Advances in Asymptotics of Multiple Orthogonal Polynomials for Angelesco Systems

Maxim L. Yattselev

Journées Approximation, 6

Université de Lille May 15th, 2024 This talk is based on

• M.Y., Strong asymptotics of Hermite–Padé approximants for Angelesco systems with complex weights, *Canad. J. Math.*, 2016

• A. Aptekarev, S. Denisov, and M.Y., Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials, *Trans. Amer. Math. Soc.*, 2020

• A. Aptekarev, S. Denisov, and M.Y., Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum, *J. Spectr. Theory*, 2021

• S. Denisov, and M.Y., Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality. *Adv. Math.*, 2022

• A. Aptekarev, S. Denisov, and M.Y., Strong asymptotics of multiple orthogonal polynomials for Angelesco systems. Part I: non-marginal directions, *submitted*

• M.Y., Uniformity of strong asymptotics in Angelesco systems, to be submitted

Let μ be a probability measure with bounded infinite support on the real line. Define $P_n(x)$ to be the monic orthogonal polynomial of degree n, i.e.,

$$\int P_n(x)x^k d\mu(x) = 0, \quad k = \overline{0, n-1}.$$

When $d\mu(x)$ is the arcsine distribution on [-1, 1], i.e., $d\omega(x) = \frac{dx}{\pi\sqrt{1-x^2}}$, it holds that

$$P_n(z) = T_n^{\star}(z) = 2^{-n} \left(\Phi^n(z) + \Phi^{-n}(z) \right), \quad \Phi(z) = z + \sqrt{z^2 - 1},$$

is the monic Chebyshëv polynomial of the second kind.

It holds that

$$\frac{1}{n}\log|T_n^{\star}(z)| \sim \log\left|\frac{z+\sqrt{z^2-1}}{2}\right| = -V^{\omega}(z),$$

where $V^{\sigma}(z) = -\int \log |x - y| d\sigma(y)$ is the logarithmic potential of σ .

The arcsine distribution is the logarithmic equilibrium distribution on [-1, 1]:

$$\int \log \frac{1}{|x-y|} d\omega(x) d\omega(y) \le \int \log \frac{1}{|x-y|} d\sigma(x) d\sigma(y)$$

for any probability Borel measure σ on [-1, 1]. Equivalently, it is the unique measure such that

$$V^{\sigma}(z) \leq C \ z \in \mathbb{C}, \quad V^{\sigma}(z) \geq C \ \text{q.e.} \ z \in \text{supp}(\sigma),$$

for some constant *C*.

Theorem (Stahl - Totik (book))

If the measure μ is UST-regular, then

$$\frac{1}{n}\log|P_n(z)| \sim -V^{\omega_{\mathrm{supp}}(\mu)}(z),$$

where $\omega_{supp}(\mu)$ is the logarithmic equilibrium distribution of $supp(\mu)$.

Let $\Delta(\mu)$ be the convex hull of $\operatorname{supp}(\mu)$. If

$$\liminf_{r \to 0} \log \mu([x - r, x + r]) \ge 0$$

for almost every $x \in \Delta(\mu)$, then μ is UST-regular.

The monic orthogonal polynomials satisfy the three-term recurrence relations:

$$xP_n(x) = P_{n+1}(x) + b_n P_n(x) + a_{n-1}P_{n-1}(x)$$

with $P_{-1} := 0$, $P_0 = 1$, and $a_n > 0$. In the case of Chebyshëv polynomials it holds that

$$xT_n^{\star}(x) = T_{n+1}^{\star}(x) + (1/4)T_{n-1}^{\star}(x).$$

Theorem (Nevai)

If $\operatorname{supp}(\mu) = [-1, 1]$, then $\frac{P_{n+1}(z)}{P_n(z)} \sim \frac{z + \sqrt{z^2 - 1}}{2} \quad \Leftrightarrow \quad b_n \to 0, \ a_n \to 1/4.$

The above conditions are satisfied if

$$d\mu(x) = \mu'(x)dx + d\mu^s(x),$$

and $\mu'(x) > 0$ almost everywhere on [-1, 1].

