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Mahler Measure

The Mahler measure of a polynomial P(z) = a
∏N

n=1(z − αn) is defined as

M(P) := |a|
N∏

n=1

max
{

1, |αn|
}

= exp

{
1

2π

∫ 2π

0

log
∣∣P(eiθ)∣∣dθ} .

Theorem (Kronecker, 1857)

M(P) = 1 for a polynomial P with integer coefficients iff P is a product of

monomials and cyclotomic polynomials (divisors of zn − 1). Necessarily, such a

polynomial has all its roots in T ∪ {0}.

Conjecture (Lehmer, 1933)

Is 1 an isolated point of the range of M(·) on integer polynomials?

Lehmer himself constructed the smallest known example:

M(z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1) ≈ 1.18.
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Number of Integer Polynomials

Theorem (Chern-Vaaler, 2001)

The number of integer polynomials of height at most T behaves as

vol
(
BN

)
TN+1 +O(TN), T →∞,

where BN is the Mahler measure unit star body. Moreover,

vol
(
BN

)
=

2

N + 1
FN (N + 1) ,

where

FN(s) = CN

b(N−1)/2c∏
m=0

s

s − (N − 2m)

and CN is an explicit constant.

Notice that Lehmer’s conjecture asks what happens when T → 1.

Observe also that both (z − 1)N and zN − 1 belong to BN but have drastically

different coefficient vectors.



Volumes of Star Bodies

More generally, the λ-homogeneous Mahler measure is given by

Mλ(P) = |a|λ
N∏

n=1

max
{

1, |αn|
}
.

The corresponding unit star body is defined as

BλN :=

{
(a1, . . . , aN+1) ∈ RN+1 : Mλ

(
N∑

n=0

an+1z
n

)
≤ 1

}
.

Theorem (Chern-Vaaler, 2001)

vol
(
BλN
)

=
2

N + 1
FN

(
N + 1

λ

)
.



Volumes of Star Bodies

vol
(
BλN
)

=

∫ ∞
−∞

vol

{
b : Mλ

(
czN +

N−1∑
n=0

bn+1z
n

)
≤ 1

}
dc

=

∫ ∞
−∞

vol

{
cb : Mλ

(
czN +

N−1∑
n=0

cbn+1z
n

)
≤ 1

}
dc.

Using the λ-homogeneity of Mλ one then gets

vol
(
BλN
)

= 2

∫ ∞
0

cNvol
{
b : M(b) ≤ c−λ

}
dc

=
2

λ

∫ ∞
0

ξ−(N+1)/λvol
{
b : M(b) ≤ ξ

}dξ
ξ
,

where M(b) is the Mahler measure of zN +
∑N−1

n=0 bn+1z
n. Integration by parts

then gives

vol
(
BλN
)

=
2

N + 1

∫ ∞
0

ξ−(N+1)/λdvol
{
b : M(b) ≤ ξ

}
=

2

N + 1

∫
RN

M(b)−(N+1)/λdµN
R (b).



Volumes of Star Bodies

Making a change of variables from coefficients of polynomials to their roots

gives

FN(s) :=

∫
RN

M(b)−sdµN
R (b) =

∑
L+2M=N

ZL,M(s)

L!M!
,

where L and M stand for the number of real and complex roots, and

ZL,M(s) =

∫
RL

∫
CM

L∏
l=1

Φ(αl)
−s

M∏
m=1

Φ(βm)−2s |∆(α,β)|dµL
R(α)dµM

C (β)

with ∆(α,β) being the Vandermonde of α1, . . . , αL, β1, β1, . . . , βM , βM .

The summands ZL,M(s) are not simple and Chern-Vaaler went through a dozen

pages of rational function identities to show that

FN(s) = CN

b(N−1)/2c∏
m=0

s

s − (N − 2m)
.



Complex Star Bodies

In fact, one could consider polynomials with complex coefficients. Set

BλN (C) :=

{
(a1, . . . , aN+1) ∈ CN+1 : Mλ

(
N∑

n=0

an+1z
n

)
≤ 1

}
.

Then

vol
(
BλN (C)

)
=

∫
C

vol

{
b : Mλ

(
czN +

N−1∑
n=0

bn+1z
n

)
≤ 1

}
dc

=

∫
C
|c|2Nvol

{
b : M(b) ≤ |c|−λ

}
dc

=
π

N + 1

∫ ∞
0

ξ−2(N+1)/λdvol
{
b : M(b) ≤ 1

}
=

π

N + 1

∫
CN

M(b)−2(N+1)/λµN
C (b).



