On $L^2_{\mathbb{R}}$ -best rational approximants to Markov functions on several intervals

Maxim L. Yattselev

Indiana University-Purdue University Indianapolis

Complex Approximations, Orthogonal Polynomials, and Appl. June 7th, 2021

Let F(z) be a holomorphic at ∞ :

$$F(z) = f_0 + \frac{f_1}{z} + \dots + \frac{f_{2n}}{z^{2n}} + \frac{f_{2n+1}}{z^{2n+1}} + \dots$$

We would like to find a rational function of type (n, n) such that

$$\frac{P_n(z)}{Q_n(z)} = f_0 + \frac{f_1}{z} + \dots + \frac{f_{2n}}{z^{2n}} + \mathcal{O}\left(\frac{1}{z^{2n+1}}\right).$$

The right way to approach this problem is to solve the linear system

$$R_n(z) := (Q_n F - P_n)(z) = \mathcal{O}\left(\frac{1}{z^{n+1}}\right).$$

This system always has a non-trivial solution and $[n/n]_F(z) := (P_n/Q_n)(z)$ is unique. It is called the *n*-th diagonal Padé approximant. The denominator $Q_n(z)$ is normalized to be monic and of minimal possible degree.

Let μ be a positive Borel measure with infinite compact support in \mathbb{R} . Set

$$F_{\mu}(z) := \int \frac{d\mu(x)}{z - x},$$

which is known as a Markov function. The Cauchy and Fubini-Tonelli theorems yield that

$$\int x^m Q_n(x) d\mu(x) = 0, \quad m \in \{0, \dots, n-1\}.$$

The denominator of the *n*-th diagonal Padé approximant is the *n*-th monic orthogonal polynomial with respect to μ .

Theorem (Markov)

$$F_{\mu}(z) - [n/n]_{F_{\mu}}(z) \rightrightarrows 0$$

on closed subsets of the complement of the convex hull of μ .

Szegő Theorem

Let $w(z) := \sqrt{(z-a)(z-b)}$ be holomorphic away from [a, b] and $w(z) \sim z$ around infinity. Measure μ belongs to the Szegő class on [a, b] if

$$\int \log \dot{\mu}(x) dx > -\infty, \quad d\mu(x) = \frac{\dot{\mu}(x) dx}{|w(x)|} + d\mu_s(x),$$

where μ_s is singular to the Lebesgue measure. The Szegő function is given by

$$S_{\dot{\mu}}(z) := \exp\left\{\frac{w(z)}{2\pi \mathrm{i}} \int_a^b \frac{\log \dot{\mu}(x)}{x-z} \frac{dx}{w_+(x)}\right\}.$$

It is a non-vanishing analytic function off [a, b] such that $|S_{\mu\pm}(x)|^2 = \dot{\mu}(x)$.

Theorem (Szegő)

$$F_{\mu}(z) - [n/n]_{F_{\mu}}(z) = (2 + o(1)) \frac{S_{\mu}^{2}(z)}{w(z)} \psi^{2n}(z)$$

locally uniformly in $\overline{\mathbb{C}} \setminus [a, b]$, where $\psi(z) = \frac{2}{b-a} \left(z - \frac{b+a}{2} + w(z) \right)$ is the conformal map from $\overline{\mathbb{C}} \setminus [a, b]$ to \mathbb{D} with $\psi(\infty) = 0$ and $\psi'(\infty) > 0$.

It might be interested to distribute interpolation point according to some rule rather than putting all of them at infinity. Let

$$E_n := \{e_1, \dots, e_{2n}\} \subset \overline{\mathbb{C}} \setminus [a, b]$$

be an interpolation multi-set (interpolation points can coincide). Set

$$V_n(z) := \prod_{e \in E_n, e \neq \infty} (z - e).$$

We would like to find $P_n(z)$, $Q_n(z)$ so that $R_n(z)$ is analytic off [a, b] and

$$R_n(z) = \frac{(Q_n F_\mu - P_n)(z)}{V_n(z)} = \mathcal{O}\left(\frac{1}{z^{n+1}}\right).$$

Again, the solution corresponding to the monic denominator of the smallest degree is unique. We write $[n/n; E_n]_{F_{\mu}}(z) := (P_n/Q_n)(z)$.

