Hermite-Padé Approximation of Markov Functions

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis
Ψ

Eastern Illinois University

November 13th, 2015

Criterion

A number α is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon>0$ there exist $\mathfrak{m}+1$ linearly independent vectors of integers $\left(q_{j}, p_{j}^{(1)}, \ldots, p_{j}^{(m)}\right)$ such that $\left|q_{j} \alpha^{k}-p_{j}^{(k)}\right| \leqslant \varepsilon, \forall k$.

If α is algebraic, then $\exists m \in \mathbb{N}, a_{k} \in \mathbb{Z}, k=\overline{0, m}$, such that $\sum_{k=0}^{m} a_{k} \alpha^{k}=0$. Hence,

$$
\sum_{k=1}^{m} a_{k}\left(q_{j} \alpha^{k}-p_{j}^{(k)}\right)+a_{0} q_{j}+\sum_{k=1}^{m} a_{k} p_{j}^{(k)}=0
$$

Since vectors $\left(q_{j}, p_{j}^{(1)}, \ldots, p_{j}^{(m)}\right)$ are linearly independent, there exists j_{0} such that

$$
0 \neq \mathrm{a}_{0} \mathrm{q}_{\mathrm{j}_{0}}+\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{a}_{\mathrm{k}} \mathrm{p}_{\mathrm{j}_{0}}^{(\mathrm{k})} \in \mathbb{Z} .
$$

Then, it holds that

$$
1 \leqslant\left|\sum_{k=1}^{m} a_{k}\left(q_{j_{0}} \alpha^{k}-p_{j_{0}}^{(k)}\right)\right| \leqslant \varepsilon \sum_{k=1}^{m}\left|a_{k}\right| .
$$

In 1873, Hermite proved that e is transcendental in the following way.
Let $n_{0}, n_{1}, \ldots, n_{m}$ be non-negative integers. Set $N:=n_{0}+\cdots+n_{m}$ and consider the following system:

$$
Q(z) e^{k z}-P_{k}(z)=\mathcal{O}\left(z^{N+1}\right)
$$

where $\operatorname{deg}(Q) \leqslant N-n_{0}$ and $\operatorname{deg}\left(P_{k}\right) \leqslant N-n_{k}$.
Hermite proceeded to explicitly construct these polynomials, which as it turned out have integer coefficients. By evaluating them at 1 and varying the parameters $n_{0}, n_{1}, \ldots, n_{m}$ he succeeded in applying the above criterion.

Let $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ be a vector of functions holomorphic and vanishing at infinity:

$$
\mathrm{f}_{\mathrm{i}}(z)=\frac{\mathrm{f}_{\mathrm{i} 1}}{z}+\frac{\mathrm{f}_{\mathrm{i} 2}}{z^{2}}+\cdots+\frac{\mathrm{f}_{\mathrm{in}}}{z^{n}}+\cdots
$$

Further, let $\vec{n} \in \mathbb{N}^{m}$ be a multi-index, while $P_{\vec{n}}^{(1)}, \ldots, P_{\vec{n}}^{(m)}$ and $Q_{\vec{n}}$ be polynomials such that

$$
\operatorname{deg}\left(Q_{\vec{n}}\right) \leqslant|\vec{n}|:=n_{1}+\cdots+n_{m}
$$

and

$$
\mathrm{R}_{n}^{(i)}(z):=\left(\mathrm{Q}_{\vec{n}} f_{i}-\mathrm{P}_{\vec{n}}^{(i)}\right)(z)=\mathcal{O}\left(z^{-n_{i}-1}\right) \quad \text { as } \quad z \rightarrow \infty .
$$

The vector of rational functions

$$
\left(P_{\vec{n}}^{(1)} / Q_{\vec{n}}, \ldots, P_{\vec{n}}^{(m)} / Q_{\vec{n}}\right)
$$

is called the type II Hermite-Padé approximant to \vec{f} corresponding to \vec{n}.

It follows from Cauchy integral formula that

$$
f_{i}(z)=\int \frac{d \mu_{i}(x)}{z-x}
$$

for some compactly supported Borel generally speaking complex measure μ_{i}. Since $R_{\vec{n}}^{(i)}(z)=\mathcal{O}\left(z^{-n_{i}-1}\right)$, it holds that

$$
0=\int_{\Gamma} z^{k} R_{\vec{n}}^{(i)}(z) \mathrm{d} z=\int_{\Gamma} z^{\mathrm{k}} \mathrm{Q}_{\vec{n}}(z) f_{\mathfrak{i}}(z) \mathrm{d} z=\int x^{\mathrm{k}} \mathrm{Q}_{\vec{n}}(x) \mathrm{d} \mu_{\mathrm{i}}(x)
$$

for $k=\overline{0, n_{i}-1}$, where Γ is any Jordan curve encircling the support of μ_{i}. In what follows, it assumed that $Q_{\vec{n}}$ is the monic polynomial of minimal degree.

