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Harmonic Solution

Let u be the equilibrium distribution of heat or current. Then

∆u = 0 in D \ γ

∂u
∂nΓ

= Φ on Γ := ∂D

∂u±

∂n±γ
= 0 on γ \ {γ0, γ1}

,

where ∆u is the Laplacian of u.
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Cauchy Integral

u has well-defined conjugate in D \ γ and

F(ξ) = u(ξ)− i
∫ ξ

ξ0

Φds, ξ ∈ ∂D.

Further,

F(z) = h(z) +
1

2πi

∫
γ

(F− −F+)(t)
z − t

dt , z ∈ D \ γ,

where h is analytic in D and continuous in D.

One approximates F on Γ by meromorphic in D functions and
observes the asymptotic behavior of their poles as the number
of poles grows large.
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EEG

ElectroEncephaloGraphy problem consists in detecting
epileptic foci located in the brain from the measurements of
electric potential, U, on the scalp.

The brain, the skull, and the scalp are modeled by three nested
spheres with the same center1.

From measurements of U on the outer sphere, one needs to
recover U on the inner sphere, inside of which it satisfies
Neumann boundary value problem2.

1L. Baratchart, J. Leblond, and J-P. Marmorat. Inverse source problem in a 3D ball
from best meromorphic approximation on 2D slices. Electron. Trans. Numer. Anal.,
25:41–53, 2006.

2B. Atfen, L. Baratchart, J. Leblond, and J. R. Partington. Bounded extremal and
Cauchy-Laplace problems on 3D spherecal domains. In preparation.
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EEG

The inner ball is sliced into parallel disks. For each disk, d ,
there exists a function, fd , analytic in d except branch points
and poles such that

U2
∣∣∣
∂d

= fd |∂d .

The epileptic foci are recovered from the knowledge of the
branch points and poles of fd for each disk d . The latter are
localized using the meromorphic approximation approach.
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Objectives

We want to answer the following questions:

1 What is asymptotic distribution of poles of best
meromorphic approximants to F?

2 Do some of these poles converge to the polar singularities
of F?

3 What can be said about the convergence of such
approximants to F?
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Reduction Theorem

Note (Baratchart, Mandrèa, Saff, and Wielonsky3)
In the following we set D to be the unit disk, D, and γ to be a
subset of (−1,1). It was shown by Baratchart et al. that all
these considerations translate to domains with piecewise C1,α

boundary without outward-pointing cusps, where γ is supposed
to be a subset of a hyperbolic geodesic of the corresponding
domain.

32-D inverse problems for the Laplacian: a meromorphic approximation approach.
J. Math. Pures Appl., 86:1–41, 2006
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Setting

Let

µ be a complex Borel measure, Sµ := supp(µ) ⊂ (−1,1);

R be rational function whose set of poles S′ ⊂ D;

F(µ; R; z) =

∫
dµ(t)
z − t

+ R(z);

DF := C \ (Sµ ∪ S′) stand for the domain of analyticity of F .
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Hardy Spaces

Let h be a complex-valued function on the unit circle, T. Then

h ∈ L2 iff ‖h‖22 :=
∑ |hj |2 <∞, hj := 1

2π

∫
T ξ
−jh(ξ)|dξ|,

h ∈ L∞ iff ‖h‖∞ := ess. supT |h| <∞.

Let p = 2,∞. The Hardy spaces are defined by

Hp :=
{

h ∈ Lp : hj = 0, j < 0
}
,

H̄p
0 :=

{
h ∈ Lp : hj = 0, j > −1

}
.

It is clear that

L2 = H2 ⊕ H̄2
0 .
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Hankel Operators

Orthogonal projections:

P− : L2 → H̄2
0

P+ : L2 → H2.

Let f ∈ L∞. Hankel operator with symbol f :

Hf : H2 → H̄2
0

h 7→ P−(fh).

Let n ∈ Z+. The n-th singular number of Hf :

σn(Hf ) := inf
{
‖Hf −O‖ : O : H2 → H̄2

0 , rank(O) ≤ n
}
,

σ∞(Hf ) := lim
n→∞

σn(Hf );
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Blaschke Products and Meromorphic functions

The set of Blaschke products of degree at most n:

Bn :=

b(z) : b(z) = eic
m∏

j=1

z − zj

1− z̄jz
, m ≤ n, zj ∈ D, c ∈ R

 .

