Hermite-Padé Approximation of Markov Functions

Maxim L. Yattselev

Indiana University-Purdue University Indianapolis

Eastern Illinois University

November 13th, 2015

Criterion

A number α is transcendental if for any $m \in \mathbb{N}$ and any $\varepsilon > 0$ there exist m + 1 linearly independent vectors of integers $(q_j, p_j^{(1)}, \dots, p_j^{(m)})$ such that $|q_j \alpha^k - p_j^{(k)}| \leq \varepsilon$, $\forall k$.

If α is algebraic, then $\exists m \in \mathbb{N}$, $a_k \in \mathbb{Z}$, $k = \overline{0, m}$, such that $\sum_{k=0}^{m} a_k \alpha^k = 0$. Hence,

$$\sum_{k=1}^{m} a_k (q_j \alpha^k - p_j^{(k)}) + a_0 q_j + \sum_{k=1}^{m} a_k p_j^{(k)} = 0.$$

Since vectors $(q_j, p_j^{(1)}, \dots, p_j^{(m)})$ are linearly independent, there exists j_0 such that

$$0 \neq \mathfrak{a}_0 \mathfrak{q}_{\mathfrak{j}_0} + \sum_{k=1}^m \mathfrak{a}_k \mathfrak{p}_{\mathfrak{j}_0}^{(k)} \in \mathbb{Z}.$$

Then, it holds that

$$1 \leqslant \left|\sum_{k=1}^m \alpha_k(q_{j_0}\alpha^k - p_{j_0}^{(k)})\right| \leqslant \epsilon \sum_{k=1}^m |\alpha_k|.$$

In 1873, Hermite proved that e is transcendental in the following way.

Let n_0, n_1, \ldots, n_m be non-negative integers. Set $N := n_0 + \cdots + n_m$ and consider the following system:

$$\mathbf{Q}(z)e^{\mathbf{k}z} - \mathbf{P}_{\mathbf{k}}(z) = \mathcal{O}(z^{\mathbf{N}+1}),$$

where $deg(Q) \leq N - n_0$ and $deg(P_k) \leq N - n_k$.

Hermite proceeded to **explicitly** construct these polynomials, which as it turned out have **integer coefficients**. By evaluating them at **1** and **varying** the parameters n_0, n_1, \ldots, n_m he succeeded in applying the above criterion.

Let $\vec{f} = (f_1, \dots, f_m)$ be a vector of functions holomorphic and vanishing at infinity:

$$f_i(z) = \frac{f_{i1}}{z} + \frac{f_{i2}}{z^2} + \dots + \frac{f_{in}}{z^n} + \dots$$

Further, let $\vec{n} \in \mathbb{N}^m$ be a multi-index, while $P_{\vec{n}}^{(1)}, \dots, P_{\vec{n}}^{(m)}$ and $Q_{\vec{n}}$ be polynomials such that

 $deg(Q_{\vec{n}}) \leqslant |\vec{n}| := n_1 + \dots + n_m$

and

$$R_n^{(\mathfrak{i})}(z) := \left(Q_{\vec{\mathfrak{n}}} f_{\mathfrak{i}} - P_{\vec{\mathfrak{n}}}^{(\mathfrak{i})} \right)(z) = \mathfrak{O}\left(z^{-\mathfrak{n}_{\mathfrak{i}}-1} \right) \quad \text{as} \quad z \to \infty.$$

The vector of rational functions

$$\left(\mathsf{P}_{\vec{\mathfrak{n}}}^{(1)}/\mathsf{Q}_{\vec{\mathfrak{n}}},\ldots,\mathsf{P}_{\vec{\mathfrak{n}}}^{(\mathfrak{m})}/\mathsf{Q}_{\vec{\mathfrak{n}}}\right)$$

is called the **type II Hermite-Padé approximant** to \vec{f} corresponding to \vec{n} .

Maxim L. Yattselev

Hermite-Padé Approximation of Markov Functions

It follows from Cauchy integral formula that

$$f_{i}(z) = \int \frac{d\mu_{i}(x)}{z - x}$$

for some compactly supported Borel generally speaking complex measure μ_i . Since $R_{\vec{n}}^{(i)}(z) = O(z^{-n_i-1})$, it holds that

$$0 = \int_{\Gamma} z^k R_{\vec{n}}^{(i)}(z) dz = \int_{\Gamma} z^k Q_{\vec{n}}(z) f_i(z) dz = \int x^k Q_{\vec{n}}(x) d\mu_i(x)$$

for $k = \overline{0, n_i - 1}$, where Γ is any Jordan curve encircling the support of μ_i . In what follows, it assumed that $Q_{\vec{n}}$ is the **monic polynomial of minimal degree**.

