On Symmetric Contours in Rational Interpolation

Maxim L. Yattselev

Orthogonal Polynomials and Applications
Conference in Honor of Walter Van Assche June 9th, 2023

Let $f(z)$ be an analytic function at infinity. Then

$$
f(z)=f_{0}+\frac{f_{1}}{z}+\frac{f_{2}}{z^{2}}+\cdots+\frac{f_{2 n}}{z^{2 n}}+O\left(\frac{1}{z^{2 n+1}}\right) .
$$

We are looking for a rational function $r_{n}(z)$ of type (n, n) such that

$$
r_{n}(z)=f_{0}+\frac{f_{1}}{z}+\frac{f_{2}}{z^{2}}+\cdots+\frac{f_{2 n}}{z^{2 n}}+O\left(\frac{1}{z^{2 n+1}}\right)
$$

Such a rational function might not exist. However, there always exist polynomials $p_{n}(z)$ and $q_{n}(z)$ of degree at most n such that

$$
q_{n}(z) f(z)-p_{n}(z)=O\left(\frac{1}{z^{n+1}}\right)
$$

The rational function $p_{n}(z) / q_{n}(z)$ is unique in its reduced form and is called diagonal Padé approximant of $f(z)$. We take $q_{n}(z)$ to be the smallest degree solution.

Orthogonality

Let Γ be a curve in the exterior domain of which $f(z)$ is analytic. Then

$$
0=\int_{\Gamma} z^{k}\left(q_{n}(z) f(z)-p_{n}(z)\right) d z=\int_{\Gamma} z^{k} q_{n}(z) f(z) d z
$$

for each $k=\overline{0, n-1}$. If there exists a system of Jordan arcs that does not disconnect the plane such that

$$
f(z)=\int_{L} \frac{\left(f_{+}-f_{-}\right)(s)}{s-z} \frac{d s}{2 \pi \mathrm{i}},
$$

then the orthogonality relations can be rewritten as

$$
\int_{L} s^{k} q_{n}(s)\left(f_{+}-f_{-}\right)(s) d s, \quad k=\overline{0, n-1}
$$

Markov Functions

If $f(z)$ is a Markov function, that is,

$$
f_{\mu}(z)=\int_{-1}^{1} \frac{d \mu(x)}{x-z}
$$

for some measure μ on $[-1,1]$, then

$$
\int_{-1}^{1} x^{k} q_{n}(x) d \mu(x), \quad k=\overline{0, n-1}
$$

If $d \mu(x)=\frac{1}{\pi}\left(1-x^{2}\right)^{-1 / 2} d x$, the $q_{n}(x)$ is simply the Chebyshëv polynomial of the first kind, i.e.,

$$
q_{n}(z)=z^{n}+z^{-n}, \quad z=J(z)=\frac{z+z^{-1}}{2} .
$$

More generally, for nice enough measures μ it holds that

$$
q_{n}(z) \sim z^{n} \quad \text { and } \quad f_{\mu}(z)-\frac{p_{n}(z)}{q_{n}(z)} \sim \frac{1}{z^{2 n+1}}, \quad|z| \geq 1
$$

(that is, $z=z+\sqrt{z^{2}-1} \sim 2 z$ as $z \rightarrow \infty$).

Riemann Surfaces and Symmetry

- The Joukovsky map $J(z)$ provides 2 to 1 ramified cover of the Riemann sphere by itself. It maps the unit circle onto the interval $[-1,1]$, where the poles of approximants are contained.
- The unit circle is the 0-level line of $\log \left|z^{n}\right|$, which is a harmonic function except for polar singularities, at 0 and ∞ of opposite signs.
- The function $g(z)=\log |z|, z=J(z),|z|>1$, is harmonic in $\mathbb{C} \backslash[-1,1]$, is zero on $[-1,1]$, and behaves like $\log |z|$ as $z \rightarrow \infty$. That is, $g(z)$ is the Green's function for $\overline{\mathbb{C}} \backslash[-1,1]$ with pole at infinity.
- The symmetry $z \mapsto 1 / z$ of the Joukovsky map implies that $-g(z)$ is the harmonic continuation of $g(z)$ across $[-1,1]$. This is equivalent to saying that

$$
\frac{\partial g}{\partial n_{+}}=\frac{\partial g}{\partial n_{-}}
$$

on ($-1,1$), where $n_{ \pm}$are one-sided normal derivatives, which is a definition of a symmetric contour (S-curve).

