Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights

Maxim Yattselev
Center for Constructive Approximation, Vanderbilt University, Nashville, TN
joint work with
Laurent Baratchart

21th International Workshop on Operator Theory and Applications TU Berlin, Germany

```
July 12th, 2010
```

Let Δ be a smooth arc with endpoints ± 1 and $D:=\overline{\mathbb{C}} \backslash \Delta$. Set

$$
w(z):=\sqrt{z^{2}-1}, \quad w(z) / z \rightarrow 1 \quad \text { as } \quad z \rightarrow \infty
$$

where holomorphic in D branch is selected. Define

$$
\varphi(z):=z+w(z), \quad z \in D .
$$

Then

$$
w^{+}=-w^{-} \text {and } \varphi^{+} \varphi^{-}=1 \text { on } \Delta,
$$

where Δ is assumed to be oriented from -1 to 1 and $w^{ \pm}$and $\varphi^{ \pm}$are the (unrestricted) boundary values on w and φ.

Let μ be given by

$$
d \mu(t)=\left(h w_{a, \beta}\right)(t) \frac{i d t}{\pi},
$$

where h is a non-vanishing function on Δ with "some smoothness" and

$$
w_{a, \beta}(z):=(1-z)^{a}(1+z)^{\beta}, \quad a, \beta>-1,
$$

is analytic across Δ°.
Define

$$
f_{\mu}(z):=\int \frac{d \mu(t)}{z-t}=\int \frac{\left(h w_{a, \beta}\right)(t)}{z-t} \frac{i d t}{\pi},
$$

Let $\mathscr{E}:=\left\{E_{n}\right\}$ be an interpolation scheme on $E \subset D$, that is,
$E_{n} \subset E$ consists of $2 n$ not necessarily distinct nor finite points.
Denote by v_{n} the monic polynomial that vanishes at finite points of E_{n} according to their multiplicity.

The n-th diagonal multipoint Padé approximant to f_{μ} associated with \mathscr{E} is the unique rational function $\Pi_{n}=p_{n} / q_{n}$ satisfying:

- $\operatorname{deg} p_{n} \leq n, \operatorname{deg} q_{n} \leq n$, and $a_{n} \equiv \equiv 0$;
- $\left(q_{n}(z) f_{\mu}(z)-p_{n}(z)\right) / v_{n}(z)$ is analytic on E;
- $\left(q_{n}(z) f_{\mu}(z)-p_{n}(z)\right) / v_{n}(z)=O\left(1 / z^{n+1}\right)$ as $z \rightarrow \infty$.

Let $\mathscr{E}=\left\{E_{n}\right\}$ be an interpolations scheme in D. Associate to each E_{n} a function

$$
r_{n}(z):=\prod_{e \in E_{n}} \frac{\varphi(z)-\varphi(e)}{1-\varphi(z) \varphi(e)}, \quad z \in D
$$

Then

- r_{n} is holomorphic in D;
- r_{n} vanishes at each $e \in E_{n}$;
- $r_{n}^{+} r_{n}^{-}=1$ on Δ.

Let $\mathscr{E}=\left\{E_{n}\right\}$ be an interpolations scheme in D. Associate to each E_{n} a function

$$
r_{n}(z):=\prod_{e \in E_{n}} \frac{\varphi(z)-\varphi(e)}{1-\varphi(z) \varphi(e)}, \quad z \in D .
$$

Then

- r_{n} is holomorphic in D;
- r_{n} vanishes at each $e \in E_{n}$;
- $r_{n}^{+} r_{n}^{-}=1$ on Δ.

Definition (BY)

We say that Δ is symmetric w.r.t. an interpolation scheme \mathscr{E} if $r_{n}=o(1)$ locally uniformly in D and $\left|r_{n}^{ \pm}\right|=O(1)$ uniformly on Δ.

Theorem (BY)

Let Δ be a rectifiable Jordan arc with an additional condition near ± 1
(below). Then the following are equivalent:

- \exists an interpolation scheme $\mathscr{E}, \cap_{n} \overline{U_{k \geq n} E_{k}}=: \operatorname{supp}(\mathscr{E}) \subset D$, such that Δ is symmetric with respect to \mathscr{E};
- \exists a positive Borel measure $v, \operatorname{supp}(v) \subset D$, such that Δ is symmetric with respect to v (in the sense of Stahl);
- Δ is an analytic Jordan arc.