The goal is to understand the asymptotic behavior of $Q_{\vec{n}}$ and $R_{\vec{n}}^{(i)}$ for a "large" class of measures $\mu_i.$

Let μ be a positive Borel measure compactly supported on the real line. Then

$$f(z) = \int \frac{d\mu(x)}{z - x}$$

is called a Markov function. The n-th Padé approximant is defined by the condition

$$\mathbf{R}_{\mathbf{n}}(z) = \left(\mathbf{Q}_{\mathbf{n}}\mathbf{f} - \mathbf{P}_{\mathbf{n}}\right)(z) = \mathbf{O}(z^{-n-1}).$$

In this case it holds that

$$\int x^k Q_n(x) d\mu(x) = 0, \quad k = \overline{0, n-1}.$$

That is, Q_n is the n-th **orthogonal polynomial** with respect to the measure μ .

Notice that all the zeros of Q_n are **distinct** and belong to the **convex hull** of $supp(\mu)$. Indeed, otherwise, set P to be a polynomial vanishing at the odd multiplicity zeros of Q_n on the convex hull. Then $deg(P) \leq n - 1$ and

orthogonality
$$\Rightarrow 0 = \int P(x)Q_n(x)d\mu(x) > 0 \iff \text{positivity.}$$

Denote by σ_n the normalized **counting measure of zeros** of Q_n . That is,

$$\sigma_{\mathfrak{n}} := \frac{1}{\mathfrak{n}} \sum_{i=1}^{\mathfrak{n}} \delta(x_i), \quad Q_{\mathfrak{n}}(x) = \prod_{i=1}^{\mathfrak{n}} (x-x_i),$$

where $\delta(x_i)$ is the Dirac δ -distribution with mass at x_i . Recall that a sequence of measures converges weak^{*}, $\nu_n \xrightarrow{*} \nu$, if $\int h d\nu_n \to \int h d\nu$ for any continuous function h.

Theorem

If supp $(\mu) = [-1, 1]$ and $\mu' > 0$ a.e. on [-1, 1], then $\sigma_n \xrightarrow{*} \omega$, where $d\omega(x) = \frac{dx}{\pi \sqrt{1-x^2}}$.

The "simplest" Markov function is

$$f(z) = \frac{1}{2\pi} \int_{[-1,1]} \frac{1}{z - x} \frac{dx}{\sqrt{1 - x^2}} = \frac{1}{2\sqrt{z^2 - 1}}.$$

Write $w(z) = \sqrt{z^2 - 1}$. The polynomials

$$\begin{cases} \mathsf{T}_{n}(z) & := & \left(z + \sqrt{z^{2} - 1}\right)^{n} + \left(z - \sqrt{z^{2} - 1}\right)^{n}, \\ w(z)\mathsf{U}_{n-1}(z) & := & \left(z + \sqrt{z^{2} - 1}\right)^{n} - \left(z - \sqrt{z^{2} - 1}\right)^{n}, \end{cases}$$

are the Chebyshëv polynomial of the first and second kind. Then

$$\mathsf{T}_{\mathsf{n}}(z)\mathsf{f}(z) - \frac{1}{2}\mathsf{U}_{\mathsf{n}-1}(z) = \frac{\mathsf{T}_{\mathsf{n}}(z) - w(z)\mathsf{U}_{\mathsf{n}-1}(z)}{2w(z)} = \frac{\left(z - \sqrt{z^2 - 1}\right)^{\mathsf{n}}}{w(z)}.$$

Maxim L. Yattselev

Define

$$\Phi(z):=z+\sqrt{z^2-1}\quad\Leftrightarrow\quad \Phi^{-1}(z)=z-\sqrt{z^2-1}.$$

In fact, $\Phi(z)$ and $\Phi^{-1}(z)$ are the inverse functions of the **Zhoukovsky transformation** $J(z) = (z + z^{-1})/2$. In particular, $\Phi : \overline{\mathbb{C}} \setminus [-1, 1] \rightarrow \{|z| > 1\}$ is the **conformal map** such that $\Phi(\infty) = \infty$ and $\Phi'(\infty) > 0$. Hence,

$$\mathsf{T}_{\mathsf{n}}(z)\mathsf{f}(z) - \frac{1}{2}\mathsf{U}_{\mathsf{n}-1}(z) = \frac{\left(z - \sqrt{z^2 - 1}\right)^{\mathsf{n}}}{w(z)} = \frac{1}{w(z)\Phi^{\mathsf{n}}(z)} = \mathcal{O}\left(z^{-\mathsf{n}-1}\right).$$

