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Support of the Measure

Let ∆ be a smooth arc with endpoints ±1 and D := C \∆. Set

w(z) :=
√

z2 − 1, w(z)/z → 1 as z → ∞,

where holomorphic in D branch is selected. Define

ϕ(z) := z + w(z), z ∈ D.

Then

w
+ = −w

−
and ϕ+ϕ− = 1 on ∆,

where ∆ is assumed to be oriented from −1 to 1 and w± and ϕ± are

the (unrestricted) boundary values on w and ϕ.
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Approximated Function

Let µ be given by

dµ(t) = (hwα,�)(t)
idt

π
,

where h is a non-vanishing function on ∆ with ‘‘some smoothness’’ and

wα,�(z) := (1 − z)α(1 + z)�, α, � > −1,

is analytic across ∆◦.
Define

fµ(z) :=

∫
dµ(t)

z − t
=

∫
(hwα,�)(t)

z − t

idt

π
,
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Multipoint Padé Approximation

Let E := {En} be an interpolation scheme on E ⊂ D, that is,

En ⊂ E consists of 2n not necessarily distinct nor finite points.

Denote by vn the monic polynomial that vanishes at finite points of En

according to their multiplicity.

The n-th diagonal multipoint Padé approximant to fµ associated with E
is the unique rational function Πn = pn/qn satisfying:

deg pn ≤ n, deg qn ≤ n, and qn . 0;

(qn(z)fµ(z) − pn(z)) /vn(z) is analytic on E ;

(qn(z)fµ(z) − pn(z)) /vn(z) = O
(
1/zn+1

)
as z → ∞.
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Symmetry w.r.t. Interpolation Scheme

Let E = {En} be an interpolations scheme in D. Associate to each En a

function

rn(z) :=
∏
e∈En

ϕ(z) − ϕ(e)

1 − ϕ(z)ϕ(e)
, z ∈ D.

Then

rn is holomorphic in D;

rn vanishes at each e ∈ En;

r
+
n r−n = 1 on ∆.

Definition (BY)

We say that ∆ is symmetric w.r.t. an interpolation scheme E if rn = o(1)
locally uniformly in D and |r±n | = O(1) uniformly on ∆.
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Symmetry w.r.t. Interpolation Scheme

Theorem (BY)

Let ∆ be a rectifiable Jordan arc with an additional condition near ±1

(below). Then the following are equivalent:

∃ an interpolation scheme E , ∩n∪k≥nEk =: supp(E ) ⊂ D, such

that ∆ is symmetric with respect to E ;

∃ a positive Borel measure ν, supp(ν) ⊂ D, such that

∆ is symmetric with respect to ν (in the sense of Stahl);

∆ is an analytic Jordan arc.

It is assumed that such that for x = ±1 and all t ∈ ∆ sufficiently close to

x it holds that |∆t,x | ≤ const.|x − t |�, � > 1/2.
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Orthogonality

It follows easily from the very definition of Πn = pn/qn that qn are

Non-Hermitian orthogonal polynomials:∫
∆

t
j
qn(t)wn(t)dt = 0, j = 0, . . . , n − 1,

where

wn := wα,�h/vn, deg(vn) ≤ 2n.

Functions of the second kind:

Rn(z) :=

∫
∆

qn(t)wn(t)

t − z

dt

π i
, z ∈ C \∆.

Then

(Rnw)+ + (Rnw)− = 2qnwnw
+

on ∆.



Padé Approximation and Symmetry RH∂̄ Problem Main Theorem

Initial Riemann-Hilbert Problem

Set

σ3 =

(
1 0

0 −1

)
, Y :=

(
qn Rn

mnq∗
n−1

mnR∗
n−1

)
,

where q∗
n−1

are polynomials satisfying∫
∆

t
j
q
∗
n−1(t)wn(t)dt = 0, j ∈ {0, . . . , n − 2},

and R∗
n−1

are their functions of the second kind.

For simplicity, we put α = � = 0.
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Initial Riemann-Hilbert Problem

Y is the unique solution of the following RH-problem:

(a) Y is analytic in C \∆ and

lim
z→∞

Y (z)z
−nσ3 = I ,

where I is the identity matrix;

(b) Y has continuous traces, Y±, on ∆◦ and

Y+ = Y−

(
1 2wn

0 1

)
;

(c) Y has the following behavior near z = ±1:

Y = O

(
1 log |1 ∓ z |

1 log |1 ∓ z |

)
,

as D 3 z → ±1.
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Initial Riemann-Hilbert Problem

After proper renormalization, we obtain matrix function T that solves

the following RH-problem:

(a) T is analytic in D and T (∞) = I ;

(b) T has continuous traces, T±, on ∆◦ and

T+ = T−

(
(rnc)+ wα,�

0 (rnc)−

)
,

where

c
±(τ) = exp

{
w±(τ)

π i

∫
∆

θ(t)

w+(t)

dt

t − τ

}
;

(c) T has the following behavior near z = ±1:

T = O

(
1 log |1 ∓ z |

1 log |1 ∓ z |

)
,

as D 3 z → ±1.
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Opening the Lenses (
(rnc)+ wα,�

0 (rnc)−

)
=(

1 0

(rnc)−/wα,� 1

) (
0 wα,�

−1/wα,� 0

) (
1 0

(rnc)+/wα,� 1

)
.

