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Padé Approximants

Let 𝑓 (𝑧) be an analytic function at infinity. Then

𝑓 (𝑧) = 𝑓0 +
𝑓1
𝑧

+ 𝑓2

𝑧2 + · · · + 𝑓2𝑛

𝑧2𝑛 +𝑂
(

1
𝑧2𝑛+1

)
.

We are looking for a rational function 𝑟𝑛 (𝑧) of type (𝑛, 𝑛) such that

𝑟𝑛 (𝑧) = 𝑓0 +
𝑓1
𝑧

+ 𝑓2

𝑧2 + · · · + 𝑓2𝑛

𝑧2𝑛 +𝑂
(

1
𝑧2𝑛+1

)
.

Such a rational function might not exist. However, there always exist polynomials
𝑝𝑛 (𝑧) and 𝑞𝑛 (𝑧) of degree at most 𝑛 such that

𝑞𝑛 (𝑧) 𝑓 (𝑧) − 𝑝𝑛 (𝑧) = 𝑂
(

1
𝑧𝑛+1

)
.

The rational function 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is unique in its reduced form and is called diagonal
Padé approximant of 𝑓 (𝑧) . We take 𝑞𝑛 (𝑧) to be the smallest degree solution.



Orthogonality

Let Γ be a curve in the exterior domain of which 𝑓 (𝑧) is analytic. Then

0 =

∫
Γ

𝑧𝑘 (𝑞𝑛 (𝑧) 𝑓 (𝑧) − 𝑝𝑛 (𝑧))𝑑𝑧 =
∫
Γ

𝑧𝑘𝑞𝑛 (𝑧) 𝑓 (𝑧)𝑑𝑧

for each 𝑘 = 0, 𝑛 − 1. If there exists a system of Jordan arcs that does not disconnect the
plane such that

𝑓 (𝑧) =
∫
𝐿

( 𝑓+ − 𝑓−) (𝑠)
𝑠 − 𝑧

𝑑𝑠

2𝜋i
,

then the orthogonality relations can be rewritten as∫
𝐿

𝑠𝑘𝑞𝑛 (𝑠) ( 𝑓+ − 𝑓−) (𝑠)𝑑𝑠, 𝑘 = 0, 𝑛 − 1.



Markov Functions

If 𝑓 (𝑧) is a Markov function, that is,

𝑓𝜇 (𝑧) =
∫ 1

−1

𝑑𝜇 (𝑥)
𝑥 − 𝑧

for some measure 𝜇 on [−1, 1], then∫ 1

−1
𝑥𝑘𝑞𝑛 (𝑥)𝑑𝜇 (𝑥) , 𝑘 = 0, 𝑛 − 1.

If 𝑑𝜇 (𝑥) = 1
𝜋
(1 − 𝑥2)−1/2𝑑𝑥, the 𝑞𝑛 (𝑥) is simply the Chebyshëv polynomial of the first

kind, i.e.,

𝑞𝑛 (𝑧) = 𝒛𝑛 + 𝒛−𝑛 , 𝑧 = 𝐽 (𝒛) = 𝒛 + 𝒛−1

2
.

More generally, for nice enough measures 𝜇 it holds that

𝑞𝑛 (𝑧) ∼ 𝒛𝑛 and 𝑓𝜇 (𝑧) −
𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

∼ 1
𝒛2𝑛+1

, | 𝒛 | ≥ 1

(that is, 𝒛 = 𝑧 +
√︁
𝑧2 − 1 ∼ 2𝑧 as 𝑧 → ∞).



Riemann Surfaces and Symmetry

• The Joukovsky map 𝐽 (𝒛) provides 2 to 1 ramified cover of the Riemann sphere by
itself. It maps the unit circle onto the interval [−1, 1], where the poles of approximants
are contained.

• The unit circle is the 0-level line of log | 𝒛𝑛 |, which is a harmonic function except for
polar singularities, at 0 and ∞ of opposite signs.

• The function 𝑔 (𝑧) = log | 𝒛 |, 𝑧 = 𝐽 (𝒛) , | 𝒛 | > 1, is harmonic in C \ [−1, 1], is zero on
[−1, 1], and behaves like log |𝑧 | as 𝑧 → ∞. That is, 𝑔 (𝑧) is the Green’s function for
C \ [−1, 1] with pole at infinity.

