Motivation 000000000 AAK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

On Convergence of AAK Approximants for Cauchy Transforms with Polar Singularities

M. Yattselev joint work with L. Baratchart Project APICS, INRIA, Sophia Antipolis, France

Universidad de Almería, Almería, ESPAÑA October 29th, 2008

Motivation ●○○○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
"Crack" Problem				

Motivation ●○○○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
"Crack" Problem				

Motivation ●○○○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
"Crack" Problem				

Motivation ●○○○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
"Crack" Problem				

Motivation ○●○○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Harmonic Solution				

Let *u* be the equilibrium distribution of heat or current. Then

$$\begin{cases} \Delta u = 0 & \text{in } D \setminus \gamma \\\\ \frac{\partial u}{\partial n_{\Gamma}} = \Phi & \text{on } \Gamma := \partial D \\\\ \frac{\partial u^{\pm}}{\partial n_{\gamma}^{\pm}} = 0 & \text{on } \gamma \setminus \{\gamma_0, \gamma_1\} \end{cases}$$

where Δu is the Laplacian of u.

	weak Asymptotics	Strong Asymptotics	Numerical Experiments
000000 000000			

Cauchy Integral

u has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \partial D.$$

Further,

$$\mathcal{F}(z) = h(z) + rac{1}{2\pi i} \int_{\gamma} rac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

	weak Asymptotics	Strong Asymptotics	Numerical Experiments
000000 000000			

Cauchy Integral

u has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \partial D.$$

Further,

$$\mathcal{F}(z) = h(z) + rac{1}{2\pi i} \int_{\gamma} rac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

One approximates \mathcal{F} on Γ by meromorphic in D functions and observes the asymptotic behavior of their poles as the number of poles grows large.

Motivation ○○○●○○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Cauchy Integral				

Motivation ○○○●●○○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
EEG				

ElectroEncephaloGraphy problem consists in detecting epileptic foci located in the brain from the measurements of electric potential, *U*, on the scalp.

The brain, the skull, and the scalp are modeled by three nested spheres with the same center¹.

From measurements of U on the outer sphere, one needs to recover U on the inner sphere, inside of which it satisfies Neumann boundary value problem².

¹L. Baratchart, J. Leblond, and J-P. Marmorat. Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. *Electron. Trans. Numer. Anal.*, 25:41–53, 2006.

²B. Atfen, L. Baratchart, J. Leblond, and J. R. Partington. Bounded extremal and Cauchy-Laplace problems on 3D spherecal domains. *In preparation*.

Motivation ○○○○●○○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
EEG				

The inner ball is sliced into parallel disks. For each disk, d, there exists a function, f_d , analytic in d except branch points and poles such that

$$U^2\Big|_{\partial d}=f_d\Big|_{\partial d}.$$

The epileptic foci are recovered from the knowledge of the branch points and poles of f_d for each disk d. The latter are localized using the meromorphic approximation approach.

Motivation ○○○○○●○○	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Obiectives				

We want to answer the following questions:

- What is asymptotic distribution of poles of best meromorphic approximants to *F*?
- Ob some of these poles converge to the polar singularities of *F*?
- What can be said about the convergence of such approximants to *F*?

AAK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Reduction Theorem

Note (Baratchart, Mandrèa, Saff, and Wielonsky³)

In the following we set *D* to be the unit disk, \mathbb{D} , and γ to be a subset of (-1, 1). It was shown by Baratchart et al. that all these considerations translate to domains with piecewise $C^{1,\alpha}$ boundary without outward-pointing cusps, where γ is supposed to be a subset of a hyperbolic geodesic of the corresponding domain.

