma(n)(s-\sigma(n))}\right)=\pi^{N} \prod_{n=1}^{N} \frac{s}{s-n}
\end{aligned}
$$

Theorem (Chern-Vaaler, 2001)

$$
\operatorname{vol}\left(B_{N}^{\lambda}(\mathbb{C})\right)=\frac{\pi}{N+1} G_{N}\left(\frac{N+1}{\lambda}\right) .
$$

## Determinantal Interpretation

## Theorem (Sinclair, 2008)

Let $\Pi_{0}, \ldots, \Pi_{N-1}$ be polynomials such that

$$
\left\langle\Pi_{n} \mid \Pi_{m}\right\rangle=\delta_{n, m}
$$

where inner product $\langle\cdot \mid \cdot\rangle$ is defined by

$$
\langle f \mid g\rangle_{\mathbb{C}}=\int_{\mathbb{C}} f(z) \overline{g(z)} \Phi(z)^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}(z)
$$

with $\Phi(z):=\max \{1,|z|\}$. Then

$$
G_{N}(s)=\prod_{n=0}^{N-1} \gamma_{n}^{-2}
$$

where $\Pi_{k}(z)=\gamma_{k} z^{k}+\cdots$.

## Pfaffian Interpretation

## Theorem (Sinclair, 2008)

Let $\pi_{0}, \ldots, \pi_{N-1}$ be polynomials such that

$$
\left\langle\pi_{2 n} \mid \pi_{2 m}\right\rangle=\left\langle\pi_{2 n+1} \mid \pi_{2 m+1}\right\rangle=0 \quad \text { and } \quad\left\langle\pi_{2 n} \mid \pi_{2 m+1}\right\rangle=\delta_{n, m},
$$

where skew-symmetric inner product $\langle\cdot \mid \cdot\rangle=\langle\cdot \mid \cdot\rangle_{\mathbb{R}}+\langle\cdot \mid \cdot\rangle_{\mathbb{C}}$ is defined by

$$
\begin{aligned}
\langle f \mid g\rangle_{\mathbb{R}} & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) g(y) \operatorname{sgn}(y-x) \Phi(x)^{-s} \Phi(y)^{-s} \mathrm{~d} \mu_{\mathbb{R}}(x) \mathrm{d} \mu_{\mathbb{R}}(y) \\
\langle f \mid g\rangle_{\mathbb{C}} & =-2 \mathrm{i} \int_{\mathbb{C}} \overline{f(z)} g(z) \operatorname{sgn}(\operatorname{lm}(z)) \Phi(z)^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}(z)
\end{aligned}
$$

with $\Phi(z)=\max \{1,|z|\}$. Then

$$
F_{N}(s)=\prod_{n=0}^{\lfloor(N-1) / 2\rfloor}\left(\gamma_{2 n} \gamma_{2 n+1}\right)^{-1}
$$

where $\pi_{k}(z)=\gamma_{k} z^{k}+\cdots$.

## Random Polynomials

Recall that

$$
G_{N}(s)=\int_{\mathbb{C}^{N}} M(\boldsymbol{b})^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}^{N}(\boldsymbol{b}) \quad \text { and } \quad F_{N}(s)=\int_{\mathbb{R}^{N}} M(\boldsymbol{b})^{-s} \mathrm{~d} \mu_{\mathbb{R}}^{N}(\boldsymbol{b})
$$

Under a random polynomial we mean a polynomial chosen with respect to

$$
M(\boldsymbol{b})^{-2 s} / G_{N}(s), \quad \boldsymbol{b} \in \mathbb{C}^{N}, \quad \text { or } M(\boldsymbol{b})^{-s} / F_{N}(s), \quad \boldsymbol{b} \in \mathbb{R}^{N}
$$

This is equivalent to choosing polynomials uniformly from $B_{N}^{(N+1) s^{-1}}$.
We would like to study fine statistics of zeros of such random polynomials.


A simultaneous plot of the roots of 100 random polynomials of degree 28. A ball-walk of 10,000 steps of length .01 starting from $x^{28}$ was performed for each polynomial. The arrows indicate directions of outlying roots.