The goal is to understand the asymptotic behavior of $Q_{\vec{n}}$ and $R_{\vec{n}}^{(i)}$ for a "large" class of measures μ_{i}.

Let μ be a positive Borel measure compactly supported on the real line. Then

$$
f(z)=\int \frac{d \mu(x)}{z-x}
$$

is called a Markov function. The n-th Padé approximant is defined by the condition

$$
R_{n}(z)=\left(Q_{n} f-P_{n}\right)(z)=\mathcal{O}\left(z^{-n-1}\right) .
$$

In this case it holds that

$$
\int x^{k} Q_{n}(x) d \mu(x)=0, \quad k=\overline{0, n-1} .
$$

That is, Q_{n} is the n-th orthogonal polynomial with respect to the measure μ.

Notice that all the zeros of Q_{n} are distinct and belong to the convex hull of supp (μ). Indeed, otherwise, set P to be a polynomial vanishing at the odd multiplicity zeros of Q_{n} on the convex hull. Then $\operatorname{deg}(P) \leqslant n-1$ and

$$
\text { orthogonality } \Rightarrow 0=\int \mathrm{P}(x) \mathrm{Q}_{n}(x) \mathrm{d} \mu(x)>0 \Leftarrow \text { positivity. }
$$

Denote by σ_{n} the normalized counting measure of zeros of Q_{n}. That is,

$$
\sigma_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x_{i}\right), \quad Q_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)
$$

where $\delta\left(x_{i}\right)$ is the Dirac δ-distribution with mass at x_{i}. Recall that a sequence of measures converges weak*,$v_{n} \xrightarrow{*} v$, if $\int h d v_{n} \rightarrow \int h d v$ for any continuous function h.

Theorem

If $\operatorname{supp}(\mu)=[-1,1]$ and $\mu^{\prime}>0$ a.e. on $[-1,1]$, then $\sigma_{n} \xrightarrow{*} \omega$, where $d \omega(x)=\frac{d x}{\pi \sqrt{1-x^{2}}}$.

The "simplest" Markov function is

$$
f(z)=\frac{1}{2 \pi} \int_{[-1,1]} \frac{1}{z-x} \frac{d x}{\sqrt{1-x^{2}}}=\frac{1}{2 \sqrt{z^{2}-1}}
$$

Write $w(z)=\sqrt{z^{2}-1}$. The polynomials

$$
\begin{cases}\mathrm{T}_{n}(z) & :=\left(z+\sqrt{z^{2}-1}\right)^{n}+\left(z-\sqrt{z^{2}-1}\right)^{n} \\ w(z) \mathrm{U}_{n-1}(z) & :=\left(z+\sqrt{z^{2}-1}\right)^{n}-\left(z-\sqrt{z^{2}-1}\right)^{n}\end{cases}
$$

are the Chebyshëv polynomial of the first and second kind. Then

$$
\mathrm{T}_{n}(z) f(z)-\frac{1}{2} \mathrm{U}_{n-1}(z)=\frac{\mathrm{T}_{n}(z)-w(z) \mathrm{U}_{n-1}(z)}{2 w(z)}=\frac{\left(z-\sqrt{z^{2}-1}\right)^{n}}{w(z)}
$$

Define

$$
\Phi(z):=z+\sqrt{z^{2}-1} \Leftrightarrow \Phi^{-1}(z)=z-\sqrt{z^{2}-1} .
$$

In fact, $\Phi(z)$ and $\Phi^{-1}(z)$ are the inverse functions of the Zhoukovsky transformation $J(z)=\left(z+z^{-1}\right) / 2$. In particular, $\Phi: \overline{\mathbb{C}} \backslash[-1,1] \rightarrow\{|z|>1\}$ is the conformal map such that $\Phi(\infty)=\infty$ and $\Phi^{\prime}(\infty)>0$. Hence,

$$
\mathrm{T}_{\mathrm{n}}(z) f(z)-\frac{1}{2} \mathrm{U}_{n-1}(z)=\frac{\left(z-\sqrt{z^{2}-1}\right)^{n}}{w(z)}=\frac{1}{w(z) \Phi^{n}(z)}=\mathcal{O}\left(z^{-n-1}\right)
$$

