Padé Approximants

Multipoint Padé Approximants 00000 Convergent Interpolation

Convergent Interpolation to Cauchy Integrals

Maxim Yattselev

Center for Constructive Approximation, Vanderbilt University, Nashville, TN

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
"Crack" Problem			

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
"Crack" Problem			

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
"Crack" Problem			

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
000			
"Crack" Problem			

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
Harmonic Solution			

Let u be the equilibrium distribution of heat or current. Then

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in } D \setminus \gamma \\ \\ \frac{\partial u}{\partial n_{\Gamma}} = \Phi & \text{on } \Gamma := \partial D \\ \\ \frac{\partial u^{\pm}}{\partial n_{\gamma}^{\pm}} = 0 & \text{on } \gamma \setminus \{\gamma_0, \gamma_1\} \end{array} \right.,$$

where Δu is the Laplacian of u.

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
○○●○	000000000	00000	
Cauchy Integral			

u has well-defined conjugate in $D\setminus\gamma$ and

$$F(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi \mathrm{d}s, \quad \xi \in \partial D.$$

Further,

$$F(z)=h(z)+rac{1}{2\pi i}\int_{\gamma}rac{(F^{-}-F^{+})(t)}{z-t}\mathrm{d}t, \ \ z\in D\setminus\gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
Cauchy Integral			

u has well-defined conjugate in $D\setminus\gamma$ and

$$F(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi \mathrm{d}s, \quad \xi \in \partial D.$$

Further,

$$F(z)=h(z)+rac{1}{2\pi i}\int_{\gamma}rac{(F^{-}-F^{+})(t)}{z-t}\mathrm{d}t,\ \ z\in D\setminus\gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

One approximates F on Γ by rational functions with poles in D and observes the asymptotic behavior of their poles as the number of poles grows large.

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000			
Cauchy Integral			

Motivation 0000	Padé Approximants •••••••	Multipoint Padé Approximants	Convergent Interpolation
Padé Approximants			

Let

$$f(z) = \sum_{j=1}^{\infty} \frac{f_j}{z^j}$$

be holomorphic at infinity. A rational function $\pi_n = \frac{p_n}{q_n}$ of type (n, n) is called a diagonal Padé approximant to f of order n if

$$(q_nf-p_n)(z)=O\left(rac{1}{z^{n+1}}
ight) \quad ext{as} \quad z o\infty.$$

Polynomials q_n and p_n may not be unique, but π_n is. It is characterized by the property

$$(f-\pi_n)(z)=O\left(rac{1}{z^{2n+1}}
ight) \quad ext{as} \quad z o\infty.$$

 π_n has the highest order of tangency with f at infinity.

tion Padé Approximants Multi o●oooooooo oooo

Multipoint Padé Approximants

Convergent Interpolation

Baker-Gammel-Willes or Padé Conjecture

In 1961, Baker, Gammel, and Willes¹ conjectured that

if f is meromorphic outside of the unit disk, then

 $\pi_n \to f, \quad n \in \mathbb{N}_1 \subset \mathbb{N},$

locally uniformly in $\{|z| > 1\} \setminus \{\text{poles of } f\}$.

The conjecture was disproved by Lubinsky². Another, simpler counterexample was constructed by Buslaev³ who considered a special hyperelliptic function of genus 2.

 $^{^{1}\}mathrm{An}$ investigation of the applicability of the Padé approximant method, J. Math. Anal. Appl. 2, 4005–418, 1961

 $^{^{2}}$ Rogers-Ramanujan and the Baker-Gammel-Wills (Padé) conjecture, Ann. of Math. 157(3), 847–889, 2003

³On the Baker-Gammel-Willes conjecture in the theory of Padé approximants, Math. Sb. 193:6, 25–38, 2002

Motivation 0000	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
Polar Sets			

A polar set is a set that cannot support a single positive Borel measure with finite logarithmic energy. Polar sets are totally disconnected and have area measure zero.

It is said that a property holds quasi everywhere (q.e.) if it holds everywhere except on a polar set.

