Szegő-type Asymptotics of Frobenius-Padé Approximants

Maxim L. Yattselev

Indiana University-Purdue University Indianapolis

Joint Mathematics Meeting

Atlanta, GA

January 4th, 2017

Let *F* be a function holomorphic at the origin:

$$F(z) = f_0 + f_1 z + f_2 z^2 + \dots + f_m z^m + \dots$$

and P_n be its *n*-th Taylor polynomial:

$$P_n(z) = f_0 + f_1 z + f_2 z^2 + \cdots + f_n z^n.$$

Then

$$P_n(z)
ightarrow F(z)$$
 as $n
ightarrow \infty$

in the largest disk of holomorphy of *F*.

Let P_n and Q_m be polynomials of respective degrees at most n and m such that

$$(Q_m F - P_n)(z) = \mathcal{O}(z^{m+n+1})$$
 as $z \to 0$.

The rational function P_n/Q_m is unique and is called (n, m)-th Padé approximant at the origin.

Theorem (de Montessus de Ballore)

If D is the largest disk centered at the origin where F has exactly m poles counting multiplicities, then

$$(P_n/Q_m)(z) \rightrightarrows F(z)$$
 as $n \to \infty$

in the spherical metric.

Let *f* be a function holomorphic and vanishing at infinity:

$$f(z)=\frac{f_1}{z}+\frac{f_2}{z^2}+\cdots+\frac{f_n}{z^n}+\cdots$$

Further, let p_n, q_n be a pair of polynomials of degree at most n such that

$$R_n(z):= (q_nf-p_n)(z)=\frac{1}{m_nz^{n+1}}+\mathcal{O}(z^{-n-2}) \quad \text{as} \quad z\to\infty.$$

The rational function p_n/q_n is always unique and is called the *n*-th diagonal Padé approximant to *f* at infinity.

Theorem (Markov)

If σ is a compactly supported positive Borel measure on the real line, then

$$(p_n/q_n)(z)
ightarrow f(z) = \int rac{\mathrm{d}\sigma(t)}{t-z}$$
 as $n
ightarrow \infty$

locally uniformly in $\overline{\mathbb{C}} \setminus I$, where *I* is the smallest interval containing supp(σ).

It is easy to show that

$$\int x^i q_n(x) \mathrm{d}\sigma(x) = 0, \quad i \in \{0, \ldots, n-1\}.$$

Let $w(z) := \sqrt{z^2 - 1}$ and $\rho(z)$ be holomorphic and non-vanishing in a neighborhood of [-1,1]. By assuming

$$\mathrm{d}\sigma(x) = rac{
ho(x)}{2\pi\mathrm{i}} rac{\mathrm{d}x}{w^+(x)}$$

and studying (thanks to Fokas, Its, and Kitaev) the matrices

$$\mathbf{Y}_n := egin{pmatrix} q_n & R_n \ m_{n-1}q_{n-1} & m_{n-1}R_{n-1} \end{pmatrix}$$

via the steepest descent method of Deift and Zhou, one can get very precise asymptotics of q_n and R_n .

In particular, one deduces Szegő's asymptotics:

$$\begin{cases} q_n(z) &= (1 + o(1)) (\Phi^n S_\rho)(z), \\ (wR_n)(z) &= (1 + o(1)) (\Phi^n S_\rho)^{-1}(z), \end{cases}$$

where $\Phi(z) := z + w(z)$ and

$$S_{\rho}(z) = \exp\left\{\frac{w(z)}{2\pi \mathrm{i}}\int_{[-1,1]}\frac{\log\rho(x)}{x-z}\frac{\mathrm{d}x}{w^+(x)}\right\},\,$$

which satisfies $S_{\rho}^+S_{\rho}^- = \rho$ on (-1, 1). We can rewrite the asymptotic formulae as

$$\begin{cases} q_n(z) = (1+o(1)) (\Phi^n S)^{(0)}(z), \\ (wR_n)(z) = (1+o(1)) (\Phi^n S)^{(1)}(z). \end{cases}$$

Orthogonality $\int x^i q_n(x) d\sigma(x) = 0$ tell us that the logarithmic potential

$$V^{ au}(z) := -\int \log |z-x| \mathrm{d} au(x)$$

of a weak^{*} limit point of the normalized counting measures of the zeros of q_n is such that

$$2V^{ au} = \min_{\operatorname{supp}(\mu)} 2V^{ au}$$
 on $\operatorname{supp}(au) \subseteq \operatorname{supp}(\mu)$.

