On Symmetric Contours in Rational Interpolation

Maxim L. Yattselev

Orthogonal Polynomials and Applications Conference in Honor of Walter Van Assche June 9th, 2023 Let f(z) be an analytic function at infinity. Then

$$f(z) = f_0 + \frac{f_1}{z} + \frac{f_2}{z^2} + \dots + \frac{f_{2n}}{z^{2n}} + O\left(\frac{1}{z^{2n+1}}\right).$$

We are looking for a rational function $r_n(z)$ of type (n, n) such that

$$r_n(z) = f_0 + \frac{f_1}{z} + \frac{f_2}{z^2} + \dots + \frac{f_{2n}}{z^{2n}} + O\left(\frac{1}{z^{2n+1}}\right).$$

Such a rational function might not exist. However, there always exist polynomials $p_n(z)$ and $q_n(z)$ of degree at most n such that

$$q_n(z)f(z) - p_n(z) = O\left(\frac{1}{z^{n+1}}\right).$$

The rational function $p_n(z)/q_n(z)$ is unique in its reduced form and is called diagonal Padé approximant of f(z). We take $q_n(z)$ to be the smallest degree solution.

Let Γ be a curve in the exterior domain of which f(z) is analytic. Then

$$0 = \int_{\Gamma} z^k (q_n(z)f(z) - p_n(z))dz = \int_{\Gamma} z^k q_n(z)f(z)dz$$

for each $k = \overline{0, n-1}$. If there exists a system of Jordan arcs that does not disconnect the plane such that

$$f(z) = \int_{L} \frac{(f_{+} - f_{-})(s)}{s - z} \frac{ds}{2\pi i},$$

then the orthogonality relations can be rewritten as

$$\int_L s^k q_n(s) (f_+ - f_-)(s) ds, \quad k = \overline{0, n-1}$$

If f(z) is a Markov function, that is,

$$f_{\mu}(z) = \int_{-1}^{1} \frac{d\mu(x)}{x - z}$$

for some measure μ on [-1, 1], then

$$\int_{-1}^{1} x^k q_n(x) d\mu(x), \quad k = \overline{0, n-1}.$$

If $d\mu(x) = \frac{1}{\pi}(1-x^2)^{-1/2}dx$, the $q_n(x)$ is simply the Chebyshëv polynomial of the first kind, i.e.,

$$q_n(z) = z^n + z^{-n}, \quad z = J(z) = \frac{z + z^{-1}}{2}.$$

More generally, for nice enough measures μ it holds that

$$q_n(z) \sim z^n$$
 and $f_\mu(z) - \frac{p_n(z)}{q_n(z)} \sim \frac{1}{z^{2n+1}}, |z| \ge 1$

(that is, $\mathbf{z} = z + \sqrt{z^2 - 1} \sim 2z$ as $z \to \infty$).

• The Joukovsky map J(z) provides 2 to 1 ramified cover of the Riemann sphere by itself. It maps the unit circle onto the interval [-1, 1], where the poles of approximants are contained.

• The unit circle is the 0-level line of $\log |z^n|$, which is a harmonic function except for polar singularities, at 0 and ∞ of opposite signs.

• The function $g(z) = \log |z|, z = J(z), |z| > 1$, is harmonic in $\mathbb{C} \setminus [-1, 1]$, is zero on [-1, 1], and behaves like $\log |z|$ as $z \to \infty$. That is, g(z) is the Green's function for $\overline{\mathbb{C}} \setminus [-1, 1]$ with pole at infinity.

• The symmetry $z \mapsto 1/z$ of the Joukovsky map implies that -g(z) is the harmonic continuation of g(z) across [-1, 1]. This is equivalent to saying that

$$\frac{\partial g}{\partial n_+} = \frac{\partial g}{\partial n_-}$$

on (-1, 1), where n_{\pm} are one-sided normal derivatives, which is a definition of a symmetric contour (S-curve).

For hyperelliptic functions, like $f(z) = [(z - a_1)(z - a_2) \cdots (z - a_{2g+2})]^{-1/2}$, one needs to consider their Riemann surface

$$\mathfrak{S} = \left\{ z = (z, w) : w^2 = (z - a_1)(z - a_2) \cdots (z - a_{2g+2}) \right\}.$$

Let $\pi(z) = z$ and $z^* = (z, -w)$ for z = (z, w) and ∞ be such that $w(z) \sim z^{g+1}$ as $z \to \infty$.

