Strong Asymptotics of Hermite-Padé Approximants for Angelesco Systems with Complex Weights

Maxim L. Yattselev

Indiana University-Purdue University Indianapolis

FoCM 2014

December 20th, 2014

Let μ be a positive Borel measure $\operatorname{supp}(\mu) \subseteq [a, b]$. There exists a monic polynomial Q_n , $\operatorname{deg}(Q_n) = n$, such that

$$\int x^k Q_n(x) \mathrm{d}\mu(x) = 0,$$

 $k \in \{0, \ldots, n-1\}$. It holds that

$$\int |Q_n(x)|^2 \mathrm{d}\mu(x) = \min_Q \int |Q(x)|^2 \mathrm{d}\mu(x)$$

for any monic polynomial of degree *n*.

To guess the behavior of Q_n , lets look at

 $\min_{Q} \sup_{x \in [a,b]} |Q(x)|.$

Write

$$V^{\sigma_Q}(z) = -rac{1}{n}\log|Q(z)| = -rac{1}{n}\int\log|z-x|\mathrm{d}\sigma_Q(x)|$$

Then the problem becomes

 $\max_{\sigma_Q} \min_{x \in [a,b]} V^{\sigma_Q}(x).$

Look at all the probability measures σ on [a, b]. It is known that there exists the unique measure ω such that

$$\ell := \min_{x \in [a,b]} V^{\omega}(x) = \max_{\sigma} \min_{x \in [a,b]} V^{\sigma}(x).$$

The measure ω is called the **logarithmic equilibrium distribution** on [a, b] and the constant ℓ is called **Robin constant**. It is known that

$$\left\{ \begin{array}{ll} \ell - V^{\omega} \equiv 0 \quad \text{on} \quad [a, b], \\ \\ \ell - V^{\omega} > 0 \quad \text{in} \quad \overline{\mathbb{C}} \setminus [a, b] \end{array} \right.$$

Let f be a function holomorphic at infinity. The diagonal Padé approximant $[n/n]_f = P_n/Q_n$ is the unique rational function such that

$$\begin{array}{l} \displaystyle \deg \left(Q_n \right) \leq n, \\ \displaystyle \left(Q_n f - P_n \right) (z) = \mathcal{O} \left(z^{-(n+1)} \right). \end{array}$$

Let μ be such that $\mu' > 0$ almost everywhere on [a, b]. If

$$f(z) = \int \frac{\mathrm{d}\mu(x)}{x-z},$$

then Q_n is the *n*-th orthogonal polynomials w.r.t. to μ and it holds locally uniformly in $\overline{\mathbb{C}} \setminus [a, b]$ that

$$\lim_{n\to\infty} n^{-1} \log |f - [n/n]_f| \le -2(\ell - V^{\omega})$$
$$\lim_{n\to\infty} n^{-1} \log |Q_n| = -V^{\omega}.$$

Padé Approximation 00000 Strong Asymptotics

If the measure μ satisfies Szegő condition $\int \log \mu' d\omega > -\infty$, then there exists a non-vanishing holomorphic function *S* such that

$$S_+S_-=\mu'w_+,$$

where $w(z) = \sqrt{(z-a)(z-b)}$. In this case it holds that

$$\begin{cases} Q_n = C_n [1+o(1)] S \Phi^n \\ Q_n f - P_n = C_n [1+o(1)] / (w S \Phi^n) \end{cases}$$

where Φ is the conformal map of $\overline{\mathbb{C}} \setminus [a, b]$ to the complement of the unit disk such that $\Phi(\infty) = \infty$ and $\Phi'(\infty) > 0$.

Remarks

When $d\mu(x) = (\rho/w_+)(x)dx$ and ρ is Hölder continuous, complex-valued, and non-vanishing on [a, b], this theorem is due to **Nuttall** and when $d\mu(x)/dx$ is a Jacobi-type weight with ρ "smooth", it is due **Baratchart-Y**.

Denote by \mathfrak{R} the Riemann surface of w (two copies of the complex plane cut along [a, b] and glued crosswise). Set

$$\left\{ \begin{array}{rrrr} \Phi^{(0)} & = & \Phi & & \\ \Phi^{(1)} & = & 1/\Phi & & \\ \end{array} \right. \ \ \, \begin{array}{rrrr} S^{(0)} & = & S & \\ S^{(1)} & = & 1/S. & \\ \end{array} \right.$$

Then Φ is a rational function on \mathfrak{R} with a simple pole at $\infty^{(0)}$ and a simple zero at $\infty^{(1)}$.