As in the case of classical Padé approximants it holds that

$$\int x^m Q_n(x) \frac{d\mu(x)}{V_n(x)} = 0, \quad m \in \{0, \dots, n-1\}.$$

Theorem (Totik / Calle Ysern-López Lagomasino / Stahl)

Let μ be a Szegő measure on an interval [a, b] and $\{E_n\}$ be a sequence of conjugate-symmetric interpolation multi-sets such that

$$\lim_{n \to \infty} \sum_{e \in E_n} \left(1 - |\psi(e)| \right) = \infty.$$

Then it holds locally uniformly in $\overline{\mathbb{C}} \setminus [a, b]$ that

$$F_{\mu}(z) - [n/n; E_n]_{F_{\mu}}(z) = (2 + o(1)) \frac{S_{\mu}^2(z)}{w(z)} \prod_{e \in E_n} \frac{\psi(z) - \psi(e)}{1 - \psi(z)\overline{\psi(e)}}$$

$L^2_{\mathbb{R}}$ -best Rational Approximants

Let \mathcal{R}_n be the set of rational functions with real coefficients of type (n - 1, n) with all the poles in \mathbb{D} and f(z) be a conjugate-symmetric function analytic off $K \subset \mathbb{D}$, $f(\infty) = 0$. A function $r_n(z) \in \mathcal{R}_n$ is $L^2_{\mathbb{R}}$ -best rational approximant

$$||f - r_n||_2 = \inf_{r \in \mathcal{R}_n} ||f - r||_2,$$

where $||h||_2 = \int_{\mathbb{T}} |h(\tau)|^2 |d\tau|$. The best approximant always exists and has exactly *n* poles, however, it might not be unique.

The results that follow equally apply to locally best approximants or even critical points in rational approximation problem.

Theorem (Levin)

Let $r_n(z)$ be a critical point and $\{z_1, \ldots, z_n\}$ be the poles of $r_n(z)$. Set

$$E_n := \left\{ 1/\overline{z_1}, 1/\overline{z_1}, 1/\overline{z_2}, 1/\overline{z_2}, \dots, 1/\overline{z_n}, 1/\overline{z_n} \right\}.$$

Then $r_n(z) = [n/n; E_n]_f(z)$.

Let $[a, b] \subset (-1, 1)$ and $\tilde{w}(z) = zw(1/z)$. Let μ be a Szegő measure on [a, b].

$$G_{\dot{\mu}} = \exp\left\{\int \log \dot{\mu}(x) \frac{\Lambda_{[a,b]} dx}{|(w\tilde{w})(x)|}\right\},\,$$

where the measure $\Lambda_{[a,b]}dx/|(w\tilde{w})(x)|$ has mass 1 (equilibrium distribution of the condenser $([a,b],\mathbb{T})$). The condenser Szegő function is given by

$$D_{\dot{\mu}}(z) := \exp\left\{\frac{(w\tilde{w})(z)}{2\pi i} \int_{a}^{b} \frac{1 - 2xz + x^{2}}{(x - z)(1 - xz)} \log\left(\frac{\dot{\mu}(x)}{G_{\dot{\mu}}}\right) \frac{dx}{(w_{+}\tilde{w})(x)}\right\}.$$

The function $D_{\mu}(z)$ is non-vanishing and analytic in $\overline{\mathbb{C}} \setminus ([a, b] \cup [a, b]^{-1})$, its argument has zero increment along \mathbb{T} and $|D_{\mu}(\tau)| \equiv 1$ for $\tau \in \mathbb{T}$. Moreover, its traces exist almost everywhere on $[a, b] \cup [a, b]^{-1}$ and satisfy

$$\begin{aligned} G_{\dot{\mu}} |D_{\dot{\mu}\pm}(x)|^2 &= \dot{\mu}(x), \quad x \in [a, b], \\ G_{\dot{\mu}} / |D_{\dot{\mu}\pm}(x)|^2 &= \dot{\mu}(1/x), \quad x \in [a, b]^{-1}. \end{aligned}$$

Define

$$\varphi(z) := \exp\left\{\pi\Lambda_{[a,b]}\int_1^z \frac{ds}{(w\tilde{w})(s)}\right\}.$$

This is the conformal map of $\overline{\mathbb{C}} \setminus ([a, b] \cup [a, b]^{-1})$ onto the annulus $\{z : \varrho < |z| < 1/\varrho\}$, where $\varrho := \varphi(b)$.

Theorem (Baratchart-Stahl-Wielonsky)

Let $\{r_n(z)\}$ be a sequence of critical points in $L^2_{\mathbb{R}}$ rational approximation of $F_{\mu}(z)$, where μ is a Szegő measure supported in (-1, 1). Then

$$F_{\mu}(z) - r_n(z) = (2G_{\mu} + o(1)) \frac{D_{\mu}^2(z)}{w(z)} \left(\frac{\varrho}{\varphi(z)}\right)^{2n}$$

holds locally uniformly in $\overline{\mathbb{C}} \setminus ([a, b] \cup [a, b]^{-1})$.

