On $L_{\mathbb{R}}^{2}$-best rational approximants to Markov functions on several intervals

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis
IIJ IUPUI SCHOOL OF SCIENCE
Department of Mathematical Sciences

Complex Approximations, Orthogonal Polynomials, and Appl. June 7th, 2021

Let $F(z)$ be a holomorphic at ∞ :

$$
F(z)=f_{0}+\frac{f_{1}}{z}+\cdots+\frac{f_{2 n}}{z^{2 n}}+\frac{f_{2 n+1}}{z^{2 n+1}}+\cdots
$$

We would like to find a rational function of type (n, n) such that

$$
\frac{P_{n}(z)}{Q_{n}(z)}=f_{0}+\frac{f_{1}}{z}+\cdots+\frac{f_{2 n}}{z^{2 n}}+\mathcal{O}\left(\frac{1}{z^{2 n+1}}\right)
$$

The right way to approach this problem is to solve the linear system

$$
R_{n}(z):=\left(Q_{n} F-P_{n}\right)(z)=\mathcal{O}\left(\frac{1}{z^{n+1}}\right)
$$

This system always has a non-trivial solution and $[n / n]_{F}(z):=\left(P_{n} / Q_{n}\right)(z)$ is unique. It is called the n-th diagonal Padé approximant. The denominator $Q_{n}(z)$ is normalized to be monic and of minimal possible degree.

Markov Functions

Let μ be a positive Borel measure with infinite compact support in \mathbb{R}. Set

$$
F_{\mu}(z):=\int \frac{d \mu(x)}{z-x}
$$

which is known as a Markov function. The Cauchy and Fubini-Tonelli theorems yield that

$$
\int x^{m} Q_{n}(x) d \mu(x)=0, \quad m \in\{0, \ldots, n-1\}
$$

The denominator of the n-th diagonal Pade approximant is the n-th monic orthogonal polynomial with respect to μ.

Theorem (Markov)

$$
F_{\mu}(z)-[n / n]_{F_{\mu}}(z) \rightrightarrows 0
$$

on closed subsets of the complement of the convex hull of μ.

Szegő Theorem

Let $w(z):=\sqrt{(z-a)(z-b)}$ be holomorphic away from $[a, b]$ and $w(z) \sim z$ around infinity. Measure μ belongs to the Szegő class on $[a, b]$ if

$$
\int \log \dot{\mu}(x) d x>-\infty, \quad d \mu(x)=\frac{\dot{\mu}(x) d x}{|w(x)|}+d \mu_{s}(x)
$$

where μ_{s} is singular to the Lebesgue measure. The Szegő function is given by

$$
S_{\dot{\mu}}(z):=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}} \int_{a}^{b} \frac{\log \dot{\mu}(x)}{x-z} \frac{d x}{w_{+}(x)}\right\}
$$

It is a non-vanishing analytic function off $[a, b]$ such that $\left|S_{\dot{\mu} \pm}(x)\right|^{2}=\dot{\mu}(x)$.

Theorem (Szegő)

$$
F_{\mu}(z)-[n / n]_{F_{\mu}}(z)=(2+o(1)) \frac{S_{\dot{\mu}}^{2}(z)}{w(z)} \psi^{2 n}(z)
$$

locally uniformly in $\overline{\mathbb{C}} \backslash[a, b]$, where $\psi(z)=\frac{2}{b-a}\left(z-\frac{b+a}{2}+w(z)\right)$ is the conformal map from $\overline{\mathbb{C}} \backslash[a, b]$ to \mathbb{D} with $\psi(\infty)=0$ and $\psi^{\prime}(\infty)>0$.

It might be interested to distribute interpolation point according to some rule rather than putting all of them at infinity. Let

$$
E_{n}:=\left\{e_{1}, \ldots, e_{2 n}\right\} \subset \overline{\mathbb{C}} \backslash[a, b]
$$

be an interpolation multi-set (interpolation points can coincide). Set

$$
V_{n}(z):=\prod_{e \in E_{n}, e \neq \infty}(z-e)
$$

We would like to find $P_{n}(z), Q_{n}(z)$ so that $R_{n}(z)$ is analytic off $[a, b]$ and

$$
R_{n}(z)=\frac{\left(Q_{n} F_{\mu}-P_{n}\right)(z)}{V_{n}(z)}=\mathcal{O}\left(\frac{1}{z^{n+1}}\right)
$$

Again, the solution corresponding to the monic denominator of the smallest degree is unique. We write $\left[n / n ; E_{n}\right]_{F_{\mu}}(z):=\left(P_{n} / Q_{n}\right)(z)$.

