Szegő-type Asymptotics of Frobenius-Padé Approximants

Maxim L. Yattselev
Indiana University-Purdue University Indianapolis
Ψ

Joint Mathematics Meeting
Atlanta, GA
January 4th, 2017

Let F be a function holomorphic at the origin:

$$
F(z)=f_{0}+f_{1} z+f_{2} z^{2}+\cdots+f_{m} z^{m}+\cdots
$$

and P_{n} be its n-th Taylor polynomial:

$$
P_{n}(z)=f_{0}+f_{1} z+f_{2} z^{2}+\cdots+f_{n} z^{n} .
$$

Then

$$
P_{n}(z) \rightrightarrows F(z) \quad \text { as } \quad n \rightarrow \infty
$$

in the largest disk of holomorphy of F.

Let P_{n} and Q_{m} be polynomials of respective degrees at most n and m such that

$$
\left(Q_{m} F-P_{n}\right)(z)=\mathcal{O}\left(z^{m+n+1}\right) \quad \text { as } \quad z \rightarrow 0
$$

The rational function P_{n} / Q_{m} is unique and is called (n, m)-th Pade approximant at the origin.

Theorem (de Montessus de Ballore)

If D is the largest disk centered at the origin where F has exactly m poles counting multiplicities, then

$$
\left(P_{n} / Q_{m}\right)(z) \rightrightarrows F(z) \quad \text { as } \quad n \rightarrow \infty
$$

in the spherical metric.

Let f be a function holomorphic and vanishing at infinity:

$$
f(z)=\frac{f_{1}}{z}+\frac{f_{2}}{z^{2}}+\cdots+\frac{f_{n}}{z^{n}}+\cdots .
$$

Further, let p_{n}, q_{n} be a pair of polynomials of degree at most n such that

$$
R_{n}(z):=\left(q_{n} f-p_{n}\right)(z)=\frac{1}{m_{n} z^{n+1}}+\mathcal{O}\left(z^{-n-2}\right) \quad \text { as } \quad z \rightarrow \infty
$$

The rational function p_{n} / q_{n} is always unique and is called the n-th diagonal Padé approximant to f at infinity.

Theorem (Markov)

If σ is a compactly supported positive Borel measure on the real line, then

$$
\left(p_{n} / q_{n}\right)(z) \rightrightarrows f(z)=\int \frac{\mathrm{d} \sigma(t)}{t-z} \quad \text { as } \quad n \rightarrow \infty
$$

locally uniformly in $\overline{\mathbb{C}} \backslash I$, where $/$ is the smallest interval containing $\operatorname{supp}(\sigma)$.

It is easy to show that

$$
\int x^{i} q_{n}(x) \mathrm{d} \sigma(x)=0, \quad i \in\{0, \ldots, n-1\}
$$

Let $w(z):=\sqrt{z^{2}-1}$ and $\rho(z)$ be holomorphic and non-vanishing in a neighborhood of $[-1,1]$. By assuming

$$
\mathrm{d} \sigma(x)=\frac{\rho(x)}{2 \pi \mathrm{i}} \frac{\mathrm{~d} x}{w^{+}(x)}
$$

and studying (thanks to Fokas, Its, and Kitaev) the matrices

$$
\boldsymbol{Y}_{n}:=\left(\begin{array}{cc}
q_{n} & R_{n} \\
m_{n-1} q_{n-1} & m_{n-1} R_{n-1}
\end{array}\right)
$$

via the steepest descent method of Deift and Zhou, one can get very precise asymptotics of q_{n} and R_{n}.

In particular, one deduces Szegő's asymptotics:

$$
\begin{cases}q_{n}(z) & =(1+o(1))\left(\Phi^{n} S_{\rho}\right)(z) \\ \left(w R_{n}\right)(z) & =(1+o(1))\left(\Phi^{n} S_{\rho}\right)^{-1}(z)\end{cases}
$$

where $\Phi(z):=z+w(z)$ and

$$
S_{\rho}(z)=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}} \int_{[-1,1]} \frac{\log \rho(x)}{x-z} \frac{\mathrm{~d} x}{w^{+}(x)}\right\}
$$

which satisfies $S_{\rho}^{+} S_{\rho}^{-}=\rho$ on $(-1,1)$. We can rewrite the asymptotic formulae as

$$
\begin{cases}q_{n}(z) & =(1+o(1))\left(\Phi^{n} S\right)^{(0)}(z) \\ \left(w R_{n}\right)(z) & =(1+o(1))\left(\Phi^{n} S\right)^{(1)}(z)\end{cases}
$$

Orthogonality $\int x^{i} q_{n}(x) \mathrm{d} \sigma(x)=0$ tell us that the logarithmic potential

$$
V^{\tau}(z):=-\int \log |z-x| \mathrm{d} \tau(x)
$$

of a weak* limit point of the normalized counting measures of the zeros of q_{n} is such that

$$
2 V^{\tau}=\min _{\operatorname{supp}(\mu)} 2 V^{\tau} \quad \text { on } \quad \operatorname{supp}(\tau) \subseteq \operatorname{supp}(\mu)
$$

When $\operatorname{supp}(\mu)=[-1,1]$, the measure τ is necessarily the arcsine distribution on $[-1,1]$. Then we construct a Riemann surface $\mathfrak{\Re}$ using $\operatorname{supp}(\tau)=[-1,1]$ and look for a rational function on \Re with a simple pole at $\infty^{(0)}$ and a simple zero at $\infty^{(1)}$ and a function S that solves a certain boundary value problem.