The asymptotic formula can be written as

$$\begin{cases} Q_n = C_n [1 + o(1)] (S\Phi^n)^{(0)} \\ Q_n f - P_n = C_n [1 + o(1)] (S\Phi^n)^{(1)} / w. \end{cases}$$

Let f_i , $i \in \{1, ..., p\}$, be functions holomorphic at infinity, $p \in \mathbb{N}$. Given a multi-index $\vec{n} \in \mathbb{N}^p$, Hermite-Padé approximant to the vector

$$\vec{f} = (f_1, \ldots, f_p)$$

associated with \vec{n} , is a vector of rational functions

$$[\vec{n}]_{\vec{f}} := \left(P_{\vec{n}}^{(1)}/Q_{\vec{n}}, \dots, P_{\vec{n}}^{(p)}/Q_{\vec{n}}\right)$$

such that

$$\begin{cases} \deg\left(Q_{\vec{n}}\right) \leq |\vec{n}| := n_1 + \dots + n_p, \\ \left(Q_{\vec{n}}f_i - P_{\vec{n}}^{(i)}\right)(z) = \mathcal{O}\left(z^{-(n_i+1)}\right), \quad i \in \{1, \dots, p\}. \end{cases}$$

Angelesco Systems

The vector \vec{f} is called an **Angelesco system** if

$$f_i(z) = \int \frac{\mathrm{d}\mu_i(x)}{x-z}, \qquad i \in \{1,\ldots,p\},$$

where $\mu_i{'}{\rm s}$ are positive measures on the real line with mutually disjoint convex hulls of their supports, i.e.,

$$\operatorname{supp}(\mu_i) \subseteq [a_i, b_i] \text{ and } [a_j, b_j] \cap [a_k, b_k] = \emptyset.$$

For such systems it holds that

$$\int x^k Q_{\vec{n}}(x) \mathrm{d}\mu_i(x) = 0, \qquad k \in \{0,\ldots,n_i-1\}, \quad i \in \{1,\ldots,p\}.$$

Assume now that

$$n_i=c_i \mid ec{n}\mid + o\left(\mid ec{n}\mid
ight), \quad ec{c}=(c_1,\ldots,c_p)\in \left(0,1
ight)^p, \quad \mid ec{c}\mid = 1.$$

There exists the unique vector of positive Borel measures

$$(\omega_1,\ldots,\omega_p), \quad |\omega_i|=c_i, \quad \operatorname{supp}(\omega_i)=[a_{\vec{c},i},b_{\vec{c},i}]\subseteq [a_i,b_i],$$

such that $(\sigma_1,\ldots,\sigma_p)=(\omega_1,\ldots,\omega_p)$ if

$$\ell_i := \min_{x \in [a_i, b_i]} V^{\omega + \omega_i}(x) \le \min_{x \in [a_i, b_i]} V^{\sigma + \sigma_i}(x)$$

for each $i \in \{1, \dots, p\}$, where $\sigma := \sum_{i=1}^p \sigma_i$. It holds that

$$\begin{cases} \ell_i - V^{\omega_i + \omega} \equiv 0 \quad \text{on} \quad [a_{\vec{c},i}, b_{\vec{c},i}], \\ \ell_i - V^{\omega_i + \omega} < 0 \quad \text{on} \quad [a_i, b_i] \setminus [a_{\vec{c},i}, b_{\vec{c},i}]. \end{cases}$$

Theorem (Gonchar-Rakhmanov)

Let μ_i be such that $\mu'_i > 0$ almost everywhere on $[a_i, b_i]$. Then

$$\begin{bmatrix} \lim_{|\vec{n}| \to \infty} |\vec{n}|^{-1} \log |f_i - P_{\vec{n}}^{(i)} / Q_{\vec{n}}| = -(\ell_i - V^{\omega_i + \omega}), \\ \lim_{|\vec{n}| \to \infty} |\vec{n}|^{-1} \log |Q_{\vec{n}}| = -V^{\omega}. \end{bmatrix}$$

New feature of the Hermite-Padé approximation is the appearance of divergence domains. Set

$$\begin{cases} D_i^+ := \{z: \ell_i - V^{\omega_i + \omega}(z) > 0\}, \\ D_i^- := \{z: \ell_i - V^{\omega_i + \omega}(z) < 0\}. \end{cases}$$

The domain D_i^+ is unbounded, this is precisely the domain in which the approximants $P_{\vec{n}}^{(i)}/Q_{\vec{n}}$ converge to f_i . The open set D_i^- is bounded and possibly empty, within this set the approximants diverge to infinity.