Let g(z) be harmonic on \mathfrak{S} and such that $g(z^*) = -g(z)$ and $g(z) = \log |z|$ around ∞ .

Theorem (Nuttall-Singh 1977)

The poles of the Padé approximants to f(z) accumulate on a symmetric contour

$$\Delta = \pi(\Gamma), \quad \Gamma = \{z : g(z) = 0\}.$$

Moreover, it holds in the strong sense (discussed later) that

$$|q_n(z)| = e^{ng(z)}$$
 and $\left| f(z) - \frac{p_n(z)}{q_n(z)} \right| = e^{-(2n+1)g(z)}$,

where $z \in \overline{\mathbb{C}} \setminus \Delta$, g(z) > 0, and f(z) is the branch holomorphic outside Δ .

For a compact set *K* it holds that either the unbounded component of its complement is too large (the set is too small) and cannot support a Green's function or it can.

In the former case its is said that *K* is polar and we set cap(K) = 0 and in the latter we set

$$\operatorname{cap}(K) := \exp\left\{\lim_{z \to \infty} \log |z| - g(z)\right\},\$$

where g(z) is the Green's function for unbounded component of its complement of *K* with pole at infinity.

One can readily compute that in the case $K = \{z : |z| \le R\}$, it holds that

$$g(z) = \log |z| - \log R, |z| > R \implies \operatorname{cap}(K) = R.$$

Stahl's Class

Let *S* be the class of functions holomorphic at infinity, which can be continued along any curve in $\mathbb{C} \setminus A$ starting at infinity, where cap(A) = 0 and some paths do lead to distinct continuation.

Denote by \mathcal{K}_f the collection of compact sets K that do not disconnect the plane and such that f has a single-valued analytic continuation in to $\mathbb{C} \setminus K$.

Theorem (Stahl 1985 (3) + 1997)

For any function $f \in S$ there exists $\Delta \in K_f$ such that

$$\operatorname{cap}(\Delta) = \min\left\{\operatorname{cap}(K) : K \in \mathcal{K}_f\right\}.$$

 Δ is a symmetric contour in the sense that

$$\frac{\partial g}{\partial n_+} = \frac{\partial g}{\partial n_-}, \quad s \in \Delta,$$

where g(z) is the Green's function for the complement of Δ . Moreover,

$$\frac{1}{n}\log|q_n(z)| \sim g(z) \quad \text{and} \quad \frac{1}{2n}\log\left|f(z) - \frac{p_n(z)}{q_n(z)}\right| \sim -g(z).$$

Let f(z) be holomorphic at infinity and D be a subdomain of the extended complex plane $\overline{\mathbb{C}}$ into which f(z) admits a single-valued holomorphic continuation.

Let E_n be a multi-set of 2n not necessarily distinct nor finite points $e_{n,i}$ in D. Let $p_n(z)$, $q_n(z)$ be polynomials of degree at most n such that

$$\frac{(q_n f - p_n)(z)}{\prod_{|e_{n,i}| < \infty} (z - e_{n,i})} = O\left(z^{-n-1}\right)$$

and is analytic in *D*. In the reduced form $p_n(z)/q_n(z)$ is unique. We take $q_n(z)$ to be the solution of minimal degree.

 $p_n(z)/q_n(z)$ is called the diagonal multipoint Padé approximant of f of order n associated with E_n .

Let *D* be a domain with non-polar boundary. Green's function with pole at $w \in D$, $|w| < \infty$, say g(z, w), is the unique harmonic function in $D \setminus \{w\}$ that is zero quasi everywhere (up to a polar set) on ∂D and such that $g(z, w) + \log |z - w|$ is bounded around *w*.

We also write $g(z, \infty)$ for the Green's function with pole at infinity.

