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Meromorphic Approximation Problem

Let T be a rectifiable Jordan curve with interior domain G and exterior
domain O and Ep(G) be the Smirnov class of holomorphic functions in
G . The space of meromorphic functions of the degree n is defined as

Ep
n (G) := Ep(G) +Rn(G)

where Rn(G) is the set of rational functions of type (n− 1,n) with all
their poles in G .

Meromorphic approximation problem consists in the following: given a
continuous function f on T , find

‖f − gn‖p,T = inf
g∈Ep

n (G)
‖f − g‖p,T .
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Meromorphic Approximation Problem

This problem always admits a solution:

• Adamjan, Arov, and Krein1, p =∞ and T =T;
• Baratchart and Seyfert2, p ∈ [1,∞) and T =T;
• Prokhorov3 & Baratchart, Mandrèa, Saff, and Wielonsky4.

The error of approximation is given by the n-th singular number of a
certain Hankel operator and the best approximants are described in
terms of the corresponding singular vectors.

1Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem.

Math. USSR Sb., 15: 31-73, 1971
2An Lp analog of AAK theory for p ≥ 2. J. Funct. Anal., 191(1): 52-122, 2002
3On Lp -generalization of a theorem of Adamyan, Arov, and Krein. Comput. Methods Funct. Theory, 1(2):

501-520, 2001
42-D inverse problems for the Laplacian: a meromorphic approximation approach. J. Math. Pures Appl.,

86:1–41, 2006.
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Reduction to Rational Functions

When T =T, write f = f+ + f−, where f+ is the analytic projection of
f and f− is the anti-analytic projection of f . Let gn = gn+ + rn, where
rn ∈ Rn(D), be a best approximant for f in MAP with p = 2. Then

‖f − gn‖
2
2 = ‖f+− gn+‖

2
2 + ‖f−− rn‖

2
2.

Therefore, we arrive at the rational approximation problem: given f
holomorphic outside of D and vanishing at infinity, find

‖f − rn‖2 = inf
r∈Rn(D)

‖f − r‖2.
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Critical Points

r ∈ Rn(D) is called a critical point in RAP2 for f if DΘf ,n(r) = 0,
where Θf ,n(r) := ‖f − r‖22. A critical point rn is called irreducible if rn
has exactly n poles. (It is known that all best and locally best rational
approximants are always irreducible critical points.)

Let rn = pn−1/qn be an irreducible critical point. Then rn interpolates
f at the reflections of the zeros of qn with order 2 in the Hermite
sense5. In other words, rn is a multipoint Padé approximant with the
implicitly defined interpolation set.

Irreducible critical points converge to f in the complement of D. Can
we extend the domain of convergence knowing analytic continuation
properties of f in D?

5A.L. Levin. The distribution of poles of rational functions of best approximation and related questions.

Math. USSR Sbornik, 9(2):267–274, 1969.
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Algebraic Functions

We say that f ∈A (G) if

• f admits holomorphic and single-valued continuation from infinity
to an open neighborhood of O;

• f admits meromorphic continuation along any arc in G \Ef
starting from T , where Ef is a finite set of points in G ;

• Ef is non-empty, the meromorphic continuation of f from infinity
has a branch point at each element of Ef .

We say that f ∈A if it belongs to f ∈A (G) for some G .
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Multipoint Padé Approximants

Given f ∈A and a triangular scheme {En} with |En|= 2n, the n-th
diagonal Padé approximant to f associated with {En} is the unique
rational function Πn = pn/qn such that degpn ≤ n, degqn ≤ n, qn 6≡ 0,
and the ratio

qn(z)f (z)− pn(z)

vn(z)

has an analytic extension to C \Ef and behaves like O
�

1/zn+1� as
z→∞, where

vn(z) :=
∏

e∈En

�

(z − e), |e| ≤ 1,
(1− z/e), |e|> 1.

Padé approximants are called classical if vn ≡ 1 for all n.
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Admissible Sets and Smooth Cuts

We say that a compact K is admissible for f ∈A if C\K is connected
and f has meromorphic and single-valued extension there.

An admissible set K is a smooth cut for f if K = E0∪E1∪
⋃

γj , where

•
⋃

γj is a finite union of open analytic arcs such that the jump of f
is not identically zero across any of them;

• E0 ⊆ Ef and each point in E0 is the endpoint of exactly one γj ;

• E1 is a finite set of points each element of which is the endpoint
of at least three arcs γj .