Measures

Let now supp $(\mu) = \bigcup_{i=1}^{g+1} [a_i, b_i] =: \Delta$ and

$$w(z) := \sqrt{(z - a_1)(z - b_1) \cdots (z - a_{g+1})(z - b_{g+1})}$$

be such that $w(z) \sim z^{g+1}$ near infinity. Consider measure of the form

$$d\mu(x) = -\frac{1}{\pi i} \frac{\rho(x)dx}{w_+(x)},$$

where $\rho(x)$ is real-valued and non-vanishing. Further, let m(x) be a monic polynomial of degree g with exactly one zero in each gap of Δ . Set

$$\dot{\mu}(x) := \rho(x)/m(x).$$

Assume that $\dot{\mu}(x)$ is a positive function and there exists p > 4 such that

$$\iint_{\Delta \times \Delta} \left| \frac{\log \dot{\mu}(x) - \log \dot{\mu}(y)}{x - y} \right|^p dx dy < \infty.$$

Given $e \in \mathbb{C} \setminus [a_1, b_{g+1}]$, let $m_e(z)$, be such that

$$\frac{1}{2\pi i} \int_{|s-e|=r} \frac{m_e(s)}{s-e} \frac{ds}{w(s)} = 1, \quad \int_{b_i}^{a_{i+1}} \frac{m_e(x)}{x-e} \frac{dx}{w(x)} = 0,$$

where |s - e| = r is positively oriented and is exterior to Δ . $m_{\infty}(z)$ is defined similarly with (s - e) replaced by 1 and |s| = r negatively oriented. Define

$$\psi_n(z) := \exp\left\{\sum_{e \in E_n} \int_{b_{g+1}}^z \frac{m_e(s)}{s-e} \frac{ds}{w(s)}\right\},\,$$

where again s - e is replaced by 1 if $e = \infty$ and E_n is conjugate-symmetric.

The functions $\psi_n(z)$ is analytic in $\overline{\mathbb{C}} \setminus [a_1, b_{g+1}]$ and a has a zero at each $e \in E_n$ of order equal to the multiplicity of e in E_n . It holds that $|\psi_n(z)| < 1, z \notin \Delta, |\psi_{n\pm}(x)| \equiv 1, x \in \Delta$, and

$$\psi_{n+}(x) = \psi_{n-}(x)e^{-4\pi i\omega_{n,k}}, \quad x \in (b_k, a_{k+1}),$$

for some constants $\omega_{n,k} \in [0,1)$ with an explicit integral expressions.

Given a measure μ as described, let

$$S_{\dot{\mu}}(z) := \exp\left\{\frac{w(z)}{2\pi i} \left[\int_{\Delta} \frac{\log \dot{\mu}(x)}{x-z} \frac{dx}{w_{+}(x)} - \sum_{i=1}^{g} \int_{b_{i}}^{a_{i+1}} \frac{2\pi i c_{\dot{\mu},i}}{y-z} \frac{dy}{w(y)}\right]\right\}$$

for some constants $c_{\mu,i}$ with an explicit integral expressions.

The function $S_{\mu}(z)$ is analytic in $\overline{\mathbb{C}} \setminus [a_1, b_{g+1}]$. It holds that

$$\left|S_{\dot{\mu}\pm}(x)\right|^2 = \dot{\mu}(x), \quad x \in \Delta,$$

and

$$S_{\dot{\mu}+}(x) = S_{\dot{\mu}-}(x)e^{-2\pi i c_{\dot{\mu},k}}, \quad x \in (b_k, a_{k+1}).$$

There exists a family $\{T_n(z)\}$ of analytic and non-vanishing functions that is normal in $\overline{\mathbb{C}} \setminus [a_1, b_{g+1}], |T_{n\pm}(x)| \equiv 1, x \in \Delta$, and

$$T_{n+}(x) = T_{n-}(x)e^{4\pi i(c_{\mu,k}+\omega_{n,k})}, \quad x \in (b_k, a_{k+1}).$$

Each $T_n(z)$ can be meromorphically continued through each gap (b_k, a_{k+1}) and any continuation will have a simple pole at each zero of m(x) and also an additional simple pole/zero.

The functions $T_n(z)$ are constructed as ratios of Riemann theta functions. The locations of unspecified poles/zeros are determined by a certain Jacobi inversion problem.

Theorem (Ya.)