That is, the n-th Padé approximant to $1 / 2 w$ is given by $U_{n-1} / 2 T_{n}$ and

$$
\begin{cases}\mathrm{Q}_{\mathrm{n}}(z) & :=\Phi^{\mathrm{n}}(z)+\Phi^{-n}(z) \\ \left(w \mathrm{R}_{\mathrm{n}}\right)(z) & :=\Phi^{-n}(z)\end{cases}
$$

Theorem (Szegő, 30's)

Let ρ be a non-negative function satisfying $\int_{[-1,1]} \log \rho \mathrm{d} \omega>-\infty$. Set

$$
\mathrm{f}(z):=\frac{1}{2 \pi} \int_{[-1,1]} \frac{1}{z-x} \frac{\rho(x) \mathrm{d} x}{\sqrt{1-x^{2}}} .
$$

Then it holds locally uniformly in $\overline{\mathbb{C}} \backslash[-1,1]$ that

$$
\begin{cases}\mathrm{Q}_{\mathrm{n}}(z) & \cong\left(\Phi^{\mathrm{n}} S_{\rho}\right)(z), \\ \left(w R_{n}\right)(z) & \cong\left(\Phi^{\mathrm{n}} S_{\rho}\right)^{-1}(z),\end{cases}
$$

where $w(z)=\sqrt{z^{2}-1}$ and S_{ρ} is the Szegó function of ρ, i.e.,

$$
S_{\rho}(z):=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}} \int_{[-1,1]} \frac{\log \rho(x)}{z-x} \frac{\mathrm{~d} x}{w^{+}(x)}\right\}
$$

is the unique non-vanishing holomorphic function off $[-1,1]$ such that $S_{\rho}^{+} S_{\rho}^{-}=1 / \rho$.

Let $\mathfrak{\Re}$ be the Riemann surface of $w^{2}=z^{2}-1$.

Then Φ^{n} is a rational function with the divisor $n \infty^{(1)}-n \infty^{(0)}$ and S_{ρ} is holomorphic and non-vanishing off Δ that satisfies $S_{\rho}^{+}=(\rho \circ \pi) S_{\rho}^{-}$. Then

$$
\begin{cases}\mathrm{Q}_{n}(z) & \cong\left(\Phi^{n} S_{\rho}\right)\left(z^{(0)}\right) \\ \left(w R_{n}\right)(z) & \cong\left(\Phi^{n} S_{\rho}\right)\left(z^{(1)}\right)\end{cases}
$$

We shall say that a vector function $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ forms an Angelesco system if

$$
f_{i}(z)=\int \frac{d \mu_{i}(x)}{z-x}, \quad \mu_{i}>0, \quad \operatorname{supp}\left(\mu_{i}\right)=\left[a_{i}, b_{i}\right], \quad\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right]=\varnothing
$$

Given a multi-index $\vec{n}=\left(n_{1}, \ldots, n_{m}\right),|\vec{n}|:=n_{1}+\cdots+n_{m}$, we can write

$$
\int x^{k} Q_{\vec{n}}(x) d \mu_{i}(x)=0, \quad k=\overline{0, n_{i}-1}
$$

Hence, $Q_{\vec{n}}$ has n_{i} simple zeros on $\left[a_{i}, b_{i}\right]$. We denote by $\sigma_{\vec{n}, i}$ their counting measure normalized by $|\vec{n}|$. That is, $\left|\sigma_{\vec{n}, i}\right|=n_{i} /|\vec{n}|$.

Theorem (Gonchar-Rakhmanov, 81)

Assume that $\mu_{i}^{\prime}>0$ a.e. on $\left[a_{i}, b_{i}\right]$. Let $\{\vec{n}\}$ be a sequence of multi-indices such that

$$
\frac{\vec{n}}{|\vec{n}|} \rightarrow \vec{c} \in(0,1)^{m}, \quad(|\vec{c}|=1)
$$

Then there exists a vector equilibrium measure $\vec{\omega}_{\vec{c}}=\left(\omega_{\vec{c}, 1, \ldots,} \omega_{\vec{c}, m}\right)$ such that

$$
\sigma_{\vec{n}, i} \xrightarrow{*} \omega_{\vec{c}, i} .
$$

Moreover, it holds that $\operatorname{supp}\left(\omega_{\vec{c}, i}\right)=\left[a_{\vec{c}, i}, b_{\vec{c}, i}\right] \subseteq\left[a_{i}, b_{i}\right]$.

$$
\stackrel{b_{\vec{c}, 1}}{a_{1}=a_{\vec{c}, 1}} \dot{b}_{1} \underset{a_{2}=a_{\vec{c}, 2} \quad b_{2}^{-}=b_{\vec{c}, 2}}{ }
$$