³2-D inverse problems for the Laplacian: a meromorphic approximation approach. *J. Math. Pures Appl.*, 86:1–41, 2006

Motivation ○○○○○○○●	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Reduction Theorer	n			

Motivation 000000000	AAK Approximation ●○○○○○○	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Setting				

Let

- μ be a complex Borel measure, $S_{\mu} := \text{supp}(\mu) \subset (-1, 1);$
- *R* be rational function whose set of poles S' ⊂ D;

•
$$\mathcal{F}(\mu; \mathbf{R}; z) = \int \frac{d\mu(t)}{z-t} + \mathbf{R}(z);$$

• $D_{\mathcal{F}} := \overline{\mathbb{C}} \setminus (S_{\mu} \cup S')$ stand for the domain of analyticity of \mathcal{F} .

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Hardy Spaces				

Let *h* be a complex-valued function on the unit circle, \mathbb{T} . Then

$$\begin{split} h &\in L^2 \quad \text{iff} \quad \|h\|_2^2 := \sum |h_j|^2 < \infty, \ h_j := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|, \\ h &\in L^\infty \quad \text{iff} \quad \|h\|_\infty := \text{ess. sup}_{\mathbb{T}} |h| < \infty. \end{split}$$

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Hardy Spaces				

Let *h* be a complex-valued function on the unit circle, \mathbb{T} . Then

$$\begin{split} h &\in L^2 \quad \text{iff} \quad \|h\|_2^2 := \sum |h_j|^2 < \infty, \ h_j := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|, \\ h &\in L^\infty \quad \text{iff} \quad \|h\|_\infty := \text{ess.} \sup_{\mathbb{T}} |h| < \infty. \end{split}$$

Let $p = 2, \infty$. The Hardy spaces are defined by

$$\begin{array}{rcl} H^p & := & \left\{ h \in L^p : & h_j = 0, \ j < 0 \right\}, \\ \bar{H}^p_0 & := & \left\{ h \in L^p : & h_j = 0, \ j > -1 \right\}. \end{array}$$

It is clear that

$$L^2 = H^2 \oplus \bar{H}_0^2.$$

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
	000000			

Hankel Operators

Orthogonal projections:

$$\begin{array}{rccc} \mathcal{P}_{-}: L^2 & \to & \bar{H}_0^2 \\ \mathcal{P}_{+}: L^2 & \to & H^2 \end{array}$$

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Hankel Operators				

Orthogonal projections:

$$\begin{array}{rccc} \mathcal{P}_{-}: L^2 & \rightarrow & \bar{H}_0^2 \\ \mathcal{P}_{+}: L^2 & \rightarrow & H^2 \end{array}$$

Let $f \in L^{\infty}$. Hankel operator with symbol *f*:

$$egin{array}{rcl} \mathcal{H}_f: \mathcal{H}^2 &
ightarrow & ar{\mathcal{H}}_0^2 \ h & \mapsto & \mathcal{P}_-(fh) \end{array}$$

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Hankel Operators				

Orthogonal projections:

$$\begin{array}{rccc} \mathcal{P}_{-}: \mathcal{L}^{2} & \rightarrow & \bar{H}_{0}^{2} \\ \mathcal{P}_{+}: \mathcal{L}^{2} & \rightarrow & \mathcal{H}^{2} \end{array}$$

Let $f \in L^{\infty}$. Hankel operator with symbol *f*:

$$\mathcal{H}_{f}: H^{2} \rightarrow \bar{H}_{0}^{2}$$

 $h \mapsto \mathcal{P}_{-}(fh)$

Let $n \in \mathbb{Z}_+$. The *n*-th singular number of \mathcal{H}_f :

$$\sigma_n(\mathcal{H}_f) := \inf \left\{ \|\mathcal{H}_f - \mathcal{O}\| : \mathcal{O} : H^2 \to \overline{H}_0^2, \quad \operatorname{rank}(\mathcal{O}) \le n \right\},$$
$$\sigma_\infty(\mathcal{H}_f) := \lim_{n \to \infty} \sigma_n(\mathcal{H}_f);$$

n AAK Approximation We

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Blaschke Products and Meromorphic functions

The set of Blaschke products of degree at most *n*:

$$B_n:=\left\{b(z):\ b(z)=e^{ic}\prod_{j=1}^m\frac{z-z_j}{1-\bar{z}_jz},\ m\leq n,\ z_j\in\mathbb{D},\ c\in\mathbb{R}\right\}.$$