Let ν be a Borel measure in **D**. Then the Green's potential of ν is defined as

$$g_{\nu}(z) \coloneqq \int g(z,w) d\nu(w).$$

Theorem (Gonchar-Rakhmanov 1987)

Let $f \in S$. Assume that the interpolation sets $E_n = \{e_{n,i}\}$ are such that

$$\frac{1}{2n}\sum \delta(e_{n,i}) \xrightarrow{*} v$$

for some measure ν . Assume that there exists $\Delta \in \mathcal{K}_f$ such that $\operatorname{supp}(\nu) \subset \overline{\mathbb{C}} \setminus \Delta$ and

$$\frac{\partial g_{\nu}}{\partial n_{+}} = \frac{\partial g_{\nu}}{\partial n_{-}}, \quad s \in \Delta.$$

Then it holds in the weak sense for the corresponding multipoint Padé approximants that

$$\frac{1}{2n}\log\left|f(z)-\frac{p_n(z)}{q_n(z)}\right|\sim -g_{\nu}(z).$$

Theorem (Buslaev 2013 (two-point) + 2015 (several-point))

Let $f_0(z)$ and $f_{\infty}(z)$ be analytic around 0 and ∞ , be continuable along any arc that does not pass through a finite sets of points, and continuations are multivalued. Then there exists a compact set Δ such that

- $\overline{\mathbb{C}} \setminus \Delta = D_0 \cup D_\infty$, where $0 \in D_0$ and $\infty \in D_\infty$ are either disjoint or coincide and $f_e(z)$ has an analytic continuation into $D_e, e \in \{0, \infty\}$;
- Δ consists of open analytic arcs and their endpoints and

$$\frac{\partial(g(s,0)+g(s,\infty))}{\partial n_+}=\frac{\partial(g(s,0)+g(s,\infty))}{\partial n_-},\quad s\in\Delta,$$

where g(z, e) is the Green's function with pole at e ∈ D_e, e ∈ {0,∞};
it holds that

$$\frac{1}{2n}\log\left|f\left(z\right)-\frac{p_{n}(z)}{q_{n}(z)}\right|\sim-g(z,0)-g(z,\infty),$$

where $p_n(z)/q_n(z)$ is a multipoint Padé approximant with interpolation conditions asymptotically equally split between 0 and ∞ .

Theorem (Ya. 2021)

Given |a| < 1, let $w(z) = \sqrt{(z-a)(z-1/a)}$. If

$$f_0(z) = \frac{c_0}{w(z)}$$
 and $f_{\infty}(z) = \frac{c_{\infty}}{w(z)}$,

or similarly nice pairs of functions, strong asymptotics of the multipoint Padé approximants can be derived.

Zeros of the denominator polynomial $q_{60}(z)$ when the approximated pair is given by $f_0(z) = \log \left(\frac{z-1}{z-1/a}\right)$ and $f_{\infty}(z) = \log \left(\frac{z-a}{z-1}\right)$ for a = 2.

Zeros of the denominator polynomial (a) $q_{40}(z)$ and (b) $q_{60}(z)$ when the approximated pair is given by $f_0(z) = \log \left(\frac{z-1}{z-1/a}\right)$ and $f_{\infty}(z) = \log \left(\frac{z-a}{z-1}\right)$ for a = 1.2 + 1.3i.

Proposition

Let *L* be a smooth Jordan arc joining -1 and 1 and $w_L(z) := \sqrt{z^2 - 1}$ be the branch holomorphic in $\mathbb{C} \setminus L$. Set $T = J^{-1}(L)$, where J(z) is the Joukovsky transformation. Let *U* be the interior domain of *T* and

$$\Psi_n(z) = z^n \prod_{i=1}^{2n} \left(1 - \frac{e_{n,i}}{z} \right),$$

for some interpolation set $E_n = \{e_{n,i}\}, e_{n,i} = J(e_{n,i}), e_{n,i} \in U$. Then

$$q_n(z) = \Psi_n(z) + \Psi_n(1/z)$$
 and $\frac{1}{w_L(z)} - \frac{p_n(z)}{q_n(z)} = \frac{2}{w_L(z)} \frac{\Psi_n(z)}{\Psi_n(z) + \Psi_n(1/z)}$

where $z \in U$, z = J(z), and $p_n(z)/q_n(z)$ is the multipoint Padé approximant of $1/w_L(z)$ associated with E_n .