## Correlation Functions: Complex Case

Let $P$ be a random polynomial. For $C \subset \mathbb{C}$ define $N_{C}:=\sharp C \cap\{$ zeros of $P\}$.
In the case of complex coefficients, a function $R_{n}: \mathbb{C}^{n} \rightarrow[0, \infty)$ is called $n$-th correlation function if

$$
E\left[N_{C_{1}} \cdots N_{C_{n}}\right]=\int_{C_{1}} \cdots \int_{C_{n}} R_{n}(z) \mathrm{d} \mu_{\mathbb{C}}^{n}(z)
$$

for pairwise disjoint sets $C_{1}, \ldots, C_{n}$. Since the joint density of the zeros is given by

$$
\frac{1}{Z_{N}(s)} \prod_{m<n}\left|\lambda_{n}-\lambda_{m}\right|^{2} \prod_{n=1}^{N} \Phi\left(\lambda_{n}\right)^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}^{N}(\lambda)
$$

$\Phi(z)=\max \{1,|z|\}$, it is well known in random matrix theory that

$$
R_{n}(\lambda)=\operatorname{det}\left[K_{N}\left(\lambda_{i}, \lambda_{j}\right)\right]_{i, j=1}^{n}
$$

where

$$
K_{N}(z, w):=\Phi(z)^{-s} \Phi(w)^{-s} \sum_{n=0}^{N-1} \Pi_{n}(z) \overline{\Pi_{n}(w)}
$$

and $\Pi_{n}$ are orthonormal polynomials w.r.t. $\Phi^{-2 s}(z) \mathrm{d} \mu_{\mathbb{C}}(z)$.

## Correlation Functions: Real Case

In the case of real coefficients, if there is a function $R_{l, m}: \mathbb{R}^{\prime} \times \mathbb{C}_{+}^{m} \rightarrow[0, \infty)$ such that

$$
E\left[N_{A_{1}} \cdots N_{A_{l}} N_{B_{1}} \cdots N_{B_{m}}\right]:=\int_{A_{1}} \cdots \int_{A_{l}} \int_{B_{1}} \cdots \int_{B_{m}} R_{l, m}(x, z) \mathrm{d} \mu_{\mathbb{R}}^{\prime}(x) \mathrm{d} \mu_{\mathbb{C}}^{m}(z)
$$

for pairwise disjoint sets $A_{1}, \ldots, A_{l} \subset \mathbb{R}$ and $B_{1}, \ldots, B_{m} \subset \mathbb{C}_{+}$, then it is called the $(I, m)$-th correlation function.

When such functions exist, it holds in particular that

$$
\operatorname{deg}(P)=\int_{\mathbb{R}} R_{1,0}(x,-) \mathrm{d} \mu_{\mathbb{R}}(x)+\int_{\mathbb{C}} R_{0,1}(-, z) \mathrm{d} \mu_{\mathbb{C}}(z)
$$

and the first integral represents the expected number of real zeros, where we set $R_{l, m}(\cdot, \bar{z}):=R_{l, m}(\cdot, z)$.

## Correlation Functions: Real Case

## Theorem (Borodin-Sinclair, 2009)

There exists a $2 \times 2$ matrix kernel $K_{N}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ such that

$$
\boldsymbol{R}_{l, m}(x, \boldsymbol{z})=\operatorname{Pf}\left[\begin{array}{cc}
{\left[\boldsymbol{K}_{N}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{\prime}} & {\left[\boldsymbol{K}_{N}\left(x_{i}, z_{n}\right)\right]_{i, n=1}^{l, m}} \\
-\left[\boldsymbol{K}_{N}^{\mathrm{T}}\left(z_{k}, x_{j}\right)\right]_{k, j=1}^{m, l} & {\left[\boldsymbol{K}_{N}\left(z_{k}, z_{n}\right)\right]_{k, n=1}^{m}}
\end{array}\right] .
$$

