On Rational Approximants of Multi-Valued Functions

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis
IIJ IUPUI SCHOOL OF SCIENCE
Department of Mathematical Sciences

Colloquium
IUPUI Department of Mathematical Sciences
March 3rd, 2023

- f is the approximated analytic function
- A is a closed set on which f is approximated
- B is a closed set with connected complement B^{c} such that f is analytic in B^{c} and $A \subset B^{c}$ (B is for "boundary")
- $\mathcal{B}(f, A)$ is the collection of the sets B as above
- $\mathcal{R}_{n}(A)$ - all the rational functions of type (n, n) with poles in A^{c}

Theorem (Runge 1885)

Suppose A is compact and f is analytic on A. Given $\epsilon>0$, there exists a rational function R with poles in A^{c} such that $|(f-R)(z)|<\epsilon, z \in A$.

There exists a rectifiable contour Γ such that

$$
f(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in A
$$

By uniform continuity on $\Gamma \times A$, for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\left|\frac{f(\zeta)}{\zeta-z}-\frac{f\left(\zeta^{*}\right)}{\zeta^{*}-z}\right|<\frac{2 \pi}{|\Gamma|} \epsilon, \quad z \in A, \quad \zeta, \zeta^{*} \in \Gamma, \quad\left|\zeta-\zeta^{*}\right|<\delta
$$

Let $\left\{\Gamma_{i}\right\}$ be a partition of Γ into Jordan arcs such that $\left|\Gamma_{i}\right|<\delta$, and $\zeta_{i} \in \Gamma_{i}$.

$$
\left|f(z)-\frac{1}{2 \pi \mathrm{i}} \sum_{i} \frac{f\left(\zeta_{i}\right)}{\zeta_{i}-z} \int_{\Gamma_{i}} d \zeta\right| \leq \frac{1}{2 \pi} \sum_{i} \int_{\Gamma_{i}}\left|\frac{f(\zeta)}{\zeta-z}-\frac{f\left(\zeta_{i}\right)}{\zeta_{i}-z}\right||d \zeta|<\epsilon
$$

Limit Superior

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq ?, \quad \rho_{n}(f, A):=\inf _{R \in \mathcal{R}_{n}(A)}\|f-R\|_{A} .
$$

In what follows, it will be convenient to think of A as compact.

Finding best uniform approximants is hard, constructing interpolants is easier.

A Computation

Finding best uniform approximants is hard, constructing interpolants is easier.
Let f be analytic and bounded in $\{|z|<1\} \supset A, B=\{|z| \geq 1\}$.
Let $z_{1}, \ldots, z_{n} \in A$. There exists $r_{n} \in \mathcal{R}_{n}(\{|z| \leq 1\})$ (with poles outside of the closed unit disk) such that $f\left(z_{i}\right)=r_{n}\left(z_{i}\right)$ and

$$
\left|\left(f-r_{n}\right)(z)\right| \leq C n^{a}\left|b_{n}(z)\right|
$$

for some C, a independent of n, where

$$
b_{n}(z)=\prod_{i=1}^{n} \frac{z-z_{i}}{1-\bar{z}_{i} z}
$$

is a rational function with zeros z_{i} and such that $\left|b_{n}(z)\right| \equiv 1$ on $\mathbb{T}=\{|z|=1\}$.

A Computation

We also can write

$$
\left|b_{n}(z)\right|=\prod_{i=1}^{n}\left|\frac{z-z_{i}}{1-\bar{z}_{i} z}\right|=\exp \left\{-\sum_{i=1}^{n} \log \left|\frac{1-\bar{z}_{i} z}{z-z_{i}}\right|\right\}
$$

A Computation

We also can write

$$
\left|b_{n}(z)\right|=\prod_{i=1}^{n}\left|\frac{z-z_{i}}{1-\bar{z}_{i} z}\right|=\exp \left\{-\sum_{i=1}^{n} \log \left|\frac{1-\bar{z}_{i} z}{z-z_{i}}\right|\right\}
$$

Let $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{z_{i}}$ the normalized sum of point masses. Then

$$
\left|f(z)-r_{n}(z)\right| \leq C n^{a} \exp \left\{-n \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu_{n}(\zeta)\right\}
$$