Let $c_n = \sqrt{a_n}$. The Jacobi matrix \mathcal{J} , defined by

$$\mathcal{J} := \left[\begin{array}{ccccc} b_0 & c_0 & 0 & \dots \\ c_0 & b_1 & c_1 & \dots \\ 0 & c_1 & b_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right],$$

is symmetric in $\ell^2(\mathbb{Z}_+)$. Since the sequences $\{a_n\}$ and $\{b_n\}$ are both bounded, the operator \mathcal{J} is bounded and self-adjoint.

 $\ell^2(\mathbb{Z}_+)$ is equal to the cyclic subspace of $(1, 0, 0, \ldots)$. The spectral measure of this element is μ .

Theorem (Blumenthal-Weyl)

Let parameters $\{a_n, b_n\}$ be such that $a_n \to 1/4$ and $b_n \to 0$. Then the corresponding Jacobi operator satisfies

$$\sigma_{\rm ess}(\mathcal{J}) = [-1, 1].$$

L^2 Minimality

For any polynomial $Q_{n-1}(x)$ of degree n-1 it holds that

$$\int (P_n + Q_{n-1})^2 d\mu = \int P_n^2 d\mu + 2 \int P_n Q_{n-1} d\mu + \int Q_{n-1}^2 d\mu$$
$$= \int P_n^2 d\mu + \int Q_{n-1}^2 d\mu \ge \int P_n^2 d\mu.$$

If we expect that

$$P_n(z) \sim \frac{\Phi^n(z)}{2^n} \frac{G(\infty)}{G(z)}$$

for some non-vanishing analytic function off [-1, 1], then

$$|G(\infty)|^2 \int |G_{\pm}(x)|^{-2} d\mu(x)$$

should be minimal in some suitable space of non-vanishing holomorphic functions.

Theorem (Szegő (book))

If $\operatorname{supp}(\mu) = [-1, 1]$, $d\mu(x) = v(x)d\omega(x) + d\mu^s(x)$, and $v \in L^1(\omega)$, then

$$P_n(z) \sim \frac{\Phi^n(z)}{2^n} \frac{G_\mu(\infty)}{G_\mu(z)},$$

where

$$G_{\mu}(z) = \exp\left\{\frac{\sqrt{z^2 - 1}}{2}\int \log v(x)\frac{d\omega(x)}{z - x}\right\}$$

(this is an outer function off [-1, 1] such that $|G_{\mu\pm}(x)|^2 = v(x)$).

In what follows, the measures with the above property will be called Szegő measures.

Let $\mu_i, i \in I_d = \{1, 2, \dots, d\}$, be compactly supported Borel measures on the real line such that

$$\Delta(\mu_i) < \Delta(\mu_j), \quad i < j,$$

where $\Delta(\mu_i)$ is the convex hull of the support of μ_i . This is an Angelesco system of *d* measures.

Type II MOP corresponding to a multi-index $\vec{n} = (n_1, n_2, \dots, n_d)$ is defined as the unique monic polynomial of degree $|\vec{n}| := n_1 + n_2 + \dots + n_d$ such that

$$\int x^k P_{\vec{n}}(x) d\mu_i(x) = 0, \quad k = \overline{0, n_i - 1}.$$

This polynomial has n_i zeros on $\Delta(\mu_i)$. We can write $P_{\vec{n}}(z) = P_{\vec{n},1}(z) \cdots P_{\vec{n},d}(z)$.

Tools developed to understand OPs yield that the asymptotic behavior of MOPs for Angelesco systems is governed by the following potential theoretic extremal problem:

If $\vec{n}/|\vec{n}| \rightarrow \vec{c} \in (0,1)^d$, $c_1 + c_2 + \dots + c_d = |\vec{c}| = 1$, one needs to find measures $\omega_{\vec{c},1}, \omega_{\vec{c},2}, \dots, \omega_{\vec{c},d}$ such that $\begin{cases}
\sup \omega_{\vec{c},i} \subseteq \Delta(\mu_i), & |\omega_{\vec{c},i}| = c_i, \\
V^{\omega_{\vec{c},i} + \sum \omega_{\vec{c},j}} = \ell_i, & \sup p \omega_{\vec{c},i}, \\
V^{\omega_{\vec{c},i} + \sum \omega_{\vec{c},j}} < \ell_i, & x \in \Delta(\mu_i) \setminus \sup p \omega_{\vec{c},i},
\end{cases}$ for some constants $\ell_i, i \in I_d$.

