Padé Approximation

Weighted Extremal Domains

Convergence Results

Weighted Extremal Domains and H^2 -best Rational Approximants to Algebraic Functions

Maxim Yattselev

University of Oregon, Eugene, OR

joint work with

Laurent Baratchart and Herbert Stahl

Workshop on Potential Theory and Applications Szeged, Hungary, May 28, 2012

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results	
0000				
Meromorphic Approximation Problem				

Let T be a rectifiable Jordan curve with interior domain G and exterior domain O and $E^{p}(G)$ be the *Smirnov class* of holomorphic functions in G. The *space of meromorphic functions* of the degree n is defined as

$$E_n^p(G) := E^p(G) + R_n(G)$$

where $R_n(G)$ is the set of rational functions of type (n-1, n) with all their poles in G.

Meromorphic approximation problem consists in the following: given a continuous function f on T, find

$$||f-g_n||_{p,T} = \inf_{g \in E_n^p(G)} ||f-g||_{p,T}.$$

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results	
0000				
Meromorphic Approximation Problem				

This problem always admits a solution:

- Adamjan, Arov, and Krein¹, $p = \infty$ and $T = \mathbb{T}$;
- Baratchart and Seyfert², $p \in [1, \infty)$ and $T = \mathbb{T}$;
- Prokhorov³ & Baratchart, Mandrèa, Saff, and Wielonsky⁴.

The error of approximation is given by the *n*-th singular number of a certain Hankel operator and the best approximants are described in terms of the corresponding singular vectors.

¹Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. *Math. USSR Sb.*, 15: 31-73, 1971

²An L^{p} analog of AAK theory for $p \ge 2$. J. Funct. Anal., 191(1): 52-122, 2002

 $^{^{3}}$ On L^p-generalization of a theorem of Adamyan, Arov, and Krein. Comput. Methods Funct. Theory, 1(2): 501-520, 2001

⁴2-D inverse problems for the Laplacian: a meromorphic approximation approach. J. Math. Pures Appl., 86:1–41, 2006.

Rational Approximation ○○●○	Padé Approximation	Weighted Extremal Domains	Convergence Results
Reduction to Rational Functions			

When $T = \mathbb{T}$, write $f = f_+ + f_-$, where f_+ is the analytic projection of f and f_- is the anti-analytic projection of f. Let $g_n = g_{n+} + r_n$, where $r_n \in R_n(\mathbb{D})$, be a best approximant for f in MAP with p = 2. Then

$$||f - g_n||_2^2 = ||f_+ - g_{n+}||_2^2 + ||f_- - r_n||_2^2.$$

Therefore, we arrive at the *rational approximation problem*: given f holomorphic outside of \mathbb{D} and vanishing at infinity, find

$$||f - r_n||_2 = \inf_{r \in R_n(\mathbb{D})} ||f - r||_2.$$

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results
0000			
Critical Points			

 $r \in R_n(\mathbb{D})$ is called a *critical point* in RAP₂ for f if $D\Theta_{f,n}(r) = 0$, where $\Theta_{f,n}(r) := ||f - r||_2^2$. A critical point r_n is called *irreducible* if r_n has exactly n poles. (It is known that all best and locally best rational approximants are always irreducible critical points.)

Let $r_n = p_{n-1}/q_n$ be an irreducible critical point. Then r_n interpolates f at the reflections of the zeros of q_n with order 2 in the Hermite sense⁵. In other words, r_n is a *multipoint Padé approximant* with the implicitly defined interpolation set.

Irreducible critical points converge to f in the complement of \mathbb{D} . Can we *extend* the domain of convergence knowing analytic continuation properties of f in \mathbb{D} ?

 $^{^{5}}$ A.L. Levin. The distribution of poles of rational functions of best approximation and related questions. Math. USSR Sbornik, 9(2):267–274, 1969.