The set of meromorphic functions of degree n:

H∞n := H∞B−1
n .
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Inner and Outer Functions

Inner functions:

Blaschke products;
singular inner functions

exp
{
−
∫
ξ + z
ξ − z

dν(ξ)

}
,

where ν is a positive measure on T which is singular with
respect to the Lebesgue measure.

Outer functions:

w ∈ H2 such that

w(z) = exp
{

1
2π

∫
ξ + z
ξ − z

log |w(ξ)||dξ|
}
.
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AAK Theorem

Theorem (Adamyan, Arov, and Krein4)
Let f ∈ L∞ and n ∈ Z+. Then

inf
g∈H∞n

‖f − g‖∞ = σn(Hf ).

Moreover, there exists a function gn ∈ H∞n such that

|f − gn| = σn(Hf ) a.e. on T.

Further, if σn(Hf ) > σ∞(Hf ) then there exists a function of the
unit norm vn ∈ H2 such that

f − gn =
Hf (vn)

vn
.

4Analytic properties of Schmidt pairs for a Hankel operator on the generalized
Schur-Takagi problem. Math. USSR Sb., 15:31-73, 1971.
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AAK Theorem

Note
gn is unique if f ∈ H∞ ∪ C(T);

there exists N1 ⊂ N, |N1| =∞, such that gn is irreducible,
i.e. gn has exactly n poles for each n ∈ N1;

vn is called a singular vector associated to gn, ‖vn‖2 = 1;

vn is not necessarily unique;

there always exists a vn with the inner-outer factorization

vn(z) = bn(z)wn(z), z ∈ D,

where bn is a Blaschke product of exact degree n and wn is
an outer function.
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Orthogonality Relations

Denote

F = F(µ; R; ·) and T ⊂ DF ;

R = P/Q, m := deg(Q), and Q(z) =
∏
η∈S′(z − η)m(η);

gn = P+(Fvn)/vn is irreducible and vn = bnwn;

bn(z) = qn(z)/q̃n(z);

qn(z) =
∏n

j=1(z − ξj,n), q̃n(z) = znqn(1/z̄).

Then∫
t jqn(t)Q(t)

wn(t)
q̃2

n(t)
dµ(t) = 0, j = 0, . . . ,n −m − 1.
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Setting

Definition (Class of measures BVT)

We say that a Borel complex measure µ supported in (−1,1)
belongs to the class BVT if

Sµ is a regular set;

dµ(t) = eiΘ(t)d |µ|(t), where |µ| is the total variation and Θ
is real-valued argument function of bounded variation, i.e.

sup


N∑

j=1

|Θ(xj)−Θ(xj−1)|
 <∞,

x0 < x1 < . . . < xN ⊂ Sµ;

|µ|([x − δ, x + δ]) ≥ cδL, where c and L are some
constants, x ∈ Sµ, and δ ∈ (0,1).
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Auxiliary Results

Lemma (Baratchart et al.5)

The familyW := {wn} is normal in D∗F , where D∗F is the
reflection of DF across T. Moreover, any limit point ofW is zero
free in D.

Remark
This lemma, in fact, does not require the hypothesis µ ∈ BVT. It
is sufficient for the lemma to hold to have a measure with an
argument of bounded variation and infinitely many points in the
support.

5L. Baratchart and F. Seyfert. An Lp analog of AAK theory for p ≥ 2. J. Func. Anal.,
191(1):52–122, 2002;
2-D inverse problems for the Laplacian: a meromorphic approximation approach. J.
Math. Pures Appl. 86:1–41, 2006.
L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms
with Polar Singularities. Accepted for publication in Math. Sb.
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Auxiliary Results

Lemma (Baratchart, Küstner, and Totik6)
Let Sk be a covering of Sµ by k disjoint closed intervals. Then∑

(π − θ(ξj,n)) ≤ V (Θ,W,Q, k).

Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Summary

Auxiliary Results

Lemma (Baratchart, Küstner, and Totik6)

Let Sk be a covering of Sµ by k disjoint closed intervals. Then∑
(π − θ(ξj,n)) ≤ V (Θ,W,Q, k).