AAK Approximation	Weak Asymptotics	Strong Asymptotics	
0000000			

Blaschke Products and Meromorphic functions

The set of Blaschke products of degree at most *n*:

$$B_n:=\left\{b(z):\ b(z)=e^{ic}\prod_{j=1}^m\frac{z-z_j}{1-\bar{z}_jz},\ m\leq n,\ z_j\in\mathbb{D},\ c\in\mathbb{R}\right\}.$$

The set of meromorphic functions of degree *n*:

$$H_n^{\infty} := H^{\infty} B_n^{-1}.$$

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Inner and Outer F	unctions			

Inner functions:

- Blaschke products;
- singular inner functions

$$\exp\left\{-\int rac{\xi+z}{\xi-z}d
u(\xi)
ight\},$$

where ν is a positive measure on \mathbb{T} which is singular with respect to the Lebesgue measure.

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments

Inner functions:

- Blaschke products;
- singular inner functions

$$\exp\left\{-\int rac{\xi+z}{\xi-z}d
u(\xi)
ight\},$$

where ν is a positive measure on $\mathbb T$ which is singular with respect to the Lebesgue measure.

Outer functions:

•
$$w \in H^2$$
 such that $w(z) = \exp\left\{\frac{1}{2\pi}\int \frac{\xi+z}{\xi-z}\log|w(\xi)||d\xi|\right\}.$

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	
	0000000			

AAK Theorem

Theorem (Adamyan, Arov, and Krein⁴)

Let $f \in L^{\infty}$ and $n \in \mathbb{Z}_+$. Then

$$\inf_{g\in H_n^{\infty}} \|f-g\|_{\infty} = \sigma_n(\mathcal{H}_f).$$

⁴Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. *Math. USSR Sb.*, 15:31-73, 1971.

lotivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiment
	0000000			

AAK Theorem

Theorem (Adamyan, Arov, and Krein⁴)

Let $f \in L^{\infty}$ and $n \in \mathbb{Z}_+$. Then

$$\inf_{g\in H_n^{\infty}} \|f-g\|_{\infty} = \sigma_n(\mathcal{H}_f).$$

Moreover, there exists a function $g_n \in H_n^\infty$ such that

$$|f-g_n|=\sigma_n(\mathcal{H}_f)$$
 a.e. on \mathbb{T} .

⁴Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. *Math. USSR Sb.*, 15:31-73, 1971.

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiment
0000000			

AAK Theorem

Theorem (Adamyan, Arov, and Krein⁴)

Let $f \in L^{\infty}$ and $n \in \mathbb{Z}_+$. Then

$$\inf_{g\in H_n^{\infty}} \|f-g\|_{\infty} = \sigma_n(\mathcal{H}_f).$$

Moreover, there exists a function $g_n \in H_n^\infty$ such that

$$|f-g_n|=\sigma_n(\mathcal{H}_f)$$
 a.e. on \mathbb{T} .

Further, if $\sigma_n(\mathcal{H}_f) > \sigma_{\infty}(\mathcal{H}_f)$ then there exists a function of the unit norm $v_n \in H^2$ such that

$$f-g_n=\frac{\mathcal{H}_f(v_n)}{v_n}.$$

⁴Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. *Math. USSR Sb.*, 15:31-73, 1971.

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
AAK Theorem				

• g_n is unique if $f \in H^{\infty} \cup C(\mathbb{T})$;

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
AAK Theorem				

- g_n is unique if $f \in H^\infty \cup C(\mathbb{T})$;
- there exists N₁ ⊂ N, |N₁| = ∞, such that g_n is irreducible,
 i.e. g_n has exactly n poles for each n ∈ N₁;

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
AAK Theorem				

- g_n is unique if $f \in H^\infty \cup C(\mathbb{T})$;
- there exists N₁ ⊂ N, |N₁| = ∞, such that g_n is irreducible,
 i.e. g_n has exactly n poles for each n ∈ N₁;
- v_n is called a singular vector associated to g_n , $||v_n||_2 = 1$;