We also can write

$$
\left|b_{n}(z)\right|=\prod_{i=1}^{n}\left|\frac{z-z_{i}}{1-\bar{z}_{i} z}\right|=\exp \left\{-\sum_{i=1}^{n} \log \left|\frac{1-\bar{z}_{i} z}{z-z_{i}}\right|\right\}
$$

Let $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{z_{i}}$ the normalized sum of point masses. Then

$$
\left|f(z)-r_{n}(z)\right| \leq C n^{a} \exp \left\{-n \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu_{n}(\zeta)\right\}
$$

and therefore

$$
\left\|f-r_{n}\right\|_{A}^{1 / n} \leq\left(C n^{a}\right)^{1 / n} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu_{n}(\zeta)\right\}
$$

We also can write

$$
\left|b_{n}(z)\right|=\prod_{i=1}^{n}\left|\frac{z-z_{i}}{1-\bar{z}_{i} z}\right|=\exp \left\{-\sum_{i=1}^{n} \log \left|\frac{1-\bar{z}_{i} z}{z-z_{i}}\right|\right\}
$$

Let $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{z_{i}}$ the normalized sum of point masses. Then

$$
\left|f(z)-r_{n}(z)\right| \leq C n^{a} \exp \left\{-n \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu_{n}(\zeta)\right\}
$$

and therefore

$$
\left\|f-r_{n}\right\|_{A}^{1 / n} \leq\left(C n^{a}\right)^{1 / n} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu_{n}(\zeta)\right\}
$$

We have a complete freedom in choosing ν_{n}.

Take a sequences such that $\nu_{n} \xrightarrow{*} \nu$ for some Borel measure ν on A :

$$
\int h d \nu_{n} \rightarrow \int h d \nu
$$

for any continuous function h on A. Then it holds that

$$
\limsup _{n \rightarrow \infty}\left\|f-r_{n}\right\|_{A}^{1 / n} \leq \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\} .
$$

Take a sequences such that $\nu_{n} \xrightarrow{*} \nu$ for some Borel measure ν on A :

$$
\int h d \nu_{n} \rightarrow \int h d \nu
$$

for any continuous function h on A. Then it holds that

$$
\limsup _{n \rightarrow \infty}\left\|f-r_{n}\right\|_{A}^{1 / n} \leq \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\}
$$

We still have a complete freedom in choosing ν.

Take a sequences such that $\nu_{n} \xrightarrow{*} \nu$ for some Borel measure ν on A :

$$
\int h d \nu_{n} \rightarrow \int h d \nu
$$

for any continuous function h on A. Then it holds that

$$
\limsup _{n \rightarrow \infty}\left\|f-r_{n}\right\|_{A}^{1 / n} \leq \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\}
$$

We still have a complete freedom in choosing ν. Therefore,

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq \inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\}
$$

The function $\log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right|$ is known as the Green's function for the unit disk with pole at ζ.

It describes the work done in bringing a unit charge particle from the boundary (unit circle) to the point z in the presence of an electric field generated by a fixed unit charge at ζ.

Green's Functions

It was not actually important that A was a subset of the unit disk. The latter could be replaced by other domain B^{c}.

It was not actually important that A was a subset of the unit disk. The latter could be replaced by other domain B^{c}.

Given a closed (non-polar) set B with connected complement B^{c} and $\zeta \in B^{c}$, there exists the unique function $g_{B}(z, \zeta)$, Green's function for B^{c}, such that

- $g_{B}(z, \zeta)$ is positive and harmonic in $B^{c} \backslash\{\zeta\}$;
- $g_{B}(z, \infty)-\log |z|$ is bounded near $\zeta=\infty$;
- $g_{B}(z, \zeta)+\log |z-\zeta|$ is bounded near $\zeta \neq \infty$;
- $g_{B}(z, \zeta)=0$ for quasi every (up to a polar set) $z \in \partial B^{c}$.