• The symmetry 𝒛 ↦→ 1/𝒛 of the Joukovsky map implies that −𝑔 (𝑧) is the harmonic
continuation of 𝑔 (𝑧) across [−1, 1]. This is equivalent to saying that

𝜕𝑔

𝜕𝑛+
=
𝜕𝑔

𝜕𝑛−

on (−1, 1) , where 𝑛± are one-sided normal derivatives, which is a definition of a
symmetric contour (S-curve).



Hyperelliptic Functions

For hyperelliptic functions, like 𝑓 (𝑧) =
[
(𝑧 − 𝑎1) (𝑧 − 𝑎2) · · · (𝑧 − 𝑎2𝑔+2)

]−1/2, one needs
to consider their Riemann surface

𝔖 =

{
𝒛 = (𝑧, 𝑤) : 𝑤2 = (𝑧 − 𝑎1) (𝑧 − 𝑎2) · · · (𝑧 − 𝑎2𝑔+2)

}
.

Let 𝜋 (𝒛) = 𝑧 and 𝒛∗ = (𝑧, −𝑤) for 𝒛 = (𝑧, 𝑤) and ∞ be such that 𝑤 (𝒛) ∼ 𝑧𝑔+1 as 𝒛 → ∞.

Let 𝑔 (𝒛) be harmonic on 𝔖 and such that 𝑔 (𝒛∗) = −𝑔 (𝒛) and 𝑔 (𝒛) = log |𝑧 | around ∞.

Theorem (Nuttall-Singh 1977)

The poles of the Padé approximants to 𝑓 (𝑧) accumulate on a symmetric con-
tour

Δ = 𝜋 (Γ) , Γ = {𝒛 : 𝑔 (𝒛) = 0}.

Moreover, it holds in the strong sense (discussed later) that

|𝑞𝑛 (𝑧) | = 𝑒𝑛𝑔 (𝒛) and
���� 𝑓 (𝑧) − 𝑝𝑛 (𝑧)

𝑞𝑛 (𝑧)

���� = 𝑒−(2𝑛+1)𝑔 (𝒛) ,

where 𝑧 ∈ C \ Δ, 𝑔 (𝒛) > 0, and 𝑓 (𝑧) is the branch holomorphic outside Δ.



Logarithmic Capacity

For a compact set 𝐾 it holds that either the unbounded component of its complement
is too large (the set is too small) and cannot support a Green’s function or it can.

In the former case its is said that 𝐾 is polar and we set cap(𝐾 ) = 0 and in the latter we
set

cap(𝐾 ) := exp
{

lim
𝑧→∞

log |𝑧 | − 𝑔 (𝑧)
}
,

where 𝑔 (𝑧) is the Green’s function for unbounded component of its complement of 𝐾
with pole at infinity.

One can readily compute that in the case 𝐾 = {𝑧 : |𝑧 | ≤ 𝑅}, it holds that

𝑔 (𝑧) = log |𝑧 | − log𝑅, |𝑧 | > 𝑅 ⇒ cap(𝐾 ) = 𝑅.



Stahl’s Class

Let S be the class of functions holomorphic at infinity, which can be continued along
any curve in C \ 𝐴 starting at infinity, where cap(𝐴) = 0 and some paths do lead to
distinct continuation.

Denote by K 𝑓 the collection of compact sets 𝐾 that do not disconnect the plane and
such that 𝑓 has a single-valued analytic continuation in to C \ 𝐾 .

Theorem (Stahl 1985 (3) + 1997)

For any function 𝑓 ∈ S there exists Δ ∈ 𝐾 𝑓 such that

cap(Δ) = min
{
cap(𝐾 ) : 𝐾 ∈ K 𝑓

}
.

Δ is a symmetric contour in the sense that

𝜕𝑔

𝜕𝑛+
=
𝜕𝑔

𝜕𝑛−
, 𝑠 ∈ Δ,

where 𝑔 (𝑧) is the Green’s function for the complement of Δ. Moreover,

1
𝑛

log |𝑞𝑛 (𝑧) | ∼ 𝑔 (𝑧) and
1

2𝑛
log

���� 𝑓 (𝑧) − 𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

���� ∼ −𝑔 (𝑧) .



Multipoint Padé Approximants

Let 𝑓 (𝑧) be holomorphic at infinity and 𝐷 be a subdomain of the extended complex
plane C into which 𝑓 (𝑧) admits a single-valued holomorphic continuation.