Let \mathfrak{R} be a Riemann surface obtained by

- taking p + 1 copies of the extended complex plane
- cutting one of them, say $\mathfrak{R}^{(0)}$, along the union $\bigcup_{i=1}^{p} [a_{\vec{c},i}, b_{\vec{c},i}]$
- cutting each of the remaining copies
 ⁽ⁱ⁾ along only one interval so that
 no two copies have the same cut
- gluing $\mathfrak{R}^{(0)}$ to $\mathfrak{R}^{(i)}$ crosswise.

Denote by $\mathfrak{R}_{\vec{n}}$ the Riemann surface constructed as above corresponding to the vector equilibrium problem for

$$\left(\frac{n_1}{|\vec{n}|},\ldots,\frac{n_p}{|\vec{n}|}\right).$$

All surfaces have genus zero.

Exponential Factor

Denote $\Phi_{\vec{n}}$ the rational function on $\mathfrak{R}_{\vec{n}}$ which is non-zero and finite except for a pole of order $|\vec{n}|$ at $\infty^{(0)}$ and a zero of multiplicity n_i at each $\infty^{(i)}$; and satisfies $\prod_{k=0}^{p} \Phi_{\vec{n}}(z^{(k)}) \equiv 1$. It holds that

$$\frac{1}{|\vec{n}|} \log |\Phi_{\vec{n}}(\mathbf{z})| = \begin{cases} -V^{\omega_{\vec{n}}}(z) + \frac{1}{p+1} \sum_{k=1}^{p} \ell_{\vec{n},k}, & \mathbf{z} \in \mathfrak{R}_{\vec{n}}^{(0)}, \\ V^{\omega_{\vec{n},i}}(z) - \ell_{\vec{n},i} + \frac{1}{p+1} \sum_{k=1}^{p} \ell_{\vec{n},k}, & \mathbf{z} \in \mathfrak{R}_{\vec{n}}^{(i)}. \end{cases}$$

It is true that

$$\frac{1}{\mid \vec{n} \mid} \log \left| \frac{\Phi_{\vec{n}}^{(i)}(z)}{\Phi_{\vec{n}}^{(0)}(z)} \right| = V^{\omega_{\vec{n},i}+\omega_{\vec{n}}}(z) - \ell_{\vec{n},i} = V^{\omega_i+\omega}(z) - \ell_i + o(1)$$

locally uniformly in $\overline{\mathbb{C}} \setminus \bigcup_{i=1}^{p} [a_{\vec{c},i}, b_{\vec{c},i}]$ as $|\vec{n}| \to \infty$, $i \in \{1, \dots, p\}$.

Theorem

Given $\vec{c} \in (0,1)^p$ such that $|\vec{c}| = 1$ and a sequence of multi-indices $\{\vec{n}\}$,

$$n_i = c_i |\vec{n}| + o(|\vec{n}|),$$

let $[\vec{n}]_{\vec{f}}$ be the Hermite-Padé approximant to $\vec{f} = (f_1, \dots, f_p)$, where

$$\mu_i'(x) =
ho_i(x) \prod_{j=0}^{J_i} |x - x_{ij}|^{lpha_{ij}} \prod_{j=1}^{J_i} \left\{ egin{array}{c} 1, & x < x_{ij} \ eta_{ij}, & x > x_{ij} \end{array}
ight\}.$$

 $\alpha_{ij} > -1$, $\Re(\beta_{ij}) > 0$, and ρ_i is a holomorphic function on $[a_i, b_i]$. Then

$$\begin{cases} Q_{\vec{n}} = C_{\vec{n}} [1 + o(1)] (S\Phi_{\vec{n}})^{(0)} \\ Q_{\vec{n}} f_i - P_{\vec{n}}^{(i)} = C_{\vec{n}} [1 + o(1)] (S\Phi_{\vec{n}})^{(i)} / w_i, \end{cases}$$

where S is a non-vanishing function on \mathfrak{R} satisfying $S^{(i)}_{\pm} = S^{(0)}_{\mp}(\rho_i w_{i+})$ on $(a_{\vec{c},i}, b_{\vec{c},i})$ and $w_i(z) := \sqrt{(z - a_{\vec{c},i})(z - b_{\vec{c},i})}$.