Green's Potentials

The Green potential of a finite Borel measure ν supported in B^{c} is defined by

$$
g_{B}(z ; \nu):=\int g_{B}(z, \zeta) d \nu(\zeta)
$$

The Green's energy of ν is defined by

$$
I_{B}[\nu]:=\iint g_{B}(z, \zeta) d \nu(\zeta) d \nu(z)
$$

Green's Potentials

The Green potential of a finite Borel measure ν supported in B^{c} is defined by

$$
g_{B}(z ; \nu):=\int g_{B}(z, \zeta) d \nu(\zeta)
$$

The Green's energy of ν is defined by

$$
I_{B}[\nu]:=\iint g_{B}(z, \zeta) d \nu(\zeta) d \nu(z)
$$

If $A \subset B^{c}$ is non-polar, then there exists the unique probability measure $\omega_{A, B}$ supported on A, the so-called Green equilibrium distribution on A, such that

$$
I_{B}\left[\omega_{A, B}\right]=\inf I_{B}[\nu]
$$

where the infimum is taken over all probability measures supported on A.
The condenser capacity of A with respect to B is defined as

$$
C(A, B):=1 / I_{B}\left[\omega_{A, B}\right] .
$$

Equilibrium Green's Potential

The measure $\omega_{A, B}$ describes the distribution of the unit charge that can freely move on A when it reaches the equilibrium (minimal energy) position.

The equilibrium potential $g_{B}\left(z ; \omega_{A, B}\right)$ is characterized by the property

$$
\begin{array}{cl}
g_{B}\left(z ; \omega_{A, B}\right)=1 / C(A, B), & z \in A \\
g_{B}\left(z ; \omega_{A, B}\right)=0, & z \in \partial B^{c}
\end{array}
$$

and it is harmonic in $B^{c} \backslash A$.

A Computation Revisited

In the previous computation we have shown that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) & \leq \inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\} \\
& =\inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} g_{B}(z ; \nu)\right\}
\end{aligned}
$$

A Computation Revisited

In the previous computation we have shown that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) & \leq \inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\} \\
& =\inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} g_{B}(z ; \nu)\right\}
\end{aligned}
$$

It holds that

$$
\inf _{z \in A} g_{B}(z ; \nu) \leq \int g_{B}(z ; \nu) d \omega_{A, B}(z)=\int g_{B}\left(z ; \omega_{A, B}\right) d \nu(z)=1 / C(A, B)
$$

A Computation Revisited

In the previous computation we have shown that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) & \leq \inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} \int \log \left|\frac{1-\bar{\zeta} z}{z-\zeta}\right| d \nu(\zeta)\right\} \\
& =\inf _{|\nu|=1} \exp \left\{-\inf _{z \in A} g_{B}(z ; \nu)\right\}
\end{aligned}
$$

It holds that

$$
\inf _{z \in A} g_{B}(z ; \nu) \leq \int g_{B}(z ; \nu) d \omega_{A, B}(z)=\int g_{B}\left(z ; \omega_{A, B}\right) d \nu(z)=1 / C(A, B)
$$

Hence,

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq \exp \left\{-\frac{1}{C(A, B)}\right\}
$$

Theorem (Walsh 1934)

Let f be analytic in some neighborhood of a compact set A. Let $\mathcal{B}(f, A)$ be the collection of closed sets B such that $\infty \in B^{\circ}, A \subset B^{c}$ and f be analytic in B^{c}. Then

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq \inf _{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{1}{C(A, B)}\right\}
$$

The bound is achieved by certain lacunary series (Levin and Tikhomirov 1967).

Limit Inferior

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq ?, \quad \rho_{n}(f, A):=\inf _{R \in \mathcal{R}_{n}(A)}\|f-R\|_{A}
$$

In what follows, it will be convenient to think of B as compact.

In 1978 (most likely earlier), Gonchar conjectured that

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq \inf _{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{2}{C(A, B)}\right\}
$$

Adamyan-Arov-Krein Approximants

Take for now $A=\{|z| \geq 1\}$. Denote by H^{∞} be space of bounded analytic functions in the unit disk. Set

$$
H_{n}^{\infty}=H^{\infty}+\mathcal{R}_{n}(A)
$$

which is the set of meromorphic functions with at most n poles in the unit disk and bounded traces on the unit circle \mathbb{T}.