Theorem (Gonchar-Rakhmanov 1981)

For any $\vec{c} \in (0,1)^d$, $|\vec{c}| = 1$, the vector-measure $(\omega_{\vec{c},1}, \omega_{\vec{c},2}, \dots, \omega_{\vec{c},d})$ exists, is unique, and it holds that

$$\operatorname{supp} \omega_{\vec{c},i} = \Delta_{\vec{c},i} = [\alpha_{\vec{c},i}, \beta_{\vec{c},i}].$$

If each μ_i is absolutely continuous w.r.t. Lebesgue measure and $\mu'_i(x) > 0$ a.e. on $\Delta(\mu_i)$, then for each $i \in I_d$ it holds that

$$\frac{n_i}{|\vec{n}|} \log |P_{\vec{n},i}(z)| \sim -V^{\omega_{\vec{c},i}}(z)$$

and the zero counting measures of $P_{\vec{n},i}$ converge weak^{*} to $\omega_{\vec{c},i}$ as $\vec{n}/|\vec{n}| \rightarrow \vec{c}$.

Theorem (Van Assche 2011)

It holds for any $j \in I_d$ that

$$xP_{\vec{n}}(x) = P_{\vec{n}+\vec{e}_j}(x) + b_{\vec{n},j}P_{\vec{n}}(x) + \sum_{i \in I_d} a_{\vec{n},i}P_{\vec{n}-\vec{e}_i}(x)$$

where \vec{e}_i is the *i*-th coordinate vector.

Theorem (Van Assche 2015)

If $a_{\vec{n},i}, b_{\vec{n},i}$ have limits $A_{\vec{c},i}, B_{\vec{c},i}$ as $\vec{n}/|\vec{n}| \to \vec{c} \in (0,1)^d$, $|\vec{c}| = 1$, then

$$\lim \frac{P_{\vec{n}+\vec{e_j}}(x)}{P_{\vec{n}}(x)} = z(x) - B_{\vec{c},j}$$

for each $j \in I_d$, where $z(x) - x \to 0$ as $x \to \infty$ and

$$x = z + \sum_{i} \frac{A_{\vec{c},i}}{z - B_{\vec{c},i}}.$$

Homogeneous Rooted Tree

Let \mathcal{T} be the rooted tree of all possible paths on \mathbb{N}^d starting at $(1, 1, \ldots, 1)$.

We denote the set of all vertices of \mathcal{T} by \mathcal{V} . We let

 $\ell: \mathcal{V} \to I_d, \quad Y \mapsto \ell_Y \text{ such that } \Pi(Y) = \Pi(Y_{(p)}) + \vec{e}_{\ell_Y},$

where Π is the natural projection of \mathcal{V} onto \mathbb{N}^d .

Define two interaction functions $A, B : \mathcal{V} \to \mathbb{R}$ by

$$\begin{cases} A_Y := a_{\Pi(Y_{(p)}), \ell_Y}, & B_Y := b_{\Pi(Y_{(p)}), \ell_Y}, & Y \neq O, \\ A_O := 1, & B_O := \sum_i \kappa_i b_{\vec{1} - \vec{e}_i, 1}, & Y = O. \end{cases}$$

The corresponding Jacobi operator can be defined as

$$\begin{cases} (\mathcal{J}_{\vec{\kappa}}f)_Y &:= A_Y^{1/2} f_{Y_{(p)}} + (Bf)_Y + \sum_i (A^{1/2}f)_{Y_{(ch),i}}, \\ (\mathcal{J}_{\vec{\kappa}}f)_O &:= (Bf)_O + \sum_i (A^{1/2}f)_{O_{(ch),i}}. \end{cases}$$

 $\mathcal{J}_{\vec{\kappa}}$ is a bounded and self-adjoint operator on $\ell^2(\mathcal{V})$.