Let *D* be an unbounded domain with non-polar boundary. The Green function for *D* with pole at infinity, $g_D(\cdot, \infty)$, is the unique function such that

(i) g_D(z,∞) is a positive harmonic function in D \ {∞};
(ii) g_D(z,∞) - log |z| is bounded near ∞;
(iii) lim_{z→ξ}, z∈D g_D(z,∞) = 0 for q.e. ξ ∈ ∂D.

Aotivation	Padé Approximants ०००●०००००	Multipoint Padé Approximants 00000	Convergent Interpolation
Green Function a	nd Logarithmic Capacity		

Let *D* be an unbounded domain with non-polar boundary. The Green function for *D* with pole at infinity, $g_D(\cdot, \infty)$, is the unique function such that

Let F be a non-polar set and D be the unbounded component of the complement of F. The logarithmic capacity of F is defined as

$$\operatorname{cap}(F) := \exp\left\{\lim_{z \to \infty} \left(\log |z| - g_D(z, \infty)\right)\right\}.$$

The following result is due to Nuttall⁴ and Pommerenke⁵.

Theorem

Let f be a meromorphic and single-valued function in $D = \overline{\mathbb{C}} \setminus F$ with F compact and cap(F) = 0. Then for any set $E \subset \mathbb{C}$ and $\epsilon > 0$ we have

$$\lim_{n o\infty} \operatorname{cap}\left\{z\in E: \; |(f-\pi_n)(z)|^{1/2n}>\epsilon
ight\}=0.$$

In other words, the diagonal Padé approximants π_n converge in capacity to f.

 $^{^{4}}$ The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31, 129–140, 1970

⁵Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41, 775–780, 1973

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Functions with Branch Points

A tremendous step forward in the investigation of the behavior of Padé approximants was done by $Stahl^{6}$.

Theorem

Let f be holomorphic at infinity with all its singularities contained in a compact set F, cap(F) = 0, f is multiple-valued outside of F.

⁶The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139–204, 1997

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Functions with Branch Points

A tremendous step forward in the investigation of the behavior of Padé approximants was done by $Stahl^{6}$.

Theorem

Let f be holomorphic at infinity with all its singularities contained in a compact set F, cap(F) = 0, f is multiple-valued outside of F. Then

- there exists a domain D_f, unique up to a polar set, such that the sequence {π_n} converges in capacity to f in D_f;
- if $\widetilde{D} \supset D_f$, cap $(\widetilde{D} \setminus D) > 0$, then $\{\pi_n\}$ does not converge in capacity to f in the whole domain \widetilde{D} ;
- it holds that

$$|(f - \pi_n)(z)|^{1/2n} \stackrel{\mathsf{cap}}{\to} \exp\{-g_{D_f}(z,\infty)\}.$$

⁶The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139–204, 1997

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
0000	○○○○○●○○○	00000	
Extremal Domain			

Theorem (Stahl)

 D_f is uniquely characterized by the properties:

(i) f is single-valued in D_f ;

(ii) $\operatorname{cap}(\partial D_f) \leq \operatorname{cap}(\partial D)$ for any domain D satisfying (i);

(iii) $D_f \supseteq D$ for any domain D satisfying (i) and (ii).

Motivation 0000	Padé Approximants ○○○○○●○○○	Multipoint Padé Approximants	Convergent Interpolation
Extremal Domain			

Theorem (Stahl)

 D_f is uniquely characterized by the properties:

(i) f is single-valued in D_f ;

(ii) $\operatorname{cap}(\partial D_f) \leq \operatorname{cap}(\partial D)$ for any domain D satisfying (i);

(iii) $D_f \supseteq D$ for any domain D satisfying (i) and (ii).

Observe that

$$|(f-\pi_n)(z)|^{1/2n}\sim \exp\{-g_{D_f}(z,\infty)\}\sim rac{\operatorname{cap}(\partial D_f)}{|z|}$$

near infinity.