Take for now $A=\{|z| \geq 1\}$. Denote by H^{∞} be space of bounded analytic functions in the unit disk. Set

$$
H_{n}^{\infty}=H^{\infty}+\mathcal{R}_{n}(A)
$$

which is the set of meromorphic functions with at most n poles in the unit disk and bounded traces on the unit circle \mathbb{T}.

Consider the following approximation problem: given a bounded function ϕ on the unit circle, find $M_{n} \in H_{n}^{\infty}$ such that

$$
\operatorname{dist}\left(\phi, H_{n}^{\infty}\right)=\inf _{M \in H_{n}^{\infty}}\|\phi-M\|_{\mathbb{T}}=\left\|\phi-M_{n}\right\|_{\mathbb{T}}
$$

When $n=0$, this is known as the Nehari problem (1957).
If ϕ is Dini-continuous on \mathbb{T}, then such M_{n} exists and is continuous up to \mathbb{T} (Carleson and Jacobs, 1972).

The space of the square integrable functions on \mathbb{T} can be defined as

$$
L^{2}=\left\{\sum_{-\infty}^{\infty} a_{n} z^{n}:|z|=1, \sum_{-\infty}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

The Hardy spaces H^{2} and $H_{-}^{2}=L^{2} \ominus H^{2}$ can be defined as

$$
H^{2}=\left\{\sum_{0}^{\infty} a_{n} z^{n}:|z|=1, \sum_{0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

and

$$
H_{-}^{2}=\left\{\sum_{-\infty}^{-1} a_{n} z^{n}:|z|=1, \sum_{-\infty}^{-1}\left|a_{n}\right|^{2}<\infty\right\}
$$

They can be identified with spaces of analytic functions in $\{|z|<1\}$ and $\{|z|>1\}$ that have L^{2}-traces on \mathbb{T}.

Adamyan-Arov-Krein Approximants

Let ϕ be a bounded function on \mathbb{T}. The Hankel operator Γ_{ϕ} with symbol ϕ is given by

$$
\Gamma_{\phi}: H^{2} \rightarrow H_{-}^{2}, \quad h \mapsto \mathbb{P}_{-}(h \phi),
$$

where $\mathbb{P}_{-}: L^{2} \rightarrow H_{-}^{2}$ is the orthogonal projection. When ϕ is continuous, Γ_{ϕ} is compact. Moreover,

$$
\left(\Gamma_{\phi} h\right)(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{(h \phi)(s)}{z-s} d s, \quad|z|>1
$$

Adamyan-Arov-Krein Approximants

Let ϕ be a bounded function on \mathbb{T}. The Hankel operator Γ_{ϕ} with symbol ϕ is given by

$$
\Gamma_{\phi}: H^{2} \rightarrow H_{-}^{2}, \quad h \mapsto \mathbb{P}_{-}(h \phi)
$$

where $\mathbb{P}_{-}: L^{2} \rightarrow H_{-}^{2}$ is the orthogonal projection. When ϕ is continuous, Γ_{ϕ} is compact. Moreover,

$$
\left(\Gamma_{\phi} h\right)(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{(h \phi)(s)}{z-s} d s, \quad|z|>1
$$

Theorem (Adamyan-Arov-Krein 1971)

Let ϕ be a continuous function on \mathbb{T}. Then it holds that

$$
\operatorname{dist}\left(\phi, H_{n}^{\infty}\right)=s_{n}\left(\Gamma_{\phi}\right)
$$

where $s_{n}\left(\Gamma_{\phi}\right)$ is the n-th singular number of Γ_{ϕ}.

Rates of Rational and Meromorphic Approximation

Let f be analytic in $B^{c} \supset A=\{|z| \geq 1\}$ and M_{n} be the best meromorphic approximant of f in H_{n}^{∞}. Write

$$
M_{n}=h_{n}+r_{n}
$$

where $h_{n} \in H^{\infty}$ and $r_{n} \in \mathcal{R}_{n}(A), r_{n}(\infty)=f(\infty)$.