When $\operatorname{supp}(\mu) = [-1, 1]$, the measure τ is necessarily the arcsine distribution on [-1, 1]. Then we construct a Riemann surface \mathfrak{R} using $\operatorname{supp}(\tau) = [-1, 1]$ and look for a rational function on \mathfrak{R} with a simple pole at $\infty^{(0)}$ and a simple zero at $\infty^{(1)}$ and a function *S* that solves a certain boundary value problem.

Let μ be a positive Borel measure on [a, b] and p_n be orthonormal polynomials w.r.t μ , i.e., $\int p_n p_m d\mu = \delta_{mn}$. Given $f \in L^2(\mu)$, associate

$$f \sim \sum_{i=0}^{\infty} c_i(f) \rho_i, \quad c_i(f) := \int f \rho_i \mathrm{d}\mu.$$

Theorem (Freud + Mastroianni & Totik)

If $f \in \operatorname{Lip}^{\frac{1}{2}+\epsilon}$ and the Christoffel functions satisfy

 $n\lambda_n(x,\mu)\lesssim 1$

uniformly on a set $S \subseteq [a, b]$, then

$$\sum_{i=0}^{n-1} c_i(f) p_i \Longrightarrow f \quad \text{on} \quad S.$$

The condition on the Christoffel functions is satisfied if μ is doubling on [a, b].

A Frobenius-Padé approximant of type (m, n) to f is a rational function

$$P_{m,n}/Q_{m,n}, \quad \deg(P_{m,n}) \leq m, \quad \deg(Q_{m,n}) \leq n,$$

such that

$$c_i(Q_{m,n}f - P_{m,n}) = 0, \quad i \in \{0, \dots, m+n\}.$$

A Frobenius-Padé approximant always exists as its construction boils down to solving a linear system with one more unknown than equations.

A Frobenius-Padé approximant corresponding to $Q_{m,n}$ of the smallest degree is unique.

 $\deg(Q_{m,n}) = n \Rightarrow$ Uniqueness.

Let

$$f(z)=\int \frac{\mathrm{d}\sigma(x)}{x-z}.$$

The measures μ and σ are such that

$$\Delta_{\mu} := \operatorname{supp}(\mu) = [b_{\mu}, a_{\mu}], \quad \Delta_{\sigma} := \operatorname{supp}(\sigma) = [a_{\sigma}, b_{\sigma}]$$

and

$$\Delta_{\mu} \cap \Delta_{\sigma} = \emptyset.$$

We shall also assume that

$$n-1 \leq m$$
, $\frac{n}{n+m} \rightarrow c \in (0,1/2]$ as $n \rightarrow \infty$.

Assume for now that μ and σ are positive measures. Recall that

$$c_i(Q_{m,n}f-P_{m,n})=0, \quad i\in\{0,\ldots,m+n\}.$$

Write $R_{m,n} := Q_{m,n}f - P_{m,n}$. Then

$$\int x^{i} R_{m,n}(x) \mathrm{d}\mu(x) = 0, \quad i \in \{0,\ldots,m+n\}.$$

Let $V_{m,n}$ be the polynomial vanishing at the zeros of $R_{m,n}$ on Δ_{μ} . Cauchy tells us that

$$\int \frac{x^i Q_{m,n}(x)}{V_{m,n}(x)} \mathrm{d}\sigma(x) = 0, \quad i \leq \min\{n-1,m\} = n-1.$$

Using Cauchy's work again, we get that

$$\int \frac{x^i V_{m,n}(x)}{Q_{m,n}(x)} \left(\int \frac{Q_{m,n}^2(t)}{V_{m,n}(t)} \frac{\mathrm{d}\sigma(t)}{t-x} \right) \mathrm{d}\mu(x) = 0, \quad i \in \{0,\ldots,m+n\}.$$

We have that

$$\int \frac{x^i Q_{m,n}(x)}{V_{m,n}(x)} \mathrm{d}\sigma(x) = 0, \quad i \in \{0, \dots, n-1\},$$

and

$$\int \frac{x^i V_{m,n}(x)}{Q_{m,n}(x)} \left(\cdot \right) \mathrm{d}\mu(x) = 0, \quad i \in \{0, \dots, m+n\}.$$