+−

+−
+−

∆n+

∆+

∆−

∆n−

∆−1 1

Figure: The contour Σn := ∆n+ ∪∆ ∪∆n− (solid lines). The extension contour

Σext := ∆+ ∪∆ ∪∆− (dashed lines and ∆).
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Smooth Extension

Definition

A function θ belongs to the Sobolev class W
1−1/p
p , p ∈ (2,∞), if"

∆×∆

∣∣∣∣∣∣θ(x) − θ(y)

x − y

∣∣∣∣∣∣p |dx ||dy | < ∞.

Lemma (BY)

Let h = exp{θ}, θ ∈ W
1−1/p
p , p ∈ (2,∞). Then there exists a continuous

in C \∆ and up to ∆± function c satisfying

c|∆± = c
±, c|∆± = exp{w`}, and ∂̄c = cf ,

where deg(`) ≤ 1 and f ∈ Lp(Ω±).
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Smooth Extension

Define

Sφ(τ) :=
1

π i

∫
∆

φ(t)

t − τ
dt, τ ∈ ∆◦.

Then the first step to prove the previous lemma is to show the following.

Lemma (BY)

Let θ ∈ W
1−1/p
p , p ∈ (2,∞). Then

w
±S(θ/w

+) = ±d + w
±`, d(±1) = 0,

where d ∈ W
1−1/q
q for any q ∈ (2, p) and deg(`) ≤ 1.

The second step is to use the trace theorems for Sobolev spaces on

domains with corners.
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Riemann-Hilbert-∂̄ Problem

Matrix function T is transformed into the matrix function S that solves

the following RH∂̄-problem:

(a) S is continuous in C \ Σn and S (∞) = I ;

(b) S has traces, S±, on Σ◦n := Σn \ {±1} and

S+ = S−

(
1 0

rnc/wα,� 1

)
on ∆◦n+ ∪∆◦n−,

S+ = S−

(
0 wα,�

−1/wα,� 0

)
on ∆◦;

(c) S has the following behavior near z = ±1:

S (z) = O

(
log |1 ∓ z | log |1 ∓ z |

log |1 ∓ z | log |1 ∓ z |

)
as C \ Σn 3 z → ±1;

(d) S deviate from an analytic matrix function as ∂̄S = S W0,

where the support of W0 is contained within the extension lens.
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Analytic Approximation

Now, we seek the solution for the following RH-problem:

(a) A is a holomorphic matrix function in C \ Σn and A (∞) = I ;

(b) A has continuous traces, A±, on Σ◦n that satisfy the same relations

as S ;

(c) the behavior of A near ±1 is identical to the behavior of S .

Observe that we may assume c = exp{w`}.

This problem was solved by Kuijlaars, McLaughlin, Van Assche, and

Vanlessen for ∆ = [−1, 1] and no polynomial weight. With some

technical challenges the proof can be adapted to the present

situation.

Hence, the problem for A is indeed solvable.
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∂̄-Problem

We seek the solution of the following ∂̄-problem:

(a) D is a continuous matrix function in C and D(∞) = I ;

(b) D satisfies ∂̄D = DW with W := A W0A −1.

This problem is solvable if and only if there exists a solution of

I = (I − KW )D ,

where

KW D(z) :=
1

2π i

"
Ω

(W D)(ζ )

ζ − z
dζ ∧ d ζ̄ .

Matrix functions D exist since

‖KW ‖ → 0 as n→ ∞.
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Approximation of Cauchy Transforms

Theorem (BY)

Let ∆ be an analytic Jordan arc, which is symmetric with respect to E ,

and

fµ(z) =

∫
(hwα,�)(t)

z − t

idt

π
,

where h = eθ, θ ∈ W
1−1/p
p , p ∈ (2,∞), and α, � ∈ ( 2

p
− 1, 1 − 2

p
).

If {Πn} is the sequence of diagonal multipoint Padé approximants to fµ

associated to E , then

(fµ − Πn)w = [2Gµ̇ + o(1)]S2
rn

locally uniformly in D.
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Approximation of Cauchy Transforms

The theorem also holds under the condition

α, � ∈ (−s, s) ∩ (−1,∞),

where

s :=

 2ς − 1, if θ ∈ C0,ς , ς ∈ ( 1

2
, 1],

m + ς, if θ ∈ Cm,ς , m ∈ N, ς ∈ (0, 1],

and

a function θ belongs to the class Cm,ς , m ∈ Z+, ς ∈ (0, 1], if θ is m-times

continuously differentiable on ∆ and its m-th derivative is uniformly

Hölder continuous with exponent ς, i.e.,

|θ(m)(t1) − θ(m)(t2)| ≤ const.|t1 − t2|
ς , t1, t2 ∈ ∆,

where const. < ∞ depends only on θ.
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