Rates of Rational and Meromorphic Approximation

Let f be analytic in $B^{c} \supset A=\{|z| \geq 1\}$ and M_{n} be the best meromorphic approximant of f in H_{n}^{∞}. Write

$$
M_{n}=h_{n}+r_{n}
$$

where $h_{n} \in H^{\infty}$ and $r_{n} \in \mathcal{R}_{n}(A), r_{n}(\infty)=f(\infty)$. Then it holds that

$$
f(z)-r_{n}(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{\left(f-M_{n}\right)(s)}{z-s} d s, \quad|z|>1
$$

Therefore, we get for any $\delta>0$ that

$$
\left\|f-r_{n}\right\|_{\{|z| \geq 1+\delta\}} \leq \frac{\left\|f-M_{n}\right\|_{\mathbb{T}}}{2 \pi \delta}=\frac{s_{n}\left(\Gamma_{f}\right)}{2 \pi \delta}
$$

Rates of Rational and Meromorphic Approximation

Let f be analytic in $B^{c} \supset A=\{|z| \geq 1\}$ and M_{n} be the best meromorphic approximant of f in H_{n}^{∞}. Write

$$
M_{n}=h_{n}+r_{n}
$$

where $h_{n} \in H^{\infty}$ and $r_{n} \in \mathcal{R}_{n}(A), r_{n}(\infty)=f(\infty)$. Then it holds that

$$
f(z)-r_{n}(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{\left(f-M_{n}\right)(s)}{z-s} d s, \quad|z|>1
$$

Therefore, we get for any $\delta>0$ that

$$
\left\|f-r_{n}\right\|_{\{|z| \geq 1+\delta\}} \leq \frac{\left\|f-M_{n}\right\|_{\mathbb{T}}}{2 \pi \delta}=\frac{s_{n}\left(\Gamma_{f}\right)}{2 \pi \delta}
$$

Subsequently, it is enough to show that

$$
\liminf _{n \rightarrow \infty} s_{n}^{1 / n}\left(\Gamma_{f}\right) \leq \exp \left\{-\frac{2}{C(A, B)}\right\}
$$

Assume that f is analytic in the closure of B^{c}, where ∂B is a smooth Jordan curve in the unit disk. Then

$$
\left(\Gamma_{f} h\right)(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{(f h)(\zeta)}{z-\zeta} d \zeta=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B} \frac{(f h)(\zeta)}{z-\zeta} d \zeta, \quad|z|>1
$$

Assume that f is analytic in the closure of B^{c}, where ∂B is a smooth Jordan curve in the unit disk. Then

$$
\left(\Gamma_{f} h\right)(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{(f h)(\zeta)}{z-\zeta} d \zeta=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B} \frac{(f h)(\zeta)}{z-\zeta} d \zeta, \quad|z|>1
$$

Therefore, $\Gamma_{f}=\mathbb{E}_{2} \circ \mathbb{P} \circ \mathbb{M}_{f} \circ \mathbb{E}_{1}$, where

- \mathbb{E}_{1} is the embedding of H^{2} into $L^{2}(\partial B)$
- \mathbb{M}_{f} is the multiplication by f in $L^{2}(\partial B)$
- \mathbb{P} is the projection from $L^{2}(\partial B)$ into Smirnov class $S^{2}\left(B^{c}\right)$
- \mathbb{E}_{2} is the embedding of $S^{2}\left(B^{c}\right)$ into H_{-}^{2}

Assume that f is analytic in the closure of B^{c}, where ∂B is a smooth Jordan curve in the unit disk. Then

$$
\left(\Gamma_{f} h\right)(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}} \frac{(f h)(\zeta)}{z-\zeta} d \zeta=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B} \frac{(f h)(\zeta)}{z-\zeta} d \zeta, \quad|z|>1
$$

Therefore, $\Gamma_{f}=\mathbb{E}_{2} \circ \mathbb{P} \circ \mathbb{M}_{f} \circ \mathbb{E}_{1}$, where