In particular, it holds that

$$
R_{1,0}(x,-)=\operatorname{Pf}_{N}(x, x) \quad \text { and } \quad R_{0,1}(-, z)=\operatorname{Pf}_{N}(z, z)
$$

Recall that we set $\langle\cdot \mid \cdot\rangle=\langle\cdot \mid \cdot\rangle_{\mathbb{R}}+\langle\cdot \mid \cdot\rangle_{\mathbb{C}}$, where

$$
\begin{aligned}
\langle f \mid g\rangle_{\mathbb{R}} & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) g(y) \operatorname{sgn}(y-x) \Phi(x)^{-s} \Phi(y)^{-s} \mathrm{~d} \mu_{\mathbb{R}}(x) \mathrm{d} \mu_{\mathbb{R}}(y) \\
\langle f \mid g\rangle_{\mathbb{C}} & =-2 \mathrm{i} \int_{\mathbb{C}} \overline{f(z)} g(z) \operatorname{sgn}(\operatorname{lm}(z)) \Phi(z)^{-2 s} \mathrm{~d} \mu_{\mathbb{C}}(z)
\end{aligned}
$$

## Correlation Functions: Real Case

## Theorem (Borodin-Sinclair, 2009)

Let $N=2 J$ and $\pi_{0}, \ldots, \pi_{N-1}$ be skew-orthogonal polynomials w.r.t. $\langle\cdot \mid \cdot\rangle$. Set

$$
\kappa_{N}(u, v):=2 \Phi(u)^{-s} \Phi(v)^{-s} \sum_{n=0}^{J}\left(\pi_{2 n}(u) \pi_{2 n+1}(v)-\pi_{2 n}(v) \pi_{2 n+1}(u)\right)
$$

Then

$$
K_{N}(u, v)=\left[\begin{array}{cc}
\kappa_{N}(u, v) & \kappa_{N} \epsilon(u, v) \\
\epsilon \kappa_{N}(u, v) & \epsilon \kappa_{N} \epsilon(u, v)+\frac{1}{2} \operatorname{sgn}(u-v)
\end{array}\right]
$$

where $\operatorname{sgn}(\cdot)=0$ for non-real arguments and $\epsilon$ is the operator

$$
\epsilon f(u):= \begin{cases}\frac{1}{2} \int_{\mathbb{R}} f(t) \operatorname{sgn}(t-u) \mathrm{d} \mu_{\mathbb{R}}(t), & u \in \mathbb{R} \\ i \cdot \operatorname{sgn}(\operatorname{Im}(u)) f(\bar{u}), & u \in \mathbb{C} \backslash \mathbb{R}\end{cases}
$$

which acts on $u$ when written on the left and on $v$ when written on the right.

## Skew-Orthogonal Polynomials

The following results are from Sinclair-Ya. 2012 (complex case) and 2015 (real case).

## Theorem

It holds that

$$
\pi_{2 n}(z)=\frac{2}{\pi} \sum_{k=0}^{n} \frac{\Gamma(k+3 / 2) \Gamma(n-k+1 / 2)}{\Gamma(k+1) \Gamma(n-k+1)} z^{2 k}
$$

and

$$
\pi_{2 n+1}(z)=-\frac{1}{2 \pi} \sum_{k=0}^{n} \frac{s-(2 k+2)}{2 s} \frac{\Gamma(k+3 / 2) \Gamma(n-k-1 / 2)}{\Gamma(k+1) \Gamma(n-k+1)} z^{2 k+1}
$$

It is also true that

$$
\Pi_{n}(z)=\sqrt{\frac{n+1}{\pi}\left(1-\frac{n+1}{s}\right)} z^{n}
$$

## Expected Number of Real Zeros

Write $\tilde{\pi}_{k}(z):=\pi_{k}(z) \Phi(z)^{-s}$. Given $A \subseteq \mathbb{R}$ and $N$ even, it holds that

$$
\begin{aligned}
E\left[N_{A}\right] & =\int_{A} \operatorname{Pf} K_{N}(x, x) \mathrm{d} \mu_{\mathbb{R}}(x) \\
& =\int_{A} \operatorname{Pf}\left[\begin{array}{cc}
0 & \kappa_{N} \epsilon(x, x) \\
\epsilon \kappa_{N}(x, x) & 0
\end{array}\right] \mathrm{d} \mu_{\mathbb{R}}(x) \\
& =2 \sum_{n=0}^{N / 2} \int_{A}\left(\widetilde{\pi}_{2 n}(x) \epsilon \widetilde{\pi}_{2 n+1}(x)-\widetilde{\pi}_{2 n+1}(x) \epsilon \widetilde{\pi}_{2 n}(x)\right) d \mu_{\mathbb{R}}(x)
\end{aligned}
$$