Weak* limits of the counting measures of zeros then give us

$$\begin{cases} Q_{m,n} \Rightarrow \tau_{\sigma,c}, \ |\tau_{\sigma,c}| = c, \ \operatorname{supp}(\tau_{\sigma,c}) \subseteq \Delta_{\sigma}, \\ V_{m,n} \Rightarrow \tau_{\mu,c}, \ |\tau_{\mu,c}| = 1, \ \operatorname{supp}(\tau_{\mu,c}) \subseteq \Delta_{\mu}, \end{cases}$$

and we expect their logarithmic potentials to satisfy

$$\left(\begin{array}{c} 2V^{\tau_{\sigma,c}} - V^{\tau_{\mu,c}} = \min_{\Delta_{\sigma}} (2V^{\tau_{\sigma,c}} - V^{\tau_{\mu,c}}) =: \ell_{\sigma,c} \quad \text{on} \quad \text{supp}(\tau_{\sigma,c}), \\ 2V^{\tau_{\mu,c}} - V^{\tau_{\sigma,c}} = \min_{\Delta_{\mu}} (2V^{\tau_{\mu,c}} - V^{\tau_{\sigma,c}}) =: \ell_{\mu,c} \quad \text{on} \quad \text{supp}(\tau_{\mu,c}). \end{array} \right)$$

We are looking for measures such that

$$\begin{array}{l} \left(\begin{array}{c} 2V^{\tau_{\sigma,c}} - V^{\tau_{\mu,c}} = \ell_{\sigma,c} & \text{on} \quad \operatorname{supp}(\tau_{\sigma,c}) \subseteq \Delta_{\sigma}, \\ \\ 2V^{\tau_{\mu,c}} - V^{\tau_{\sigma,c}} = \ell_{\mu,c} & \text{on} \quad \operatorname{supp}(\tau_{\mu,c}) \subseteq \Delta_{\mu}. \end{array} \right) \end{array}$$

Proposition (Gonchar, Rakhmanov, & Sorokin)

Such a pair of measures exists and is unique, $\operatorname{supp}(\tau_{\mu,c}) = \Delta_{\mu}$, and $\operatorname{supp}(\tau_{\sigma,c}) =: \Delta_{\sigma,c}$ is an interval. Set $D^+_{\sigma,c} := \{2V^{\tau_{\sigma,c}} - V^{\tau_{\mu,c}} - \ell_{\sigma,c} < 0\}$. Then it is non-empty, contains $\Delta_{\sigma,c}$ in its boundary, is bounded when c < 1/2, and is equal to $\overline{\mathbb{C}} \setminus \Delta_{\sigma}$ when c = 1/2.

Define $\Phi_{m,n}$ on $\mathfrak{R}_{\frac{n}{n+m}}$ as having a divisor

$$(n+m)\infty^{(2)} - n\infty^{(0)} - m\infty^{(1)}$$

and normalized so that

 $\Phi_{m,n}^{(0)}(z)\Phi_{m,n}^{(1)}(z)\Phi_{m,n}^{(2)}(z)\equiv 1.$

Theorem (Aptekarev, Bogolubsky, & Y.)

Let

$$\mathrm{d}\nu(x) = \frac{\rho_\nu(x)}{2\pi\mathrm{i}} \frac{\mathrm{d}x}{w_\nu^+(x)}, \quad w_\nu(z) = \sqrt{(z-a_\nu)(z-b_\nu)}, \quad \nu \in \{\mu,\sigma\},$$

where ρ_{ν} is holomorphic and non-vanishing around Δ_{ν} . Assume μ possesses the full system of orthonormal polynomials. Then

$$\begin{cases} Q_{m,n}(z) = (1+o(1)) (\Phi_{m+1,n}S_c)^{(0)}(z), \\ (w_{\sigma,c}R_{m,n})(z) = (1+o(1)) (\Phi_{m+1,n}S_c)^{(1)}(z). \end{cases}$$

locally uniformly in $\overline{\mathbb{C}} \setminus \Delta_{\sigma}$. It holds that $\left| \Phi_{m+1,n}^{(1)} / \Phi_{m+1,n}^{(0)} \right| < 1$ in $D_{\sigma,c}^+$.

Steepest descent is performed on

$$\mathbf{Y}_{m,n} := \mathbf{C}_{m,n} \begin{pmatrix} Q_{m,n} & R_{m,n} & H_{m,n} \\ Q_{m+1,n-1} & R_{m+1,n-1} & H_{m+1,n-1} \\ Q_{m,n-1} & R_{m,n-1} & H_{m,n-1} \end{pmatrix}$$

where $C_{m,n}$ is a diagonal matrix of constants,

$$R_{m+1,n-1}(z) = \left(Q_{m+1,n-1}f - P_{m+1,n-1}\right)(z) = \mathcal{O}(z^{m+1}) \quad \text{as} \quad z \to \infty,$$

and

$$H_{m,n-1}(z):=\int \frac{R_{m,n-1}(x)}{x-z}\mathrm{d}\mu(x)=\mathcal{O}\big(z^{-(m+n+1)}\big)\quad\text{as}\quad z\to\infty.$$