- \mathbb{E}_{1} is the embedding of H^{2} into $L^{2}(\partial B)$
- \mathbb{M}_{f} is the multiplication by f in $L^{2}(\partial B)$
- \mathbb{P} is the projection from $L^{2}(\partial B)$ into Smirnov class $S^{2}\left(B^{c}\right)$
- \mathbb{E}_{2} is the embedding of $S^{2}\left(B^{c}\right)$ into H_{-}^{2}

It is known that $\mathbb{P}, \mathbb{M}_{f}$ are bounded operators and

$$
\lim _{m \rightarrow \infty} s_{m}^{1 / m}\left(\mathbb{E}_{1}\right)=\lim _{m \rightarrow \infty} s_{m}^{1 / m}\left(\mathbb{E}_{2}\right)=\exp \{-1 / C(B, A)\}
$$

by (Zakharyuta-Skiba 1976) and (Fisher-Micchelli, 1980). The claim now follows from Horn-Weyl inequalities.

Theorem (Prokhorov 1993)

Let A, B be arbitrary disjoint closed sets. Let f be holomorphic in B^{c}. Then

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A) \leq \exp \left\{-\frac{2}{C(A, B)}\right\}
$$

Moreover,
$\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A)=\exp \left\{-\frac{1}{C(A, B)}\right\} \Rightarrow \liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A)=0$.

The case where A is a continuum was proved by Parfënov in 1986.
Prokhorov's proof relies on the generalization of the AAK theory to multiply connected domains (Prokhorov 1991).

Multi-Valued Functions

When is true that

$$
\lim _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A)=\inf _{B \in \mathcal{B}(f, A)} \exp \left\{-\frac{2}{C(A, B)}\right\} ?
$$

We say that a function f belongs to Stahl's class S if f is holomorphic and multi-valued outside of a compact polar set E_{f}.

That is, for any point $z_{0} \notin E_{f}$ and any path γ starting at z_{0} and avoiding E_{f}, f admits analytic continuation along γ. Moreover, there are paths with the same endpoints that lead to distinct continuations.

All algebraic functions (solutions of $p_{n}(z) f^{n}+p_{n-1}(z) f^{n-1}+\cdots+p_{0}(z)=0$, where $p_{k}(z)$ are polynomials) are in this class as well as functions of the form

$$
f(z)=\sum_{l=1}^{L} \prod_{i=1}^{I_{l}}\left(z-z_{l, i}\right)^{\alpha_{l, i}}
$$

where $\sum_{i=1}^{I_{l}} \alpha_{l, i}$ is an integer but some $\alpha_{l, i}$ are not. Logarithmic functions are in this class. All the above functions could be multiplied by factors like $e^{c /\left(z-z_{*}\right)}$ or any other single-valued function holomorphic outside of a polar set.

Minimal Capacity Contours

Theorem (Stahl 1985)

Given a branch of $f \in S$ analytic on a continuum $A \subset E_{f}^{c}$, there exists a compact set $\mathrm{B} \in \mathcal{B}(f, A)$ such that

$$
C(A, \mathrm{~B}) \leq C(A, B), \quad B \in \mathcal{B}(f, A)
$$

B "essentially" consists of analytic arcs.

Minimal (logarithmic) capacity contour for $\sqrt{\sqrt{1-z^{-2}+z^{-4}}-0.4}$

Theorem (Gonchar-Rakhmanov 1989)

Given $f \in S$ and a continuum $A \subset E_{f}^{c}$, there exists a sequence of rational interpolants R_{n} such that

$$
\lim _{n \rightarrow \infty} \rho_{n}^{1 / n}(f, A)=\lim _{n \rightarrow \infty}\left\|f-R_{n}\right\|_{A}^{1 / n}=\exp \left\{-\frac{2}{C(A, \mathrm{~B})}\right\}
$$

Moreover, the poles of these interpolants asymptotically distribute as $\omega_{\mathrm{B}, A}$ (interpolation points asymptotically distribute as $\omega_{A, \mathrm{~B}}$).

