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Criterion for Transcendence

A number « is transcendental if for any m € N and any ¢ > 0 there exist m + 1 linearly
independent vectors of integers (qj,p)gl), .. .,p;m)) such that |qjock — p].[k)| < g, Vk.

If o is algebraic, then 3m € N, ax € Z, k =0, m, such that } | axo® = 0. Hence,
m m
k k
D a(@o —p) + aogs + 3 awp =o0.
k=1 k=1
Since vectors (qj, pjm, .. .,pj(m]) are linearly independent, there exists j, such that

0 75 apqj, + Z Clk'p)g:;] €.
k=1

Then, it holds that
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Transcendence of e

In 1873, Hermite proved that e is transcendental in the following way.

Let ng,ny, ..., N, be non-negative integers. Set N :=ng + - - - + n,, and consider the
following system:

Q(z)e** — Py (z) = O(zN1Y), J

where deg(Q) < N —ng and deg(Pi) < N —n,.

Hermite proceeded to explicitly construct these polynomials, which as it turned out
have integer coefficients. By evaluating them at 1 and varying the parameters
Mg, M4, ..., Ny he succeeded in applying the above criterion.
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Hermite-Padé Approximants: Definition

Letf = (f1,...,fm) be a vector of functions holomorphic and vanishing at infinity:

fu f

q it
filz) = 242 i
@)=+ Z+ o+ J

Further, let i € N™ be a multi-index, while P(}), .., P™ and Q+ be polynomials such

s 7 A
that

deg(Qﬁ) <|Al=n; + + N J
and
RY(@) = (Qufi —P) @) =0 (z ™) as zco. J

The vector of rational functions

(P /Qx - PE™/Qx) |

is called the type Il Hermite-Padé approximant to f corresponding to 1.
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Hermite-Padé Approximants: Orthogonality

It follows from Cauchy integral formula that

fi(z) = [ J

for some compactly supported Borel generally speaking complex measure ;. Since
RW(z) = 0(z ™), it holds that

n

0= | #RY 20z = | Qul@file)dz = [ ¥Qulx)dusx) J
r r

for k = 0,n; — 1, where I is any Jordan curve encircling the support of p;. In what
follows, it assumed that Qx is the monic polynomial of minimal degree.

The goal is to understand the asymptotic behavior of Qx and R(ﬁi ) for a “large” class of
measures (L;.
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Padé Approximants: Markov Functions

Let u be a positive Borel measure compactly supported on the real line. Then

- 22 ]

is called a Markov function. The n-th Padé approximant is defined by the condition

Ra(z) = (Quf—Pu)(2) = O(z ™). J

In this case it holds that

JXan (x)dp(x) =0, k=0,n—1. J

That is, Q. is the n-th orthogonal polynomial with respect to the measure .
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Padé Approximants: Distribution of Poles

Notice that all the zeros of Q., are distinct and belong to the convex hull of supp(p).
Indeed, otherwise, set P to be a polynomial vanishing at the odd multiplicity zeros of
Q-+ on the convex hull. Then deg(P) <n —1and

orthogonality = 0= JP(X)Qn(x)du(x) >0 <« positivity. J

Denote by o, the normalized counting measure of zeros of Q,,. That is,

owi== > 80x) Quix) =[x, J

i=1 i=1

where 5(x;) is the Dirac o-distribution with mass at x;. Recall that a sequence of
measures converges weak®, v, 5oy, if f hdv, — fhdv for any continuous function h.

dx
/1 —x2

If supp(p) = [-1,1] and 1’ > 0 a.e. on [-1, 1], then o, > w, where dw(x) =
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Padé Approximants: Chebyshév Polynomials

The “simplest” Markov function is

f(z) = 1J 1 dx 1
27 iy z—%x Vi 2V2 -1

Write w(z) = v/z2 — 1. The polynomials

{ Ta(z)
w(z)U,_1(z) = (Z +VzZ? — 1)n — (z —Vz2— 1)",

(z+VZ=1)"+ (z—V22-1)", J

are the Chebyshév polynomial of the first and second kind. Then

T (2)f(2) - %un_l(z) _T» _;V(Z)unfl(z) _(z=vZ-1) ' J
w(z) w(z)
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Padé Approximants: Chebyshév Polynomials

Define

Oz)=z+V22—1 & Ol z)=z—+22—1 J

In fact, ®(z) and @ (z) are the inverse functions of the Zhoukovsky transformation
J(z) = (z+ 2z ')/2. In particular, @ : C\ [-1,1] — {[z| > 1} is the conformal map such
that ®(co) = co and ®’(co) > 0. Hence,

1 _ (z—\/zz—l)TL B 1 _ o
Tu(a)f(e) = JUnoa() = S = — e — 0 (). J

That is, the n-th Padé approximant to 1/2w is given by U,,_;/2T,, and

(WRn)(2) ().