Approximated function is $1/w_L(z)$ where panel (c): *L* is an arc connecting -1 to some $x_* > 5/4$ through the upper half-plane and then x_* to 1 through the lower half-plane and there are 48 interpolation conditions at infinity and 10 conditions at 5/4; panel (d): *L* is a lower unit semi-circle and there are 48 interpolation conditions at infinity and 8 conditions at -3i/4.

$$\frac{1}{w_L(z)} - \frac{p_n(z)}{q_n(z)} = \frac{2}{w_L(z)} \frac{\Psi_n(z)}{\Psi_n(z) + \Psi_n(1/z)} = \frac{2}{w_L(z)} \frac{B_n(z)}{1 + B_n(z)},$$

for $z \in U$ and z = J(z), where

$$B_n(z) := \prod_{i=1}^{2n} \frac{z - e_{n,i}}{1 - e_{n,i}z}$$

If in some subdomain of **U** the function $B_n(z)$ is very small, then

$$\frac{p_n(z)}{q_n(z)} \sim \frac{1}{w_L(z)},$$

and if $B_n(z)$ is very large, then

$$\frac{p_n(z)}{q_n(z)} \sim -\frac{1}{w_L(z)}.$$

Notice that $-w_L(z)$ is the analytic continuation of $w_L(z)$ across *L*.

Let *L* be a Jordan curve oriented from -1 to 1 and $\{E_n\}$ be an interpolation scheme, $E_n = \{e_{n,i}\}$ from the complement of *L*. Set $T = J^{-1}(L)$ and *U* be the interior of *T*. Define $e_{n,i} = J(e_{n,i}), e_{n,i} \in U$, and

$$B_n(z) = \prod_{i=1}^{2n} \frac{z - e_{n,i}}{1 - e_{n,i}z}$$

Assume that there exists a contour Γ such that

- $M^{-1} \leq |B_n(s)| \leq M$ for $s \in \Gamma$;
- in each connected component of $\mathbb{C} \setminus \Gamma$ either $B_n(z) \to 0$ or $B_n(z) \to \infty$.

We shall call $\Delta = J(\Gamma)$ a symmetric contour associated with *L* and $\{E_n\}$.

Darker filled circles represent interpolation points (bigger circle represents more interpolation conditions at the point), dashed lines represent L, solid lines represent Δ , and lightly shaded regions represent D_{Δ}^{∞} .

Panel (e): interpolation points create an external field that pushes L up to Δ . Panel (f): interpolation points below L push it up, interpolation points above L push it down, but create weaker external field resulting in L going through them while simultaneously forming a barrier Δ_1 .

Panel (g): top and bottom groups of interpolation points create an external field that pushes *L* up while the middle group pushes *L* down, due to different strength of the components of the external field generated by these groups, two barriers are created. Panel (h): interpolation points below *L* create an external field that pushes *L* up all the way through ∞ to the displayed position of Δ_0 , interpolation points above *L* create a weaker external field that results in a barrier Δ_1 .

Symmetric contours Δ that correspond to L that connects -1 to some $x_* > 5/4$ through the upper half-plane and then x_* to 1 through the lower half-plane and interpolation schemes where the interpolation conditions are equally distributed between between ∞ and 5/4 (i) or there are twice (j), three times (k), or four times (l) more interpolation conditions at ∞ than at 5/4.

Symmetric contours Δ that correspond to *L* being a lower unit semi-circle and interpolation schemes where there are four (m), five (n), or six (o) times more interpolation conditions at ∞ than at -3i/4.

Theorem (Baratchart-Ya. 2009 + 2010 + Ya. 2021 + in progress)

Let L, $\{E_n\}$, and Δ be as above. Let

$$f_L(z) \coloneqq \frac{1}{2\pi \mathrm{i}} \int_L \frac{\rho(s)}{s-z} \frac{ds}{w_{L+}(s)},$$

where $\rho(s)$ is analytic and non-vanishing in a "large enough" domain. Then

$$\frac{p_n(z)}{q_n(z)} \to f_{\Delta}(z),$$

where $p_n(z)/q_n(z)$ is the multipoint Padé approximants associated with E_n and $f_{\Delta}(z)$ is the analytic continuation of $f_L(z)$ into $\overline{\mathbb{C}} \setminus \Delta$ that coincides with $f_L(z)$ at the interpolation points.

Let now

$$w_L(z) = \sqrt{(z - a_1)(z - a_2) \cdots (z - a_{2g+1})}$$

be the branch holomorphic outside some contour L, $w_L(z) \sim z^{g+1}$.