## Expected Number of Real Zeros

## Theorem

Let $N_{\text {in }}$ and $N_{\text {out }}$ be the number of real roots on $[-1,1]$ and $\mathbb{R} \backslash(-1,1)$. Then

$$
\left\{\begin{array}{l}
E\left[N_{\text {in }}\right]=\frac{1}{\pi} \log N+O_{N}(1) \\
E\left[N_{\text {out }}\right]=-\frac{1}{\pi} \frac{\sqrt{N(2 s-N)}}{s} \log \left(1-N s^{-1}\right)+\sqrt{N s^{-1}} O_{N}(1)
\end{array}\right.
$$

where the implicit constants are uniform with respect to $s$.
Observe that

$$
E\left[N_{\text {out }}\right]=\left\{\begin{aligned}
\sqrt{N s^{-1}} O_{N}(1), & \lim \sup _{N \rightarrow \infty} N s^{-1}<1 \\
\frac{\alpha}{\pi} \log N+O_{N}(1), & s=N+N^{1-\alpha}, \alpha \in[0,1] \\
\frac{1}{\pi} \log N+O_{N}(1), & \lim \sup _{N \rightarrow \infty}(s-N)<\infty
\end{aligned}\right.
$$

## Expected Number of Zeros Around Points of the Unit Circle

Let $\zeta \in \mathbb{T}$ and $\delta$ be small. In the complex case we have that

$$
\begin{aligned}
E\left[N_{\zeta+\delta \mathbb{D}}\right] & =\int_{\zeta+\delta \mathbb{D}} K_{N}(z, z) \mathrm{d} \mu_{\mathbb{C}}(z) \\
& =\int_{\mathbb{D}} \delta^{2} K_{N}(\zeta+\delta z, \zeta+\delta z) \mathrm{d} \mu_{\mathbb{C}}(z)
\end{aligned}
$$

Similarly, in the real case we have for $\zeta \in \mathbb{T} \backslash\{ \pm 1\}$ that

$$
E\left[N_{\zeta+\delta \mathbb{D}}\right]=\int_{\zeta+\delta \mathbb{D}} \operatorname{Pf} K_{N}(z, z) \mathrm{d} \mu_{\mathbb{C}}(z)
$$

As we have $N$ total zeros, the scale should be $\delta=1 / N$.

## Expected Number of Zeros Around Points of the Unit Circle

## Theorem

Let $\zeta \in \mathbb{T}$. Assume that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ exists. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} K_{N}\left(\zeta+\frac{z}{N}, \zeta+\frac{w}{N}\right)=K_{\zeta}(z, w)
$$

where $\omega(\tau):=\min \left\{1, e^{-\operatorname{Re}(\tau) / \lambda}\right\}$ and

$$
K_{\zeta}(z, w)=\omega(z \bar{\zeta}) \omega(\bar{w} \zeta) \frac{1}{\pi} \int_{0}^{1} x(1-\lambda x) e^{(z \bar{\zeta}+\bar{w} \zeta) x} \mathrm{~d} x
$$

It holds that $\operatorname{Re}(z \bar{\zeta})>0$ iff $z$ points outside $\mathbb{D}$ at $\zeta$.

## Expected Number of Zeros Around Points of the Unit Circle

## Theorem

Let $\zeta \in \mathbb{T} \backslash\{ \pm 1\}$. Assume that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ exists. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} K_{N}\left(\zeta+\frac{z}{N}, \zeta+\frac{w}{N}\right)=\left[\begin{array}{cc}
0 & K_{\zeta}(z, w) \\
-K_{\zeta}(w, z) & 0
\end{array}\right]
$$

That is, Pfaffian point process becomes essentially determinantal around $\zeta$.