Complex Star Bodies

As before, making a change of variables from the coefficients to the roots gives

GN(s) :=

∫
CN

M(b)−2sdµN
C (b) =

ZN(s)

N!
,

where

ZN(s) =

∫
CN

N∏
n=1

Φ(λn)−2s |∆(λ)|2dµN
C (λ)

= (2π)N
∑
σ

(
N∏

n=1

∫ ∞
0

Φ(ρn)−2sρ2σ(n)−1
n dρn

)

= (2π)N
∑
σ

(
N∏

n=1

s

2σ(n)(s − σ(n))

)
= πN

N∏
n=1

s

s − n
.

Theorem (Chern-Vaaler, 2001)

vol
(
BλN (C)

)
=

π

N + 1
GN

(
N + 1

λ

)
.



Determinantal Interpretation

Theorem (Sinclair, 2008)

Let Π0, . . . ,ΠN−1 be polynomials such that

〈Πn|Πm〉 = δn,m,

where inner product 〈·|·〉 is defined by

〈f |g〉C =

∫
C
f (z)g(z)Φ(z)−2sdµC(z),

with Φ(z) := max{1, |z |}. Then

GN(s) =
N−1∏
n=0

γ−2
n ,

where Πk(z) = γkz
k + · · ·.



Pfaffian Interpretation

Theorem (Sinclair, 2008)

Let π0, . . . , πN−1 be polynomials such that

〈π2n|π2m〉 = 〈π2n+1|π2m+1〉 = 0 and 〈π2n|π2m+1〉 = δn,m,

where skew-symmetric inner product 〈·|·〉 = 〈·|·〉R + 〈·|·〉C is defined by

〈f |g〉R =

∫
R

∫
R
f (x)g(y)sgn(y − x)Φ(x)−sΦ(y)−sdµR(x)dµR(y)

〈f |g〉C = −2i

∫
C
f (z)g(z)sgn(Im(z))Φ(z)−2sdµC(z),

with Φ(z) = max{1, |z |}. Then

FN(s) =

b(N−1)/2c∏
n=0

(
γ2nγ2n+1

)−1
,

where πk(z) = γkz
k + · · ·.



Random Polynomials

Recall that

GN(s) =

∫
CN

M(b)−2sdµN
C (b) and FN(s) =

∫
RN

M(b)−sdµN
R (b).

Under a random polynomial we mean a polynomial chosen with respect to

M(b)−2s/GN(s), b ∈ CN , or M(b)−s/FN(s), b ∈ RN .

This is equivalent to choosing polynomials uniformly from B
(N+1)s−1

N .

We would like to study fine statistics of zeros of such random polynomials.



Numerical Simulation

A simultaneous plot of the roots of 100 random polynomials of degree 28. A

ball-walk of 10, 000 steps of length .01 starting from x28 was performed for

each polynomial. The arrows indicate directions of outlying roots.



Correlation Functions: Complex Case

Let P be a random polynomial. For C ⊂ C define NC := ]C ∩ {zeros of P}.

In the case of complex coefficients, a function Rn : Cn → [0,∞) is called n-th

correlation function if

E [NC1 · · ·NCn ] =

∫
C1

· · ·
∫
Cn

Rn(z)dµn
C(z)

for pairwise disjoint sets C1, . . . ,Cn. Since the joint density of the zeros is given

by

1

ZN(s)

∏
m<n

|λn − λm|2
N∏

n=1

Φ(λn)−2sdµN
C (λ),

Φ(z) = max{1, |z |}, it is well known in random matrix theory that

Rn(λ) = det
[
KN(λi , λj)

]n
i,j=1

,

where

KN(z ,w) := Φ(z)−sΦ(w)−s
N−1∑
n=0

Πn(z)Πn(w)

and Πn are orthonormal polynomials w.r.t. Φ−2s(z)dµC(z).



Correlation Functions: Real Case

In the case of real coefficients, if there is a function Rl,m : Rl × Cm
+ → [0,∞)

such that

E
[
NA1 · · ·NAlNB1 · · ·NBm

]
:=

∫
A1

· · ·
∫
Al

∫
B1

· · ·
∫
Bm

Rl,m(x , z)dµl
R(x)dµm

C (z)

for pairwise disjoint sets A1, . . . ,Al ⊂ R and B1, . . . ,Bm ⊂ C+, then it is called

the (l ,m)-th correlation function.