Let $\vec{\omega}_{\vec{n}}$ be the vector equilibrium measure for $\vec{n} /|\vec{n}|$. Define $\mathfrak{R}_{\vec{n}}$ w.r.t. $\vec{\omega}_{\vec{n}}$ by

The surface $\Re_{\vec{n}}$ has genus 0 . Given a multi-index \vec{n}, let $\Phi_{\vec{n}}$ be the rational function on $\mathfrak{R}_{\vec{n}}$ with the divisor and normalization given by

$$
\left(\Phi_{\vec{n}}\right)=n_{1} \infty^{(1)}+\cdots+n_{m} \infty^{(m)}-|\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}\left(z^{(k)}\right) \equiv 1
$$

Define

$$
\left\{\begin{array}{l}
D_{\vec{n}, i}^{+}:=\left\{z:\left|\Phi_{\vec{n}}\left(z^{(0)}\right)\right|>\left|\Phi_{\vec{n}}\left(z^{(i)}\right)\right|\right\} \\
D_{\vec{n}, i}^{-}:=\left\{z:\left|\Phi_{\vec{n}}\left(z^{(0)}\right)\right|<\left|\Phi_{\vec{n}}\left(z^{(i)}\right)\right|\right\}
\end{array}\right.
$$

It might happen that $D_{\vec{n}, \mathrm{i}}^{-} \neq \varnothing$.

$$
\stackrel{b_{\vec{c}, 1}}{a_{1}=a_{\vec{c}, 1}} \stackrel{\rightharpoonup}{b}_{1} \stackrel{D_{1}^{-}}{a_{2}=a_{\vec{c}, 2} \quad \dot{b}_{2}=b_{\vec{c}, 2}}
$$

As the following theorem shows, D_{i}^{-}is the divergence domain for $P_{\vec{n}}^{(i)} / Q_{\vec{n}}$.

Theorem (Y., 16)

Let ρ_{i} be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on [a_{i}, b_{i}] and

$$
\mathrm{f}_{\mathrm{i}}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\left[\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}\right]} \frac{\rho_{\mathrm{i}}(\mathrm{x}) \mathrm{d} x}{x-z}
$$

Further, let $\{\vec{n}\}$ be a sequence of multi-indices such that $\vec{n} /|\vec{n}| \rightarrow \vec{c} \in(0,1)^{m}$. Then

$$
\begin{cases}\mathrm{Q}_{\vec{n}}(z) & \cong\left(\Phi_{\vec{n}} S\right)\left(z^{(0)}\right) \\ \left(w_{i} R_{\vec{n}}^{(i)}\right)(z) & \cong\left(\Phi_{\vec{n}} S\right)\left(z^{(i)}\right)\end{cases}
$$

where $w_{i}(z):=\sqrt{\left(z-a_{\vec{c}, i}\right)\left(z-b_{\vec{c}, i}\right)}$ and S is a Szegő-type function on $\Re_{\vec{c}}$.

- Kalyagin, 79: $[-1,0]$ and $[0,1]+$ Jacobi weights
- Aptekarev, 88: two functions + Szegő weights + diagonal multi-indices
- Aptekarev-Lysov, 10: m functions + analytic weights + diagonal multi-indices

We shall say that a vector function $\vec{f}=\left(f_{1}, f_{2}\right)$ forms a symmetric Stahl system if

$$
f_{i} \leftrightarrow \mu_{i}, \quad \operatorname{supp}\left(\mu_{1}\right)=[-1, a], \quad \operatorname{supp}\left(\mu_{2}\right)=[-a, 1], \quad a \in(0,1)
$$

Further, let h be an algebraic function given by

$$
A(z) h^{3}-3 B_{2}(z) h-2 B_{1}(z)=0
$$

where

$$
\left\{\begin{array}{l}
\mathrm{A}(z):=\left(z^{2}-1\right)\left(z^{2}-\mathrm{a}^{2}\right) \\
\mathrm{B}_{2}(z):=z^{2}-\mathrm{p}^{2} \\
\mathrm{~B}_{1}(z):=z
\end{array}\right.
$$

for some parameter $p>0$.

Denote by $\mathfrak{\Re}$ the Riemann surface of h. We are looking for the surface such that

$$
\begin{equation*}
N(z):=\operatorname{Re}\left(\int^{z} h(t) d t\right) \quad \text { single-valued harmonic function on } \mathfrak{R} . \tag{1}
\end{equation*}
$$

Theorem (Aptekarev-Van Assche-Y.)