That is, the n-th Padé approximant to 1/2w is given by $U_{n-1}/2T_n$ and

$$\begin{cases} Q_n(z) & := \Phi^n(z) + \Phi^{-n}(z) \\ (wR_n)(z) & := \Phi^{-n}(z). \end{cases}$$

Theorem (Szegő, 30's)

Let ρ be a non-negative function satisfying $\int_{[-1,1]} \log \rho d\omega > -\infty$. Set

$$f(z) := \frac{1}{2\pi} \int_{[-1,1]} \frac{1}{z - x} \frac{\rho(x) dx}{\sqrt{1 - x^2}}$$

Then it holds locally uniformly in $\overline{\mathbb{C}} \setminus [-1, 1]$ that

$$\begin{cases} Q_n(z) &\cong \left(\Phi^n S_\rho\right)(z), \\ (wR_n)(z) &\cong \left(\Phi^n S_\rho\right)^{-1}(z), \end{cases}$$

where $w(z) = \sqrt{z^2 - 1}$ and S_{ρ} is the **Szegő function** of ρ , i.e.,

$$\mathsf{S}_{\rho}(z) := \exp\left\{\frac{w(z)}{2\pi \mathrm{i}}\int_{[-1,1]}\frac{\log\rho(x)}{z-x}\frac{\mathrm{d}x}{w^{+}(x)}\right\}$$

is the unique non-vanishing holomorphic function off [-1,1] such that $S^+_\rho S^-_\rho = 1/\rho.$

Let \Re be the Riemann surface of $w^2 = z^2 - 1$.

Then Φ^n is a rational function with the divisor $n\infty^{(1)} - n\infty^{(0)}$ and S_ρ is holomorphic and non-vanishing off Δ that satisfies $S_{\rho}^+ = (\rho \circ \pi)S_{\rho}^-$. Then

$$\begin{cases} Q_n(z) \cong (\Phi^n S_\rho)(z^{(0)}), \\ (wR_n)(z) \cong (\Phi^n S_\rho)(z^{(1)}). \end{cases}$$

We shall say that a vector function $\vec{f} = (f_1, \dots, f_m)$ forms an **Angelesco system** if

$$f_i(z) = \int \frac{d\mu_i(x)}{z-x}, \quad \mu_i > 0, \quad \text{supp}(\mu_i) = [a_i, b_i], \quad [a_i, b_i] \cap [a_j, b_j] = \emptyset.$$

Given a multi-index $\vec{n} = (n_1, \dots, n_m), |\vec{n}| := n_1 + \dots + n_m$, we can write

$$x^k Q_{\vec{n}}(x) d\mu_i(x) = 0, \quad k = \overline{0, n_i - 1}.$$

Hence, $Q_{\vec{n}}$ has n_i simple zeros on $[a_i, b_i]$. We denote by $\sigma_{\vec{n}, i}$ their counting measure normalized by $|\vec{n}|$. That is, $|\sigma_{\vec{n}, i}| = n_i / |\vec{n}|$.

Theorem (Gonchar-Rakhmanov, 81)

Assume that $\mu'_i > 0$ a.e. on $[a_i, b_i]$. Let $\{ \vec{n} \}$ be a sequence of multi-indices such that

$$\frac{\vec{\mathfrak{n}}}{\vec{\mathfrak{n}}\,|}\rightarrow\vec{\mathfrak{c}}\in(0,1)^{\mathfrak{m}},\quad(\mid\vec{\mathfrak{c}}\mid=1).$$

Then there exists a vector equilibrium measure $\vec{\omega}_{\vec{c}} = (\omega_{\vec{c},1}, \dots, \omega_{\vec{c},m})$ such that

$$\sigma_{\vec{n},i} \stackrel{*}{\rightarrow} \omega_{\vec{c},i}.$$

Moreover, it holds that supp $(\omega_{\vec{c},i}) = [a_{\vec{c},i}, b_{\vec{c},i}] \subseteq [a_i, b_i]$.

$$a_1 = a_{\vec{c},1}$$
 $b_{\vec{c},1}$ b_1 $a_2 = a_{\vec{c},2}$ $b_2 = b_{\vec{c},2}$

Let $\vec{w}_{\vec{n}}$ be the vector equilibrium measure for $\vec{n}/|\vec{n}|$. Define $\Re_{\vec{n}}$ w.r.t. $\vec{w}_{\vec{n}}$ by