Szegб Asymptotics

As in the case of classical Padé approximants it holds that

$$
\int x^{m} Q_{n}(x) \frac{d \mu(x)}{V_{n}(x)}=0, \quad m \in\{0, \ldots, n-1\}
$$

Theorem (Totik / Calle Ysern-López Lagomasino / Stahl)

Let μ be a Szegő measure on an interval $[a, b]$ and $\left\{E_{n}\right\}$ be a sequence of conjugate-symmetric interpolation multi-sets such that

$$
\lim _{n \rightarrow \infty} \sum_{e \in E_{n}}(1-|\psi(e)|)=\infty
$$

Then it holds locally uniformly in $\overline{\mathbb{C}} \backslash[a, b]$ that

$$
F_{\mu}(z)-\left[n / n ; E_{n}\right]_{F_{\mu}}(z)=(2+o(1)) \frac{S_{\dot{\mu}}^{2}(z)}{w(z)} \prod_{e \in E_{n}} \frac{\psi(z)-\psi(e)}{1-\psi(z) \overline{\psi(e)}}
$$

L_{R}^{2}-best Rational Approximants

Let \mathcal{R}_{n} be the set of rational functions with real coefficients of type $(n-1, n)$ with all the poles in \mathbb{D} and $f(z)$ be a conjugate-symmetric function analytic off $K \subset \mathbb{D}, f(\infty)=0$. A function $r_{n}(z) \in \mathcal{R}_{n}$ is $L_{\mathbb{R}}^{2}$-best rational approximant

$$
\left\|f-r_{n}\right\|_{2}=\inf _{r \in \mathcal{R}_{n}}\|f-r\|_{2}
$$

where $\|h\|_{2}=\int_{\mathbb{T}}|h(\tau)|^{2}|d \tau|$. The best approximant always exists and has exactly n poles, however, it might not be unique.

The results that follow equally apply to locally best approximants or even critical points in rational approximation problem.

Theorem (Levin)

Let $r_{n}(z)$ be a critical point and $\left\{z_{1}, \ldots, z_{n}\right\}$ be the poles of $r_{n}(z)$. Set

$$
E_{n}:=\left\{1 / \overline{z_{1}}, 1 / \overline{z_{1}}, 1 / \overline{z_{2}}, 1 / \overline{z_{2}}, \ldots, 1 / \overline{z_{n}}, 1 / \overline{z_{n}}\right\} .
$$

Then $r_{n}(z)=\left[n / n ; E_{n}\right]_{f}(z)$.

The Condenser Szegб Function

Let $[a, b] \subset(-1,1)$ and $\tilde{w}(z)=z w(1 / z)$. Let μ be a Szegő measure on $[a, b]$.

$$
G_{\dot{\mu}}=\exp \left\{\int \log \dot{\mu}(x) \frac{\Lambda_{[a, b]} d x}{|(w \tilde{w})(x)|}\right\}
$$

where the measure $\Lambda_{[a, b]} d x /|(w \tilde{w})(x)|$ has mass 1 (equilibrium distribution of the condenser $([a, b], \mathbb{T}))$. The condenser Szegő function is given by

$$
D_{\dot{\mu}}(z):=\exp \left\{\frac{(w \tilde{w})(z)}{2 \pi \mathrm{i}} \int_{a}^{b} \frac{1-2 x z+x^{2}}{(x-z)(1-x z)} \log \left(\frac{\dot{\mu}(x)}{G_{\dot{\mu}}}\right) \frac{d x}{(w+\tilde{w})(x)}\right\}
$$