{ Qn(z) = 0"(z)+ 07 "(z), }
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Padé Approximants: Strong Asymptotics

N
~
<

Theorem (Szeg6, 30’s)

Let p be a non-negative function satisfying [, log pdw > —oo. Set

iJ‘ 1 p(x)dx
27 [11]Z—X\/1—x2'

Then it holds locally uniformly in C \ [-1, 1] that
Qn(z) = (O"S,)(2),
{ WRa)(2) = (2"S,) " (2),
where w(z) = V22 — 1 and S, is the Szeg6 function of p, i.e.,
w(z) J logp(x) dx }
11]

27 z—x wt(x)

f(z) =

[12

Sp(z) =exp {

is the unique non-vanishing holomorphic function off [~1, 1] such that S}S; = 1/p.
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Padé Approximants: Riemann Surface

Let PR be the Riemann surface of w? = z> — 1.
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Then @™ is a rational function with the divisor noo” —noo(® and S, is holomorphic
and non-vanishing off A that satisfies S} = (p o 71)S. Then

o0 = s
(WRn)(z) = (@"S,)(zM).
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Angelesco Systems: Orthogonality

We shall say that a vector function f= (f1,...,fm) forms an Angelesco system if

fi(z) = J %/ Wi > Or supp(lh) = [air bi]/ [ai/bi] N [a]/b]] =d. J

Given a multi-index it = (n4,...,ny), || =1y + -+ + n,,, We can write

JXkQﬁ(X)dHi(X) =0, k=0,n; —1. J

Hence, Qx has n; simple zeros on [a;, bi]. We denote by 0y,; their counting measure
normalized by | i |. That is, [o7,:| = ni/| 1]
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Angelesco Systems: Convergence of Poles

Theorem (Gonchar-Rakhmanov, 81)

Assume that pf > 0 a.e. on [a;, bi]. Let { 11 } be a sequence of multi-indices such that

\:n

—ce((0,1™, (Ic]=1).

=]

Then there exists a vector equilibrium measure @z = (We1, ..., Wem) such that

X
Oi,i = Wei-

Moreover, it holds that supp(we:) = [agi, beil C [ai, bil.

a1 = ag1 &1 by ay = ag2 by = ba2
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Angelesco Systems: Riemann Surface

Let @5 be the vector equilibrium measure for /| 7i |. Define 9z w.r.t. G5 by

Qi1 ¥ b Uqp # bap B
%Q) . * *~—s Ox(z0) ~ 27
| | | |
| i | i
T T I [
1 ! 1 |
(1) o ° | | (1)) <z
R & ® ! ! Qr(z)~zT™
n Qi1 N biia ! ! w2
1 1
| |
1 1

DOy (z) ~z7m
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Angelesco Systems: Riemann Surface

The surface M;; has genus 0. Given a multi-index 7, let ® be the rational function on
Ny with the divisor and normalization given by

(@a) =m0 + -+ oo™ — [fife0®, [T @a(z™) =1. J

{ Di.
Dy

It might happen that D, ; # @.

Define

{z: |0x(z)] > [0 ()]},
{z: |0x(z")] <[ (z")]}.

Dy

a; = ag; z1 b1 ag = aga by = bas

As the following theorem shows, D;

1

is the divergence domain for Pg )/ Qx.
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Angelesco Systems: Strong Asymptotics

Theorem (Y., 16)

Let p; be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on
lai, bi] and

fi(z):

. LJ pi(x)dx
_27'C1 [aj,by] X—Z '

Further, let { 11 } be a sequence of multi-indices such that /| i | — ¢ € (0,1)™. Then

{ Qx(2) = (0zS)(z?),
wiRP)(z) = (©xS)(z1V),
where w;(z) := /(z — azi)(z — bei) and S is a Szegb-type function on Re.