Fix $\vec{c} \in (0, 1)^d$, $|\vec{c}| = 1$, and let $\{\Delta_{\vec{c},i}\}$ be the supports of the vector-equilibrium measure corresponding to \vec{c} . Set

$$\mathfrak{S}^{(0)}_{\vec{c}} = \overline{\mathbb{C}} \setminus \cup_i \Delta_{\vec{c},i} \quad \text{and} \quad \mathfrak{S}^{(j)}_{\vec{c}} = \overline{\mathbb{C}} \setminus \Delta_{\vec{c},j}, \ j \in I_d.$$

Glue them to each other cross-wise in a standard manner.

Theorem (Aptekarev-Denisov-Ya. 2020)

Let all the measures μ_i be absolutely continuous with respect the Lebesgue measure and $\mu'_i(x)$ be Fisher-Hartwig perturbations of analytic and non-vanishing densities. Then

$$a_{\vec{n},i} \to A_{\vec{c},i}$$
 and $b_{\vec{n},i} \to B_{\vec{c},i}$

as $\vec{n}/|\vec{n}| \to \vec{c} \in (0,1)^d$, $|\vec{c}| = 1$, where $\chi_{\vec{c}} : \mathfrak{S}_{\vec{c}} \to \overline{\mathbb{C}}$ is conformal and such that

$$\chi_{\vec{c}}^{(0)}(z) = z + O\left(\frac{1}{z}\right) \text{ and } \chi_{\vec{c}}^{(i)}(z) =: B_{\vec{c},i} + \frac{A_{\vec{c},i}}{z} + O\left(\frac{1}{z^2}\right).$$

Theorem (Aptekarev-Denisov-Ya. 2021)

Let d = 2 and $\mu'_i(x)$ be analytic and positive. Then

$$a_{\vec{n},i} \to A_{c,i}$$
 and $b_{\vec{n},i} \to B_{c,i}$

as $\vec{n}/|\vec{n}|
ightarrow (c,1-c) \in [0,1]^2$, where

$$A_{0,2} = \left(\frac{\beta_2 - \alpha_2}{4}\right)^2, \quad B_{0,2} = \frac{\beta_2 + \alpha_2}{2}, \quad A_{0,1} = 0, \quad B_{0,1} = B_{0,2} + \varphi_2(\alpha_1),$$

and $\varphi_2(z) = z + O(1)$ is the conformal map of the complement of $\Delta(\mu_2) = [\alpha_2, \beta_2]$ to the complement of a disk.

Theorem (Aptekarev-Denisov-Ya. 2021)

Let $A_{c,1}, A_{c,2}, B_{c,1}, B_{c,2}$ be as in the previous theorem (coming from some intervals $\Delta_1 < \Delta_2$). Further, let $\mathcal{J}_{\vec{\kappa}}$ be a Jacobi operator constructed as before for *some* constants $\{a_{\vec{n},1}, a_{\vec{n},2}, b_{\vec{n},1}, b_{\vec{n},2}\}$. If

$$a_{\vec{n},i} \to A_{c,i}$$
 and $b_{\vec{n},i} \to B_{c,i}$

as $\vec{n}/|\vec{n}| \to (c, 1-c) \in [0, 1]^2$, then $\sigma_{\text{ess}}(\mathcal{J}_{\vec{\kappa}}) = \Delta_1 \cup \Delta_2$.

Theorem (Denisov-Ya. 2022)

Let $\mathcal{J}_{\mathcal{R}}$ be a Jacobi operator of an Angelesco system on $\Delta(\mu_1), \Delta(\mu_2)$. Then $\ell^2(\mathcal{V})$ admits a decomposition into an orthogonal sum of cyclic subspaces of $\mathcal{J}_{\mathcal{R}}$ and there is a semi-explicit representation for the spectral measure of generating element of each cyclic subspace. In particular,

 $\sigma(\mathcal{J}_{\vec{\kappa}}) \subseteq \Delta(\mu_1) \cup \Delta(\mu_2) \cup E_{\vec{\kappa}},$

where $E_{\vec{\kappa}}$ is either one point or empty. If each supp $\mu_i = \Delta(\mu_i)$, then \subseteq is =.