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Structure Theorem

Another fascinating part of Stahl's work is the description of the structure of the extremal domain⁷ D_f .

Structure Theorem

Let $\Delta := \overline{\mathbb{C}} \setminus D_f$. Then Δ has empty interior and

 $\Delta = F_0 \cup \bigcup \Delta_j,$

where F_0 is a compact polar set, $F_0 \setminus F$ consists of isolated points, and Δ_j are open analytic arc. Moreover, the Green function for D_f possesses the following symmetry property

$$\frac{\partial g_{D_f}(z,\infty)}{\partial n_+} = \frac{\partial g_{D_f}(z,\infty)}{\partial n_-}, \quad z \in \Delta_j.$$

⁷The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4, 339–354, 1985

Padé Approximants

Jultipoint Padé Approximants

Convergent Interpolation

Structure Theorem

The poles⁸ of Padé approximant π_{63} to function

$$f(z) = \sqrt[4]{\prod_{k=1}^{4} (1-z_k/z)} + \sqrt[3]{\prod_{k=5}^{7} (1-z_k/z)}.$$

⁸The picture is taken from H. Stahl, Sets of Minimal Capacity and Extremal Domains, 2006

Motivation 0000	Padé Approximants ○○○○○○○●	Multipoint Padé Approximants	Convergent Interpolation
Cauchy Integrals			

Let h be an integrable function with compact support. Set

$$f_h(z) := \int \frac{h(t)\mathrm{d}t}{z-t}.$$

Such a function is called Cauchy Integral of *h*.

Motivation 0000	Padé Approximants 00000000●	Multipoint Padé Approximants	Convergent Interpolation
Cauchy Integrals			

Let h be an integrable function with compact support. Set

$$f_h(z) := \int \frac{h(t) \mathrm{d}t}{z-t}.$$

Such a function is called Cauchy Integral of *h*.

Theorem (Stahl)

Let Δ be as in Structure Theorem and h be a q.e. non-vanishing function on $\Delta.$ Then

$$|(f_h - \pi_n)(z)|^{1/2n} \stackrel{\mathsf{cap}}{
ightarrow} \exp\left\{-g_D(z,\infty)
ight\}$$

in $D := \overline{\mathbb{C}} \setminus \Delta$.

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Multipoint Padé Approximants

Let *D* be an unbounded domain and *f* be a function holomorphic in *D*. Let also $\mathscr{E} := \{E_n\}$ be an interpolation scheme in *D*, i.e.,

 $E_n \subset D$ consists of 2n not necessarily distinct nor finite points.

Denote by v_n the monic polynomial that vanishes at finite points of E_n according to their multiplicity and by ν_n the normalized counting measure of points in E_n .

The *n*-th diagonal multipoint Padé approximant to *f* associated with \mathscr{E} is the unique rational function $\prod_n = p_n/q_n$ satisfying:

- deg $p_n \leq n$, deg $q_n \leq n$, and $q_n \not\equiv 0$;
- $(q_n(z)f(z) p_n(z))/v_n(z)$ is analytic in D;
- $\left(q_n(z)f(z)-p_n(z)\right)/v_n(z)=O\left(1/z^{n+1}\right)$ as $z\to\infty.$

Motivation 0000	Padé Approximants 000000000	Multipoint Padé Approximants	Convergent Interpolation
Green Potentials			

Let *D* be a domain with non-polar boundary. The Green function for *D* with pole at finite $u \in D$, $g_D(\cdot, u)$, is the unique function such that

(i) g_D(z, u) is a positive harmonic function in D \ {u};
(ii) g_D(z, ∞) + log |z - u| is bounded near u;
(iii) lim_{z→ξ, z∈D} g_D(z, u) = 0 for q.e. ξ ∈ ∂D.