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
AAK Theorem				

- g_n is unique if $f \in H^\infty \cup C(\mathbb{T})$;
- there exists N₁ ⊂ N, |N₁| = ∞, such that g_n is irreducible,
 i.e. g_n has exactly n poles for each n ∈ N₁;
- v_n is called a singular vector associated to g_n , $||v_n||_2 = 1$;
- *v_n* is not necessarily unique;

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
AAK Theorem				

- g_n is unique if $f \in H^{\infty} \cup C(\mathbb{T})$;
- there exists N₁ ⊂ N, |N₁| = ∞, such that g_n is irreducible,
 i.e. g_n has exactly n poles for each n ∈ N₁;
- v_n is called a singular vector associated to g_n , $||v_n||_2 = 1$;
- *v_n* is not necessarily unique;
- there always exists a v_n with the inner-outer factorization

$$v_n(z) = b_n(z)w_n(z), \quad z \in \mathbb{D},$$

where b_n is a Blaschke product of exact degree n and w_n is an outer function.

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Orthogonality Rela	tions			

•
$$\mathcal{F} = \mathcal{F}(\mu; \mathbf{R}; \cdot)$$
 and $\mathbb{T} \subset \mathbf{D}_{\mathcal{F}};$

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Orthogonality Re	lations			

•
$$\mathcal{F} = \mathcal{F}(\mu; \mathbf{R}; \cdot)$$
 and $\mathbb{T} \subset \mathbf{D}_{\mathcal{F}};$

• R = P/Q, $m := \deg(Q)$, and $Q(z) = \prod_{\eta \in S'} (z - \eta)^{m(\eta)}$;

Motivation	AAK Approximation	Weak Asymptotics ●○○○○○○	Strong Asymptotics	Numerical Experiments
Orthogonality Rel	ations			

•
$$\mathcal{F} = \mathcal{F}(\mu; \mathbf{R}; \cdot)$$
 and $\mathbb{T} \subset \mathbf{D}_{\mathcal{F}};$

• R = P/Q, $m := \deg(Q)$, and $Q(z) = \prod_{\eta \in S'} (z - \eta)^{m(\eta)}$;

• $g_n = \mathcal{P}_+(\mathcal{F}v_n)/v_n$ is irreducible and $v_n = b_n w_n$;

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Orthogonality Rela	ations			

•
$$\mathcal{F} = \mathcal{F}(\mu; \mathbf{R}; \cdot)$$
 and $\mathbb{T} \subset \mathbf{D}_{\mathcal{F}};$

•
$$R = P/Q$$
, $m := \deg(Q)$, and $Q(z) = \prod_{\eta \in S'} (z - \eta)^{m(\eta)}$;

•
$$g_n = \mathcal{P}_+(\mathcal{F}v_n)/v_n$$
 is irreducible and $v_n = b_n w_n$;

•
$$b_n(z) = q_n(z)/\widetilde{q}_n(z);$$

•
$$q_n(z) = \prod_{j=1}^n (z - \xi_{j,n}), \ \widetilde{q}_n(z) = z^n \overline{q_n(1/\overline{z})}.$$

Motivation	AAK Approximation	Weak Asymptotics ●○○○○○○	Strong Asymptotics	Numerical Experiments
Orthogonality Rel	ations			

•
$$\mathcal{F} = \mathcal{F}(\mu; \mathbf{R}; \cdot)$$
 and $\mathbb{T} \subset \mathbf{D}_{\mathcal{F}};$

•
$$R = P/Q$$
, $m := \deg(Q)$, and $Q(z) = \prod_{\eta \in S'} (z - \eta)^{m(\eta)}$;

•
$$g_n = \mathcal{P}_+(\mathcal{F}v_n)/v_n$$
 is irreducible and $v_n = b_n w_n$;