Hyperelliptic Functions

For hyperelliptic functions, like $f(z)=\left[\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{2 g+2}\right)\right]^{-1 / 2}$, one needs to consider their Riemann surface

$$
\mathfrak{S}=\left\{z=(z, w): w^{2}=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{2 g+2}\right)\right\} .
$$

Let $\pi(z)=z$ and $z^{*}=(z,-w)$ for $z=(z, w)$ and ∞ be such that $w(z) \sim z^{g+1}$ as $z \rightarrow \infty$.
Let $g(z)$ be harmonic on \mathfrak{S} and such that $g\left(z^{*}\right)=-g(z)$ and $g(z)=\log |z|$ around ∞.

Theorem (Nuttall-Singh 1977)

The poles of the Padé approximants to $f(z)$ accumulate on a symmetric contour

$$
\Delta=\pi(\Gamma), \quad \Gamma=\{z: g(z)=0\} .
$$

Moreover, it holds in the strong sense (discussed later) that

$$
\left|q_{n}(z)\right|=e^{n g(z)} \quad \text { and } \quad\left|f(z)-\frac{p_{n}(z)}{q_{n}(z)}\right|=e^{-(2 n+1) g(z)}
$$

where $z \in \overline{\mathbb{C}} \backslash \Delta, g(z)>0$, and $f(z)$ is the branch holomorphic outside Δ.

For a compact set K it holds that either the unbounded component of its complement is too large (the set is too small) and cannot support a Green's function or it can.

In the former case its is said that K is polar and we set $\operatorname{cap}(K)=0$ and in the latter we set

$$
\operatorname{cap}(K):=\exp \left\{\lim _{z \rightarrow \infty} \log |z|-g(z)\right\},
$$

where $g(z)$ is the Green's function for unbounded component of its complement of K with pole at infinity.

One can readily compute that in the case $K=\{z:|z| \leq R\}$, it holds that

$$
g(z)=\log |z|-\log R, \quad|z|>R \quad \Rightarrow \quad \operatorname{cap}(K)=R
$$

Stahl's Class

Let \mathcal{S} be the class of functions holomorphic at infinity, which can be continued along any curve in $\mathbb{C} \backslash A$ starting at infinity, where $\operatorname{cap}(A)=0$ and some paths do lead to distinct continuation.

Denote by \mathcal{K}_{f} the collection of compact sets K that do not disconnect the plane and such that f has a single-valued analytic continuation in to $\mathbb{C} \backslash K$.

```
Theorem (Stahl 1985(3) + 1997)
```

For any function $f \in \mathcal{S}$ there exists $\Delta \in K_{f}$ such that

$$
\operatorname{cap}(\Delta)=\min \left\{\operatorname{cap}(K): K \in \mathcal{K}_{f}\right\}
$$

Δ is a symmetric contour in the sense that

$$
\frac{\partial g}{\partial n_{+}}=\frac{\partial g}{\partial n_{-}}, \quad s \in \Delta
$$

where $g(z)$ is the Green's function for the complement of Δ. Moreover,

$$
\frac{1}{n} \log \left|q_{n}(z)\right| \sim g(z) \quad \text { and } \quad \frac{1}{2 n} \log \left|f(z)-\frac{p_{n}(z)}{q_{n}(z)}\right| \sim-g(z) .
$$

Multipoint Padé Approximants

Let $f(z)$ be holomorphic at infinity and D be a subdomain of the extended complex plane $\overline{\mathbb{C}}$ into which $f(z)$ admits a single-valued holomorphic continuation.