The surface \mathfrak{R}_{π} has genus 0. Given a multi-index \vec{n} , let Φ_{π} be the rational function on \mathfrak{R}_{π} with the divisor and normalization given by

$$(\Phi_{\vec{n}}) = n_1 \infty^{(1)} + \dots + n_m \infty^{(m)} - |\vec{n}| \infty^{(0)}, \quad \prod \Phi_{\vec{n}}(z^{(k)}) \equiv 1.$$

Define

$$\left\{ \begin{array}{rcl} {\rm D}_{{\vec{\mathfrak{n}}},{\mathfrak{i}}}^+ &\coloneqq & \left\{ z: \, \left| \Phi_{\vec{\mathfrak{n}}} \big(z^{(0)} \big) \right| > \left| \Phi_{\vec{\mathfrak{n}}} \big(z^{({\mathfrak{i}})} \big) \right| \right\}, \\ {\rm D}_{{\vec{\mathfrak{n}}},{\mathfrak{i}}}^- &\coloneqq & \left\{ z: \, \left| \Phi_{\vec{\mathfrak{n}}} \big(z^{(0)} \big) \right| < \left| \Phi_{\vec{\mathfrak{n}}} \big(z^{({\mathfrak{i}})} \big) \right| \right\}. \end{array} \right.$$

It might happen that $D^-_{\vec{n},i} \neq \emptyset$.

$$a_1 = a_{\vec{c},1} \qquad b_{\vec{c},1} \quad b_1 \quad a_2 = a_{\vec{c},2} \quad b_2 = b_{\vec{c},2}$$

As the following theorem shows, D_i^- is the divergence domain for $P_{\vec{n}}^{(i)}/Q_{\vec{n}}$.

Maxim L. Yattselev

Hermite-Padé Approximation of Markov Functions

Theorem (Y., 16)

Let ρ_i be a Fisher-Hartwig perturbation of a non-vanishing holomorphic function on $[a_i, b_i]$ and

$$f_{i}(z) := \frac{1}{2\pi i} \int_{[a_{i},b_{i}]} \frac{\rho_{i}(x)dx}{x-z}$$

Further, let { \vec{n} } be a sequence of multi-indices such that $\vec{n}/|\vec{n}| \rightarrow \vec{c} \in (0,1)^m$. Then

$$\left\{ \begin{array}{ll} Q_{\vec{\pi}}(z) &\cong & \left(\Phi_{\vec{\pi}}S\right)\!\left(z^{(0)}\right),\\ \\ (w_{i}R^{(i)}_{\vec{\pi}})(z) &\cong & \left(\Phi_{\vec{\pi}}S\right)\!\left(z^{(i)}\right), \end{array} \right.$$

where $w_i(z) := \sqrt{(z - a_{\vec{c},i})(z - b_{\vec{c},i})}$ and S is a Szegő-type function on $\Re_{\vec{c}}$.

- Kalyagin, 79: [-1,0] and [0,1] + Jacobi weights
- Aptekarev, 88: two functions + Szegő weights + diagonal multi-indices
- Aptekarev–Lysov, 10: m functions + analytic weights + diagonal multi-indices

We shall say that a vector function $\vec{f} = (f_1, f_2)$ forms a **symmetric Stahl system** if

 $f_i \leftrightarrow \mu_i, \quad supp(\mu_1) = [-1, a], \quad supp(\mu_2) = [-a, 1], \quad a \in (0, 1).$

Further, let h be an algebraic function given by

 $A(z)h^3 - 3B_2(z)h - 2B_1(z) = 0,$

where

$$\begin{cases} A(z) &:= (z^2 - 1)(z^2 - a^2), \\ B_2(z) &:= z^2 - p^2, \\ B_1(z) &:= z, \end{cases}$$

for some parameter p > 0.

Denote by \mathfrak{R} the Riemann surface of h. We are looking for the surface such that

 $N(z) := \operatorname{\mathsf{Re}}\left(\int^{z} h(t)dt\right) \quad \text{single-valued harmonic function on } \mathfrak{R}. \tag{1}$

Theorem (Aptekarev–Van Assche–Y.)