The function $D_{\dot{\mu}}(z)$ is non-vanishing and analytic in $\overline{\mathbb{C}} \backslash\left([a, b] \cup[a, b]^{-1}\right)$, its argument has zero increment along \mathbb{T} and $\left|D_{\mu}(\tau)\right| \equiv 1$ for $\tau \in \mathbb{T}$. Moreover, its traces exist almost everywhere on $[a, b] \cup[a, b]^{-1}$ and satisfy

$$
\begin{aligned}
G_{\dot{\mu}}\left|D_{\dot{\mu} \pm}(x)\right|^{2} & =\dot{\mu}(x), \quad x \in[a, b] \\
G_{\dot{\mu}} /\left|D_{\dot{\mu} \pm}(x)\right|^{2} & =\dot{\mu}(1 / x), \quad x \in[a, b]^{-1}
\end{aligned}
$$

Define

$$
\varphi(z):=\exp \left\{\pi \Lambda_{[a, b]} \int_{1}^{z} \frac{d s}{(w \tilde{w})(s)}\right\}
$$

This is the conformal map of $\overline{\mathbb{C}} \backslash\left([a, b] \cup[a, b]^{-1}\right)$ onto the annulus $\{z: \varrho<|z|<1 / \varrho\}$, where $\varrho:=\varphi(b)$.

Theorem (Baratchart-Stahl-Wielonsky)

Let $\left\{r_{n}(z)\right\}$ be a sequence of critical points in $L_{\mathbb{R}}^{2}$ rational approximation of $F_{\mu}(z)$, where μ is a Szegő measure supported in $(-1,1)$. Then

$$
F_{\mu}(z)-r_{n}(z)=\left(2 G_{\dot{\mu}}+o(1)\right) \frac{D_{\dot{\mu}}^{2}(z)}{w(z)}\left(\frac{\varrho}{\varphi(z)}\right)^{2 n}
$$

holds locally uniformly in $\overline{\mathbb{C}} \backslash\left([a, b] \cup[a, b]^{-1}\right)$.

Let now $\operatorname{supp}(\mu)=\cup_{i=1}^{g+1}\left[a_{i}, b_{i}\right]=: \Delta$ and

$$
w(z):=\sqrt{\left(z-a_{1}\right)\left(z-b_{1}\right) \cdots\left(z-a_{g+1}\right)\left(z-b_{g+1}\right)}
$$

be such that $w(z) \sim z^{g+1}$ near infinity. Consider measure of the form

$$
d \mu(x)=-\frac{1}{\pi \mathrm{i}} \frac{\rho(x) d x}{w_{+}(x)}
$$

where $\rho(x)$ is real-valued and non-vanishing. Further, let $m(x)$ be a monic polynomial of degree g with exactly one zero in each gap of Δ. Set

$$
\dot{\mu}(x):=\rho(x) / m(x)
$$

Assume that $\dot{\mu}(x)$ is a positive function and there exists $p>4$ such that

$$
\iint_{\Delta \times \Delta}\left|\frac{\log \dot{\mu}(x)-\log \dot{\mu}(y)}{x-y}\right|^{p} d x d y<\infty
$$

Multi-Interval Blaschke Products

Given $e \in \mathbb{C} \backslash\left[a_{1}, b_{g+1}\right]$, let $m_{e}(z)$, be such that

$$
\frac{1}{2 \pi \mathrm{i}} \int_{|s-e|=r} \frac{m_{e}(s)}{s-e} \frac{d s}{w(s)}=1, \quad \int_{b_{i}}^{a_{i+1}} \frac{m_{e}(x)}{x-e} \frac{d x}{w(x)}=0
$$

where $|s-e|=r$ is positively oriented and is exterior to $\Delta . m_{\infty}(z)$ is defined similarly with $(s-e)$ replaced by 1 and $|s|=r$ negatively oriented. Define

$$
\psi_{n}(z):=\exp \left\{\sum_{e \in E_{n}} \int_{b_{g+1}}^{z} \frac{m_{e}(s)}{s-e} \frac{d s}{w(s)}\right\}
$$

where again $s-e$ is replaced by 1 if $e=\infty$ and E_{n} is conjugate-symmetric.