Let 𝐸𝑛 be a multi-set of 2𝑛 not necessarily distinct nor finite points 𝑒𝑛,𝑖 in 𝐷. Let
𝑝𝑛 (𝑧) , 𝑞𝑛 (𝑧) be polynomials of degree at most 𝑛 such that

(𝑞𝑛 𝑓 − 𝑝𝑛) (𝑧)∏
|𝑒𝑛,𝑖 |<∞ (𝑧 − 𝑒𝑛,𝑖)

= 𝑂

(
𝑧−𝑛−1

)
and is analytic in 𝐷. In the reduced form 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is unique. We take 𝑞𝑛 (𝑧) to be
the solution of minimal degree.

𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is called the diagonal multipoint Padé approximant of 𝑓 of order 𝑛
associated with 𝐸𝑛.



Green’s Potentials

Let 𝐷 be a domain with non-polar boundary. Green’s function with pole at 𝑤 ∈ 𝐷,
|𝑤 | < ∞, say 𝑔 (𝑧, 𝑤) , is the unique harmonic function in 𝐷 \ {𝑤 } that is zero quasi
everywhere (up to a polar set) on 𝜕𝐷 and such that 𝑔 (𝑧, 𝑤) + log |𝑧 − 𝑤 | is bounded
around 𝑤 .

We also write 𝑔 (𝑧,∞) for the Green’s function with pole at infinity.

Let 𝜈 be a Borel measure in 𝐷. Then the Green’s potential of 𝜈 is defined as

𝑔𝜈 (𝑧) :=
∫
𝑔 (𝑧, 𝑤)𝑑𝜈 (𝑤) .



Stahl’s Class

Theorem (Gonchar-Rakhmanov 1987)

Let 𝑓 ∈ S. Assume that the interpolation sets 𝐸𝑛 = {𝑒𝑛,𝑖 } are such that

1
2𝑛

∑︁
𝛿 (𝑒𝑛,𝑖)

∗→ 𝜈

for some measure 𝜈. Assume that there exists Δ ∈ K 𝑓 such that supp(𝜈) ⊂ C\Δ
and

𝜕𝑔𝜈

𝜕𝑛+
=
𝜕𝑔𝜈

𝜕𝑛−
, 𝑠 ∈ Δ.

Then it holds in the weak sense for the corresponding multipoint Padé approx-
imants that

1
2𝑛

log
���� 𝑓 (𝑧) − 𝑝𝑛 (𝑧)

𝑞𝑛 (𝑧)

���� ∼ −𝑔𝜈 (𝑧) .



Symmetric Contours that Separate the Plane

Theorem (Buslaev 2013 (two-point) + 2015 (several-point))

Let 𝑓0 (𝑧) and 𝑓∞ (𝑧) be analytic around 0 and ∞, be continuable along any arc
that does not pass through a finite sets of points, and continuations are multi-
valued. Then there exists a compact set Δ such that

• C \ Δ = 𝐷0 ∪ 𝐷∞, where 0 ∈ 𝐷0 and ∞ ∈ 𝐷∞ are either disjoint or
coincide and 𝑓𝑒 (𝑧) has an analytic continuation into 𝐷𝑒 , 𝑒 ∈ {0,∞};

• Δ consists of open analytic arcs and their endpoints and

𝜕(𝑔 (𝑠, 0) + 𝑔 (𝑠,∞))
𝜕𝑛+

=
𝜕(𝑔 (𝑠, 0) + 𝑔 (𝑠,∞))

𝜕𝑛−
, 𝑠 ∈ Δ,

where 𝑔 (𝑧, 𝑒) is the Green’s function with pole at 𝑒 ∈ 𝐷𝑒 , 𝑒 ∈ {0,∞};
• it holds that

1
2𝑛

log
���� 𝑓 (𝑧) − 𝑝𝑛 (𝑧)

𝑞𝑛 (𝑧)

���� ∼ −𝑔 (𝑧, 0) − 𝑔 (𝑧,∞) ,

where 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is a multipoint Padé approximant with
interpolation conditions asymptotically equally split between 0 and ∞.



Symmetric Contours that Separate the Plane

Theorem (Ya. 2021)

Given |𝑎 | < 1, let 𝑤 (𝑧) =
√︁
(𝑧 − 𝑎) (𝑧 − 1/𝑎) . If

𝑓0 (𝑧) =
𝑐0
𝑤 (𝑧) and 𝑓∞ (𝑧) = 𝑐∞

𝑤 (𝑧) ,

or similarly nice pairs of functions, strong asymptotics of the multipoint Padé
approximants can be derived.