•
$$b_n(z) = q_n(z)/\widetilde{q}_n(z);$$

•
$$q_n(z) = \prod_{j=1}^n (z - \xi_{j,n}), \ \widetilde{q}_n(z) = z^n \overline{q_n(1/\overline{z})}.$$

Then

$$\int t^j q_n(t) Q(t) \frac{w_n(t)}{\widetilde{q}_n^2(t)} d\mu(t) = 0, \quad j = 0, \dots, n-m-1.$$

Motivation

Setting

AK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Definition (Class of measures **BVT**)

We say that a Borel complex measure μ supported in (-1, 1) belongs to the class ${\bf BVT}$ if

• S_{μ} is a regular set;

Motivation

AK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Setting

Definition (Class of measures BVT)

We say that a Borel complex measure μ supported in (-1, 1) belongs to the class **BVT** if

- S_{μ} is a regular set;
- *d*µ(*t*) = *e^{iΘ(t)}d*|µ|(*t*), where |µ| is the total variation and Θ is real-valued argument function of bounded variation, i.e.

$$\sup\left\{\sum_{j=1}^N |\Theta(x_j) - \Theta(x_{j-1})|\right\} < \infty,$$

 $x_0 < x_1 < \ldots < x_N \subset S_\mu;$

Motivation

AK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Setting

Definition (Class of measures BVT)

We say that a Borel complex measure μ supported in (-1, 1) belongs to the class **BVT** if

- S_{μ} is a regular set;
- *d*µ(*t*) = *e^{iΘ(t)}d*|µ|(*t*), where |µ| is the total variation and Θ is real-valued argument function of bounded variation, i.e.

$$\sup\left\{\sum_{j=1}^N |\Theta(x_j) - \Theta(x_{j-1})|\right\} < \infty,$$

 $x_0 < x_1 < \ldots < x_N \subset S_\mu;$

• $|\mu|([x - \delta, x + \delta]) \ge c\delta^L$, where *c* and *L* are some constants, $x \in S_\mu$, and $\delta \in (0, 1)$.

AAK Approximation	Weak Asymptotics	
	000000	

Strong Asymptotics

Numerical Experiments

Auxiliary Results

Lemma (Baratchart et al.⁵)

The family $\mathcal{W} := \{w_n\}$ is normal in $D^*_{\mathcal{F}}$, where $D^*_{\mathcal{F}}$ is the reflection of $D_{\mathcal{F}}$ across \mathbb{T} . Moreover, any limit point of \mathcal{W} is zero free in \mathbb{D} .

⁵L. Baratchart and F. Seyfert. An L^p analog of AAK theory for $p \ge 2$. J. Func. Anal., 191(1):52–122, 2002;

²⁻D inverse problems for the Laplacian: a meromorphic approximation approach. *J. Math. Pures Appl.* 86:1–41, 2006.

L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

Motivation

AK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Auxiliary Results

Lemma (Baratchart et al.⁵)

The family $\mathcal{W} := \{w_n\}$ is normal in $D^*_{\mathcal{F}}$, where $D^*_{\mathcal{F}}$ is the reflection of $D_{\mathcal{F}}$ across \mathbb{T} . Moreover, any limit point of \mathcal{W} is zero free in \mathbb{D} .

Remark

This lemma, in fact, does not require the hypothesis $\mu \in \mathbf{BVT}$. It is sufficient for the lemma to hold to have a measure with an argument of bounded variation and infinitely many points in the support.

⁵L. Baratchart and F. Seyfert. An L^p analog of AAK theory for $p \ge 2$. J. Func. Anal., 191(1):52–122, 2002;

²⁻D inverse problems for the Laplacian: a meromorphic approximation approach. *J. Math. Pures Appl.* 86:1–41, 2006.

L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

AAK Approximation

Auxiliary Results

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Lemma (Baratchart, Küstner, and Totik⁶)

Let S_k be a covering of S_{μ} by k disjoint closed intervals. Then

$$\sum(\pi - \theta(\xi_{j,n})) \leq V(\Theta, W, Q, k).$$

⁶Zero distribution via orthogonality, Ann. Inst. Fourier, 55(5):1455–1499, 2005.

Notivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Potential Theory				

Denote by $V_{\mathbb{D}}^{\omega}$ the Green potential of a probability measure ω , supp $(\omega) \subset \mathbb{D}$, relative to \mathbb{D} , i.e.

$$V^{\omega}_{\mathbb{D}}(z) := \int \log \left| rac{1-ar{t}z}{z-t}
ight| d\omega(t), \quad z \in \mathbb{D} \setminus \mathrm{supp}(\omega).$$

It is known that there exists the unique measure $\omega^* = \omega_{(S_\mu, \mathbb{T})}$ that minimizes the Green energy functional

$$\int \int \log \left| rac{1-ar{t}z}{z-t}
ight| d\omega(t) d\omega(z) = \int V^\omega_\mathbb{D}(z) d\omega(z),$$

among all probability Borel measures supported on S_{μ} .

Motivation

AAK Approximatior

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Potential Theory

It holds that

$$V^{\omega^*}_{\mathbb{D}}\equiv 0$$
 on \mathbb{T}

by the definition of the Green potential and

$$V^{\omega^*}_{\mathbb{D}}\equiv rac{1}{ ext{cap}(\mathcal{S}_{\mu},\mathbb{T})} \hspace{0.4cm} ext{on} \hspace{0.4cm} \mathcal{S}_{\mu}$$

by the properties of the Green equilibrium measure, where $cap(S_{\mu}, \mathbb{T})$ is the Green capacity of S_{μ} relative to \mathbb{D} .

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experir
	000000		

Theorem (Baratchart and Y.⁷)

Let $\{g_n\}$ be a sequence of irreducible best approximants to $\mathcal{F}(\mu; R; \cdot)$ with $\mu \in \mathbf{BVT}$. Then

 the counting measures of the poles of g_n converge to ω* in the weak* sense;

⁷L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Ex
	000000		

Theorem (Baratchart and Y.⁷)

Let $\{g_n\}$ be a sequence of irreducible best approximants to $\mathcal{F}(\mu; R; \cdot)$ with $\mu \in \mathbf{BVT}$. Then

- the counting measures of the poles of g_n converge to ω* in the weak* sense;
- in particular, if z is not a limit point of poles of g_n then $\lim_{n\to\infty} |b_n(z)|^{1/n} = \exp\left\{-V_{\mathbb{D}}^{\omega^*}(z)\right\};$

⁷L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

AAK Approximation	Weak Asymptotics	Strong Asymptotics	
	000000		

Theorem (Baratchart and Y.⁷)

Let $\{g_n\}$ be a sequence of irreducible best approximants to $\mathcal{F}(\mu; R; \cdot)$ with $\mu \in \mathbf{BVT}$. Then

- the counting measures of the poles of g_n converge to ω* in the weak* sense;
- in particular, if z is not a limit point of poles of g_n then $\lim_{n \to \infty} |b_n(z)|^{1/n} = \exp\left\{-V_{\mathbb{D}}^{\omega^*}(z)\right\};$

•
$$|(\mathcal{F} - g_n)(z)|^{1/2n} \stackrel{cap}{\to} \exp\left\{V_{\mathbb{D}}^{\omega^*}(z) - \frac{1}{\operatorname{cap}(S_{\mu}, \mathbb{T})}
ight\}$$
 on compact subsets of $\mathbb{D} \setminus S_{\mu};$

⁷L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

AAK Approximation	Weak Asymptotics	Strong Asymptotics	
	000000		

Theorem (Baratchart and Y.⁷)

Let $\{g_n\}$ be a sequence of irreducible best approximants to $\mathcal{F}(\mu; R; \cdot)$ with $\mu \in \mathbf{BVT}$. Then

- the counting measures of the poles of g_n converge to ω* in the weak* sense;
- in particular, if z is not a limit point of poles of g_n then $\lim_{n \to \infty} |b_n(z)|^{1/n} = \exp\left\{-V_{\mathbb{D}}^{\omega^*}(z)\right\};$

•
$$|(\mathcal{F} - g_n)(z)|^{1/2n} \stackrel{cap}{\to} \exp\left\{V_{\mathbb{D}}^{\omega^*}(z) - \frac{1}{\operatorname{cap}(S_{\mu}, \mathbb{T})}
ight\}$$
 on compact subsets of $\mathbb{D} \setminus S_{\mu};$

• for each *n* large enough there exists $q_{n,m}$, divisor of q_n , such that $q_{n,m} = Q + o(1)$.