Multipoint Padé Approximants (proof of GR Theorem)

Let $\left\{z_{n, 1}, \ldots, z_{n, 2 n}\right\} \subset A$ be a multiset of not necessarily distinct nor finite points and

$$
V_{n}(z)=\prod_{\left|z_{n, i}\right|<\infty}\left(z-z_{n, i}\right)
$$

The n-th diagonal multipoint Padé approximant is a rational function P_{n} / Q_{n} of type (n, n) such that

$$
\frac{\left(Q_{n} f-P_{n}\right)(z)}{V_{n}(z)}=\mathcal{O}\left(z^{-n-1}\right) \quad \text { as } \quad z \rightarrow \infty
$$

and is analytic on A. The above equation is in fact defines a linear system with one more unknown than equations. Hence, the rational function P_{n} / Q_{n} exists and happens to be unique.

Multipoint Padé Approximants (proof of GR Theorem)

Since B is a essentially a system of analytic arcs, it follows from the formula defining P_{n} / Q_{n}, Cauchy theorem and integral formula that

$$
\int_{\mathrm{B}} t^{k} Q_{n}(t)\left(f_{+}-f_{-}\right)(t) \frac{d t}{V_{n}(t)}=0
$$

for $k \in\{0, \ldots, n-1\}$, and

$$
\frac{\left(Q_{n} f-P_{n}\right)(z)}{V_{n}(z)}=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{B}} \frac{Q_{n}(t)\left(f_{+}-f_{-}\right)(t)}{z-t} \frac{d t}{V_{n}(t)} .
$$

Stahl and then Gonchar-Rakhmanov had developed machinery how to use the above orthogonality relations and the minimality of B to get n-th root asymptotic behavior of error in the complex plane.

This gave the upper estimate for the limit superior.

Multipoint Padé Approximants (proof of GR Theorem)

If the limit inferior was smaller, there would exist rational functions $p_{n} / q_{n} \in \mathcal{R}_{n}(A)$ such that

$$
\max _{z \in \gamma}\left|f(z)-p_{n}(z) / q_{n}(z)\right|<\min _{z \in \gamma}\left|f(z)-P_{n}(z) / Q_{n}(z)\right|
$$

for some Jordan curve γ whose exterior domain, say D, lies in B^{c} and contains A.

Since P_{n} / Q_{n} interpolates f at $\left\{z_{n, 1}, \ldots, z_{n, 2 n}, \infty\right\}, f-P_{n} / Q_{n}$ has $2 n+1$ zeros in D. By Rouche's theorem,

$$
\frac{p_{n}}{q_{n}}-\frac{P_{n}}{Q_{n}}
$$

must have $2 n+1$ zeros in D (including one at infinity), but it is impossible as its numerator has degree at most $2 n-1$.

Behavior in A^{c}

In memory of Herbert Stahl (1942-2013).

What do the poles of best rational approximants do?

In what follows A is unbounded set whose boundary is a Jordan curve with Dini-continuous parametrization.

We say that a sequence of rational approximants $R_{n} \in \mathcal{R}_{n}(A)$ is n-th root optimal if

$$
\lim _{n \rightarrow \infty}\left\|f-R_{n}\right\|_{A}^{1 / n}=\exp \left\{-\frac{2}{C(A, \mathrm{~B})}\right\}
$$

Theorem (Baratchart-Stahl-Ya.)

There exists a class of functions $\mathcal{F}(A)$ analytic on A such that for every $f \in \mathcal{F}(A)$ if R_{n} are n-th root optimal rational approximants to f on A, then

$$
\nu\left(R_{n}\right) \xrightarrow{*} \omega_{\mathrm{B}, A},
$$

where $\nu\left(R_{n}\right)$ is the normalized counting measure of poles of R_{n}. Moreover, the functions R_{n} converge in capacity to f in $\mathrm{B}^{c} \backslash A$. The same is true for n-th root optimal meromorphic approximants.

Recall that A is the closure of the unbounded component of the complement of a Jordan curve. Let D be the bounded component. The class $\mathcal{F}(A)$ consists of functions holomorphic on A with the following two properties:

- they can be continued into D along any path originating on ∂D which stays in \bar{D} while avoiding a closed polar subset of D (that may depend on the function);
- they are not single-valued, but the number of distinct function elements lying above a point of D is uniformly bounded (the bound may depend on the function).