Rational Approximation 0000 Algebraic Functions Padé Approximation

Weighted Extremal Domains

Convergence Results

We say that $f \in \mathscr{A}(G)$ if

- *f* admits holomorphic and single-valued continuation from infinity to an open neighborhood of \overline{O} ;
- f admits meromorphic continuation along any arc in $\overline{G} \setminus E_f$ starting from T, where E_f is a finite set of points in G;
- E_f is non-empty, the meromorphic continuation of f from infinity has a branch point at each element of E_f .

We say that $f \in \mathscr{A}$ if it belongs to $f \in \mathscr{A}(G)$ for some G.

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results
Multipoint Padé Approximants			

Given $f \in \mathscr{A}$ and a triangular scheme $\{E_n\}$ with $|E_n| = 2n$, the *n*-th diagonal Padé approximant to f associated with $\{E_n\}$ is the unique rational function $\prod_n = p_n/q_n$ such that deg $p_n \le n$, deg $q_n \le n$, $q_n \ne 0$, and the ratio

$$\frac{q_n(z)f(z)-p_n(z)}{v_n(z)}$$

has an analytic extension to $\overline{\mathbb{C}} \setminus E_f$ and behaves like $O(1/z^{n+1})$ as $z \to \infty$, where

$$v_n(z) := \prod_{e \in E_n} \begin{cases} (z-e), & |e| \le 1, \\ (1-z/e), & |e| > 1. \end{cases}$$

Padé approximants are called *classical* if $v_n \equiv 1$ for all *n*.

	Padé Approximation ○○●○○	Weighted Extremal Domains	Convergence Results
Admissible Sets and Smooth Cut	s		

We say that a compact K is *admissible* for $f \in \mathscr{A}$ if $\overline{\mathbb{C}} \setminus K$ is connected and f has meromorphic and single-valued extension there.

An admissible set *K* is a *smooth cut* for *f* if $K = E_0 \cup E_1 \cup \bigcup \gamma_i$, where

- $\bigcup \gamma_j$ is a finite union of open analytic arcs such that the jump of f is not identically zero across any of them;
- $E_0 \subseteq E_f$ and each point in E_0 is the endpoint of exactly one γ_i ;
- E_1 is a finite set of points each element of which is the endpoint of at least three arcs γ_i .

	Approximation
Minimal	Capacity Set

Weighted Extremal Domains

Convergence Results

Theorem (Stahl^{6,7})

Given $f \in \mathcal{A}$, there exists a unique admissible compact Γ_* such that $\operatorname{cp}(\Gamma_*) \leq \operatorname{cp}(K)$ for any admissible K and $\Gamma_* \subset \Gamma$ for any admissible Γ satisfying $\operatorname{cp}(\Gamma) = \operatorname{cp}(\Gamma_*)$. The set Γ_* is a smooth cut for f and

$$\frac{\partial g_{D_*}}{\partial \mathbf{n}^+} = \frac{\partial g_{D_*}}{\partial \mathbf{n}^-}$$

where g_{D_*} is the Green's function for $D_* := \mathbb{C} \setminus \Gamma_*$ with pole at infinity and $\partial / \partial \mathbf{n}^{\pm}$ are the partial derivatives with respect to the one-sided normals on each γ_j .

 $^{^{6}}$ Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4:311–324, 325–338, 1985.

⁷Structure of extremal domains associated with an analytic function. Complex Variables Theory Appl., 4:339–356, 1985.

Approximation

Weighted Extremal Domains

Convergence Results

Convergence of Classical Padé Approximants

Theorem (Stahl⁸)

Let $f \in \mathcal{A}$ and $\{\Pi_n\}$ be the sequence of classical Padé approximants to f. Then

$$|f - \Pi_n|^{1/2n} \xrightarrow{\mathrm{cp}} \exp\left\{-g_{D_*}\right\}$$

in D_* , and the counting measures of poles of \prod_n converge weak^{*} to the logarithmic equilibrium distribution on Γ_* .

