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Criterion for Transcendence

Criterion

A number α is transcendental if for anym ∈ N and any ε > 0 there existm+ 1 linearly
independent vectors of integers

(
qj,p

(1)
j , . . . ,p(m)

j

)
such that

∣∣qjαk − p(k)j
∣∣ 6 ε, ∀k.

If α is algebraic, then ∃m ∈ N, ak ∈ Z, k = 0,m, such that
∑m
k=0 akα

k = 0. Hence,

m∑
k=1

ak
(
qjα

k − p
(k)
j

)
+ a0qj +

m∑
k=1

akp
(k)
j = 0.

Since vectors
(
qj,p

(1)
j , . . . ,p(m)

j

)
are linearly independent, there exists j0 such that

0 6= a0qj0 +

m∑
k=1

akp
(k)
j0
∈ Z.

Then, it holds that

1 6

∣∣∣∣∣
m∑
k=1

ak(qj0α
k − p

(k)
j0

)

∣∣∣∣∣ 6 ε
m∑
k=1

|ak|.
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Transcendence of e

In 1873, Hermite proved that e is transcendental in the following way.

Let n0,n1, . . . ,nm be non-negative integers. Set N := n0 + · · ·+ nm and consider the
following system:

Q(z)ekz − Pk(z) = O
(
zN+1),

where deg(Q) 6 N− n0 and deg(Pk) 6 N− nk.

Hermite proceeded to explicitly construct these polynomials, which as it turned out
have integer coefficients. By evaluating them at 1 and varying the parameters
n0,n1, . . . ,nm he succeeded in applying the above criterion.
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Hermite-Padé Approximants: Definition

Let ~f = (f1, . . . , fm) be a vector of functions holomorphic and vanishing at infinity:

fi(z) =
fi1

z
+
fi2

z2 + · · ·+ fin

zn
+ · · · .

Further, let ~n ∈ Nm be a multi-index, while P(1)
~n , . . . ,P(m)

~n and Q~n be polynomials such
that

deg(Q~n) 6 | ~n | := n1 + · · ·+ nm

and

R(i)
n (z) :=

(
Q~nfi − P

(i)
~n

)
(z) = O

(
z−ni−1) as z→∞.

The vector of rational functions

(
P
(1)
~n /Q~n, . . . ,P(m)

~n /Q~n

)

is called the type II Hermite-Padé approximant to ~f corresponding to ~n.
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Hermite-Padé Approximants: Orthogonality

It follows from Cauchy integral formula that

fi(z) =

∫
dµi(x)
z− x

for some compactly supported Borel generally speaking complex measure µi. Since
R
(i)
~n (z) = O

(
z−ni−1

)
, it holds that

0 =

∫
Γ

zkR
(i)
~n (z)dz =

∫
Γ

zkQ~n(z)fi(z)dz =
∫
xkQ~n(x)dµi(x)

for k = 0,ni − 1, where Γ is any Jordan curve encircling the support of µi. In what
follows, it assumed that Q~n is the monic polynomial of minimal degree.

The goal is to understand the asymptotic behavior of Q~n and R(i)
~n for a “large” class of

measures µi.
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Padé Approximants: Markov Functions

Let µ be a positive Borel measure compactly supported on the real line. Then

f(z) =

∫
dµ(x)
z− x

is called a Markov function. The n-th Padé approximant is defined by the condition

Rn(z) =
(
Qnf− Pn

)
(z) = O

(
z−n−1).

In this case it holds that ∫
xkQn(x)dµ(x) = 0, k = 0,n− 1.

That is, Qn is the n-th orthogonal polynomial with respect to the measure µ.
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Padé Approximants: Distribution of Poles

Notice that all the zeros of Qn are distinct and belong to the convex hull of supp(µ).
Indeed, otherwise, set P to be a polynomial vanishing at the odd multiplicity zeros of
Qn on the convex hull. Then deg(P) 6 n− 1 and

orthogonality ⇒ 0 =

∫
P(x)Qn(x)dµ(x) > 0 ⇐ positivity.

Denote by σn the normalized counting measure of zeros of Qn. That is,

σn :=
1
n

n∑
i=1

δ(xi), Qn(x) =

n∏
i=1

(x− xi),

where δ(xi) is the Dirac δ-distribution with mass at xi. Recall that a sequence of
measures converges weak∗, νn

∗→ ν, if
∫
hdνn →

∫
hdν for any continuous function h.