Motivation 0000	Padé Approximants	Multipoint Padé Approximants 00000	Convergent Interpolation
Green Potentials			

Let *D* be a domain with non-polar boundary. The Green function for *D* with pole at finite $u \in D$, $g_D(\cdot, u)$, is the unique function such that

Let ν be a probability Borel measure supported in D. The Green potential of ν is given by

$$V_D^{\nu}(z) := \int g_D(z, u) \mathrm{d}\nu(u).$$

Motivation 0000	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
Symmetry Property			

Let compact Δ have connected complement D and be of the form

$$\Delta=F_0\cup\bigcup\Delta_j,$$

where $cap(F_0) = 0$ and Δ_j are open analytic arcs.

We say that Δ possesses the symmetry property in the field generated by ν , supp $(\nu) \subset D$, if

$$rac{\partial V_D^
u(z)}{\partial n_+} = rac{\partial V_D^
u(z)}{\partial n_-}, \quad z\in \Delta_j.$$

	Padé Approximants	Multipoint Padé Approximants	Convergen
		00000	
nuorgonco in	Competence		

Building on the work of Stahl, Gonchar and Rakhmanov⁹ obtained the following result.

Theorem	
Assume that	
 Δ, as above, possesses the symmetry property in the f generated by ν; 	ield

- interpolation scheme $\mathscr{E} = \{E_n\}$ is such that $\nu_n \xrightarrow{*} \nu$;
- *h* is non-vanishing q.e. on Δ .

Then

$$|f_h - \prod_n|^{1/2n} \stackrel{\mathsf{cap}}{\to} \exp\left\{-V_D^{\nu}(z)\right\}.$$

 $^{^{9}}$ Equilibrium distributions and degree of rational approximation of analytic functions, Math. Sb. 134(176), 306–352, 1987

Motivation	Padé Approximants	Multipoint Padé Approximants
		00000
N.4		

Convergent Interpolation

If you have "correctly shaped" Δ and you happen to know a measure ν that makes it symmetric, then multipoint Padé approximants to Cauchy integrals of non-vanishing densities will converge in capacity outside of Δ .

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent
Objective			0000000

Interpolation

Two questions:

- Given f_h is there an interpolation scheme \mathscr{E} such that the corresponding multipoint Padé approximants converge?
- Can this convergence be made uniform?

Motivation	Padé Approximants	Multipoint Padé Approximants	Converge
0000	000000000	00000	000000
Objective			

Two questions:

• Given f_h is there an interpolation scheme \mathscr{E} such that the corresponding multipoint Padé approximants converge?

nt Interpolation

• Can this convergence be made uniform?

In what follows, we restrict ourselves to the case of a single arc.

The following work is joint with Laurent Baratchart.

Motivation 0000	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation ●●○○○○○○○○
Setting			

Let Δ be a smooth arc with endpoints ± 1 and $D := \overline{\mathbb{C}} \setminus \Delta$. Set

$$w(z):=\sqrt{z^2-1}, \quad w(z)/z
ightarrow 1 \quad {
m as} \quad z
ightarrow\infty,$$

where holomorphic in D branch is selected. Define

$$\varphi(z) := z + w(z), \quad z \in D.$$

Then

$$w^+ = -w^-$$
 and $\varphi^+ \varphi^- = 1$ on Δ ,

where Δ is assumed to be oriented from -1 to 1 and w^{\pm} and φ^{\pm} are the (unrestricted) boundary values on w and φ .

Motivation 0000	Padé Approximants 0000000000	Multipoint Padé Approximants	Convergent Interpolation
Setting			

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Symmetry w.r.t. Interpolation Scheme

Let $\mathscr{E} = \{E_n\}$ be an interpolations scheme in *D*. Associate to each E_n a function

$$r_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)}, \quad z \in D.$$

Then

- *r_n* is holomorphic in *D*;
- r_n vanishes at each $e \in E_n$;

•
$$r_n^+ r_n^- = 1$$
 on Δ .

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Symmetry w.r.t. Interpolation Scheme

Let $\mathscr{E} = \{E_n\}$ be an interpolations scheme in *D*. Associate to each E_n a function

$$r_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)}, \quad z \in D.$$

Then

- *r_n* is holomorphic in *D*;
- r_n vanishes at each $e \in E_n$;

•
$$r_n^+ r_n^- = 1$$
 on Δ .