Let $\{E_n\}$ be an interpolation scheme, $E_n = \{e_{n,i}\}_{i=1}^{2n-g}$ from the complement of L (g + 1 interpolation conditions are automatically placed at infinity).

Define

$$\mathfrak{S} = \left\{ z = (z, w) : w^2 = (z - a_1)(z - a_2) \cdots (z - a_{2g+2}) \right\}.$$

Let $\pi(z) = z$ and $z^* = (z, -w)$ for z = (z, w) and ∞ be such that $w(z) \sim z^{g+1}$ as $z \to \infty$.

Denote by *U* the connected component of \mathfrak{S} in which $w(z) = -w_L(z)$ and define $e_{n,i} = \pi(e_{n,i}), e_{n,i} \in U$.

Proposition

Let $\sigma : \{a_1, ..., a_{2g+1}\} \to \{0, 1\}$ and

$$f(z) = \frac{u_{\sigma}(z)}{w_L(z)} - l_{\sigma}(z), \quad u_{\sigma}(z) = \prod_{i=1}^{2g+2} (z - a_i)^{\sigma(a_i)},$$

where $l_{\sigma}(z)$ is a polynomial such that $f(\infty) = 0$. Let $\Psi_n(z)$ be the rational function on \mathfrak{S} with the zero/pole divisor

$$\sum_{i=1}^{g} z_{n,i} + \sum_{i=1}^{2n-g} e_{n,i} - \sum_{i=1}^{2g+2} \sigma(a_i)a_i - n\infty - (n-|\sigma|)\infty^*,$$

where a_i are ramification points, $|\sigma| = \sum \sigma(a_i)$, and $z_{n,i}$ are determined from the Jacobi inversion problem. Then

$$q_n(z) = \Psi_n(z) + \Psi_n(z^*) \quad \text{and} \quad f(z) - \frac{p_n(z)}{q_n(z)} = 2 \frac{u_\sigma(z)}{w_L(z)} \frac{\Psi_n(z)}{\Psi_n(z) + \Psi_n(z^*)}$$

for $z \in U$.

Zeros of q_{36} , q_{60} , and q_{34} to $(z^4 - 1)^{-1/2}$ corresponding to the interpolation schemes $\{\pm 1 \pm i\}$, $\{1/4 + i, -1/4 - i, 1 - i/4, -1 + i/4\}$, and $\{1 + i, -1 - i\}$.

Let *L* and $E_n = \{e_{n,i}\}$ be as before. For each non-ramification point $e \in \mathfrak{S}$ there exists a function g(z, e) that is harmonic in $\mathfrak{S} \setminus \{e, e^*\}$, satisfies $g(z, e) = -g(z^*, e)$, and blows up like a logarithm at e. Set

$$g_n(z) = \sum_{i=1}^{2n-g} g(z, \boldsymbol{e}_{n,i}).$$

Assume that there exists a collection of cycles Γ such that

- $M^{-1} \leq |g_n(s)| \leq M$ for $s \in \Gamma$;
- in each connected component of $\mathfrak{S} \setminus \Gamma$ either $g_n(z) \to \infty$ or $g_n(z) \to -\infty$.

We shall call $\Delta = J(\Gamma)$ a symmetric contour associated with *L* and $\{E_n\}$.

Theorem (Ya. 2015 + 2018 + in progress)

Let L, $\{E_n\}$, and Δ be as above. Let

$$f_L(z) \coloneqq \frac{1}{2\pi \mathrm{i}} \int_L \frac{\rho(s)}{s-z} \frac{ds}{w_{L+}(s)},$$

where $\rho(s)$ is analytic and non-vanishing in a "large enough" domain. Then

$$\frac{p_n(z)}{q_n(z)} \sim f_{\Delta}(z),$$

where $p_n(z)/q_n(z)$ is the multipoint Padé approximants associated with E_n and $f_{\Delta}(z)$ is the analytic continuation of $f_L(z)$ into $\overline{\mathbb{C}} \setminus \Delta$ that coincides with $f_L(z)$ at the interpolation points.

Zeros of q_{36} , q_{60} , and q_{34} to $(z^4 - 1)^{-1/4}$ corresponding to the interpolation schemes $\{\pm 1 \pm i\}$, $\{1/4 + i, -1/4 - i, 1 - i/4, -1 + i/4\}$, and $\{1 + i, -1 - i\}$.