It is assumed that such that for $x= \pm 1$ and all $t \in \Delta$ sufficiently close to x it holds that $\left|\Delta_{t, x}\right| \leq$ const. $|x-t|^{\beta}, \beta>1 / 2$.

It follows easily from the very definition of $\Pi_{n}=p_{n} / q_{n}$ that q_{n} are Non-Hermitian orthogonal polynomials:

$$
\int_{\Delta} t^{j} a_{n}(t) w_{n}(t) d t=0, \quad j=0, \ldots, n-1
$$

where

$$
w_{n}:=w_{a, \beta} h / v_{n}, \quad \operatorname{deg}\left(v_{n}\right) \leq 2 n .
$$

Functions of the second kind:

$$
R_{n}(z):=\int_{\Delta} \frac{q_{n}(t) w_{n}(t)}{t-z} \frac{d t}{\pi i}, \quad z \in \overline{\mathbb{C}} \backslash \Delta .
$$

Then

$$
\left(R_{n} w\right)^{+}+\left(R_{n} w\right)^{-}=2 q_{n} w_{n} w^{+} \text {on } \Delta \text {. }
$$

Set

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathscr{Y}:=\left(\begin{array}{cc}
q_{n} & R_{n} \\
m_{n} q_{n-1}^{*} & m_{n} R_{n-1}^{*}
\end{array}\right),
$$

where q_{n-1}^{*} are polynomials satisfying

$$
\int_{\Delta} t^{\prime} a_{n-1}^{*}(t) w_{n}(t) d t=0, \quad j \in\{0, \ldots, n-2\},
$$

and R_{n-1}^{*} are their functions of the second kind.

For simplicity, we put $a=\beta=0$.
\mathscr{Y} is the unique solution of the following RH-problem:
(a) \mathscr{Y} is analytic in $\mathbb{C} \backslash \Delta$ and

$$
\lim _{z \rightarrow \infty} \mathscr{Y}(z) z^{-n \sigma_{3}}=\mathscr{I}
$$

where \mathscr{I} is the identity matrix;
(b) \mathscr{Y} has continuous traces, $\mathscr{Y}_{ \pm}$, on Δ° and

$$
\mathscr{Y}_{+}=\mathscr{Y}_{-}\left(\begin{array}{cc}
1 & 2 w_{n} \\
0 & 1
\end{array}\right)
$$

(c) \mathscr{Y} has the following behavior near $z= \pm 1$:

$$
\mathscr{Y}=O\left(\begin{array}{cc}
1 & \log |1 \mp z| \\
1 & \log |1 \mp z|
\end{array}\right),
$$

as $D \ni z \rightarrow \pm 1$.

After proper renormalization, we obtain matrix function \mathscr{T} that solves the following RH-problem:
(a) \mathscr{T} is analytic in D and $\mathscr{T}(\infty)=\mathscr{I}$;
(b) \mathscr{T} has continuous traces, $\mathscr{T}_{ \pm}$, on Δ° and

$$
\mathscr{T}_{+}=\mathscr{T}_{-}\left(\begin{array}{cc}
\left(r_{n} c\right)^{+} & w_{a, \beta} \\
0 & \left(r_{n} c\right)^{-}
\end{array}\right)
$$

where

$$
c^{ \pm}(\tau)=\exp \left\{\frac{w^{ \pm}(\tau)}{\pi i} \int_{\Delta} \frac{\partial(t)}{w^{+}(t)} \frac{d t}{t-\tau}\right\}
$$

(c) \mathscr{T} has the following behavior near $z= \pm 1$:

$$
\mathscr{T}=O\left(\begin{array}{cc}
1 & \log |1 \mp z| \\
1 & \log |1 \mp z|
\end{array}\right),
$$

as $D \ni z \rightarrow \pm 1$.

$$
\begin{gathered}
\left(\begin{array}{cc}
\left(r_{n} c\right)^{+} & w_{a, \beta} \\
0 & \left(r_{n} c\right)^{-}
\end{array}\right)= \\
\left(\begin{array}{cc}
1 & 0 \\
0 & w_{a, \beta} \\
\left(r_{n} c\right)^{-} / w_{a, \beta} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 / w_{a, \beta} & 0
\end{array}\right)\binom{1}{\left(r_{n} c\right)^{+} / w_{a, \beta}} .
\end{gathered}
$$

The contour $\Sigma_{n}:=\Delta_{n+} \cup \Delta \cup \Delta_{n-}$ (solid lines). The extension contour $\Sigma_{e x t}:=\Delta_{+} \cup \Delta \cup \Delta_{-}$(dashed lines and Δ).