Theorem

If supp(µ) = [−1, 1] and µ′ > 0 a.e. on [−1, 1], then σn
∗→ ω, where dω(x) =

dx
π
√

1 − x2
.
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Padé Approximants: Chebyshëv Polynomials

The “simplest” Markov function is

f(z) =
1

2π

∫
[−1,1]

1
z− x

dx√
1 − x2

=
1

2
√
z2 − 1

.

Write w(z) =
√
z2 − 1. The polynomials

{
Tn(z) :=

(
z+
√
z2 − 1

)n
+
(
z−
√
z2 − 1

)n,

w(z)Un−1(z) :=
(
z+
√
z2 − 1

)n
−
(
z−
√
z2 − 1

)n,

are the Chebyshëv polynomial of the first and second kind. Then

Tn(z)f(z) −
1
2
Un−1(z) =

Tn(z) −w(z)Un−1(z)

2w(z)
=

(
z−
√
z2 − 1

)n

w(z)
.
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Padé Approximants: Chebyshëv Polynomials

Define

Φ(z) := z+
√
z2 − 1 ⇔ Φ−1(z) = z−

√
z2 − 1.

In fact, Φ(z) and Φ−1(z) are the inverse functions of the Zhoukovsky transformation
J(z) = (z+ z−1)/2. In particular,Φ : C \ [−1, 1]→

{
|z| > 1

}
is the conformal map such

that Φ(∞) =∞ and Φ′(∞) > 0. Hence,

Tn(z)f(z) −
1
2
Un−1(z) =

(
z−
√
z2 − 1

)n

w(z)
=

1
w(z)Φn(z)

= O
(
z−n−1) .

That is, the n-th Padé approximant to 1/2w is given by Un−1/2Tn and

{
Qn(z) := Φn(z) +Φ−n(z),

(wRn)(z) := Φ−n(z).
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Padé Approximants: Strong Asymptotics

Theorem (Szegő, 30’s)

Let ρ be a non-negative function satisfying
∫
[−1,1] log ρdω > −∞. Set

f(z) :=
1

2π

∫
[−1,1]

1
z− x

ρ(x)dx√
1 − x2

.

Then it holds locally uniformly in C \ [−1, 1] that{
Qn(z) ∼=

(
ΦnSρ

)
(z),

(wRn)(z) ∼=
(
ΦnSρ

)−1
(z),

where w(z) =
√
z2 − 1 and Sρ is the Szegő function of ρ, i.e.,

Sρ(z) := exp
{
w(z)

2πi

∫
[−1,1]

log ρ(x)
z− x

dx
w+(x)

}
is the unique non-vanishing holomorphic function off [−1, 1] such that S+ρ S−ρ = 1/ρ.
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Padé Approximants: Riemann Surface

Let R be the Riemann surface of w2 = z2 − 1.

Φ(z(0)) = Φ(z)

Φ(z(1)) = Φ−1(z)

Sρ(z
(0)) = Sρ(z)

Sρ(z
(1)) = S−1

ρ (z)

∆

∆

Then Φn is a rational function with the divisor n∞(1) − n∞(0) and Sρ is holomorphic
and non-vanishing off ∆ that satisfies S+ρ = (ρ ◦ π)S−ρ . Then

{
Qn(z) ∼= (ΦnSρ)

(
z(0)
)
,

(wRn)(z) ∼= (ΦnSρ)
(
z(1)
)
.
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Angelesco Systems: Orthogonality

We shall say that a vector function ~f = (f1, . . . , fm) forms an Angelesco system if

fi(z) =

∫
dµi(x)
z− x

, µi > 0, supp(µi) = [ai,bi], [ai,bi] ∩ [aj,bj] = ∅.

Given a multi-index ~n = (n1, . . . ,nm), | ~n | := n1 + · · ·+ nm, we can write∫
xkQ~n(x)dµi(x) = 0, k = 0,ni − 1.

Hence, Q~n has ni simple zeros on [ai,bi]. We denote by σ~n,i their counting measure
normalized by | ~n |. That is, |σ~n,i| = ni/| ~n |.
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Angelesco Systems: Convergence of Poles

Theorem (Gonchar-Rakhmanov, 81)

Assume that µ′i > 0 a.e. on [ai,bi]. Let { ~n } be a sequence of multi-indices such that

~n

| ~n |
→ ~c ∈ (0, 1)m, (| ~c | = 1).