⁸The convergence of Padé approximants to functions with branch points. J. Approx. Theory, 91:139–204, 1997.

	Approximation
External	Field

Weighted Extremal Domains

Convergence Results

Let ν be a probability Borel measure supported in \mathbb{D} . Set

$$U^{\nu}(z) := -\int \log|1-z\bar{u}| \mathrm{d}\nu(u).$$

 U^{ν} is, in fact, a spherically normalized logarithmic potential of ν^* , where

$$v^*(B) = v(\{z : 1/z \in B\}).$$

Thus, U^{ν} is harmonic outside of $\operatorname{supp}(\nu^*)$, in particular, \mathbb{D} . When $\nu = \delta_0$ is the Dirac delta at the origin, $U^{\nu} \equiv 0$ and $\nu^* = \delta_{\infty}$.

	Approximation
Weighted	Canacity

Weighted Extremal Domains

Convergence Results

Let $K \subset \mathbb{D}$ be non-polar. For a Borel measure ω , set

$$I_{\nu}[\omega] := \int \log \frac{1}{|x-y|} d\omega(x) d\omega(y) - 2 \int U^{\nu} d\omega.$$

The ν -capacity of K is defined by

$$\operatorname{cp}_{\nu}(\mathcal{K}) := \exp\left\{-\inf I_{\nu}[\omega]\right\}$$

where the infimum is taken over all probability Borel measures supported on K.

Padé Approximation

Weighted Extremal Domains

Convergence Results

Minimal Set for Problem (f, v)

Theorem

Given $f \in \mathscr{A}(\mathbb{D})$, there exists a unique admissible compact Γ_{v} , minimal set for Problem (f, v), such that $\operatorname{cp}_{v}(\Gamma_{v}) \leq \operatorname{cp}_{v}(K)$ for any admissible K and $\Gamma_{v} \subset \Gamma$ for any admissible Γ satisfying $\operatorname{cp}_{v}(\Gamma) = \operatorname{cp}_{v}(\Gamma_{v})$. The set Γ_{v} is a smooth cut for f and

$$\frac{\partial V_{D_{\nu}}^{\nu^*}}{\partial \mathbf{n}^+} = \frac{\partial V_{D_{\nu}}^{\nu^*}}{\partial \mathbf{n}^-}$$

where $\partial / \partial \mathbf{n}^{\pm}$ are the partial derivatives with respect to the one-sided normals on each γ_i^{ν} , $D_{\nu} := \overline{\mathbb{C}} \setminus \Gamma_{\nu}$, and

$$V_{D_{v}}^{v^{*}}(z) = \int g_{D_{v}}(z, u) \mathrm{d}v^{*}(u)$$

is the Green's potential of v^* in D_* .

⁹Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012

Approach

Padé Approximation

Weighted Extremal Domains

Convergence Results

It is enough to consider only admissible sets that are unions of a finite number of disjoint continua each of which contains at least two point of E_f .

The weighted energy functional I_{ν} is finite and continuous on the Hausdorff closure of the above sets contained in $\overline{\mathbb{D}}_{\rho}$, $\rho := \max_{z \in E_{\rho}} |z|$.

Radial projection onto \mathbb{D}_{ρ} decreases *v*-capacity. As the Hausdorff closure is compact, Γ_{v} exists.

Using the connection between the weighted energy and the Green's energy of \tilde{v}^* over the corresponding domain and the connection between the later and the Dirichlet integral of the Green's potential of \tilde{v}^* , one shows that the *symmetry property* uniquely characterizes Γ_v .