Symmetric Contours that Separate the Plane

Zeros of the denominator polynomial 𝑞60 (𝑧) when the approximated pair is given by
𝑓0 (𝑧) = log

(
𝑧−1

𝑧−1/𝑎
)

and 𝑓∞ (𝑧) = log
(
𝑧−𝑎
𝑧−1

)
for 𝑎 = 2.



Symmetric Contours that Separate the Plane

(a) (b)

Zeros of the denominator polynomial (a) 𝑞40 (𝑧) and (b) 𝑞60 (𝑧) when the approximated
pair is given by 𝑓0 (𝑧) = log

(
𝑧−1

𝑧−1/𝑎
)

and 𝑓∞ (𝑧) = log
(
𝑧−𝑎
𝑧−1

)
for 𝑎 = 1.2 + 1.3i.



Bernstein-Szegő Case

Proposition

Let 𝐿 be a smooth Jordan arc joining −1 and 1 and 𝑤𝐿 (𝑧) :=
√︁
𝑧2 − 1 be the

branch holomorphic in C \ 𝐿. Set 𝑇 = 𝐽−1 (𝐿) , where 𝐽 (𝒛) is the Joukovsky
transformation. Let𝑈 be the interior domain of 𝑇 and

Ψ𝑛 (𝑧) = 𝒛𝑛
2𝑛∏
𝑖=1

(
1 −

𝒆𝑛,𝑖
𝒛

)
,

for some interpolation set 𝐸𝑛 = {𝑒𝑛,𝑖 }, 𝑒𝑛,𝑖 = 𝐽 (𝒆𝑛,𝑖) , 𝒆𝑛,𝑖 ∈ 𝑈 . Then

𝑞𝑛 (𝑧) = Ψ𝑛 (𝒛) +Ψ𝑛 (1/𝒛) and
1

𝑤𝐿 (𝑧)
− 𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

=
2

𝑤𝐿 (𝑧)
Ψ𝑛 (𝒛)

Ψ𝑛 (𝒛) +Ψ𝑛 (1/𝒛)
,

where 𝒛 ∈ 𝑈 , 𝑧 = 𝐽 (𝒛) , and 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is the multipoint Padé approximant
of 1/𝑤𝐿 (𝑧) associated with 𝐸𝑛.



Bernstein-Szegő Case
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Approximated function is 1/𝑤𝐿 (𝑧) where panel (c): 𝐿 is an arc connecting −1 to some
𝑥∗ > 5/4 through the upper half-plane and then 𝑥∗ to 1 through the lower half-plane
and there are 48 interpolation conditions at infinity and 10 conditions at 5/4; panel (d):
𝐿 is a lower unit semi-circle and there are 48 interpolation conditions at infinity and 8
conditions at −3i/4.



Bernstein-Szegő Case

1
𝑤𝐿 (𝑧)

− 𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

=
2

𝑤𝐿 (𝑧)
Ψ𝑛 (𝒛)

Ψ𝑛 (𝒛) +Ψ𝑛 (1/𝒛)
=

2
𝑤𝐿 (𝑧)

𝐵𝑛 (𝒛)
1 + 𝐵𝑛 (𝒛)

,

for 𝒛 ∈ 𝑈 and 𝑧 = 𝐽 (𝒛) , where

𝐵𝑛 (𝒛) :=
2𝑛∏
𝑖=1

𝒛 − 𝒆𝑛,𝑖
1 − 𝒆𝑛,𝑖𝒛

.

If in some subdomain of𝑈 the function 𝐵𝑛 (𝒛) is very small, then

𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

∼ 1
𝑤𝐿 (𝑧)

,

and if 𝐵𝑛 (𝒛) is very large, then

𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

∼ − 1
𝑤𝐿 (𝑧)

.

Notice that −𝑤𝐿 (𝑧) is the analytic continuation of 𝑤𝐿 (𝑧) across 𝐿.



Symmetric Contours

Let 𝐿 be a Jordan curve oriented from −1 to 1 and {𝐸𝑛 } be an interpolation scheme,
𝐸𝑛 = {𝑒𝑛,𝑖 } from the complement of 𝐿. Set 𝑇 = 𝐽−1 (𝐿) and𝑈 be the interior of 𝑇 .
Define 𝑒𝑛,𝑖 = 𝐽 (𝒆𝑛,𝑖) , 𝒆𝑛,𝑖 ∈ 𝑈 , and

𝐵𝑛 (𝒛) =
2𝑛∏
𝑖=1

𝒛 − 𝒆𝑛,𝑖
1 − 𝒆𝑛,𝑖𝒛

.