When such functions exist, it holds in particular that

deg(P) =

∫
R
R1,0(x ,−)dµR(x) +

∫
C
R0,1(−, z)dµC(z)

and the first integral represents the expected number of real zeros, where we

set Rl,m(·, z) := Rl,m(·, z).



Correlation Functions: Real Case

Theorem (Borodin-Sinclair, 2009)

There exists a 2× 2 matrix kernel KN : C× C→ C2×2 such that

Rl,m(x , z) = Pf

 [
KN(xi , xj)

]l
i,j=1

[
KN(xi , zn)

]l,m
i,n=1

−
[
KT

N (zk , xj)
]m,l
k,j=1

[
KN(zk , zn)

]m
k,n=1

 .
In particular, it holds that

R1,0(x ,−) = PfKN(x , x) and R0,1(−, z) = PfKN(z , z).

Recall that we set 〈·|·〉 = 〈·|·〉R + 〈·|·〉C, where

〈f |g〉R =

∫
R

∫
R
f (x)g(y)sgn(y − x)Φ(x)−sΦ(y)−sdµR(x)dµR(y)

〈f |g〉C = −2i

∫
C
f (z)g(z)sgn(Im(z))Φ(z)−2sdµC(z).



Correlation Functions: Real Case

Theorem (Borodin-Sinclair, 2009)

Let N = 2J and π0, . . . , πN−1 be skew-orthogonal polynomials w.r.t. 〈·|·〉. Set

κN(u, v) := 2Φ(u)−sΦ(v)−s
J∑

n=0

(
π2n(u)π2n+1(v)− π2n(v)π2n+1(u)

)
.

Then

KN(u, v) =

 κN(u, v) κNε(u, v)

εκN(u, v) εκNε(u, v) + 1
2
sgn(u − v)

 ,
where sgn(·) = 0 for non-real arguments and ε is the operator

εf (u) :=


1
2

∫
R f (t)sgn(t − u)dµR(t), u ∈ R,

i · sgn(Im(u))f (u), u ∈ C \ R,

which acts on u when written on the left and on v when written on the right.



Skew-Orthogonal Polynomials

The following results are from Sinclair-Ya. 2012 (complex case) and 2015 (real

case).

Theorem

It holds that

π2n(z) =
2

π

n∑
k=0

Γ(k + 3/2)Γ(n − k + 1/2)

Γ(k + 1)Γ(n − k + 1)
z2k

and

π2n+1(z) = − 1

2π

n∑
k=0

s − (2k + 2)

2s

Γ(k + 3/2)Γ(n − k − 1/2)

Γ(k + 1)Γ(n − k + 1)
z2k+1.

It is also true that

Πn(z) =

√
n + 1

π

(
1− n + 1

s

)
zn.



Expected Number of Real Zeros

Write π̃k(z) := πk(z)Φ(z)−s . Given A ⊆ R and N even, it holds that

E [NA] =

∫
A

PfKN(x , x)dµR(x)

=

∫
A

Pf

[
0 κNε(x , x)

εκN(x , x) 0

]
dµR(x)

= 2

N/2∑
n=0

∫
A

(
π̃2n(x)επ̃2n+1(x)− π̃2n+1(x)επ̃2n(x)

)
dµR(x).



Expected Number of Real Zeros

Theorem

Let Nin and Nout be the number of real roots on [−1, 1] and R \ (−1, 1). Then
E [Nin] =

1

π
logN + ON(1)

E [Nout] = − 1

π

√
N(2s − N)

s
log
(
1− Ns−1)+

√
Ns−1ON(1),

where the implicit constants are uniform with respect to s.

Observe that

E [Nout] =


√
Ns−1ON(1), lim supN→∞ Ns−1 < 1,

α
π

logN + ON(1), s = N + N1−α, α ∈ [0, 1],

1
π

logN + ON(1), lim supN→∞(s − N) <∞.



Expected Number of Zeros Around Points of the Unit Circle

Let ζ ∈ T and δ be small. In the complex case we have that

E
[
Nζ+δD

]
=

∫
ζ+δD

KN(z , z)dµC(z)

=

∫
D
δ2KN

(
ζ + δz , ζ + δz

)
dµC(z).