Let E_{n} be a multi-set of $2 n$ not necessarily distinct nor finite points $e_{n, i}$ in D. Let $p_{n}(z), q_{n}(z)$ be polynomials of degree at most n such that

$$
\frac{\left(q_{n} f-p_{n}\right)(z)}{\prod_{\left|e_{n, i}\right|<\infty}\left(z-e_{n, i}\right)}=O\left(z^{-n-1}\right)
$$

and is analytic in D. In the reduced form $p_{n}(z) / q_{n}(z)$ is unique. We take $q_{n}(z)$ to be the solution of minimal degree.
$p_{n}(z) / q_{n}(z)$ is called the diagonal multipoint Padé approximant of f of order n associated with E_{n}.

Let D be a domain with non-polar boundary. Green's function with pole at $w \in D$, $|w|<\infty$, say $g(z, w)$, is the unique harmonic function in $D \backslash\{w\}$ that is zero quasi everywhere (up to a polar set) on ∂D and such that $g(z, w)+\log |z-w|$ is bounded around w.

We also write $g(z, \infty)$ for the Green's function with pole at infinity.
Let v be a Borel measure in D. Then the Green's potential of v is defined as

$$
g_{v}(z):=\int g(z, w) d v(w)
$$

Theorem (Gonchar-Rakhmanov 1987)

Let $f \in \mathcal{S}$. Assume that the interpolation sets $E_{n}=\left\{e_{n, i}\right\}$ are such that

$$
\frac{1}{2 n} \sum \delta\left(e_{n, i}\right) \xrightarrow{*} v
$$

for some measure v. Assume that there exists $\Delta \in \mathcal{K}_{f}$ such that $\operatorname{supp}(v) \subset \overline{\mathbb{C}} \backslash \Delta$ and

$$
\frac{\partial g_{v}}{\partial n_{+}}=\frac{\partial g_{v}}{\partial n_{-}}, \quad s \in \Delta
$$

Then it holds in the weak sense for the corresponding multipoint Padé approximants that

$$
\frac{1}{2 n} \log \left|f(z)-\frac{p_{n}(z)}{q_{n}(z)}\right| \sim-g_{v}(z)
$$

Symmetric Contours that Separate the Plane

Theorem (Buslaev 2013 (two-point) +2015 (several-point))
Let $f_{0}(z)$ and $f_{\infty}(z)$ be analytic around 0 and ∞, be continuable along any arc that does not pass through a finite sets of points, and continuations are multivalued. Then there exists a compact set Δ such that

- $\overline{\mathbb{C}} \backslash \Delta=D_{0} \cup D_{\infty}$, where $0 \in D_{0}$ and $\infty \in D_{\infty}$ are either disjoint or coincide and $f_{e}(z)$ has an analytic continuation into $D_{e}, e \in\{0, \infty\}$;
- Δ consists of open analytic arcs and their endpoints and

$$
\frac{\partial(g(s, 0)+g(s, \infty))}{\partial n_{+}}=\frac{\partial(g(s, 0)+g(s, \infty))}{\partial n_{-}}, \quad s \in \Delta,
$$

where $g(z, e)$ is the Green's function with pole at $e \in D_{e}, e \in\{0, \infty\}$;

- it holds that

$$
\frac{1}{2 n} \log \left|f(z)-\frac{p_{n}(z)}{q_{n}(z)}\right| \sim-g(z, 0)-g(z, \infty)
$$

where $p_{n}(z) / q_{n}(z)$ is a multipoint Padé approximant with interpolation conditions asymptotically equally split between 0 and ∞.

Symmetric Contours that Separate the Plane

Theorem (Ya. 2021)

Given $|a|<1$, let $w(z)=\sqrt{(z-a)(z-1 / a)}$. If

$$
f_{0}(z)=\frac{c_{0}}{w(z)} \quad \text { and } \quad f_{\infty}(z)=\frac{c_{\infty}}{w(z)}
$$

or similarly nice pairs of functions, strong asymptotics of the multipoint Padé approximants can be derived.

Symmetric Contours that Separate the Plane

Zeros of the denominator polynomial $q_{60}(z)$ when the approximated pair is given by $f_{0}(z)=\log \left(\frac{z-1}{z-1 / a}\right)$ and $f_{\infty}(z)=\log \left(\frac{z-a}{z-1}\right)$ for $a=2$.