Let μ be as described and $\{E_n\}$ be a sequence of conjugate-symmetric interpolation multi-sets separated from Δ . Then it holds locally uniformly in $\overline{\mathbb{C}} \setminus [a_1, b_{g+1}]$ that

$$F_{\mu}(z) - [n/n; E_n]_{F_{\mu}}(z) = (2 + o(1)) (T_n \psi_n)(z) \frac{(mS_{\mu}^2)(z)}{w(z)}$$

Multi-Interval Condenser Map

Let $\tilde{w}(z) = z^{g+1}w(1/z)$. Define

$$\varphi(z) := \exp\left\{\pi \int_1^z \frac{u(s)ds}{(w\tilde{w})(s)}\right\},$$

where u(x), deg(u) = 2g, is a symmetric polynomial such that

$$\int_{\Delta} \frac{u(x)dx}{(w_+\tilde{w})(x)} = \mathbf{i}, \quad \int_{b_i}^{a_{i+1}} \frac{u(x)dx}{(w\tilde{w})(x)} = 0.$$

This function is holomorphic in $\mathbb{C} \setminus ([a_1, b_{g+1}] \cup [a_1, b_{g+1}]^{-1})$. The increment of its argument along the unit circle is equal to 2π and $|\varphi(\tau)| \equiv 1, \tau \in \mathbb{T}$. Moreover,

$$|\varphi(x)| \equiv \varrho^{\pm 1}, \quad x \in \Delta^{\pm 1}, \quad \varrho := \varphi(b_{g+1}) < 1.$$

Finally, there exist constants ω_k , with explicit integral expressions, such that

$$\varphi_+(x) = \varphi_-(x)e^{-2\pi i\omega_k}, \quad x \in (b_k, a_{k+1}).$$

Given a sufficiently smooth function $\lambda(x)$, let

$$D_{\lambda}(z) := \exp\left\{\frac{(w\tilde{w})(z)}{2\pi i u(z)} \left[\int_{\Delta} K(z;x) \log\left(\frac{\lambda(x)}{G_{\lambda}}\right) \frac{u(x)dx}{(w_{+}\tilde{w})(x)} - H(z)\right]\right\},$$

where $K(z; x) := (1 - 2xz + x^2)/(x - z)(1 - xz)$ and

$$H(z) := \sum_{i=1}^g \int_{b_i}^{a_{i+1}} 2\pi \mathrm{i}\kappa_{\lambda,i} K(z;y) \frac{u(y)dy}{(w\tilde{w})(y)}$$

for some constants G_{λ} and $\kappa_{\mu,i}$ with an explicit integral expressions.

 $D_{\lambda}(z)$ is holomorphic in $\overline{\mathbb{C}} \setminus ([a_1, b_{g+1}] \cup [a_1, b_{g+1}]^{-1})$. It has zero increment of its argument along the unit circle and $|D_{\lambda}(\tau)| \equiv 1, \tau \in \mathbb{T}$. Moreover,

$$G_{\lambda}|D_{\lambda\pm}(x)|^2 = \lambda(x), \quad x \in \Delta,$$

and $D_{\lambda}(1/z) = 1/D_{\lambda}(z)$. Finally, it holds that

$$D_{\lambda+}(x) = D_{\lambda+}(x)e^{-2\pi i\kappa_{\lambda,k}}, \quad x \in (b_k, a_{k+1}).$$

Szegő Asymptotics

Let $\{r_n(z)\}$ be a sequence of critical points in $L^2_{\mathbb{R}}$ rational approximation of $F_{\mu}(z)$. Write $r_n(z) = [n/n; E_n](z)$. Let $\{x_{n,1}, \ldots, x_{n,g}\}$ be points coming from Jacobi inversion problem associated with μ and E_n . Define

$$m_n(z) = \prod_{k=1}^{g} (z - x_{n,k})$$
 and $B_n(z) := \prod_{\text{poles of } T_n} \frac{z - x_{n,i}}{1 - x_{n,i}z}$

Theorem (Ya.)

Let
$$d\mu(x) = -\frac{1}{\pi i} \frac{\rho(x)dx}{w_+(x)}$$
, where $|\rho(x)| \in W_1^p$, $p > 4$. Set

$$\lambda_n(x) := \rho(x) B_n^2(x) / m_n(x)$$

and denote by d_n the number of factors in $B_n(z)$. Then it holds that

$$F_{\mu}(z) - r_n(z) = (2G_{\lambda_n} + o(1))\frac{m_n(z)}{B_n^2(z)}\frac{D_{\lambda_n}^2(z)}{w(z)}\left(\frac{\varrho}{\varphi(z)}\right)^{2(n-d_n)}$$

locally uniformly in $\overline{\mathbb{C}} \setminus ([a_1, b_{g+1}] \cup [a_1, b_{g+1}]^{-1}).$