The functions $\psi_{n}(z)$ is analytic in $\overline{\mathbb{C}} \backslash\left[a_{1}, b_{g+1}\right]$ and a has a zero at each $e \in E_{n}$ of order equal to the multiplicity of e in E_{n}. It holds that

$$
\begin{aligned}
& \left|\psi_{n}(z)\right|<1, z \notin \Delta,\left|\psi_{n \pm}(x)\right| \equiv 1, x \in \Delta, \text { and } \\
& \qquad \psi_{n+}(x)=\psi_{n-}(x) e^{-4 \pi \mathrm{i} \omega_{n, k}}, \quad x \in\left(b_{k}, a_{k+1}\right),
\end{aligned}
$$

for some constants $\omega_{n, k} \in[0,1)$ with an explicit integral expressions.

Given a measure μ as described, let

$$
S_{\dot{\mu}}(z):=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}}\left[\int_{\Delta} \frac{\log \dot{\mu}(x)}{x-z} \frac{d x}{w_{+}(x)}-\sum_{i=1}^{g} \int_{b_{i}}^{a_{i+1}} \frac{2 \pi \mathrm{i} c_{\dot{\mu}, i}}{y-z} \frac{d y}{w(y)}\right]\right\}
$$

for some constants $c_{\mu, i}$ with an explicit integral expressions.

The function $S_{\dot{\mu}}(z)$ is analytic in $\overline{\mathbb{C}} \backslash\left[a_{1}, b_{g+1}\right]$. It holds that

$$
\left|S_{\dot{\mu} \pm}(x)\right|^{2}=\dot{\mu}(x), \quad x \in \Delta
$$

and

$$
S_{\dot{\mu}+}(x)=S_{\dot{\mu}-}(x) e^{-2 \pi \mathrm{i} c_{\dot{\mu}, k}}, \quad x \in\left(b_{k}, a_{k+1}\right)
$$

There exists a family $\left\{T_{n}(z)\right\}$ of analytic and non-vanishing functions that is normal in $\overline{\mathbb{C}} \backslash\left[a_{1}, b_{g+1}\right],\left|T_{n \pm}(x)\right| \equiv 1, x \in \Delta$, and

$$
T_{n+}(x)=T_{n-}(x) e^{4 \pi \mathrm{i}\left(c_{\dot{\mu}, k}+\omega_{n, k}\right)}, \quad x \in\left(b_{k}, a_{k+1}\right)
$$

Each $T_{n}(z)$ can be meromorphically continued through each gap $\left(b_{k}, a_{k+1}\right)$ and any continuation will have a simple pole at each zero of $m(x)$ and also an additional simple pole/zero.

The functions $T_{n}(z)$ are constructed as ratios of Riemann theta functions. The locations of unspecified poles/zeros are determined by a certain Jacobi inversion problem.

Theorem (Ya.)

Let μ be as described and $\left\{E_{n}\right\}$ be a sequence of conjugate-symmetric interpolation multi-sets separated from Δ. Then it holds locally uniformly in $\overline{\mathbb{C}} \backslash\left[a_{1}, b_{g+1}\right]$ that

$$
F_{\mu}(z)-\left[n / n ; E_{n}\right]_{F_{\mu}}(z)=(2+o(1))\left(T_{n} \psi_{n}\right)(z) \frac{\left(m S_{\dot{\mu}}^{2}\right)(z)}{w(z)}
$$

Multi-Interval Condenser Map

Let $\tilde{w}(z)=z^{g+1} w(1 / z)$. Define

$$
\varphi(z):=\exp \left\{\pi \int_{1}^{z} \frac{u(s) d s}{(w \tilde{w})(s)}\right\}
$$

where $u(x), \operatorname{deg}(u)=2 g$, is a symmetric polynomial such that

$$
\int_{\Delta} \frac{u(x) d x}{(w+\tilde{w})(x)}=\mathrm{i}, \quad \int_{b_{i}}^{a_{i+1}} \frac{u(x) d x}{(w \tilde{w})(x)}=0
$$