Symmetric Contours that Separate the Plane

Zeros of the denominator polynomial (a) $q_{40}(z)$ and (b) $q_{60}(z)$ when the approximated pair is given by $f_{0}(z)=\log \left(\frac{z-1}{z-1 / a}\right)$ and $f_{\infty}(z)=\log \left(\frac{z-a}{z-1}\right)$ for $a=1.2+1.3$ i.

Bernstein-Szeg夭 Case

Proposition

Let L be a smooth Jordan arc joining -1 and 1 and $w_{L}(z):=\sqrt{z^{2}-1}$ be the branch holomorphic in $\mathbb{C} \backslash L$. Set $T=J^{-1}(L)$, where $J(z)$ is the Joukovsky transformation. Let U be the interior domain of T and

$$
\Psi_{n}(z)=z^{n} \prod_{i=1}^{2 n}\left(1-\frac{e_{n, i}}{z}\right)
$$

for some interpolation set $E_{n}=\left\{e_{n, i}\right\}, e_{n, i}=J\left(\boldsymbol{e}_{n, i}\right), \boldsymbol{e}_{n, i} \in U$. Then

$$
q_{n}(z)=\Psi_{n}(z)+\Psi_{n}(1 / z) \quad \text { and } \quad \frac{1}{w_{L}(z)}-\frac{p_{n}(z)}{q_{n}(z)}=\frac{2}{w_{L}(z)} \frac{\Psi_{n}(z)}{\Psi_{n}(z)+\Psi_{n}(1 / z)}
$$

where $z \in U, z=J(z)$, and $p_{n}(z) / q_{n}(z)$ is the multipoint Padé approximant of $1 / w_{L}(z)$ associated with E_{n}.

Bernstein-Szeg夭 Case

Approximated function is $1 / w_{L}(z)$ where panel (c): L is an arc connecting -1 to some $x_{*}>5 / 4$ through the upper half-plane and then x_{*} to 1 through the lower half-plane and there are 48 interpolation conditions at infinity and 10 conditions at 5/4; panel (d): L is a lower unit semi-circle and there are 48 interpolation conditions at infinity and 8 conditions at $-3 \mathrm{i} / 4$.

Bernstein-Szeg夭 Case

$$
\frac{1}{w_{L}(z)}-\frac{p_{n}(z)}{q_{n}(z)}=\frac{2}{w_{L}(z)} \frac{\Psi_{n}(z)}{\Psi_{n}(z)+\Psi_{n}(1 / z)}=\frac{2}{w_{L}(z)} \frac{B_{n}(z)}{1+B_{n}(z)},
$$

for $z \in U$ and $z=J(z)$, where

$$
B_{n}(z):=\prod_{i=1}^{2 n} \frac{z-\boldsymbol{e}_{n, i}}{1-\boldsymbol{e}_{n, i} z} .
$$

If in some subdomain of U the function $B_{n}(z)$ is very small, then

$$
\frac{p_{n}(z)}{q_{n}(z)} \sim \frac{1}{w_{L}(z)},
$$

and if $B_{n}(z)$ is very large, then

$$
\frac{p_{n}(z)}{q_{n}(z)} \sim-\frac{1}{w_{L}(z)} .
$$

Notice that $-w_{L}(z)$ is the analytic continuation of $w_{L}(z)$ across L.

Let L be a Jordan curve oriented from -1 to 1 and $\left\{E_{n}\right\}$ be an interpolation scheme, $E_{n}=\left\{e_{n, i}\right\}$ from the complement of L. Set $T=J^{-1}(L)$ and U be the interior of T. Define $e_{n, i}=J\left(\boldsymbol{e}_{n, i}\right), \boldsymbol{e}_{n, i} \in U$, and

$$
B_{n}(z)=\prod_{i=1}^{2 n} \frac{z-\boldsymbol{e}_{n, i}}{1-\boldsymbol{e}_{n, i} z}
$$

Assume that there exists a contour Γ such that

- $M^{-1} \leq\left|B_{n}(s)\right| \leq M$ for $s \in \Gamma$;
- in each connected component of $\mathbb{C} \backslash \Gamma$ either $B_{n}(z) \rightarrow 0$ or $B_{n}(z) \rightarrow \infty$.