Theorem (Aptekarev 1988)

Let d = 2, $\vec{n} = (n, n)$, μ_i be absolutely continuous and Szegő. Further, let (ω_1, ω_2) be the vector-equilibrium measure for $\Delta(\mu_1), \Delta(\mu_2)$ corresponding to $\vec{c} = (1/2, 1/2)$. Then it holds that

$$P_{n,i}(z) \sim \exp\left\{2n \int \log(z-x)d\omega_i(x)\right\} \frac{S_i(\infty)}{S_i(z)}$$

for i = 1, 2, where the Szegő functions $S_i(z)$ can be constructed as a unique solution of a simultaneous norm minimization problem in Hardy spaces among non-vanishing functions.

Theorem (Ya. 2016)

Let $\mu_i'(x), i \in I_d$, be Fisher-Hartwig perturbations of analytic and non-vanishing densities. Then

$$P_{\vec{n},i}(z) \sim \exp\left\{ |\vec{n}| \int \log(z-x) d\omega_{\vec{n},i}(x) \right\} \frac{S_{\vec{c},i}(\infty)}{S_{\vec{c},i}(z)}$$

as $\vec{n}/|\vec{n}| \rightarrow \vec{c} \in (0,1)^d$, $i \in I_d$, where the function $S_{\vec{c},i}(z)$ were constructed using explicit integral representation via discontinuous Cauchy kernel on $\mathfrak{S}_{\vec{c}}$.

The construction of Szegő functions using integrals of analytic densities against a discontinuous Cauchy kernel was proposed by Aptekarev and Lysov while studying graph generated MOPs systems along the main diagonal.

Theorem (Aptekarev-Denisov-Ya. 2021)

Let d = 2 and $\mu'_i(x)$ be analytic and positive. If $\min\{n_1, n_2\} \to \infty$, strong asymptotic formuale extend to marginal cases $\vec{c} = (1, 0)$ and $\vec{c} = (0, 1)$.

Theorem (Ya. to be submitted)

Let d = 2 and $\mu'_i(x)$ be analytic and positive. All formulae of strong asymptotics hold uniformly in $|\vec{n}|$ as long as

$$\varepsilon_{\vec{n}} := 1/\min\{n_1, n_2\} \to 0.$$

The error terms are (uniform in \vec{n} and) of order $\varepsilon_{\vec{n}}^{1/3}$. In particular,

$$a_{\vec{n},i} = A_{\vec{n},i} + O\left(\varepsilon_{\vec{n}}^{1/3}\right)$$
 and $b_{\vec{n},i} = B_{\vec{n},i} + O\left(\varepsilon_{\vec{n}}^{1/3}\right)$.

Proposition (Aptekarev-Denisov-Ya. submitted)

Let $\{\Delta_i\}_{i \in I_d}$ be a collection of pairwise disjoint closed intervals and $\{\mu_i\}_{i \in I_d}$ be positive Borel measures such that μ_i is Szegő on Δ_i for each $i \in I_d$. There exists a unique collection of functions $\{S_i(z)\}_{i \in I_d}$ such that each $S_i(z)$ is a conjugate-symmetric outer function in $H^2(\overline{\mathbb{C}} \setminus \Delta_i)$ with $S_i(\infty) > 0$ and it holds that

$$|S_{i\pm}(x)|^2 \prod_{j \in I_d, j \neq i} S_j(x) = v_i(x) \quad \text{for a.e.} \quad x \in \Delta_i, \quad i \in I_d,$$

where $d\mu_i = v_i d\omega_{\Delta_i} + d\mu^s$ and μ^s is singular to the Lebesgue measure.

Szegő functions are constructed as usual (one-dimensional) Szegő functions, but for densities that are obtained by inverting some harmonic extension operator.