Definition (BY)

We say that Δ is symmetric w.r.t. an interpolation scheme \mathscr{E} if $r_n = o(1)$ locally uniformly in D and $|r_n^{\pm}| = O(1)$ uniformly on Δ .

Motivation	Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Symmetry w.r.t. Interpolation Scheme

Motivation	Padé Approximants	Multipoint Padé Approximants
Symmetry w.r.t.	Interpolation Scheme	

Theorem (BY)

Let Δ be a rectifiable Jordan arc with an additional condition near ± 1 (below). Then the following are equivalent:

- \exists an interpolation scheme \mathscr{E} , $\bigcap_n \overline{\bigcup_{k \ge n} E_k} =: \operatorname{supp}(\mathscr{E}) \subset D$, such that Δ is symmetric with respect to \mathscr{E} ;
- ∃ a positive Borel measure ν, supp(ν) ⊂ D, such that
 ∆ is symmetric with respect to ν (in the sense of Stahl);
- Δ is an analytic Jordan arc.

It is assumed that such that for $x = \pm 1$ and all $t \in \Delta$ sufficiently close to x it holds that $|\Delta_{t,x}| \leq \text{const.} |x - t|^{\beta}$, $\beta > 1/2$.

Motivation Padé Approximants
0000 00000000

Multipoint Padé Approximants

Convergent Interpolation

Symmetry w.r.t. Interpolation Scheme

Remarks

- The above theorem covers only the case where supp(*E*) is disjoint with Δ;
- The proof of this theorem is constructive. In other words, for a given analytic arc Δ, suitable (not unique) measure ν and scheme *ε* can be explicitly written in terms of the function Ξ that analytically parametrizes Δ.

Motivation 0000	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation
Szegő Function			

Let measure μ be given by

$$d\mu(t)=rac{h(t)}{w^+(t)}rac{idt}{\pi},\quad t\in\Delta.$$

For a non-vanishing Dini-continuous complex-valued function h there exists a constant G_h , called the geometric mean of h, and a function S_h , called the Szegő function of h, such that S_h is analytic and non-vanishing in D, $S_h(\infty) = 1$, and

$$h=G_hS_h^+S_h^-.$$

Motivation	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation	
0000	000000000	00000		
Approximation of Cauchy Integrals				

Theorem (BY)

Let Δ be a closed analytic Jordan arc symmetric with respect to \mathscr{E} and

$$f_{\mu}(z) = \int \frac{1}{z-t} \frac{h(t)}{w^+(t)} \frac{dt}{\pi},$$

where h is non-vanishing and Dini-continuous on Δ .

If $\{\Pi_n\}$ is the sequence of multipoint Padé approximants to f_μ associated to \mathscr{E} , then

$$(f_{\mu} - \Pi_n)w = [2G_h + o(1)] S_h^2 r_n$$

locally uniformly in D.

Zeros of q_8 (disks) and q_{24} (diamonds).

Motivation 0000	Padé Approximants	Multipoint Padé Approximants	Convergent Interpolation ○○○○○○○○●○
Example 2: Setting			

The contour F is generated by

$$e_1 := (i-3)/4, \ e_2 := (87+6i)/104, \ \text{and} \ e_3 := -i/10,$$

in the sense that

$$|(r(e_1; t)r(e_2; t)r(e_3; t))^{\pm}| \equiv 1,$$

i.e.,

$$E_{3n} := \{\overbrace{e_1, \ldots, e_1}^{n \text{ times}}, \overbrace{e_2, \ldots, e_2}^{n \text{ times}}, \overbrace{e_3, \ldots, e_3}^{n \text{ times}}\},\$$

and is computed numerically.

Padé Approximants

Multipoint Padé Approximants

Convergent Interpolation

Example 2: Numerics

Zeros of q_{24} (disks) and q_{66} (diamonds).