Assume that there exists a contour Γ such that

• 𝑀−1 ≤ |𝐵𝑛 (𝒔) | ≤ 𝑀 for 𝒔 ∈ Γ;

• in each connected component of C \ Γ either 𝐵𝑛 (𝒛) → 0 or 𝐵𝑛 (𝒛) → ∞.

We shall call Δ = 𝐽 (Γ) a symmetric contour associated with 𝐿 and {𝐸𝑛 }.



Symmetric Contours
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Darker filled circles represent interpolation points (bigger circle represents more
interpolation conditions at the point), dashed lines represent 𝐿, solid lines represent Δ,
and lightly shaded regions represent 𝐷∞

Δ
.

Panel (e): interpolation points create an external field that pushes 𝐿 up to Δ.
Panel (f): interpolation points below 𝐿 push it up, interpolation points above 𝐿 push it
down, but create weaker external field resulting in 𝐿 going through them while
simultaneously forming a barrier Δ1.



Symmetric Contours
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𝐿

Δ0

Δ1

Panel (g): top and bottom groups of interpolation points create an external field that
pushes 𝐿 up while the middle group pushes 𝐿 down, due to different strength of the
components of the external field generated by these groups, two barriers are created.
Panel (h): interpolation points below 𝐿 create an external field that pushes 𝐿 up all the
way through ∞ to the displayed position of Δ0, interpolation points above 𝐿 create a
weaker external field that results in a barrier Δ1.



Symmetric Contours
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Symmetric contours Δ that correspond to 𝐿 that connects −1 to some 𝑥∗ > 5/4 through
the upper half-plane and then 𝑥∗ to 1 through the lower half-plane and interpolation
schemes where the interpolation conditions are equally distributed between between
∞ and 5/4 (i) or there are twice (j), three times (k), or four times (l) more interpolation
conditions at ∞ than at 5/4.



Symmetric Contours
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(o)

Symmetric contours Δ that correspond to 𝐿 being a lower unit semi-circle and
interpolation schemes where there are four (m), five (n), or six (o) times more
interpolation conditions at ∞ than at −3i/4.



Strong Asymptotics

Theorem (Baratchart-Ya. 2009 + 2010 + Ya. 2021 + in progress)

Let 𝐿, {𝐸𝑛 }, and Δ be as above. Let

𝑓𝐿 (𝑧) :=
1

2𝜋i

∫
𝐿

𝜌(𝑠)
𝑠 − 𝑧

𝑑𝑠

𝑤𝐿+ (𝑠)
,

where 𝜌(𝑠) is analytic and non-vanishing in a “large enough” domain. Then

𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

→ 𝑓Δ (𝑧) ,

where 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is the multipoint Padé approximants associated with 𝐸𝑛

and 𝑓Δ (𝑧) is the analytic continuation of 𝑓𝐿 (𝑧) into C \ Δ that coincides with
𝑓𝐿 (𝑧) at the interpolation points.



Bernstein-Szegő Case

Let now
𝑤𝐿 (𝑧) =

√︃
(𝑧 − 𝑎1) (𝑧 − 𝑎2) · · · (𝑧 − 𝑎2𝑔+1)

be the branch holomorphic outside some contour 𝐿, 𝑤𝐿 (𝑧) ∼ 𝑧𝑔+1.

Let {𝐸𝑛 } be an interpolation scheme, 𝐸𝑛 = {𝑒𝑛,𝑖 }2𝑛−𝑔
𝑖=1 from the complement of 𝐿 (𝑔 + 1

interpolation conditions are automatically placed at infinity).

Define
𝔖 =

{
𝒛 = (𝑧, 𝑤) : 𝑤2 = (𝑧 − 𝑎1) (𝑧 − 𝑎2) · · · (𝑧 − 𝑎2𝑔+2)

}
.

Let 𝜋 (𝒛) = 𝑧 and 𝒛∗ = (𝑧, −𝑤) for 𝒛 = (𝑧, 𝑤) and ∞ be such that 𝑤 (𝒛) ∼ 𝑧𝑔+1 as 𝒛 → ∞.

Denote by𝑈 the connected component of 𝔖 in which 𝑤 (𝒛) = −𝑤𝐿 (𝑧) and define
𝑒𝑛,𝑖 = 𝜋 (𝒆𝑛,𝑖) , 𝒆𝑛,𝑖 ∈ 𝑈 .