Definition

A function ∂ belongs to the Sobolev class $W_{p}^{1-1 / p}, p \in(2, \infty)$, if

$$
\iint_{\Delta x \Delta}\left|\frac{\partial(x)-\partial(y)}{x-y}\right|^{D}|d x \| d y|<\infty
$$

Lemma (BY)

Let $h=\exp \{\partial\}, \partial \in W_{p}^{1-1 / p}, p \in(2, \infty)$. Then there exists a continuous in $\mathbb{C} \backslash \Delta$ and up to $\Delta^{ \pm}$function c satisfying

$$
c_{\Delta^{ \pm}}=c^{ \pm}, \quad c_{\Delta_{ \pm}}=\exp \{w \ell\}, \quad \text { and } \quad \bar{\partial} c=c f
$$

where $\operatorname{deg}(\ell) \leq 1$ and $f \in \mathrm{~L}^{\mathcal{P}}\left(\Omega_{ \pm}\right)$.

Define

$$
\mathcal{S} \phi(\tau):=\frac{1}{\pi i} \int_{\Delta} \frac{\phi(t)}{t-\tau} d t, \quad \tau \in \Delta^{\circ}
$$

Then the first step to prove the previous lemma is to show the following.

Lemma (BY)

Let $\partial \in W_{p}^{1-1 / p}, p \in(2, \infty)$. Then

$$
w^{ \pm} \mathcal{S}\left(\partial / w^{+}\right)= \pm d+w^{ \pm} \ell, \quad d(\pm 1)=0
$$

where $d \in W_{q}^{1-1 / q}$ for any $q \in(2, p)$ and $\operatorname{deg}(\ell) \leq 1$.

The second step is to use the trace theorems for Sobolev spaces on domains with corners.

Matrix function \mathscr{T} is transformed into the matrix function \mathscr{S} that solves the following RH $\bar{\partial}$-problem:
(a) \mathscr{S} is continuous in $\overline{\mathbb{C}} \backslash \Sigma_{n}$ and $\mathscr{S}(\infty)=\mathscr{I}$;
(b) \mathscr{S} has traces, $\mathscr{S}_{ \pm}$, on $\Sigma_{n}^{\circ}:=\Sigma_{n} \backslash\{ \pm 1\}$ and

$$
\begin{aligned}
& \mathscr{S}_{+}=\mathscr{S}_{-}\left(\begin{array}{cc}
1 & 0 \\
r_{n} c / w_{a, \beta} & 1
\end{array}\right) \text { on } \Delta_{n+}^{\circ} \cup \Delta_{n--}^{\circ}, \\
& \mathscr{S}_{+}=\mathscr{S}_{-}\left(\begin{array}{cc}
0 & w_{a, \beta} \\
-1 / w_{a, \beta} & 0
\end{array}\right) \text { on } \Delta^{\circ} ;
\end{aligned}
$$

(c) \mathscr{S} has the following behavior near $z= \pm 1$:

$$
\mathscr{S}(z)=O\left(\begin{array}{cc}
\log |1 \mp z| & \log |1 \mp z| \\
\log |1 \mp z| & \log |1 \mp z|
\end{array}\right) \text { as } \quad \mathbb{C} \backslash \Sigma_{n} \ni z \rightarrow \pm 1 ;
$$

(d) \mathscr{S} deviate from an analytic matrix function as $\bar{\partial} \mathscr{S}=\mathscr{S} \mathscr{W}_{0}$, where the support of \mathscr{W}_{0} is contained within the extension lens.

Now, we seek the solution for the following RH-problem:
(a) \mathscr{A} is a holomorphic matrix function in $\overline{\mathbb{C}} \backslash \Sigma_{n}$ and $\mathscr{A}(\infty)=\mathscr{I}$;
(b) \mathscr{A} has continuous traces, $\mathscr{A}_{ \pm}$, on Σ_{n}° that satisfy the same relations as \mathscr{S};
(c) the behavior of \mathscr{A} near ± 1 is identical to the behavior of \mathscr{S}.