Rational Approximation Padé Approximation Weighted Extremal Domains Convergence Results

Minimal Capacity Set

Theorem (Stahl6,7)

Given f ∈A , there exists a unique admissible compact Γ∗ such that
cp(Γ∗)≤ cp(K) for any admissible K and Γ∗ ⊂ Γ for any admissible Γ
satisfying cp(Γ) = cp(Γ∗). The set Γ∗ is a smooth cut for f and

∂ gD∗

∂ n+
=
∂ gD∗

∂ n−

where gD∗
is the Green’s function for D∗ :=C \Γ∗ with pole at infinity

and ∂ /∂ n± are the partial derivatives with respect to the one-sided
normals on each γj .

6Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4:311–324,

325–338, 1985.
7Structure of extremal domains associated with an analytic function. Complex Variables Theory

Appl.,4:339–356, 1985.
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Convergence of Classical Padé Approximants

Theorem (Stahl8)

Let f ∈A and {Πn} be the sequence of classical Padé approximants to
f . Then

|f −Πn|
1/2n cp
→ exp

¦

−gD∗

©

in D∗, and the counting measures of poles of Πn converge weak∗ to the
logarithmic equilibrium distribution on Γ∗.

8The convergence of Padé approximants to functions with branch points. J. Approx. Theory, 91:139–204,

1997.
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External Field

Let ν be a probability Borel measure supported in D. Set

Uν(z) :=−
∫

log |1− zū|dν(u).

Uν is, in fact, a spherically normalized logarithmic potential of ν∗, where

ν∗(B) = ν({z : 1/z ∈ B}).

Thus, Uν is harmonic outside of supp(ν∗), in particular, D. When
ν = δ0 is the Dirac delta at the origin, Uν ≡ 0 and ν∗ = δ∞.
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Weighted Capacity

Let K ⊂D be non-polar. For a Borel measure ω, set

Iν [ω] :=

∫

log
1

|x − y |
dω(x)dω(y)− 2

∫

Uνdω.

The ν-capacity of K is defined by

cpν(K) := exp
�

− inf Iν [ω]

�

where the infimum is taken over all probability Borel measures
supported on K .
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Minimal Set for Problem (f , ν)

Theorem

Given f ∈A (D), there exists a unique admissible compact Γν , minimal
set for Problem (f , ν), such that cpν(Γν)≤ cpν(K) for any admissible
K and Γν ⊂ Γ for any admissible Γ satisfying cpν(Γ) = cpν(Γν). The
set Γν is a smooth cut for f and

∂ V ν∗

Dν

∂ n+
=
∂ V ν∗

Dν

∂ n−

where ∂ /∂ n± are the partial derivatives with respect to the one-sided
normals on each γ νj , Dν :=C \Γν , and

V ν∗

Dν
(z) =

∫

gDν
(z ,u)dν∗(u)

is the Green’s potential of ν∗ in D∗.

9Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012
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Approach

It is enough to consider only admissible sets that are unions of a finite
number of disjoint continua each of which contains at least two point
of Ef .

The weighted energy functional Iν is finite and continuous on the
Hausdorff closure of the above sets contained in Dρ, ρ := maxz∈Ef

|z |.

Radial projection onto Dρ decreases ν-capacity. As the Hausdorff
closure is compact, Γν exists.

Using the connection between the weighted energy and the Green’s
energy of ν̃∗ over the corresponding domain and the connection
between the later and the Dirichlet integral of the Green’s potential of
ν̃∗, one shows that the symmetry property uniquely characterizes Γν .



Rational Approximation Padé Approximation Weighted Extremal Domains Convergence Results

Rational Interpolation

Theorem (adjustment of the proof of Gonchar and Rakhmanov10)

Let f ∈A (D) and {Πn} be a sequence of rational interpolants to f
whose interpolation points are distributed asymptotically as ν∗ for a
probability Borel measure ν supported in D. Then

|f −Πn|
1/2n cp
→ exp

n

−V ν∗

Dν

o

in Dν \ supp(ν∗), and the counting measures of poles of Πn converge

weak∗ to bν∗, the balayage of ν∗ onto Γν .