We shall call $\Delta=J(\Gamma)$ a symmetric contour associated with L and $\left\{E_{n}\right\}$.

Darker filled circles represent interpolation points (bigger circle represents more interpolation conditions at the point), dashed lines represent L, solid lines represent Δ, and lightly shaded regions represent D_{Δ}^{∞}.
Panel (e): interpolation points create an external field that pushes L up to Δ.
Panel (f): interpolation points below L push it up, interpolation points above L push it down, but create weaker external field resulting in L going through them while simultaneously forming a barrier Δ_{1}.

Panel (g): top and bottom groups of interpolation points create an external field that pushes L up while the middle group pushes L down, due to different strength of the components of the external field generated by these groups, two barriers are created. Panel (h): interpolation points below L create an external field that pushes L up all the way through ∞ to the displayed position of Δ_{0}, interpolation points above L create a weaker external field that results in a barrier Δ_{1}.

Symmetric contours Δ that correspond to L that connects -1 to some $x_{*}>5 / 4$ through the upper half-plane and then x_{*} to 1 through the lower half-plane and interpolation schemes where the interpolation conditions are equally distributed between between ∞ and $5 / 4$ (i) or there are twice (j), three times (k), or four times (l) more interpolation conditions at ∞ than at $5 / 4$.

Symmetric Contours

Symmetric contours Δ that correspond to L being a lower unit semi-circle and interpolation schemes where there are four (m), five (n), or six (o) times more interpolation conditions at ∞ than at $-3 \mathrm{i} / 4$.

Theorem (Baratchart-Ya. $2009+2010+$ Ya. $2021+$ in progress)

Let $L,\left\{E_{n}\right\}$, and Δ be as above. Let

$$
f_{L}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{\rho(s)}{s-z} \frac{d s}{w_{L+}(s)}
$$

where $\rho(s)$ is analytic and non-vanishing in a "large enough" domain. Then

$$
\frac{p_{n}(z)}{q_{n}(z)} \rightarrow f_{\Delta}(z)
$$

where $p_{n}(z) / q_{n}(z)$ is the multipoint Padé approximants associated with E_{n} and $f_{\Delta}(z)$ is the analytic continuation of $f_{L}(z)$ into $\overline{\mathbb{C}} \backslash \Delta$ that coincides with $f_{L}(z)$ at the interpolation points.

Bernstein-Szeg夭 Case

Let now

$$
w_{L}(z)=\sqrt{\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{2 g+1}\right)}
$$

be the branch holomorphic outside some contour $L, w_{L}(z) \sim z^{g+1}$.
Let $\left\{E_{n}\right\}$ be an interpolation scheme, $E_{n}=\left\{e_{n, i}\right\}_{i=1}^{2 n-g}$ from the complement of $L(g+1$ interpolation conditions are automatically placed at infinity).

Define

$$
\mathfrak{S}=\left\{z=(z, w): w^{2}=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{2 g+2}\right)\right\} .
$$

Let $\pi(z)=z$ and $z^{*}=(z,-w)$ for $z=(z, w)$ and ∞ be such that $w(z) \sim z^{g+1}$ as $z \rightarrow \infty$.
Denote by U the connected component of \mathbb{S} in which $w(z)=-w_{L}(z)$ and define $e_{n, i}=\pi\left(\boldsymbol{e}_{n, i}\right), \boldsymbol{e}_{n, i} \in U$.