⁷L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms with Polar Singularities. *Accepted for publication in Math. Sb.*

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Conformal Map				

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Conformal Map				

Let
$$S_{\mu} = E := [a, b]$$
. Then

$$\exp\left\{-V^{\omega^*}_{\mathbb{D}}(z)
ight\}=|arphi(z)|$$

and

$$\exp\left\{rac{-1}{\operatorname{cap}(E,\mathbb{T})}
ight\}=arphi(b)=-arphi(a)=:
ho,$$

where

$$\varphi(z) := \exp\left\{2\pi\tau^2 \int_1^z \frac{dt}{\sqrt{(t-a)(b-t)(1-at)(1-bt)}}\right\}$$

is the conformal map of $\overline{\mathbb{C}} \setminus (E \cup E^{-1})$ onto annulus \mathbb{A}_{ρ} .

lotivation	

AK Approximation

Weak Asymptotics

Strong Asymptotics

Numerical Experiments

Setting

Definition (Class of measures BND)

We say that a Borel complex measure μ supported in (-1, 1) belongs to the class **BND** if

 dµ(t) = (t − a)^α(b − t)^βs(t)dµ_E(t), where α, β ∈ [0, 1/2) and µ_E is the arcsine distribution on E = [a, b];

Motivation

Strong Asymptotics

Numerical Experiments

Setting

Definition (Class of measures BND)

We say that a Borel complex measure μ supported in (-1, 1) belongs to the class **BND** if

- dµ(t) = (t − a)^α(b − t)^βs(t)dµ_E(t), where α, β ∈ [0, 1/2) and µ_E is the arcsine distribution on E = [a, b];
- s is a non-vanishing Dini-continuous function on E;

Strong Asymptotics

Numerical Experiments

Setting

Definition (Class of measures BND)

We say that a Borel complex measure μ supported in (-1,1) belongs to the class BND if

- dµ(t) = (t − a)^α(b − t)^βs(t)dµ_E(t), where α, β ∈ [0, 1/2) and µ_E is the arcsine distribution on E = [a, b];
- s is a non-vanishing Dini-continuous function on E;
- μ has an argument of bounded variation on *E*.

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Main Theorem				

Theorem (Y.⁸)

Let $\{g_n\}$ be a sequence of irreducible best approximants to $\mathcal{F}(\mu; R; \cdot)$ with $\mu \in \mathbf{BND}$ and R analytic on E. Then the outer factors w_n are such that

$$w_n = rac{ au + o(1)}{\sqrt{(1-az)(1-bz)}} + rac{l_n}{\widetilde{Q}}, \quad \widetilde{Q}(z) = z^m \overline{Q(1/\overline{z})},$$

where o(1) holds locally uniformly in $\overline{\mathbb{C}} \setminus E^{-1}$ and the polynomials I_n , deg $(I_n) < m$, converge to zero and are coprime with \widetilde{Q} .

⁸On Approximation of Complex Cauchy Transforms with Polar Singularities. *To be submitted*

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Main Theorem				

Theorem

Further,

$$\frac{b_n(z)}{\varphi^n(z)} = \frac{1+o(1)}{\mathcal{D}_n(z)} \frac{b(z)}{\varphi^m(z)}$$

locally uniformly in $D_{\mathcal{F}} \cap D_{\mathcal{F}}^*$, where $b = Q/\widetilde{Q}$.

