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Padé Approximation

Let

f (z) =

∞∑
j=1

fj
z j

be holomorphic at infinity. A rational function πn = pn
qn

of type

(n, n) is called the diagonal Padé approximant to f of order n if

(qnf − pn)(z) = O

(
1

zn+1

)
as z →∞.

Polynomials qn and pn may not be unique, but πn is. It is

characterized by the property

(f − πn)(z) = O

(
1

z2n+1

)
as z →∞.

That is, πn has the highest order of tangency with f at infinity.
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Functions with Branch Points

A tremendous step forward in the investigation of the behavior of

Padé approximants was done by Stahl1.

Theorem (Stahl)

Let f be holomorphic at infinity, multiple-valued, and with all its

singularities contained in a compact set F , cap(F ) = 0.

Then

there exists a domain D, unique up to a polar set, such that

the sequence {πn} converges in capacity to f in D;

∆ := C \D has empty interior and consists ‘’essentially” of

analytic arcs.

∆ is said to be the set of minimal capacity for f as it has the

smallest logarithmic capacity among all compacts that make f

single-valued in their complement.

1The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 139–204,

1997
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Cauchy Integrals

Let h be an integrable function with compact support. Set

fh(z) :=
1

πi

∫
h(t)dt

t − z .

Such a function is called the Cauchy integral of h.

Theorem (Stahl)

Let ∆ be a set of minimal capacity and h be a q.e. non-vanishing

function on ∆. Then the sequence {πn} converges in capacity to

fh in D.
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Non-Hermitian Orthogonality

Recall that

qn(z)fh(z)− pn(z) = O
(

1/zn+1
)

as z →∞.

Hence,

0 =

∮
Γ

zk(qnfh − pn)(z)dz ,

=

∮
Γ

zkqn(z)fh(z)dz ,

= 2

∫
∆
tkqn(t)h(t)dt k ∈ {0, . . . , n − 1},

where Γ is any positively oriented Jordan curve encompassing ∆.
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Orthogonality on [−1, 1]

Let ∆ = [−1, 1] and D := C \∆. Set

w(z) :=
√
z2 − 1, w(z)/z → 1 as z →∞,

where holomorphic in D branch is selected. Define

ϕ(z) := z + w(z), z ∈ D.

Then ϕ is the conformal map of D onto {|z | > 1}, ϕ(∞) =∞,

and ϕ′(∞) > 0.
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Szegő Function

Let h be Dini-continuous non-vanishing complex-valued function

on [−1, 1]. Then there exists a function S , called the Szegő

function of h, such that S is analytic and non-vanishing in D,

S(∞) = 1, and

h = GS+S−,

where G is the geometric mean of h, i.e.,

G := exp

{∫
[−1,1]

log h(t)
idt

πw+(t)

}
.

Observe that idt
πw+(t) is the equilibrium measure on [−1, 1].
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Szegő Theorem

Using Nuttall’s method of singular integral equations2 one can

prove:

Theorem (is the error rate known?)

Let h be Dini-continuous non-vanishing complex-valued function

on [−1, 1] and

fh(z) :=
1

πi

∫
h(t)

t − z
dt

w+(t)
, z ∈ D.

Then it holds locally uniformly in D that

(fh − πn) =
2

w

S∗n
Sn

(1 +O(ωn)) ,

where ωn := min ‖1/h − ln‖[−1,1], deg(ln) ≤ n, Sn :=
(
ϕ
2

)n 1
S , and

S∗n = GS
(

1
2ϕ

)n
.

2Padé polynomial asymptotic from a singular integral equation. Constr. Approx., 6(2):157–166, 1990
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Riemann Surface

Let R = D(1) ∪D(2) ∪ L be the Riemann surface of w (g = 0).

D(1)

D(2)

L−

L+

∆− ∆+

Figure: Domains D(1) and D(2) are represented as upper and lower layers, (two

thick horizontal lines each). Each pair of disks joint by a dotted line represents the

same point on ∆ as approached from the left (∆−) and from the right (∆+). Each

pair of disk joint by a dashed line represents the same point on L as approached from

the left (L−) and from the right (L+). The left and right sides are chosen according

to the orientation of each contour in question.



Introduction Spherical Case Toroidal Case

Szegő Function on R

Denote by π the canonical projection and set

Sn(z
(1)) := Sn(z) and Sn(z

(2)) = S∗n (z).