Approximation
Interpolation

Weighted Extremal Domains

Convergence Results

Theorem (adjustment of the proof of Gonchar and Rakhmanov 10)

Let $f \in \mathscr{A}(\mathbb{D})$ and $\{\prod_n\}$ be a sequence of rational interpolants to f whose interpolation points are distributed asymptotically as v^* for a probability Borel measure v supported in $\overline{\mathbb{D}}$. Then

$$|f - \Pi_n|^{1/2n} \stackrel{\mathrm{cp}}{\to} \exp\left\{-V_{D_v}^{v^*}\right\}$$

in $D_{\nu} \setminus \operatorname{supp}(\nu^*)$, and the counting measures of poles of \prod_n converge weak^{*} to $\widehat{\nu^*}$, the balayage of ν^* onto Γ_{ν} .

¹⁰Equilibrium distributions and the degree of rational approximation of analytic functions. Mat. Sb., 134(176)(3):306–352, 1987

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results
			0000000
Condenser Capacity			

Let $K \subset G$ be compact and non-polar. There exists the unique measure $\omega_{(K,T)}$, the *Green's equilibrium distribution on K relative to G*, such that

$$\int g_{G}(x,y) \mathrm{d}\omega_{(K,T)}(x) \mathrm{d}\omega_{(K,T)}(y) \leq \int g_{G}(x,y) \mathrm{d}\omega(x) \mathrm{d}\omega(y)$$

for any probability Borel measure ω supported on K.

The quantity

$$cp(K,T) := \left(\int g_G(x,y) d\omega_{(K,T)}(x) d\omega_{(K,T)}(y)\right)^{-1}$$

is called the condenser capacity of K relative to G. It is known that

$$\operatorname{cp}(K,T)=\operatorname{cp}(T,K).$$

Approximation

Weighted Extremal Domains

Convergence Results ○●○○○○○○

Minimal Condenser Capacity Sets

Theorem (Stahl^{5,6,8})

Given $f \in \mathscr{A}(G)$, there exists a unique admissible compact K_{\circ} such that $\operatorname{cp}(K_{\circ}, T) \leq \operatorname{cp}(K, T)$ for any admissible K and $K_{\circ} \subset K$ for any admissible K satisfying $\operatorname{cp}(K, T) = \operatorname{cp}(K_{\circ}, T)$. The set K_{\circ} is a smooth cut for f and

$$\frac{\partial}{\partial \mathbf{n}^{+}} V_{\overline{\mathbb{C}} \setminus \mathcal{K}_{o}}^{\omega(\tau, \kappa_{o})} = \frac{\partial}{\partial \mathbf{n}^{-}} V_{\overline{\mathbb{C}} \setminus \mathcal{K}_{o}}^{\omega(\tau, \kappa_{o})}$$

where $\omega_{(T,K_o)}$ is the Green's equilibrium distribution on T relative to $\overline{\mathbb{C}} \setminus K_o$. The above symmetry property uniquely characterizes K_o .

 6 Structure of extremal domains associated with an analytic function. Complex Variables Theory Appl.,4:339–356, 1985.

⁸Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012

⁵Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4:311–324, 325–338, 1985.

Approximation

Weighted Extremal Domains

Convergence Results

Convergence of Irreducible Critical Points

Theorem

Let $f \in \mathscr{A}(\mathbb{D})$ and $\{r_n\}$ be a sequence of irreducible critical points in RAP for f. Then

$$f - r_n |^{1/2n} \xrightarrow{\mathrm{cp}} \exp\left\{-V_{\overline{\mathbb{C}} \setminus K_{\mathrm{o}}}^{\omega^*_{(K_{\mathrm{o}},\mathbb{T})}}\right\}$$

in $\mathbb{C} \setminus (K_{\circ} \cup K_{\circ}^{*})$, and the counting measures of poles of r_{n} converge weak^{*} to $\omega_{(K_{\circ},\mathbb{T})}$. Moreover, it holds that

$$\lim_{n \to \infty} ||f - r_n||_2^{1/2n} = \lim_{n \to \infty} ||f - r_n||_{\mathbb{T}}^{1/2n} = \exp\left\{-\frac{1}{\operatorname{cp}(K_o, \mathbb{T})}\right\}.$$

⁹Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012

Rational Approximation	Padé Approximation	Weighted Extremal Domains	Convergence Results
	00000	00000	0000000
Approach			

Take a weak^{*} limit point of counting measures of poles of r_n , say v.

 r_n are multipoint Padé approximants corresponding to an interpolation scheme which is asymptotically distributed as v^* .