Each \mathcal{D}_n is such that

- it is an outer function in $\overline{\mathbb{C}} \setminus (E \cup E^{-1})$;
- there exist constants *m* and *M* independent of *n* such that $0 < m < D_n(z) < M < \infty$ in $\overline{\mathbb{C}}$;
- it holds that $\mathcal{D}_n(z)\overline{\mathcal{D}_n(1/\bar{z})} = 1$;
- it has winding number zero on any curve separating *E* from E^{-1} .

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Main Theorem				

Theorem

Moreover,

 $(\mathcal{F} - g_n)(z) =$

$$\left(\frac{2\mathcal{D}}{\tau}+o(1)\right)\sqrt{\frac{(1-az)(1-bz)}{(z-a)(z-b)}}\left(\frac{\rho}{\varphi(z)}\right)^{2(n-m)}\frac{\mathcal{D}_n^2(z)}{b^2(z)}$$

locally uniformly in $D_{\mathcal{F}} \cap \mathbb{D}$.

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
Main Theorem				

Theorem

Finally, for each η and all *n* large enough, there exists an arrangement of $\eta_{1,n}, \ldots \eta_{m(\eta),n}$, the zeros of b_n approaching η , such that

$$\eta_{k,n} = \eta + A_{k,n}^{\eta} \left(\frac{\rho}{\varphi(\eta)}\right)^{2(n-m)/m(\eta)} \exp\left\{\frac{2\pi ki}{m(\eta)}\right\},\,$$

 $k = 1, ..., m(\eta)$, where the sequences $\{A_{k,n}^{\eta}\}$ are convergent with finite nonzero limit independent of *k*.

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
			•••••

$$\begin{aligned} \mathcal{F}(z) &= 7 \int_{[-6/7, -1/8]} \frac{e^{it} dt}{z - t} - (3 + i) \int_{[2/5, 1/2]} \frac{1}{t - 2i} \frac{dt}{z - t} \\ &+ (2 - 4i) \int_{[2/3, 7/8]} \frac{\ln(t) dt}{z - t} + \frac{2}{(z + 3/7 - 4i/7)^2} \\ &+ \frac{6}{(z - 5/9 - 3i/4)^3} + \frac{24}{(z + 1/5 + 6i/7)^4}. \end{aligned}$$

On the figures the solid lines stand for the support of the measure, diamonds depict the polar singularities of \mathcal{F} , and circles denote the poles of the correspondent approximants. Note that the poles of \mathcal{F} seem to attract the singularities first.

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
				0000000

Padé approximants to \mathcal{F} of degree 8 and 13

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
				0000000

AAK (left) and rational (right) approximants to \mathcal{F} of degree 8

Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
				0000000

Padé (left) and AAK (right) approximants to ${\cal F}$ of degree 30

Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Numerical Expe	Motivation	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experi
---	------------	-------------------	------------------	--------------------	------------------

nents

Strong Asymptotics

$$\begin{aligned} \mathcal{F}(z) &= 7 \int_{[-0.7,0]} \frac{e^{it}}{z-t} \frac{dt}{\sqrt{(t+0.7)(0.4-t)}} \\ &+ \int_{[0,0.4]} \frac{it+1}{z-t} \frac{dt}{\sqrt{(t+0.7)(0.4-t)}} \\ &+ \frac{1}{5!(z-0.7-0.2i)^6} \end{aligned}$$

On the figures the solid line stands for the support of the measure and circles denote the poles of the correspondent approximants.

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
			00000000

Strong Asymptotics

Poles of Padé (left) and AAK (right) approximants of degree 10 to $\mathcal{F}.$

AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments
			0000 0000

Strong Asymptotics

Poles of Padé (left) and AAK (right) approximants of degree 20 to $\mathcal{F}.$

Motivation 000000000	AAK Approximation	Weak Asymptotics	Strong Asymptotics	Numerical Experiments ○○○○○○●		
Strong Asymptotics						

Poles of Padé (left) and AAK (right) approximants of degrees 21-33 to \mathcal{F} lying in an neighborhood of the polar singularity.