- (I) If $a \in (0, 1/\sqrt{2})$, then there exists $p \in (a, \sqrt{(1 + a^2)/3})$ such that condition (1) is fulfilled. In this case \mathfrak{R} has 8 ramification points whose projections are $\{\pm 1, \pm a\}$ and $\{\pm b, \pm ic\}$ for some uniquely determined $b \in (a, p)$ and c > 0.
- (II) If $a = 1/\sqrt{2}$, then condition (1) is fulfilled for $p = 1/\sqrt{2}$. In this case \Re has 4 ramification points whose projections are $\{\pm 1, \pm 1/\sqrt{2}\}$.
- (III) If $a \in (1/\sqrt{2}, 1)$, then condition (1) is fulfilled for $p = \sqrt{(1 + a^2)/3}$. In this case \Re has 6 ramification points whose projections are $\{\pm 1, \pm a\}$ and $\{\pm b\}$, $b \in (p, a)$.

Let $\Phi(z) := \exp \{\int^z h(t)dt\}$. It is a multiplicatively multi-valued function on \mathfrak{R} with the divisor $\infty^{(1)} + \infty^{(2)} - 2\infty^{(0)}$ and normalized so that $\Phi(z^{(0)})\Phi(z^{(1)})\Phi(z^{(2)}) \equiv 1$.

Let ρ_1 and ρ_2 be functions holomorphic and non-vanishing in a neighborhood of [-1, 1]. In Case I, assume also that the ratio ρ_1/ρ_2 holomorphically extends to a non-vanishing function in a neighborhood of $\Re^{(1)} \cap \Re^{(2)}$. Then $\Psi_n \leftrightarrow \Phi^n$, where

$$\left\{ \begin{array}{lll} \left(\Psi_n^{(1)}\right)^{\pm} &=& \pm \left(\Psi_n^{(0)}\right)^{\mp} \rho_1 & \text{ on } \Delta_1^{\circ}, \\ \left(\Psi_n^{(2)}\right)^{\pm} &=& \mp \left(\Psi_n^{(0)}\right)^{\mp} \rho_2 & \text{ on } \Delta_{21}^{\circ}, \\ \left(\Psi_n^{(2)}\right)^{\pm} &=& \pm \left(\Psi_n^{(0)}\right)^{\mp} \rho_2 & \text{ on } \Delta_{22}^{\circ}, \\ \left(\Psi_n^{(2)}\right)^{\pm} &=& \pm \left(\Psi_n^{(1)}\right)^{\mp} \left(\rho_2/\rho_1\right) & \text{ on } \Delta_0^{\circ}, \end{array} \right.$$

 Ψ_n has a wandering zero (2 in Case I) and there exists a subsequence \mathbb{N}_* such that

- $|\Psi_n| \leq C(\mathbb{N}_*) |\Phi^n|$ uniformly away from the branch points of \mathfrak{R}
- $|\Psi_n| \ge C(\mathbb{N}_*)^{-1} |\Phi^n|$ uniformly in a neighborhood of $\infty^{(0)}$

Theorem (Aptekarev-Van Assche-Y.)

Let

$$F_{i}(z) := \frac{1}{2\pi i} \int \frac{\rho_{i}(x)dx}{x-z},$$

where ρ_1 and ρ_2 are as before and we assume in addition that the ratio ρ_2/ρ_1 extends from $(-\alpha, \alpha)$ to a holomorphic and non-vanishing function

- in a domain that contains in its interior the closure of all the bounded components of the regions Ω_{ijk} in Case I;
- in a domain whose complement is compact and belongs to the right-hand component of Ω₀₂₁ in Cases II and IIIa;
- in the extended complex plane, i.e., the ratio is a non-zero constant, in Case IIIb.

Then for multi-indices $\vec{n} = (n, n)$ it holds that

$$\left(\begin{array}{ccc} Q_{\vec{\mathfrak{n}}} & ``\cong '' & C_{\mathfrak{n}} \Psi_{\mathfrak{n}}^{(0)}, \\ R_{\vec{\mathfrak{n}}}^{(i)} & ``\cong '' & C_{\mathfrak{n}} \widehat{\Psi}_{\mathfrak{n}}^{(i)}, \end{array} \right) \quad \mathfrak{n} \in \mathbb{N}_{*}.$$

The ratio ρ_2/ρ_1 extends from (-a, a) to a holomorphic and non-vanishing function in a domain that contains in its interior the closure of the bounded components of Ω_{ijk} .

Maxim L. Yattselev

Hermite-Padé Approximation of Markov Functions

The ratio ρ_2/ρ_1 extends from (-a, a) to a holomorphic and non-vanishing function in a domain whose complement compactly belongs to the right-hand component of Ω_{021} .

The ratio ρ_2/ρ_1 extends from (-a, a) to a holomorphic and non-vanishing function in a domain whose complement belongs to the right-hand component of Ω_{021} .