Padé Approximation 000000

Pushing Effect

Recall that $\omega_{\vec{n},i}$ is the weighted equilibrium measure in the field $(\omega_{\vec{n}} - \omega_{\vec{n},i})/2$:

$$\min_{x\in[a_i,b_i]}V^{\omega_{\vec{n}}+\omega_{\vec{n},i}}(x)=\max\min_{x\in[a_i,b_i]}V^{\sigma+\sigma_i}(x)$$

In general, $[a_{\vec{n},i}, b_{\vec{n},i}]$, the support of $\omega_{\vec{n},i}$, is a proper subset of $[a_i, b_i]$.

$$a_1 = a_{\vec{c},1} = a_{\vec{n},1}$$
 $b_{\vec{n},1}$ $b_{\vec{c},1}$ b_1 $a_2 = a_{\vec{c},2}$ $b_2 = b_{\vec{c},2}$

Local Riemann-Hilbert analysis

- Hard Edge: $b_{\vec{n},1} = b_{\vec{c},1} = b_1 \not\in \partial D_1^-$ (Bessel)
- Soft Edge: $b_{\vec{n},1} = b_{\vec{c},1} < b_1$ (Airy)
- Soft-Type Edge I: $b_{\vec{n},1} \in \partial D^-_{\vec{n},1}$ (includes soft edge)
- Soft-Type Edge II: $b_{\vec{n},1} \notin \partial D^-_{\vec{n},1}$ but $b_{\vec{c},1} \in \partial D^-_1$

Padé Approximation 000000 RH problem for Painlevé XXXIV

The following Riemann-Hilbert problem is needed for the local analysis around soft-type edges. It also corresponds to a certain family of solutions to Painlevé XXXIV equation.

(a,c) $\Psi^i_{\alpha,\beta}$ is analytic off the rays with properly specified behavior at the origin; (b)

$$\boldsymbol{\Psi}_{\alpha,\beta+}^{i} = \boldsymbol{\Psi}_{\alpha,\beta-}^{i} \begin{cases} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} & \text{on} \quad (-\infty,0), \\ \begin{pmatrix} 1 & 0\\ e^{\pm i\pi\alpha} & 1 \end{pmatrix} & \text{on} \quad \{\arg(\zeta) = \pm 2\pi/3\}, \\ \begin{pmatrix} 1 & \beta\\ 0 & 1 \end{pmatrix} & \text{on} \quad (0,\infty); \end{cases}$$

 (d_1, d_2)

$$\begin{split} \Psi_{\alpha,\beta}^{i}(\zeta;s) &= \left(\mathbf{I} + \mathcal{O}\left(\zeta^{-1}\right)\right) \frac{\zeta^{-\sigma_{3}/4}}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \exp\left\{\theta^{i}(\zeta;s)\sigma_{3}\right\}\\ \text{where } \theta^{1}(\zeta;s) &= -\frac{2}{3}(\zeta+s)^{3/2} \text{ and } \theta^{2}(\zeta;s) = -\left(\frac{2}{3}\zeta^{3/2} + s\zeta^{1/2}\right). \end{split}$$

Theorem

Given $\alpha \in \mathbb{R}$ and $\Re(\beta) \geq 0$, $\Psi_{\alpha,\beta}^{i}$ exists for all $s \in \mathbb{R}$. Assuming $\beta \neq 0$, it holds that

$$\boldsymbol{\Psi}_{\alpha,\beta}^{1}(\zeta;\boldsymbol{s}) = \frac{\zeta^{-\sigma_{3}/4}}{\sqrt{2}} \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & 1 \end{pmatrix} \left(\boldsymbol{\mathsf{I}} + \mathcal{O}\left(\sqrt{\frac{|\boldsymbol{s}|+1}{|\boldsymbol{\zeta}|+1}}\right)\right) \exp\left\{\theta^{1}(\boldsymbol{\zeta};\boldsymbol{s})\sigma_{3}\right\}$$

uniformly for all ζ and $s \in (-\infty, \infty)$; moreover, we have that

$$\boldsymbol{\Psi}_{\alpha,0}^2(\zeta;\boldsymbol{s}) = \frac{\zeta^{-\sigma_3/4}}{\sqrt{2}} \begin{pmatrix} 1 & \mathrm{i} \\ \mathrm{i} & 1 \end{pmatrix} \left(\boldsymbol{\mathsf{I}} + \mathcal{O}\left(\sqrt{\frac{|\boldsymbol{s}|+1}{|\boldsymbol{\zeta}|+1}}\right) \right) \exp\left\{ \theta^2(\zeta;\boldsymbol{s})\sigma_3 \right\}$$

uniformly for all ζ and $s \in (-\infty, 0]$.

The case $\beta = 1$ was worked out by Its, Kuijlaars, and Östensson. The case $\alpha = 0$ is the current Master Thesis project of Bogadskiy under supervision of Its.