Let μ be a positive Borel measure on $[a, b]$ and p_{n} be orthonormal polynomials w.r.t μ, i.e., $\int p_{n} p_{m} \mathrm{~d} \mu=\delta_{m n}$. Given $f \in L^{2}(\mu)$, associate

$$
f \sim \sum_{i=0}^{\infty} c_{i}(f) p_{i}, \quad c_{i}(f):=\int f p_{i} \mathrm{~d} \mu
$$

Theorem (Freud + Mastroianni \& Totik)

If $f \in \operatorname{Lip}^{\frac{1}{2}+\epsilon}$ and the Christoffel functions satisfy

$$
n \lambda_{n}(x, \mu) \lesssim 1
$$

uniformly on a set $S \subseteq[a, b]$, then

$$
\sum_{i=0}^{n-1} c_{i}(f) p_{i} \rightrightarrows f \quad \text { on } \quad S
$$

The condition on the Christoffel functions is satisfied if μ is doubling on $[a, b]$.

A Frobenius-Padé approximant of type (m, n) to f is a rational function

$$
P_{m, n} / Q_{m, n}, \quad \operatorname{deg}\left(P_{m, n}\right) \leq m, \quad \operatorname{deg}\left(Q_{m, n}\right) \leq n
$$

such that

$$
c_{i}\left(Q_{m, n} f-P_{m, n}\right)=0, \quad i \in\{0, \ldots, m+n\}
$$

A Frobenius-Padé approximant always exists as its construction boils down to solving a linear system with one more unknown than equations.
A Frobenius-Padé approximant corresponding to $Q_{m, n}$ of the smallest degree is unique.

$$
\operatorname{deg}\left(Q_{m, n}\right)=n \quad \Rightarrow \quad \text { Uniqueness. }
$$

Let

$$
f(z)=\int \frac{\mathrm{d} \sigma(x)}{x-z}
$$

The measures μ and σ are such that

$$
\Delta_{\mu}:=\operatorname{supp}(\mu)=\left[b_{\mu}, a_{\mu}\right], \quad \Delta_{\sigma}:=\operatorname{supp}(\sigma)=\left[a_{\sigma}, b_{\sigma}\right]
$$

and

$$
\Delta_{\mu} \cap \Delta_{\sigma}=\varnothing
$$

We shall also assume that

$$
n-1 \leq m, \quad \frac{n}{n+m} \rightarrow c \in(0,1 / 2] \text { as } n \rightarrow \infty .
$$

Assume for now that μ and σ are positive measures. Recall that

$$
c_{i}\left(Q_{m, n} f-P_{m, n}\right)=0, \quad i \in\{0, \ldots, m+n\} .
$$

Write $R_{m, n}:=Q_{m, n} f-P_{m, n}$. Then

$$
\int x^{i} R_{m, n}(x) \mathrm{d} \mu(x)=0, \quad i \in\{0, \ldots, m+n\}
$$

Let $V_{m, n}$ be the polynomial vanishing at the zeros of $R_{m, n}$ on Δ_{μ}. Cauchy tells us that

$$
\int \frac{x^{i} Q_{m, n}(x)}{V_{m, n}(x)} \mathrm{d} \sigma(x)=0, \quad i \leq \min \{n-1, m\}=n-1
$$

Using Cauchy's work again, we get that

$$
\int \frac{x^{i} V_{m, n}(x)}{Q_{m, n}(x)}\left(\int \frac{Q_{m, n}^{2}(t)}{V_{m, n}(t)} \frac{\mathrm{d} \sigma(t)}{t-x}\right) \mathrm{d} \mu(x)=0, \quad i \in\{0, \ldots, m+n\}
$$

We have that

$$
\int \frac{x^{i} Q_{m, n}(x)}{V_{m, n}(x)} \mathrm{d} \sigma(x)=0, \quad i \in\{0, \ldots, n-1\}
$$

and

$$
\int \frac{x^{i} V_{m, n}(x)}{Q_{m, n}(x)}(.) \mathrm{d} \mu(x)=0, \quad i \in\{0, \ldots, m+n\}
$$