Proposition

Let h be a Dini-continuous non-vanishing function on ∆. Then

the function Sn has continuous traces on both sides of L that

satisfy

S−n = S+
n · (h ◦ π). (1)

Moreover, under the normalization

Sn(z
(1))z−n → 1 as z (1) →∞(1),

Sn is the unique function meromorphic in R \ L with the principle

divisor n∞(2)− n∞(1) and continuous traces on L that satisfy (1).
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Chebotarëv Continuum

Let a1, a2, and a3 be three non-collinear points in the complex

plane C. There exists a unique connected compact ∆, called

Chebotarëv continuum, containing these points that has minimal

logarithmic capacity among all continua joining a1, a2, and a3.

a3

a0 a1

a2

+−

+
−

+ −

2π/3

It consists of three analytic arcs ∆k , k ∈ {1, 2, 3}, that emanate

from a common endpoint, say a0, and end at each of the given

points ak , respectively. It is also known that the tangents at a0 of

two adjacent arcs form an angle of magnitude 2π/3.
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Riemann Surface

Set

w(z) :=

√√√√ 3∏
k=0

(z − ak),
w(z)

z2
→ 1 as z →∞,

to be a holomorphic function in D \ {∞}.

Define ϕ to be the conformal map of D onto {|z | > 1} such that

ϕ(z) =
z

cap(∆)
+ · · · .
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Riemann Surface

Let R = D(1) ∪D(2) ∪ L be the Riemann surface of w (g = 1),

L := L1 ∪ L2 ∪ L3, π(Lk) = ∆k .

D(1)

D(2)

L−

L+

∆− ∆+
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Riemann Surface

D(1)

D(2)

L−
2 L+

2

L+
1

L−
1

L+
3

L−
3

a3

a3

a2 a2
a1

a0

a0a0

a0

Figure: Elliptic Riemann surface R has genus 1 and therefore is homeomorphic to a

torus. We represent R as a torus cut along curves L2 and L3. In this case domains

D(1) and D(2) can be represented as the upper and lower triangles, respectively.
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Szegő Function on R

Proposition (BY)

Let h be a Dini-continuous non-vanishing function on ∆. Then

there exists zn ∈ R such that zn + (n − 1)∞(2) − n∞(1) is the

principle divisor of a function Sn which is meromorphic in R \ L
and has continuous traces on both sides of L that satisfy

S−n = S+
n · (h ◦ π). (2)

Moreover, under the normalization

Sn(z
(1))z−kn → 1 as z (1) →∞(1),

where kn = n − 1 if zn =∞(1) and kn = n otherwise, Sn is the

unique function meromorphic in R \ L with the principle divisor of

the form w+ (n− 1)∞(2) − n∞(1), w ∈ R, and continuous traces

on L that satisfy (2).

Furthermore, if zn =∞(1) then zn−1 =∞(2) and Sn = Sn−1.
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Szegő Function on R

Recall

SnS
∗
n = Gcap2n([−1, 1]).

Proposition (BY)

It holds that

(SnS
∗
n )(z)

(cap(∆))2n−1
= ξnG


(z − zn)/|ϕ(zn)|, zn ∈ D(2) \ {∞(2)},
cap(∆), zn =∞(2),

(z − zn)|ϕ(zn)|, zn ∈ L ∪D(1) \ {∞(1)},

where |ξn| = 1, zn = π(zn), and

G := exp

{∫
∆

log h(t)
i(t − a0)dt

πw+(t)

}
.

Observe that
i(t−a0)dt
πw+(t) is the equilibrium measure on ∆.
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Szegő Function on R

Recall

S∗n
Sn

=
GS2

ϕ2n
.

Proposition (BY)

Moreover, it holds that

S∗n (z)

Sn(z)
=
ξnGΥ(zn; z)

ϕ2n−1(z)



z − zn
ϕ(z)|ϕ(zn)|

, zn ∈ D(2) \ {∞(2)},

1/ϕ(z), zn =∞(2),

ϕ(z)|ϕ(zn)|
z − zn

, zn ∈ L ∪D(1) \ {∞(1)},

where {Υ(a; ·)}, a ∈ R, is a normal family of non-vanishing

functions in D.
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Asymptotics of zn

Denote by Z the derived set of {zn}. The following proposition is

essentially due to Suetin3.

Proposition

It holds that

Z = R when the numbers ω∆(∆k) are rationally independent;

Z is a finite set of points when ω∆(∆k) are rational;

Z is the union of a finite number of pairwise disjoint arcs

when ω∆(∆k) are rationally dependent but at least one of

them is irrational.

3Convergence of Chebyshëv continued fractions for elliptic functions. Mat. Sb., 194(12):63–92, 2003.

English transl. in Math. Sb. 194(12):1807–1835, 2003



Introduction Spherical Case Toroidal Case

Error Asymptotics

Theorem

Let h be a complex-valued Dini-continuous non-vanishing function

on ∆ and

fh(z) :=
1

πi

∫
∆

h(t)

t − z
dt

w+(t)
, z ∈ D.

Then it holds locally uniformly in D that

(fh − πn) =
2

w

S∗n
Sn

1 + E ∗n
1 +O(δn) + En

,

where En is a sectionally meromorphic function on R \ L with at

most one pole at zn,∮
∂D

(
|En|2 + |E ∗n |2

) ∣∣∣∣dtw
∣∣∣∣ ≤ const.ω2

n, zn /∈ L,

and ωn := min ‖1/h − ln‖∆, deg(ln) ≤ n.
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