Meromorphic Extendibility and Rigidity of Interpolation

Maxim L. Yattselev

Constructive Functions 2014

May 30th, 2014

In 2000, Edgar Stout obtained a characterization of continuous functions on boundaries of certain domains D in \mathbb{C}^n , $n \ge 1$, which extend holomorphically through D, in terms of a generalized argument principle. In the special case of the complex plane his result is

Theorem (Stout, 2000)

A continuous function f on a smooth Jordan curve T extends holomorphically throughout the interior domain D if and only if

 $w_T(Q(z, f(z))) \ge 0$

for any polynomial of two complex variables Q(z, w) such that $Q(z, f(z)) \neq 0$ on T, where w_T stands for the **winding number** on T. Josip Globevnik realized that the conditions in the previous theorem can be relaxed (first for the unit disk and then in the general case).

Theorem (Globevnik, 04 & 04)

Let $D \subset \mathbb{C}$ be a bounded domain whose boundary, say T, consists of finitely many pairwise disjoint simple closed curves. Then a continuous function f on T extends holomorphically throughout D if and only if

$$w_T(f+h) \geq 0$$

for any function h holomorphic in D and continuous in \overline{D} such that $f + h \neq 0$ on T. Dmitry Khavinson pointed out that in the case of the unit disk the proof can be significantly shortened.

Theorem (Khavinson, 05)

A continuous function f on $\mathbb T$ extends holomorphically throughout $\mathbb D$ if and only if

$$w_{\mathbb{T}}(f+h) \geq 0$$

for any function h in the disk algebra such that $f + h \neq 0$ on \mathbb{T} .

Proof

Let $\{f_n\}$ be a sequence of rational approximants to f. Denote by h_n the best H^{∞} approximant to f_n . In fact, h_n belongs to the disk algebra. If f is not in the disk algebra, the function $f_n - h_n$ is non-zero and is **badly approximable**. Then

$$w_{\mathbb{T}}(f-h_n) = w_{\mathbb{T}}\left(\left(f_n-h_n\right)\left(1-\frac{f_n-f}{f_n-h_n}\right)\right) = w_{\mathbb{T}}(f_n-h_n) < 0.$$

Theorem (Globevnik, 08 & 08)

Let D be an open set in \mathbb{C} whose boundary T consists of a finite number of pairwise disjoint simple closed curves. A continuous function f on T extends meromorphically through D with at most N poles there if and only if

$$w_T(gf+h) \geq -N$$

for all g, h holomorphic in D and continuous in \overline{D} such that $gf + h \neq 0$ on T.

Theorem (Globevnik, 08 & 08)

Let D be an open set in \mathbb{C} whose boundary T consists of a finite number of pairwise disjoint simple closed curves. A continuous function f on T extends meromorphically through D with at most N poles there if and only if

$$w_T(gf+h) \geq -N$$

for all g, h holomorphic in D and continuous in \overline{D} such that $gf + h \neq 0$ on T.

Proof in the case of \mathbb{D} (not original)

Let $\{f_n\}$ be a sequence of rational approximants to f. Denote by m_n the best H_N^{∞} approximant to f_n . Again, g_nm_n belongs to the disk algebra for some polynomial deg $(g_n) \leq N$. Then

$$w_{\mathbb{T}}(g_n f - g_n m_n) = w_{\mathbb{T}}\left(g_n(f_n - m_n)\left(1 - \frac{f_n - f}{f_n - m_n}\right)\right) = w_{\mathbb{T}}(g_n(f_n - g_n)) < -N$$

since according to Adamyan-Arov-Krein Theory $|f_n - m_n|$ is constant on \mathbb{T} and $w_T(f_n - m_n) < -2N$.

Question (Globevnik, 08)

Can the condition

 $w_T(gf+h) \geq -N$

be replaced by

 $w_T(f+h) \geq -N?$

Holomorphic Extendibility

Partial Answer

Let f be Dini-continuous. Then $f = f_+ + f_-$, where f_+ is in the disk algebra and f_- is holomorphic outside of the unit disk. Assume that

$$Z_{|z|>1}(f_-+q) \leq \deg(q) + N \tag{1}$$

for any polynomial q. Then for any h in the disk algebra such that $f + h \neq 0$, there exists q satisfying

$$\mathsf{w}_{\mathbb{T}}(f+h) = \mathsf{w}_{\mathbb{T}}(f_-+q) = \mathsf{deg}(q) - Z_{|z|>1}(f_-+q) \geq -N.$$

If $f_- + q \neq 0$, then $w_{\mathbb{T}}(f_- + q) \geq -N$ implies (1). Assume $f_- + q = 0$ somewhere on \mathbb{T} . If it is true that $(f_- + q)(\mathbb{T})$ has no interior, then there exists δ arbitrarily small satisfying $f_- + p \neq 0$ on \mathbb{T} for $p = q + \delta$. Then

$$\begin{aligned} -N &\leq & \mathsf{w}_{\mathbb{T}}(f + (p - f_{+})) = \mathsf{w}_{\mathbb{T}}(f_{-} + p) = \mathsf{deg}(p) - Z_{|z| > 1}(f_{-} + p) \\ &= & \mathsf{deg}(q) - Z_{|z| > 1}(f_{-} + q) \end{aligned}$$

by Rouche's theorem. Thus, again, $w_{\mathbb{T}}(f_- + h) \ge -N$ implies (1).

Proposition (Raghupathi-Y)

Let f be an α -Hölder continuous function on \mathbb{T} , $\alpha > 1/2$. Let $N \in \mathbb{N}$. Then

$$w_{\mathbb{T}}(f+h) \geq -N$$

for any function h in the disk algebra such that $f + h \neq 0$ on \mathbb{T} if and only if

$$Z_{\mathbb{D}}(f_n+p) \leq N+n$$

holds for any $n \in \mathbb{Z}_+$ and any $\deg(p) \leq n$, where $f_n(z) = z^n f_-(1/z)$, $z \in \mathbb{D}$.

Proposition (Raghupathi-Y)

Let f be an α -Hölder continuous function on \mathbb{T} , $\alpha > 1/2$. Let $N \in \mathbb{N}$. Then

$$w_{\mathbb{T}}(f+h) \geq -N$$

for any function h in the disk algebra such that $f + h \neq 0$ on \mathbb{T} if and only if

$$Z_{\mathbb{D}}(f_n+p) \leq N+n$$

holds for any $n \in \mathbb{Z}_+$ and any $\deg(p) \leq n$, where $f_n(z) = z^n f_-(1/z)$, $z \in \mathbb{D}$.

Theorem (Raghupathi-Y)

Let g be a holomorphic function in \mathbb{D} such that

$$Z_{\mathbb{D}}(z^ng(z)+p(z))\leq N+n \quad ext{for any} \quad \deg(p)\leq n,$$

for any $n \in \mathbb{Z}_+$. Then g is a rational function of type (N, N) holomorphic in \mathbb{D} .

Partial Answer

Theorem (Raghupathi-Y)

Let f be an α -Hölder continuous function on \mathbb{T} , $\alpha > 1/2$. Let $N \in \mathbb{Z}_+$. Then f extends to a meromorphic function with at most N poles in \mathbb{D} if and only if

$$w_{\mathbb{T}}(f+h) \geq -N$$

for every *h* in the disk algebra such that $f + h \neq 0$ on \mathbb{T} .