This function is holomorphic in $\overline{\mathbb{C}} \backslash\left(\left[a_{1}, b_{g+1}\right] \cup\left[a_{1}, b_{g+1}\right]^{-1}\right)$. The increment of its argument along the unit circle is equal to 2π and $|\varphi(\tau)| \equiv 1, \tau \in \mathbb{T}$. Moreover,

$$
|\varphi(x)| \equiv \varrho^{ \pm 1}, \quad x \in \Delta^{ \pm 1}, \quad \varrho:=\varphi\left(b_{g+1}\right)<1
$$

Finally, there exist constants ω_{k}, with explicit integral expressions, such that

$$
\varphi_{+}(x)=\varphi_{-}(x) e^{-2 \pi \mathrm{i} \omega_{k}}, \quad x \in\left(b_{k}, a_{k+1}\right)
$$

Multi-Interval Condenser Szegб Function

Given a sufficiently smooth function $\lambda(x)$, let

$$
D_{\lambda}(z):=\exp \left\{\frac{(w \tilde{w})(z)}{2 \pi \mathrm{i} u(z)}\left[\int_{\Delta} K(z ; x) \log \left(\frac{\lambda(x)}{G_{\lambda}}\right) \frac{u(x) d x}{(w+\tilde{w})(x)}-H(z)\right]\right\}
$$

where $K(z ; x):=\left(1-2 x z+x^{2}\right) /(x-z)(1-x z)$ and

$$
H(z):=\sum_{i=1}^{g} \int_{b_{i}}^{a_{i+1}} 2 \pi \mathrm{i} \kappa_{\lambda, i} K(z ; y) \frac{u(y) d y}{(w \tilde{w})(y)}
$$

for some constants G_{λ} and $\kappa_{\dot{\mu}, i}$ with an explicit integral expressions.
$D_{\lambda}(z)$ is holomorphic in $\overline{\mathbb{C}} \backslash\left(\left[a_{1}, b_{g+1}\right] \cup\left[a_{1}, b_{g+1}\right]^{-1}\right)$. It has zero increment of its argument along the unit circle and $\left|D_{\lambda}(\tau)\right| \equiv 1, \tau \in \mathbb{T}$. Moreover,

$$
G_{\lambda}\left|D_{\lambda \pm}(x)\right|^{2}=\lambda(x), \quad x \in \Delta
$$

and $D_{\lambda}(1 / z)=1 / D_{\lambda}(z)$. Finally, it holds that

$$
D_{\lambda+}(x)=D_{\lambda+}(x) e^{-2 \pi \mathrm{i} \kappa_{\lambda, k}}, \quad x \in\left(b_{k}, a_{k+1}\right)
$$

Szegб Asymptotics

Let $\left\{r_{n}(z)\right\}$ be a sequence of critical points in $L_{\mathbb{R}}^{2}$ rational approximation of $F_{\mu}(z)$. Write $r_{n}(z)=\left[n / n ; E_{n}\right](z)$. Let $\left\{x_{n, 1}, \ldots, x_{n, g}\right\}$ be points coming from Jacobi inversion problem associated with μ and E_{n}. Define

$$
m_{n}(z)=\prod_{k=1}^{g}\left(z-x_{n, k}\right) \quad \text { and } \quad B_{n}(z):=\prod_{\text {poles of } T_{n}} \frac{z-x_{n, i}}{1-x_{n, i} z}
$$

Theorem (Ya.)

Let $d \mu(x)=-\frac{1}{\pi \mathrm{i}} \frac{\rho(x) d x}{w_{+}(x)}$, where $|\rho(x)| \in W_{1}^{p}, p>4$. Set

$$
\lambda_{n}(x):=\rho(x) B_{n}^{2}(x) / m_{n}(x)
$$

and denote by d_{n} the number of factors in $B_{n}(z)$. Then it holds that

$$
F_{\mu}(z)-r_{n}(z)=\left(2 G_{\lambda_{n}}+o(1)\right) \frac{m_{n}(z)}{B_{n}^{2}(z)} \frac{D_{\lambda_{n}}^{2}(z)}{w(z)}\left(\frac{\varrho}{\varphi(z)}\right)^{2\left(n-d_{n}\right)}
$$

locally uniformly in $\overline{\mathbb{C}} \backslash\left(\left[a_{1}, b_{g+1}\right] \cup\left[a_{1}, b_{g+1}\right]^{-1}\right)$.