e Kalyagin, 79: [-1,0] and [0, 1] + Jacobi weights

e Aptekarev, 88: two functions + Szeg6 weights + diagonal multi-indices

e Aptekarev—-Lysov, 10: m functions + analytic weights + diagonal multi-indices

v
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Symmetric Stahl Systems

We shall say that a vector function f= (fy, f2) forms a symmetric Stahl system if

fi o w, supp() =[-1,a, supp(w)=I[-a,1, ae(0,1). J

Further, let h be an algebraic function given by

A(z)h® — 3B,(z)h — 2B;(z) = 0, J
where
Alz) = (2-1)(2—d?),
By(z) = 2z2—7p?,
Bi(z) = 2z

for some parameter p > 0.
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Symmetric Stahl Systems: Riemann Surface

Denote by 21 the Riemann surface of h. We are looking for the surface such that

N(z) :=Re (J h(t)dt) single-valued harmonic function on fR. (1)}

Theorem (Aptekarev—Van Assche-Y.)

I Ifac (0, 1/ \ﬁ), then there exists p € (a, (14 a?)/ 3) such that condition (1) is
fulfilled. In this case R has 8 ramification points whose projections are {+1, +a}
and {+b, +ic} for some uniquely determined b € (a,p) and ¢ > 0.

() If a = 1/+/2, then condition (1) is fulfilled for p = 1/+/2. In this case 93 has 4
ramification points whose projections are { +1,+1/v2}.

(Ill) If a € (1/v/2,1), then condition (1) is fulfilled for p = /(1 + a2)/3. In this case
R has 6 ramification points whose projections are {+1, +a} and {£b}, b € (p, a).
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Symmetric Stahl Systems: Riemann Surface

410
R L R
a b 1
9 Ol
RO s 1M RO 5 R
—e —ic
(a) Casel
—1 —1/v2 1/V2 1
RO 5 1@ RO o5 7D om0 o Ry
(b) Case Il
-1 —a ~b b a 1
RO &5 1@ - RO 5 1D - R0 £ 1®
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Symmetric Stahl Systems: Nuttall-Szeg6é Functions

Let ®(z) :=exp {fz h(t)dt}. It is a multiplicatively multi-valued function on SR with
the divisor co! ++ 00?) — 200" and normalized so that @ (V) @ (zV) @ (@) = 1.

Let p; and p, be functions holomorphic and non-vanishing in a neighborhood of
[—1,1]. In Case I, assume also that the ratio p;/p, holomorphically extends to a
non-vanishing function in a neighborhood of MY NRKRP Then ¥, <+ O™, where

(W(n”)i = + (‘Pff)f P1 on Aj,
( (nZ))i = ?(‘l’ff)fpz on A3,
(‘F(nz))i = :l:(‘l’flo))¥p2 on A,
(W) = () (or/e) on 4

Y., has a wandering zero (2 in Case I) and there exists a subsequence N, such that

C(N,) |@"| uniformly away from the branch points of R
C(N,)!'|®"| uniformly in a neighborhood of co(?)
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Symmetric Stahl Systems: Strong-type Asymptotics

Theorem (Aptekarev-Van Assche-Y.)

Let . (x)d
Pilx)dx
fi = — —_—

() 27 J X—z

7

where p; and p, are as before and we assume in addition that the ratio p,/p; extends
from (—a, a) to a holomorphic and non-vanishing function

e in a domain that contains in its interior the closure of all the bounded
components of the regions Q;; in Case I;

e in a domain whose complement is compact and belongs to the right-hand
component of Q,; in Cases II and Illa;

e in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb.
Then for multi-indices i = (n,n) it holds that
Qﬁ o % 7 Cn‘\ljl(q_O],

) . neN,.
Ri{) o~ Cn‘l’g),
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-type Asymptotics

The ratio p,/p; extends from (—a, a) to a holomorphic and non-vanishing function in
a domain that contains in its interior the closure of the bounded components of Q.
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The ratio p,/p; extends from (—a, a) to a holomorphic and non-vanishing function in
a domain whose complement compactly belongs to the right-hand component of Q;.

Qo12

Qo21 > Qo2

Qo12

70— \ 70— al)

Y O .

Hermite-Padé Approximation of Markov Functio



The ratio p,/p; extends from (—a, a) to a holomorphic and non-vanishing function in
a domain whose complement belongs to the right-hand component of Qgp;.

Qo12
Qo2 Qo2

W = g
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