Sk

θ(ξ)

ξ

6Zero distribution via orthogonality, Ann. Inst. Fourier, 55(5):1455–1499, 2005.6Zero distribution via orthogonality, Ann. Inst. Fourier, 55(5):1455–1499, 2005.
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Potential Theory

Denote by Vω
D the Green potential of a probability measure ω,

supp(ω) ⊂ D, relative to D, i.e.

Vω
D (z) :=

∫
log
∣∣∣∣1− t̄z

z − t

∣∣∣∣dω(t), z ∈ D \ supp(ω).

It is known that there exists the unique measure ω∗ = ω(Sµ,T)

that minimizes the Green energy functional∫ ∫
log
∣∣∣∣1− t̄z

z − t

∣∣∣∣dω(t)dω(z) =

∫
Vω

D (z)dω(z),

among all probability Borel measures supported on Sµ.
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Potential Theory

It holds that

Vω∗
D ≡ 0 on T

by the definition of the Green potential and

Vω∗
D ≡ 1

cap(Sµ,T)
on Sµ

by the properties of the Green equilibrium measure, where
cap(Sµ,T) is the Green capacity of Sµ relative to D.
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Main Theorem

Theorem (Baratchart and Y.7)

Let {gn} be a sequence of irreducible best approximants to
F(µ; R; ·) with µ ∈ BVT. Then

the counting measures of the poles of gn converge to ω∗ in
the weak∗ sense;

in particular, if z is not a limit point of poles of gn then
lim

n→∞
|bn(z)|1/n = exp

{
−Vω∗

D (z)
}

;

|(F − gn)(z)|1/2n cap→ exp
{

Vω∗
D (z)− 1

cap(Sµ,T)

}
on

compact subsets of D \ Sµ;

for each n large enough there exists qn,m, divisor of qn,
such that qn,m = Q + o(1).

7L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms
with Polar Singularities. Accepted for publication in Math. Sb.
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the weak∗ sense;

in particular, if z is not a limit point of poles of gn then
lim

n→∞
|bn(z)|1/n = exp

{
−Vω∗

D (z)
}

;

|(F − gn)(z)|1/2n cap→ exp
{

Vω∗
D (z)− 1

cap(Sµ,T)

}
on

compact subsets of D \ Sµ;

for each n large enough there exists qn,m, divisor of qn,
such that qn,m = Q + o(1).

7L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms
with Polar Singularities. Accepted for publication in Math. Sb.



Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Numerical Experiments

Main Theorem

Theorem (Baratchart and Y.7)

Let {gn} be a sequence of irreducible best approximants to
F(µ; R; ·) with µ ∈ BVT. Then

the counting measures of the poles of gn converge to ω∗ in
the weak∗ sense;

in particular, if z is not a limit point of poles of gn then
lim

n→∞
|bn(z)|1/n = exp

{
−Vω∗

D (z)
}

;

|(F − gn)(z)|1/2n cap→ exp
{

Vω∗
D (z)− 1

cap(Sµ,T)

}
on

compact subsets of D \ Sµ;

for each n large enough there exists qn,m, divisor of qn,
such that qn,m = Q + o(1).

7L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms
with Polar Singularities. Accepted for publication in Math. Sb.



Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Numerical Experiments

Main Theorem

Theorem (Baratchart and Y.7)

Let {gn} be a sequence of irreducible best approximants to
F(µ; R; ·) with µ ∈ BVT. Then

the counting measures of the poles of gn converge to ω∗ in
the weak∗ sense;

in particular, if z is not a limit point of poles of gn then
lim

n→∞
|bn(z)|1/n = exp

{
−Vω∗

D (z)
}

;

|(F − gn)(z)|1/2n cap→ exp
{

Vω∗
D (z)− 1

cap(Sµ,T)

}
on

compact subsets of D \ Sµ;

for each n large enough there exists qn,m, divisor of qn,
such that qn,m = Q + o(1).

7L. Baratchart and M.Y. Meromorphic Approximants to Complex Cauchy Transforms
with Polar Singularities. Accepted for publication in Math. Sb.



Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Numerical Experiments

Conformal Map

T T

Aρ

E E−1

ϕ

ρ

1/ρ



Motivation AAK Approximation Weak Asymptotics Strong Asymptotics Numerical Experiments

Conformal Map

Let Sµ = E := [a,b]. Then

exp
{
−Vω∗

D (z)
}

= |ϕ(z)|

and

exp
{ −1

cap(E ,T)

}
= ϕ(b) = −ϕ(a) =: ρ,

where

ϕ(z) := exp

{
2πτ2

∫ z

1

dt√
(t − a)(b − t)(1− at)(1− bt)

}

is the conformal map of C \ (E ∪ E−1) onto annulus Aρ.
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Setting

Definition (Class of measures BND)

We say that a Borel complex measure µ supported in (−1,1)
belongs to the class BND if

dµ(t) = (t − a)α(b − t)βs(t)dµE (t), where α, β ∈ [0,1/2)
and µE is the arcsine distribution on E = [a,b];

s is a non-vanishing Dini-continuous function on E ;

µ has an argument of bounded variation on E .
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Main Theorem

Theorem (Y.8)

Let {gn} be a sequence of irreducible best approximants to
F(µ; R; ·) with µ ∈ BND and R analytic on E . Then the outer
factors wn are such that

wn =
τ + o(1)√

(1− az)(1− bz)
+

ln
Q̃
, Q̃(z) = zmQ(1/z̄),

where o(1) holds locally uniformly in C \ E−1 and the
polynomials ln, deg(ln) < m, converge to zero and are coprime
with Q̃.

8On Approximation of Complex Cauchy Transforms with Polar Singularities. To be
submitted
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Main Theorem

Theorem
Further,

bn(z)

ϕn(z)
=

1 + o(1)

Dn(z)

b(z)

ϕm(z)

locally uniformly in DF ∩ D∗F , where b = Q/Q̃.

Each Dn is such that
it is an outer function in C \ (E ∪ E−1);
there exist constants m and M independent of n such that
0 < m < Dn(z) < M <∞ in C;
it holds that Dn(z)Dn(1/z̄) = 1;
it has winding number zero on any curve separating E from
E−1.
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Main Theorem

Theorem
Moreover,

(F − gn)(z) =(
2D
τ

+ o(1)

)√
(1− az)(1− bz)

(z − a)(z − b)

(
ρ

ϕ(z)

)2(n−m) D2
n(z)

b2(z)

locally uniformly in DF ∩ D.
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Main Theorem

Theorem
Finally, for each η and all n large enough, there exists an
arrangement of η1,n, . . . ηm(η),n, the zeros of bn approaching η,
such that

ηk ,n = η + Aηk ,n

(
ρ

ϕ(η)

)2(n−m)/m(η)

exp
{

2πki
m(η)

}
,

k = 1, . . . ,m(η), where the sequences {Aηk ,n} are convergent
with finite nonzero limit independent of k .
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Weak Asymptotics

F(z) = 7
∫

[−6/7,−1/8]

eitdt
z − t

− (3 + i)
∫

[2/5,1/2]

1
t − 2i

dt
z − t

+ (2− 4i)
∫

[2/3,7/8]

ln(t)dt
z − t

+
2

(z + 3/7− 4i/7)2

+
6

(z − 5/9− 3i/4)3 +
24

(z + 1/5 + 6i/7)4 .

On the figures the solid lines stand for the support of the
measure, diamonds depict the polar singularities of F , and
circles denote the poles of the correspondent approximants.
Note that the poles of F seem to attract the singularities first.
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Weak Asymptotics
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Figure: Padé approximants to F of degree 8 and 13
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Weak Asymptotics
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Figure: AAK (left) and rational (right) approximants to F of degree 8
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Weak Asymptotics
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Figure: Padé (left) and AAK (right) approximants to F of degree 30
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Strong Asymptotics

F(z) = 7
∫

[−0.7,0]

eit

z − t
dt√

(t + 0.7)(0.4− t)

+

∫
[0,0.4]

it + 1
z − t

dt√
(t + 0.7)(0.4− t)

.

+
1

5!(z − 0.7− 0.2i)6

On the figures the solid line stands for the support of the
measure and circles denote the poles of the correspondent
approximants.
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Strong Asymptotics
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Figure: Poles of Padé (left) and AAK (right) approximants of degree
10 to F .
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Strong Asymptotics
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Figure: Poles of Padé (left) and AAK (right) approximants of degree
20 to F .
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Strong Asymptotics
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Figure: Poles of Padé (left) and AAK (right) approximants of degrees
21-33 to F lying in an neighborhood of the polar singularity.
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