Bernstein-Szeg夭 Case

Proposition

Let $\sigma:\left\{a_{1}, \ldots, a_{2 g+1}\right\} \rightarrow\{0,1\}$ and

$$
f(z)=\frac{u_{\sigma}(z)}{w_{L}(z)}-l_{\sigma}(z), \quad u_{\sigma}(z)=\prod_{i=1}^{2 g+2}\left(z-a_{i}\right)^{\sigma\left(a_{i}\right)},
$$

where $l_{\sigma}(z)$ is a polynomial such that $f(\infty)=0$. Let $\Psi_{n}(z)$ be the rational function on \mathbb{S} with the zero/pole divisor

$$
\sum_{i=1}^{g} z_{n, i}+\sum_{i=1}^{2 n-g} \boldsymbol{e}_{n, i}-\sum_{i=1}^{2 g+2} \sigma\left(a_{i}\right) a_{i}-n \infty-(n-|\sigma|) \infty^{*}
$$

where \boldsymbol{a}_{i} are ramification points, $|\sigma|=\sum \sigma\left(a_{i}\right)$, and $z_{n, i}$ are determined from the Jacobi inversion problem. Then

$$
q_{n}(z)=\Psi_{n}(z)+\Psi_{n}\left(z^{*}\right) \quad \text { and } \quad f(z)-\frac{p_{n}(z)}{q_{n}(z)}=2 \frac{u_{\sigma}(z)}{w_{L}(z)} \frac{\Psi_{n}(z)}{\Psi_{n}(z)+\Psi_{n}\left(z^{*}\right)}
$$

for $z \in U$.

Bernstein-Szegб Case

Zeros of q_{36}, q_{60}, and q_{34} to $\left(z^{4}-1\right)^{-1 / 2}$ corresponding to the interpolation schemes $\{ \pm 1 \pm \mathrm{i}\},\{1 / 4+\mathrm{i},-1 / 4-\mathrm{i}, 1-\mathrm{i} / 4,-1+\mathrm{i} / 4\}$, and $\{1+\mathrm{i},-1-\mathrm{i}\}$.

Let L and $E_{n}=\left\{e_{n, i}\right\}$ be as before. For each non-ramification point $\boldsymbol{e} \in \mathbb{S}$ there exists a function $g(z, \boldsymbol{e})$ that is harmonic in $\mathfrak{S} \backslash\left\{\boldsymbol{e}, \boldsymbol{e}^{*}\right\}$, satisfies $g(z, \boldsymbol{e})=-g\left(z^{*}, \boldsymbol{e}\right)$, and blows up like a logarithm at e. Set

$$
g_{n}(z)=\sum_{i=1}^{2 n-g} g\left(z, \boldsymbol{e}_{n, i}\right) .
$$

Assume that there exists a collection of cycles Γ such that

- $M^{-1} \leq\left|g_{n}(s)\right| \leq M$ for $s \in \Gamma$;
- in each connected component of $\mathfrak{S} \backslash \Gamma$ either $g_{n}(z) \rightarrow \infty$ or $g_{n}(z) \rightarrow-\infty$.

We shall call $\Delta=J(\Gamma)$ a symmetric contour associated with L and $\left\{E_{n}\right\}$.

```
Theorem (Ya. 2015 + 2018 + in progress)
```

Let $L,\left\{E_{n}\right\}$, and Δ be as above. Let

$$
f_{L}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{L} \frac{\rho(s)}{s-z} \frac{d s}{w_{L+}(s)}
$$

where $\rho(s)$ is analytic and non-vanishing in a "large enough" domain. Then

$$
\frac{p_{n}(z)}{q_{n}(z)} \sim f_{\Delta}(z)
$$

where $p_{n}(z) / q_{n}(z)$ is the multipoint Padé approximants associated with E_{n} and $f_{\Delta}(z)$ is the analytic continuation of $f_{L}(z)$ into $\overline{\mathbb{C}} \backslash \Delta$ that coincides with $f_{L}(z)$ at the interpolation points.

Zeros of q_{36}, q_{60}, and q_{34} to $\left(z^{4}-1\right)^{-1 / 4}$ corresponding to the interpolation schemes $\{ \pm 1 \pm \mathrm{i}\},\{1 / 4+\mathrm{i},-1 / 4-\mathrm{i}, 1-\mathrm{i} / 4,-1+\mathrm{i} / 4\}$, and $\{1+\mathrm{i},-1-\mathrm{i}\}$.