Weak* limits of the counting measures of zeros then give us

$$
\left\{\begin{array}{l}
Q_{m, n} \Rightarrow \tau_{\sigma, c}, \quad\left|\tau_{\sigma, c}\right|=c, \operatorname{supp}\left(\tau_{\sigma, c}\right) \subseteq \Delta_{\sigma} \\
V_{m, n} \Rightarrow \tau_{\mu, c},\left|\tau_{\mu, c}\right|=1, \operatorname{supp}\left(\tau_{\mu, c}\right) \subseteq \Delta_{\mu}
\end{array}\right.
$$

and we expect their logarithmic potentials to satisfy

$$
\begin{cases}2 V^{\tau_{\sigma, c}}-V^{\tau_{\mu, c}}=\min _{\Delta_{\sigma}}\left(2 V^{\tau_{\sigma, c}}-V^{\tau_{\mu, c}}\right)=: \ell_{\sigma, c} \quad \text { on } \quad \operatorname{supp}\left(\tau_{\sigma, c}\right), \\ 2 V^{\tau_{\mu, c}}-V^{\tau_{\sigma, c}}=\min _{\Delta_{\mu}}\left(2 V^{\tau_{\mu, c}}-V^{\tau_{\sigma, c}}\right)=: \ell_{\mu, c} \quad \text { on } \quad \operatorname{supp}\left(\tau_{\mu, c}\right) .\end{cases}
$$

We are looking for measures such that

$$
\begin{cases}2 V^{\tau_{\sigma, c}}-V^{\tau_{\mu, c}}=\ell_{\sigma, c} & \text { on } \quad \operatorname{supp}\left(\tau_{\sigma, c}\right) \subseteq \Delta_{\sigma} \\ 2 V^{\tau_{\mu, c}}-V^{\tau_{\sigma, c}}=\ell_{\mu, c} & \text { on } \quad \operatorname{supp}\left(\tau_{\mu, c}\right) \subseteq \Delta_{\mu}\end{cases}
$$

Proposition (Gonchar, Rakhmanov, \& Sorokin)

Such a pair of measures exists and is unique, $\operatorname{supp}\left(\tau_{\mu, c}\right)=\Delta_{\mu}$, and $\operatorname{supp}\left(\tau_{\sigma, c}\right)=: \Delta_{\sigma, c}$ is an interval. Set $D_{\sigma, c}^{+}:=\left\{2 V^{\tau_{\sigma, c}}-V^{\tau_{\mu, c}}-\ell_{\sigma, c}<0\right\}$. Then it is non-empty, contains $\Delta_{\sigma, c}$ in its boundary, is bounded when $c<1 / 2$, and is equal to $\overline{\mathbb{C}} \backslash \Delta_{\sigma}$ when $c=1 / 2$.

Define $\Phi_{m, n}$ on $\Re_{\frac{n}{n+m}}$ as having a divisor

$$
(n+m) \infty^{(2)}-n \infty^{(0)}-m \infty^{(1)}
$$

and normalized so that

$$
\Phi_{m, n}^{(0)}(z) \Phi_{m, n}^{(1)}(z) \Phi_{m, n}^{(2)}(z) \equiv 1
$$

Theorem (Aptekarev, Bogolubsky, \& Y.)

Let

$$
\mathrm{d} \nu(x)=\frac{\rho_{\nu}(x)}{2 \pi \mathrm{i}} \frac{\mathrm{~d} x}{w_{\nu}^{+}(x)}, \quad w_{\nu}(z)=\sqrt{\left(z-a_{\nu}\right)\left(z-b_{\nu}\right)}, \quad \nu \in\{\mu, \sigma\}
$$

where ρ_{ν} is holomorphic and non-vanishing around Δ_{ν}. Assume μ possesses the full system of orthonormal polynomials. Then

$$
\begin{cases}Q_{m, n}(z) & =(1+o(1))\left(\Phi_{m+1, n} S_{c}\right)^{(0)}(z) \\ \left(w_{\sigma, c} R_{m, n}\right)(z) & =(1+o(1))\left(\Phi_{m+1, n} S_{c}\right)^{(1)}(z)\end{cases}
$$

locally uniformly in $\overline{\mathbb{C}} \backslash \Delta_{\sigma}$. It holds that $\left|\Phi_{m+1, n}^{(1)} / \Phi_{m+1, n}^{(0)}\right|<1$ in $D_{\sigma, c}^{+}$.

Steepest descent is performed on

$$
\boldsymbol{Y}_{m, n}:=\boldsymbol{C}_{m, n}\left(\begin{array}{ccc}
Q_{m, n} & R_{m, n} & H_{m, n} \\
Q_{m+1, n-1} & R_{m+1, n-1} & H_{m+1, n-1} \\
Q_{m, n-1} & R_{m, n-1} & H_{m, n-1}
\end{array}\right)
$$

where $C_{m, n}$ is a diagonal matrix of constants,

$$
R_{m+1, n-1}(z)=\left(Q_{m+1, n-1} f-P_{m+1, n-1}\right)(z)=\mathcal{O}\left(z^{m+1}\right) \quad \text { as } \quad z \rightarrow \infty
$$

and

$$
H_{m, n-1}(z):=\int \frac{R_{m, n-1}(x)}{x-z} \mathrm{~d} \mu(x)=\mathcal{O}\left(z^{-(m+n+1)}\right) \quad \text { as } \quad z \rightarrow \infty
$$