(I) If $a \in(0,1 / \sqrt{2})$, then there exists $p \in\left(a, \sqrt{\left(1+a^{2}\right) / 3}\right)$ such that condition (1) is fulfilled. In this case \mathfrak{R} has 8 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b, \pm i c\}$ for some uniquely determined $b \in(a, p)$ and $c>0$.
(II) If $a=1 / \sqrt{2}$, then condition (1) is fulfilled for $p=1 / \sqrt{2}$. In this case \mathfrak{R} has 4 ramification points whose projections are $\{ \pm 1, \pm 1 / \sqrt{2}\}$.
(III) If $a \in(1 / \sqrt{2}, 1)$, then condition (1) is fulfilled for $p=\sqrt{\left(1+a^{2}\right) / 3}$. In this case \mathfrak{R} has 6 ramification points whose projections are $\{ \pm 1, \pm a\}$ and $\{ \pm b\}, b \in(p, a)$.

Let $\Phi(z):=\exp \left\{\int^{z} h(t) d t\right\}$. It is a multiplicatively multi-valued function on \mathfrak{R} with the divisor $\infty^{(1)}+\infty^{(2)}-2 \infty^{(0)}$ and normalized so that $\Phi\left(z^{(0)}\right) \Phi\left(z^{(1)}\right) \Phi\left(z^{(2)}\right) \equiv 1$.
Let ρ_{1} and ρ_{2} be functions holomorphic and non-vanishing in a neighborhood of $[-1,1]$. In Case I, assume also that the ratio ρ_{1} / ρ_{2} holomorphically extends to a non-vanishing function in a neighborhood of $\mathfrak{R}^{(1)} \cap \mathfrak{R}^{(2)}$. Then $\Psi_{n} \leftrightarrow \Phi^{n}$, where

$$
\begin{cases}\left(\Psi_{n}^{(1)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{1} & \text { on } \Delta_{1}^{\circ} \\ \left(\Psi_{n}^{(2)}\right)^{ \pm}=\mp\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{2} & \text { on } \Delta_{21}^{\circ} \\ \left(\Psi_{n}^{(2)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(0)}\right)^{\mp} \rho_{2} & \text { on } \Delta_{22}^{\circ} \\ \left(\Psi_{n}^{(2)}\right)^{ \pm}= \pm\left(\Psi_{n}^{(1)}\right)^{\mp}\left(\rho_{2} / \rho_{1}\right) & \text { on } \Delta_{0}^{\circ}\end{cases}
$$

Ψ_{n} has a wandering zero (2 in Case I) and there exists a subsequence \mathbb{N}_{*} such that

- $\left|\Psi_{n}\right| \leqslant C\left(\mathbb{N}_{*}\right)\left|\Phi^{n}\right|$ uniformly away from the branch points of \mathfrak{R}
- $\left|\Psi_{n}\right| \geqslant C\left(\mathbb{N}_{*}\right)^{-1}\left|\Phi^{n}\right|$ uniformly in a neighborhood of $\infty^{(0)}$

Theorem (Aptekarev-Van Assche-Y.)

Let

$$
\mathrm{f}_{\mathrm{i}}(z):=\frac{1}{2 \pi \mathrm{i}} \int \frac{\rho_{\mathrm{i}}(x) \mathrm{d} x}{x-z}
$$

where ρ_{1} and ρ_{2} are as before and we assume in addition that the ratio ρ_{2} / ρ_{1} extends from $(-a, a)$ to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions $\Omega_{i j k}$ in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of Ω_{021} in Cases II and IIIa;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb. Then for multi-indices $\vec{n}=(n, n)$ it holds that

$$
\left\{\begin{array}{lll}
Q_{\vec{n}} & " \cong " & C_{n} \Psi_{n}^{(0)}, \\
R_{\vec{n}}^{(i)} & " \cong " & C_{n} \widehat{\Psi}_{n}^{(i)}
\end{array} \quad n \in \mathbb{N}_{*}\right.
$$

The ratio ρ_{2} / ρ_{1} extends from $(-a, a)$ to a holomorphic and non-vanishing function in a domain that contains in its interior the closure of the bounded components of $\Omega_{i j k}$.

The ratio ρ_{2} / ρ_{1} extends from $(-a, a)$ to a holomorphic and non-vanishing function in a domain whose complement compactly belongs to the right-hand component of Ω_{021}.

The ratio ρ_{2} / ρ_{1} extends from $(-a, a)$ to a holomorphic and non-vanishing function in a domain whose complement belongs to the right-hand component of Ω_{021}.