Then there exists a vector equilibrium measure ~ω~c = (ω~c,1, . . . ,ω~c,m) such that

σ~n,i
∗→ ω~c,i.

Moreover, it holds that supp(ω~c,i) = [a~c,i,b~c,i] ⊆ [ai,bi].

a1 = a~c,1 b~c,1 b1 a2 = a~c,2 b2 = b~c,2

D�
1
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Angelesco Systems: Riemann Surface

Let ~ω~n be the vector equilibrium measure for ~n/| ~n |. Define R~n w.r.t. ~ω~n by

R
(0)
~n

R
(1)
~n

R
(2)
~n

Φ~n(z
(0)) ∼ z| ~n |

Φ~n(z
(1)) ∼ z−n1

Φ~n(z
(2)) ∼ z−n2

a~n,1 b~n,1 a~n,2 b~n,2

a~n,1 b~n,1

a~n,2 b~n,2
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Angelesco Systems: Riemann Surface

The surface R~n has genus 0. Given a multi-index ~n, let Φ~n be the rational function on
R~n with the divisor and normalization given by

(Φ~n) = n1∞(1) + · · ·+ nm∞(m) − | ~n |∞(0),
∏

Φ~n(z
(k)) ≡ 1.

Define {
D+

~n,i :=
{
z :
∣∣Φ~n

(
z(0))∣∣ >

∣∣Φ~n

(
z(i)
)∣∣} ,

D−
~n,i :=

{
z :
∣∣Φ~n

(
z(0))∣∣ <

∣∣Φ~n

(
z(i)
)∣∣} .

It might happen that D−
~n,i 6= ∅.

a1 = a~c,1 b~c,1 b1 a2 = a~c,2 b2 = b~c,2

D�
1

As the following theorem shows, D−
i is the divergence domain for P(i)~n /Q~n.
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Angelesco Systems: Strong Asymptotics

Theorem (Y., 16)

Let ρi be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on
[ai,bi] and

fi(z) :=
1

2πi

∫
[ai ,bi]

ρi(x)dx
x− z

.

Further, let { ~n } be a sequence of multi-indices such that ~n/| ~n |→ ~c ∈ (0, 1)m. Then{
Q~n(z) ∼=

(
Φ~nS

)(
z(0)
)
,

(wiR
(i)
~n )(z) ∼=

(
Φ~nS

)(
z(i)
)
,

where wi(z) :=
√

(z− a~c,i)(z− b~c,i) and S is a Szegő-type function on R~c.

• Kalyagin, 79: [−1, 0] and [0, 1] + Jacobi weights

• Aptekarev, 88: two functions + Szegő weights + diagonal multi-indices

• Aptekarev–Lysov, 10: m functions + analytic weights + diagonal multi-indices
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Symmetric Stahl Systems

We shall say that a vector function ~f = (f1, f2) forms a symmetric Stahl system if

fi ↔ µi, supp(µ1) = [−1,a], supp(µ2) = [−a, 1], a ∈ (0, 1).

Further, let h be an algebraic function given by

A(z)h3 − 3B2(z)h− 2B1(z) = 0,

where 
A(z) := (z2 − 1)(z2 − a2),

B2(z) := z2 − p2,

B1(z) := z,

for some parameter p > 0.
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Symmetric Stahl Systems: Riemann Surface

Denote by R the Riemann surface of h. We are looking for the surface such that

N(z) := Re
(∫z

h(t)dt
)

single-valued harmonic function on R. (1)

Theorem (Aptekarev–Van Assche–Y.)

(I) If a ∈
(
0, 1/
√

2
)
, then there exists p ∈

(
a,
√

(1 + a2)/3
)

such that condition (1) is
fulfilled. In this case R has 8 ramification points whose projections are {±1,±a}
and {±b,±ic} for some uniquely determined b ∈ (a,p) and c > 0.

(II) If a = 1/
√

2, then condition (1) is fulfilled for p = 1/
√

2. In this case R has 4
ramification points whose projections are

{
± 1,±1/

√
2
}

.