Let $2\vec{v} = (v_1, v_2, \dots, v_d)$. The densities $\vec{s} = (s_1, s_2, \dots, s_d)$ are the solutions of

$$(\mathcal{I} - \mathcal{H})\vec{s} = \vec{v}$$

where

$$\mathcal{H} = -\frac{1}{2} \begin{bmatrix} 0 & H_{\Delta_2 \to \Delta_1} & \cdots & H_{\Delta_n \to \Delta_1} \\ H_{\Delta_1 \to \Delta_2} & 0 & \cdots & H_{\Delta_n \to \Delta_2} \\ \vdots & \vdots & \ddots & \vdots \\ H_{\Delta_1 \to \Delta_n} & H_{\Delta_2 \to \Delta_n} & \cdots & 0 \end{bmatrix}$$

and

$$(H_{\Delta_i \to \Delta_j} u)(z) = \Re \left(\sqrt{(z - \alpha_i)(z - \beta_i)} \int_{\Delta} u(x) \frac{d\omega_{\Delta_i}(x)}{z - x} \right)_{|\Delta_j|}$$

•

We say that a measure μ is *uniformly Szegő* on a closed interval Δ if $\mu_{|\Delta}$ is a Szegő measure and for any sequence of closed intervals $\{\Delta_n\}$ such that $\Delta_n \subseteq \Delta(\mu)$ and $\Delta_n \to \Delta$ as $n \to \infty$, it holds that

$$\lim_{n \to \infty} \int |\log \mu'(x) - \log \mu'(l_{\Delta \to \Delta_n}(x))| d\omega_{\Delta}(x) \to 0,$$

where $l_{\Delta \to \Delta_n}(x)$ is a linear function that maps Δ onto Δ_n .

Proposition (Aptekarev-Denisov-Ya. submitted)

Let $\{\Delta_i\}_{i \in I_d}$ be a collection of pairwise disjoint closed intervals and $\{\mu_i\}_{i \in I_d}$ be a collection of positive Borel measures such that μ_i is uniformly Szegő on Δ_i for each $i \in I_d$. Further, let $\{\Delta_{n,i}\}_{i \in I_d}$, $n \in \mathbb{N}$, be collections of pairwise disjoint closed intervals such that $\Delta_{n,i} \subseteq \Delta(\mu_i)$ and $\Delta_{n,i} \to \Delta_i$ as $n \to \infty$ for each $i \in I_d$. Then

$$S_{n,i}(z) \to S_i(z)$$
 as $n \to \infty$

locally uniformly in $\overline{\mathbb{C}} \setminus \Delta_i$ for each $i \in I_d$.

Let $\{\mu_i\}$ be an Angelesco system of measures, $\vec{c} \in (0, 1)^d$, $|\vec{c}| = 1$, $\{\omega_{\vec{c},i}\}$ be the corresponding vector-equilibrium measure. Assume that each μ_i is uniformly Szegő on $\Delta_{\vec{c},i} = \operatorname{supp}(\omega_{\vec{c},i})$. Then it holds that

$$P_{\vec{n},i}(z) \sim \exp\left\{ |\vec{n}| \int \log(z-x) d\omega_{\vec{n},i}(x) \right\} \frac{S_{\vec{c},i}(\infty)}{S_{\vec{c},i}(z)}$$

for each $i \in I_d$ as $\vec{n}/|\vec{n}| \rightarrow \vec{c}$.

The proof of the previous result uses in its core the Schauder-Tychonoff fixed-point theorem and the two following theorems (no pushing and pushing regimes).

Theorem (Aptekarev-Denisov-Ya. submitted)

Let $\{(\mu_n, h_n, \omega_n)\}$ be a sequence of triples, where μ_n, ω_n are measures on an interval Δ and h_n is a continuous function on Δ . Write $\theta_n = 2nV^{\omega_n} + h_n$. Then

$$T_n\left(e^{\theta_n}\mu_n\right)(z) \sim \exp\left\{n\int \log(z-x)d\omega_n(x)\right\} \frac{G(e^{h_n}\mu_n,\infty)}{G(e^{h_n}\mu_n,z)}$$

where $T_n\left(e^{\theta_n}\mu_n\right)$ is the *n*-th monic orthogonal polynomial w.r.t. $e^{\theta_n}\mu_n$.