The counting measures of the poles of r_n converge weak* to v^* on Γ_v .

Equality
$$v = v^*$$
 implies that $v = \omega_{(\Gamma_v, \mathbb{T})}$

 $V_{D_{\nu}}^{\widetilde{\nu}}$ enjoys the same symmetry property as $V_{\overline{\mathbb{C}}\setminus K_{o}}^{\omega_{(\mathbb{T},K_{o})}}$ that uniquely characterizes K_{o} , where $\widetilde{\nu}$ is the balayage of ν onto \mathbb{T} .

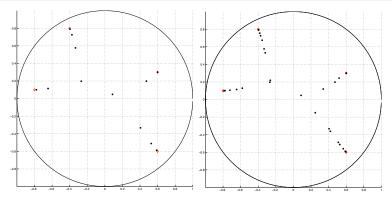
Numerics

Padé Approximation

Weighted Extremal Domains

Convergence Results

$f_1(z) = \frac{1}{\sqrt[4]{(z-z_1)(z-z_2)(z-z_3)(z-z_4)}} + \frac{1}{z-z_1},$ where $z_1 = 0.6 + 0.3i$, $z_2 = -0.8 + 0.1i$, $z_3 = -0.4 + 0.8i$, $z_4 = 0.6 - 0.6i$, and $z_5 = -0.6 - 0.6i$.



The poles of rational approximants to f_1 of degree 12 and both 12 and 16.

Numerics

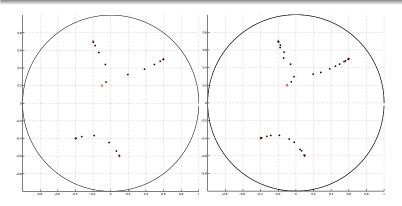
Padé Approximation

Weighted Extremal Domains

Convergence Results

$$f_2(z) = \frac{1}{\sqrt[3]{(z-z_1)(z-z_2)(z-z_3)}} + \frac{1}{\sqrt{(z-z_4)(z-z_5)}},$$

where $z_1 = 0.6 + 0.5i$, $z_2 = -0.1 + 0.2i$, $z_3 = -0.2 + 0.7i$, $z_4 = -0.4 - 0.4i$, and
 $z_5 = 0.1 - 0.6i$.



The poles of rational approximants to f_2 of degree 16 and both 13 and 16.

Approximation

Weighted Extremal Domains

Convergence of Meromorphic Approximants

Theorem

Let $f \in \mathcal{A}(G)$ and $\{g_n\}$ be a sequence of best approximants in MAP_2 for f. Then

$$|f - g_n|^{1/2n} \xrightarrow{\mathrm{cp}} \exp\left\{V_G^{\omega_{(K_o,T)}} - \frac{1}{\mathrm{cp}(K_o,T)}\right\}$$

in $G \setminus K_{\circ}$ and the counting measures of poles of g_n converge weak^{*} to $\omega_{(K_{\circ},T)}$.

 $^{^{9}}$ Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012

Rational Approximation
Best Rational Approximation

Weighted Extremal Domains

Convergence Results

Theorem

Let $f \in \mathscr{A}(G)$. Then

$$\lim_{n \to \infty} \rho_{n,2}^{1/2n}(f,T) = \lim_{n \to \infty} \rho_{n,\infty}^{1/2n}(f,T) = \exp\left\{-\frac{1}{\operatorname{cp}(K_{o},T)}\right\}$$

where

$$\rho_{n,p}(f,T) := \inf \left\{ ||f-r||_{p,T} : r \in R_n(G) \right\}.$$

 $^{^{9}}$ Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407, 2012