10Equilibrium distributions and the degree of rational approximation of analytic functions. Mat. Sb.,

134(176)(3):306–352, 1987
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Condenser Capacity

Let K ⊂ G be compact and non-polar. There exists the unique measure
ω(K ,T ), the Green’s equilibrium distribution on K relative to G , such
that

∫

gG (x ,y)dω(K ,T )(x)dω(K ,T )(y)≤
∫

gG (x ,y)dω(x)dω(y)

for any probability Borel measure ω supported on K .

The quantity

cp(K ,T ) :=

�∫

gG (x ,y)dω(K ,T )(x)dω(K ,T )(y)

�−1

is called the condenser capacity of K relative to G . It is known that

cp(K ,T ) = cp(T ,K).
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Minimal Condenser Capacity Sets

Theorem (Stahl5,6,8)

Given f ∈A (G), there exists a unique admissible compact K◦ such
that cp(K◦,T )≤ cp(K ,T ) for any admissible K and K◦ ⊂ K for any
admissible K satisfying cp(K ,T ) = cp(K◦,T ). The set K◦ is a smooth
cut for f and

∂

∂ n+
V
ω(T ,K◦)

C\K◦
=

∂

∂ n−
V
ω(T ,K◦)

C\K◦

where ω(T ,K◦)
is the Green’s equilibrium distribution on T relative to

C \K◦. The above symmetry property uniquely characterizes K◦.

5Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4:311–324,

325–338, 1985.
6Structure of extremal domains associated with an analytic function. Complex Variables Theory

Appl.,4:339–356, 1985.
8Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012
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Convergence of Irreducible Critical Points

Theorem

Let f ∈A (D) and {rn} be a sequence of irreducible critical points in
RAP for f . Then

|f − rn|
1/2n cp
→ exp

§

−V
ω∗

(K◦ ,T)

C\K◦

ª

in C \ (K◦ ∪K ∗◦ ), and the counting measures of poles of rn converge
weak∗ to ω(K◦,T). Moreover, it holds that

lim
n→∞
‖f − rn‖

1/2n
2 = lim

n→∞
‖f − rn‖

1/2n
T = exp

�

−
1

cp(K◦,T)

�

.

9Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012
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Approach

Take a weak∗ limit point of counting measures of poles of rn, say ν.

rn are multipoint Padé approximants corresponding to an interpolation
scheme which is asymptotically distributed as ν∗.

The counting measures of the poles of rn converge weak∗ to bν∗ on Γν .

Equality ν = bν∗ implies that ν =ω(Γν ,T).

V eνDν
enjoys the same symmetry property as V

ω(T,K◦)

C\K◦
that uniquely

characterizes K◦, where eν is the balayage of ν onto T.



Rational Approximation Padé Approximation Weighted Extremal Domains Convergence Results

Numerics

f1(z) =
1

4
p

(z − z1)(z − z2)(z − z3)(z − z4)
+

1

z − z1
,

where z1 = 0.6 + 0.3i , z2 =−0.8 + 0.1i , z3 =−0.4 + 0.8i , z4 = 0.6− 0.6i , and

z5 =−0.6− 0.6i .
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Figure: The poles of rational approximants to f1 of degree 12 and both 12 and 16.
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Numerics

f2(z) =
1

3
p

(z − z1)(z − z2)(z − z3)
+

1
p

(z − z4)(z − z5)
,

where z1 = 0.6 + 0.5i , z2 =−0.1 + 0.2i , z3 =−0.2 + 0.7i , z4 =−0.4− 0.4i , and

z5 = 0.1− 0.6i .
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Figure: The poles of rational approximants to f2 of degree 16 and both 13 and 16.
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Convergence of Meromorphic Approximants

Theorem

Let f ∈A (G) and {gn} be a sequence of best approximants in MAP2
for f . Then

|f − gn|
1/2n cp
→ exp

¨

V
ω(K◦ ,T )

G −
1

cp(K◦,T )

«

in G \K◦ and the counting measures of poles of gn converge weak∗ to
ω(K◦,T ).

9Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012
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Best Rational Approximation

Theorem

Let f ∈A (G). Then

lim
n→∞

ρ1/2n
n,2 (f ,T ) = lim

n→∞
ρ1/2n

n,∞ (f ,T ) = exp
�

−
1

cp(K◦,T )

�

where

ρn,p(f ,T ) := inf
�

‖f − r‖p,T : r ∈ Rn(G)

�

.

9Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012
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