Bernstein-Szegő Case

Proposition

Let 𝜎 : {𝑎1, . . . , 𝑎2𝑔+1 } → {0, 1} and

𝑓 (𝑧) = 𝑢𝜎 (𝑧)
𝑤𝐿 (𝑧)

− 𝑙𝜎 (𝑧) , 𝑢𝜎 (𝑧) =
2𝑔+2∏
𝑖=1

(𝑧 − 𝑎𝑖)𝜎 (𝑎𝑖 ) ,

where 𝑙𝜎 (𝑧) is a polynomial such that 𝑓 (∞) = 0. Let Ψ𝑛 (𝒛) be the rational
function on 𝔖 with the zero/pole divisor

𝑔∑︁
𝑖=1

𝒛𝑛,𝑖 +
2𝑛−𝑔∑︁
𝑖=1

𝒆𝑛,𝑖 −
2𝑔+2∑︁
𝑖=1

𝜎 (𝑎𝑖)𝒂𝑖 − 𝑛∞ − (𝑛 − |𝜎 |)∞∗,

where 𝒂𝑖 are ramification points, |𝜎 | = ∑
𝜎 (𝑎𝑖) , and 𝒛𝑛,𝑖 are determined from

the Jacobi inversion problem. Then

𝑞𝑛 (𝑧) = Ψ𝑛 (𝒛) +Ψ𝑛 (𝒛∗) and 𝑓 (𝑧) − 𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

= 2
𝑢𝜎 (𝑧)
𝑤𝐿 (𝑧)

Ψ𝑛 (𝒛)
Ψ𝑛 (𝒛) +Ψ𝑛 (𝒛∗)

for 𝒛 ∈ 𝑈 .



Bernstein-Szegő Case

Zeros of 𝑞36, 𝑞60, and 𝑞34 to (𝑧4 − 1)−1/2 corresponding to the interpolation schemes
{±1 ± i}, {1/4 + i, −1/4 − i, 1 − i/4, −1 + i/4}, and {1 + i, −1 − i}.



Symmetric Contours

Let 𝐿 and 𝐸𝑛 = {𝑒𝑛,𝑖 } be as before. For each non-ramification point 𝒆 ∈ 𝔖 there exists a
function 𝑔 (𝒛, 𝒆) that is harmonic in 𝔖 \ {𝒆, 𝒆∗ }, satisfies 𝑔 (𝒛, 𝒆) = −𝑔 (𝒛∗, 𝒆) , and blows
up like a logarithm at 𝒆. Set

𝑔𝑛 (𝒛) =
2𝑛−𝑔∑︁
𝑖=1

𝑔 (𝒛, 𝒆𝑛,𝑖) .

Assume that there exists a collection of cycles Γ such that

• 𝑀−1 ≤ |𝑔𝑛 (𝒔) | ≤ 𝑀 for 𝒔 ∈ Γ;

• in each connected component of 𝔖 \ Γ either 𝑔𝑛 (𝒛) → ∞ or 𝑔𝑛 (𝒛) → −∞.

We shall call Δ = 𝐽 (Γ) a symmetric contour associated with 𝐿 and {𝐸𝑛 }.



Strong-type Asymptotics

Theorem (Ya. 2015 + 2018 + in progress)

Let 𝐿, {𝐸𝑛 }, and Δ be as above. Let

𝑓𝐿 (𝑧) :=
1

2𝜋i

∫
𝐿

𝜌(𝑠)
𝑠 − 𝑧

𝑑𝑠

𝑤𝐿+ (𝑠)
,

where 𝜌(𝑠) is analytic and non-vanishing in a “large enough” domain. Then

𝑝𝑛 (𝑧)
𝑞𝑛 (𝑧)

∼ 𝑓Δ (𝑧) ,

where 𝑝𝑛 (𝑧)/𝑞𝑛 (𝑧) is the multipoint Padé approximants associated with 𝐸𝑛

and 𝑓Δ (𝑧) is the analytic continuation of 𝑓𝐿 (𝑧) into C \ Δ that coincides with
𝑓𝐿 (𝑧) at the interpolation points.



Strong-type Asymptotics

Zeros of 𝑞36, 𝑞60, and 𝑞34 to (𝑧4 − 1)−1/4 corresponding to the interpolation schemes
{±1 ± i}, {1/4 + i, −1/4 − i, 1 − i/4, −1 + i/4}, and {1 + i, −1 − i}.