(III) If a ∈
(
1/
√

2, 1
)
, then condition (1) is fulfilled for p =

√
(1 + a2)/3. In this case

R has 6 ramification points whose projections are {±1,±a} and {±b}, b ∈ (p,a).
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Symmetric Stahl Systems: Riemann Surface

�1 �b �a a b 1

ic

�ic

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

R(1) $ R(2)

(a) Case I

�1 �1/
p

2 1/
p

2 1

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

(b) Case II

�1 �a �b b a 1

R(0) $ R(2) R(0) $ R(1) R(0) $ R(2)

(c) Case III
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Symmetric Stahl Systems: Nuttall-Szegő Functions

Let Φ(z) := exp
{∫z

h(t)dt
}

. It is a multiplicatively multi-valued function on R with
the divisor∞(1) +∞(2) − 2∞(0) and normalized so thatΦ

(
z(0)
)
Φ
(
z(1)
)
Φ
(
z(2)
)
≡ 1.

Let ρ1 and ρ2 be functions holomorphic and non-vanishing in a neighborhood of
[−1, 1]. In Case I, assume also that the ratio ρ1/ρ2 holomorphically extends to a
non-vanishing function in a neighborhood of R(1) ∩R(2). Then Ψn ↔ Φn, where



(
Ψ

(1)
n

)±
= ±

(
Ψ

(0)
n

)∓
ρ1 on ∆◦1 ,

(
Ψ

(2)
n

)±
= ∓

(
Ψ

(0)
n

)∓
ρ2 on ∆◦21,

(
Ψ

(2)
n

)±
= ±

(
Ψ

(0)
n

)∓
ρ2 on ∆◦22,

(
Ψ

(2)
n

)±
= ±

(
Ψ

(1)
n

)∓
(ρ2/ρ1) on ∆◦0 ,

Ψn has a wandering zero (2 in Case I) and there exists a subsequence N∗ such that

• |Ψn| 6 C(N∗) |Φn| uniformly away from the branch points of R

• |Ψn| > C(N∗)−1 |Φn| uniformly in a neighborhood of∞(0)
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Symmetric Stahl Systems: Strong-type Asymptotics

Theorem (Aptekarev-Van Assche-Y.)

Let

fi(z) :=
1

2πi

∫
ρi(x)dx
x− z

,

where ρ1 and ρ2 are as before and we assume in addition that the ratio ρ2/ρ1 extends
from (−a,a) to a holomorphic and non-vanishing function

• in a domain that contains in its interior the closure of all the bounded
components of the regionsΩijk in Case I;

• in a domain whose complement is compact and belongs to the right-hand
component ofΩ021 in Cases II and IIIa;

• in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb.

Then for multi-indices ~n = (n,n) it holds that Q~n “ ∼= ” CnΨ
(0)
n ,

R
(i)
~n “ ∼= ” CnΨ̂

(i)
n ,

n ∈ N∗.
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Symmetric Stahl Systems: Strong-type Asymptotics

The ratio ρ2/ρ1 extends from (−a,a) to a holomorphic and non-vanishing function in
a domain that contains in its interior the closure of the bounded components ofΩijk.

⌦012

⌦012

⌦012

⌦021

⌦021
⌦201 ⌦201

�1

⌦1

b (1)
n = �⇢1

⇢2
 

(2)
n

b (1)
n =  

(1)
n

�2

⌦2

b (2)
n = ⇢2

⇢1
 

(1)
n

b (2)
n =  

(2)
n
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Symmetric Stahl Systems: Strong-type Asymptotics

The ratio ρ2/ρ1 extends from (−a,a) to a holomorphic and non-vanishing function in
a domain whose complement compactly belongs to the right-hand component ofΩ021.

⌦021 ⌦021

⌦012

⌦012

�1

⌦1

b (1)
n = �⇢1

⇢2
 

(2)
n

b (1)
n =  

(1)
n

�2

⌦2

b (2)
n =  

(2)
n

b (2)
n = ⇢2

⇢1
 

(1)
n
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Symmetric Stahl Systems: Strong-type Asymptotics

The ratio ρ2/ρ1 extends from (−a,a) to a holomorphic and non-vanishing function in
a domain whose complement belongs to the right-hand component ofΩ021.

⌦021 ⌦021

⌦012

⌦102 ⌦102

�1

b (1)
n =

�⇢1

⇢2
 

(2)
n

b (1)
n =  

(1)
n

�2

b (2)
n =

 
(2)
n

b (2)
n = ⇢2

⇢1
 

(1)
n
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