Similarly, in the real case we have for ζ ∈ T \ {±1} that

E
[
Nζ+δD

]
=

∫
ζ+δD

PfKN(z , z)dµC(z).

As we have N total zeros, the scale should be δ = 1/N.



Expected Number of Zeros Around Points of the Unit Circle

Theorem

Let ζ ∈ T. Assume that λ := limN→∞ Ns−1 ∈ [0, 1] exists. Then

lim
N→∞

1

N2
KN

(
ζ +

z

N
, ζ +

w

N

)
= Kζ(z ,w),

where ω(τ) := min
{

1, e−Re(τ)/λ
}

and

Kζ(z ,w) = ω
(
zζ
)
ω
(
wζ
) 1

π

∫ 1

0

x(1− λx)e(zζ+wζ)xdx .

It holds that Re(zζ) > 0 iff z points outside D at ζ.



Expected Number of Zeros Around Points of the Unit Circle

Theorem

Let ζ ∈ T \ {±1}. Assume that λ := limN→∞ Ns−1 ∈ [0, 1] exists. Then

lim
N→∞

1

N2
KN

(
ζ +

z

N
, ζ +

w

N

)
=

[
0 Kζ(z ,w)

−Kζ(w , z) 0

]
,

That is, Pfaffian point process becomes essentially determinantal around ζ.

Theorem

Let ξ ∈ {±1}. Assuming that λ := limN→∞ Ns−1 ∈ [0, 1] exists, it holds that

lim
N→∞

1

N2
κN

(
x +

u

N
, ξ +

v

N

)
= κξ(u, v)

where the convergence is locally uniform in C× C,

κξ(u, v) = ω (uξ)ω (vξ)
ξ

4

∫ 1

0

τ(1−λτ)

(
M ′(uξτ)M(vξτ)−M(uξτ)M ′(vξτ)

)
dτ,

and M(z) = 1F1(3/2, 1; z), i.e., zM ′′(z) + (1− z)M ′(z)− 3
2
M(z) = 0.



Expected Number of Zeros Around Points of the Unit Circle
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KN
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z

N
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w

N
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=
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Theorem

Let ξ ∈ {±1}. Assuming that λ := limN→∞ Ns−1 ∈ [0, 1] exists, it holds that

lim
N→∞

1

N2
κN

(
x +

u

N
, ξ +

v

N

)
= κξ(u, v)

where the convergence is locally uniform in C× C,

κξ(u, v) = ω (uξ)ω (vξ)
ξ

4

∫ 1

0

τ(1−λτ)

(
M ′(uξτ)M(vξτ)−M(uξτ)M ′(vξτ)

)
dτ,

and M(z) = 1F1(3/2, 1; z), i.e., zM ′′(z) + (1− z)M ′(z)− 3
2
M(z) = 0.



Expected Number of Zeros Around ±1

The scaled intensity of complex roots near 1, for λ = 1 (left) and λ = 0 (right).

Note how the roots tend to accumulate near the unit disk (the y -axis here) and

repel from the real axis.



Expected Number of Zeros on Compact Subsets of D

Theorem

Assuming that λ := limN→∞ Ns−1 ∈ [0, 1] exists, it holds that

lim
N→∞

KN(z ,w) =
1

π

1

(1− zw)2

and

lim
N→∞

κN(u, v) =
1

4π

∫
T

(
v
√
−τ − u

√
−τ
)
|dτ |(

1− u2τ
)3/2(

1− v 2τ
)3/2

locally uniform in D× D, where
√
−τ is the branch defined by − 2

π

∑∞
−∞

τm

2m−1
.



Expected Number of Zeros on Bounded Subsets of C \ D

Theorem

Assuming that λ := limN→∞ Ns−1 ∈ [0, 1] amd c := limN→∞(s − N) ∈ [0,∞]

exist, it holds that

lim
N→∞

|zw |s

(zw)N
KN(z ,w)

s − N
=
λ

π

1

zw − 1

[
1 +

c−1

zw − 1

]
and

lim
N→∞

|uv |s

(uv)N
κN(u, v)

s − N
=
λ

π

1

uv − 1

[
1 +

c−1

uv − 1

]
v − u√

u2 − 1
√
v 2 − 1

.



Expected Number of Zeros on Bounded Subsets of C \ D

The limiting intensity of complex roots outside the disk, with a close up view

near z = 1, for the Mahler measure (c = 1) case.