## Expected Number of Zeros Around Points of the Unit Circle

## Theorem

Let $\zeta \in \mathbb{T} \backslash\{ \pm 1\}$. Assume that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ exists. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} K_{N}\left(\zeta+\frac{z}{N}, \zeta+\frac{w}{N}\right)=\left[\begin{array}{cc}
0 & K_{\zeta}(z, w) \\
-K_{\zeta}(w, z) & 0
\end{array}\right]
$$

That is, Pfaffian point process becomes essentially determinantal around $\zeta$.

## Theorem

Let $\xi \in\{ \pm 1\}$. Assuming that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ exists, it holds that

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \kappa_{N}\left(x+\frac{u}{N}, \xi+\frac{v}{N}\right)=\kappa_{\xi}(u, v)
$$

where the convergence is locally uniform in $\mathbb{C} \times \mathbb{C}$,
$\kappa_{\xi}(u, v)=\omega(u \xi) \omega(v \xi) \frac{\xi}{4} \int_{0}^{1} \tau(1-\lambda \tau)\left(M^{\prime}(u \xi \tau) M(v \xi \tau)-M(u \xi \tau) M^{\prime}(v \xi \tau)\right) \mathrm{d} \tau$,
and $M(z)={ }_{1} F_{1}(3 / 2,1 ; z)$, i.e., $z M^{\prime \prime}(z)+(1-z) M^{\prime}(z)-\frac{3}{2} M(z)=0$.

## Expected Number of Zeros Around



The scaled intensity of complex roots near 1 , for $\lambda=1$ (left) and $\lambda=0$ (right). Note how the roots tend to accumulate near the unit disk (the $y$-axis here) and repel from the real axis.

## Theorem

Assuming that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ exists, it holds that

$$
\lim _{N \rightarrow \infty} K_{N}(z, w)=\frac{1}{\pi} \frac{1}{(1-z \bar{w})^{2}}
$$

and

$$
\lim _{N \rightarrow \infty} \kappa_{N}(u, v)=\frac{1}{4 \pi} \int_{\mathbb{T}} \frac{(v \sqrt{-\tau}-u \sqrt{-\bar{\tau}})|\mathrm{d} \tau|}{\left(1-u^{2} \bar{\tau}\right)^{3 / 2}\left(1-v^{2} \tau\right)^{3 / 2}}
$$

locally uniform in $\mathbb{D} \times \mathbb{D}$, where $\sqrt{-\tau}$ is the branch defined by $-\frac{2}{\pi} \sum_{-\infty}^{\infty} \frac{\tau^{m}}{2 m-1}$.

## Expected Number of Zeros on Bounded Subsets of

## Theorem

Assuming that $\lambda:=\lim _{N \rightarrow \infty} N s^{-1} \in[0,1]$ amd $c:=\lim _{N \rightarrow \infty}(s-N) \in[0, \infty]$ exist, it holds that

$$
\lim _{N \rightarrow \infty} \frac{|z \bar{w}|^{s}}{(z \bar{w})^{N}} \frac{K_{N}(z, w)}{s-N}=\frac{\lambda}{\pi} \frac{1}{z \bar{w}-1}\left[1+\frac{c^{-1}}{z \bar{w}-1}\right]
$$

and

$$
\lim _{N \rightarrow \infty} \frac{|u v|^{s}}{(u v)^{N}} \frac{\kappa_{N}(u, v)}{s-N}=\frac{\lambda}{\pi} \frac{1}{u v-1}\left[1+\frac{c^{-1}}{u v-1}\right] \frac{v-u}{\sqrt{u^{2}-1} \sqrt{v^{2}-1}}
$$

## Expected Number of Zeros on Bounded Subsets of



The limiting intensity of complex roots outside the disk, with a close up view near $z=1$, for the Mahler measure $(c=1)$ case.