Observe that we may assume $c=\exp \{w \ell\}$.

Now, we seek the solution for the following RH-problem:
(a) \mathscr{A} is a holomorphic matrix function in $\overline{\mathbb{C}} \backslash \Sigma_{n}$ and $\mathscr{A}(\infty)=\mathscr{I}$;
(b) \mathscr{A} has continuous traces, $\mathscr{A}_{ \pm}$, on \sum_{n}° that satisfy the same relations as \mathscr{S};
(c) the behavior of \mathscr{A} near ± 1 is identical to the behavior of \mathscr{S}.

Observe that we may assume $c=\exp \{w \ell\}$.
This problem was solved by Kuijlaars, McLaughlin, Van Assche, and Vanlessen for $\Delta=[-1,1]$ and no polynomial weight. With some technical challenges the proof can be adapted to the present situation.

Hence, the problem for \mathscr{A} is indeed solvable.

We seek the solution of the following $\bar{\partial}$-problem:
(a) \mathscr{D} is a continuous matrix function in $\overline{\mathbb{C}}$ and $\mathscr{D}(\infty)=\mathscr{I}$:
(b) \mathscr{D} satisfies $\bar{\partial} \mathscr{D}=\mathscr{D} \mathscr{W}$ with $\mathscr{W}:=\mathscr{A} \mathscr{W} \mathscr{A}^{-1}$.

We seek the solution of the following $\bar{\partial}$-problem:
(a) \mathscr{D} is a continuous matrix function in $\overline{\mathbb{C}}$ and $\mathscr{D}(\infty)=\mathscr{I}$;
(b) \mathscr{D} satisfies $\bar{\partial} \mathscr{D}=\mathscr{D} \mathscr{W}$ with $\mathscr{W}:=\mathscr{A} \mathscr{W} \mathscr{A}^{-1}$.

This problem is solvable if and only if there exists a solution of

$$
\mathscr{I}=\left(I-\mathcal{K}_{\mathscr{W}}\right) \mathscr{D},
$$

where

$$
\mathcal{K}_{\mathscr{W}} \mathscr{D}(z):=\frac{1}{2 \pi i} \iint_{\Omega} \frac{(\mathscr{W} \mathscr{D})(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta} .
$$

Matrix functions \mathscr{D} exist since

$$
\left\|\mathcal{K}_{\mathscr{W}}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Theorem (BY)

Let Δ be an analytic Jordan arc, which is symmetric with respect to \mathscr{E}, and

$$
f_{\mu}(z)=\int \frac{\left(h w_{a, \beta}\right)(t)}{z-t} \frac{i d t}{\pi},
$$

where $h=e^{\partial}, \partial \in W_{p}^{1-1 / p}, p \in(2, \infty)$, and $a, \beta \in\left(\frac{2}{p}-1,1-\frac{2}{p}\right)$.
If $\left\{\Pi_{n}\right\}$ is the sequence of diagonal multipoint Padé approximants to f_{μ} associated to \mathscr{E}, then

$$
\left(f_{\mu}-\Pi_{n}\right) w=\left[2 G_{\dot{\mu}}+o(1)\right] S^{2} r_{n}
$$

locally uniformly in D.

The theorem also holds under the condition

$$
a, \beta \in(-s, s) \cap(-1, \infty) \text {, }
$$

where

$$
s:=\left\{\begin{array}{llll}
2 S-1, & \text { if } & \partial \in \mathbb{C}^{0, S}, & s \in\left(\frac{1}{2}, 1\right] \\
m+s, & \text { if } & \partial \in \mathbb{C}^{m, S}, & m \in \mathbb{N}, \quad s \in(0,1]
\end{array}\right.
$$

and
a function ∂ belongs to the class $C^{m, s}, m \in \mathbb{Z}_{+}, s \in(0,1]$, if ∂ is m-times continuously differentiable on Δ and its m-th derivative is uniformly Hölder continuous with exponent s, i.e.,

$$
\left|\partial^{(m)}\left(t_{1}\right)-\partial^{(m)}\left(t_{2}\right)\right| \leq \text { const. }\left|t_{1}-t_{2}\right|^{s}, \quad t_{1}, t_{2} \in \Delta,
$$

where const. $<\infty$ depends only on ∂.