This theorem generalizes a result by Totik: it replaces a single absolutely continuous measure μ with a sequence of not necessarily absolutely continuous measures $e^{h_n}\mu_n$.

We assume that

- there exists μ on Δ such that for any non-negative function f ∈ C(Δ) it holds that lim sup_{n→∞} ∫ fdμ_n ≤ ∫ fdμ;
- $\|\log v_n \log v\|_{L^1(\omega_{\Delta})} \to 0$ as $n \to \infty$, where $d\mu_n = v_n d\omega_{\Delta} + d\mu_n^s$;
- the functions h_n belong to \mathcal{K} , a fixed compact subset of $C(\Delta)$;
- $d\omega_n(x) = \omega'_n(x)dx$ are probability measures on $\Delta = [\alpha, \beta]$ such that ω'_n form a uniformly equicontinuous family on each compact subset of (α, β) and satisfy growth/decay conditions around α, β .

Let μ be a compactly supported positive Borel measure and $\Delta_n \subseteq \Delta(\mu)$ be intervals that converge to some interval $\Delta = [\alpha, \beta]$. Assume that μ is uniformly Szegő on Δ . Further, let $\{(\kappa_n, h_n, \omega_n)\}$ be a sequence of triples, where κ_n, h_n are continuous functions on $\Delta(\mu)$ and ω_n are measures on $\Delta(\mu)$ such that

- the functions κ_n are such that $\kappa_n \leq 0$ on $\Delta(\mu)$, $\kappa_n \equiv 0$ on Δ_n , and on $\Delta(\mu) \setminus \Delta_n \kappa_n$ satisfy uniform growth/decay condition;
- the functions h_n belong to \mathcal{K} , a fixed compact subset of $C(\Delta(\mu))$;
- $d\omega_n(x) = \omega'_n(x)dx$ are probability measures such that $\operatorname{supp} \omega_n = \Delta_n$, ω'_n form a uniformly equicontinuous family on each compact subset of (α, β) and satisfy growth/decay conditions around α, β .

Set $\theta_n := 2n(V^{\omega_n} + \kappa_n) + h_n$. Then

$$T_n\left(e^{\theta_n}\mu\right)(z) \sim \exp\left\{n\int \log(z-x)d\omega_n(x)\right\} \frac{G(e^{h_n}\mu_{\mid\Delta},\infty)}{G(e^{h_n}\mu_{\mid\Delta},z)}.$$

Let $\{(\sigma_n, g_n, W_n)\}$ be triples of a finite positive Borel measure on \mathbb{T} , a continuous real-valued function on \mathbb{T} , and a monic polynomial of degree n with all its zeros inside the unit disk. Assume that

- there exists σ such that $\limsup_{n\to\infty} \int f d\sigma_n \leq \int f d\sigma$, $0 \leq f \in C(\mathbb{T})$;
- $\|\log v_n \log v\|_{L^1(\mathbb{T})} \to 0$ as $n \to \infty$, $d\sigma_n = v_n dm + d\sigma_n^s$;
- the functions g_n belong to a fixed compact subset of $C(\mathbb{T})$;
- the zeros $\{b_{n,j}\}$ of W_n satisfy $\sum_{j=1}^n (1 |b_{n,j}|) \to \infty$ as $n \to \infty$.

Let $q^*(z) = z^n \overline{q(1/\overline{z})}$ and

$$\int \phi_n(\xi) \bar{\xi}^k \, \frac{e^{g_n(\xi)} d\sigma_n(\xi)}{|W_n(\xi)|^2} = 0, \quad k = \overline{0, n-1}.$$

Then

$$\frac{\phi_n^*(z)}{W_n^*(z)} D_n(z) = 1 + o_{\mathcal{E}}(1), \quad \frac{\phi_n(z)}{\phi_n^*(z)} = o_{\mathcal{E}}(1)$$

locally uniformly in \mathbb{D} , where D_n is the Szegő function of $e^{g_n} \sigma_n$.

This theorem generalizes Stahl 2000 and de la Calle Ysern - López Lagomasino 1998.