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Abstract—We consider a class of discrete Schrödinger operators on an infinite homogeneous
rooted tree. Potentials for these operators are given by the coefficients of recurrence relations
satisfied on a multidimensional lattice by multiple orthogonal polynomials. For operators on
a binary tree with potentials generated by multiple orthogonal polynomials with respect to
systems of measures supported on disjoint intervals (Angelesco systems) and for compact per-
turbations of such operators, we show that the essential spectrum is equal to the union of the
intervals supporting the orthogonality measures.
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1. JACOBI MATRICES ON TREES

1.1. Trees. Let T be an infinite (d + 1)-homogeneous tree with root O, whose vertex set we
denote by V. That is, the root O is incident with exactly d edges [O,Yi] that connect it to vertices
{Yi}di=1 ⊂ V, and each vertex Yi is incident with d+ 1 edges that connect it to the root and another
d vertices {Zi,j}dj=1, and so on. Thus, the root O has d neighbors, while any other vertex Y ∈ V
has d+ 1 neighbors. We will write Z ∼ Y if the vertices Z and Y are neighbors.

1.2. Discrete electromagnetic Schrödinger operator. Let V be a real-valued function
defined on the vertices V, while W be a positive function defined on edges [Z, Y ] : Z ∼ Y of the
tree T . Assuming that

sup
Y ∈V

|VY | < ∞, 0 < WZ,Y , sup
Z∼Y, Y ∈V

WZ,Y < ∞, (1.1)

we can define a bounded self-adjoint operator J on vectors f ∈ �2(V):

(J f)Y := VY fY +
∑

Z∼Y

W
1/2
Z,Y fZ , Y ∈ V ∪O. (1.2)

In analogy with operators defined via (1.2) on lattices (see [20, 24, 7]), we will call J a discrete
electromagnetic Schrödinger operator on a tree. When d = 1, the operator (1.2), (1.1) reduces to
a Jacobi matrix acting on �2(Z+) (see [1]); thus, for d > 1 we will also call it a Jacobi matrix on
a tree.

In the last decade the spectral theory of Jacobi matrices on trees has been undergoing rapid
development (see [2, 11, 12, 14, 16–18]). In [5] for operators J we defined a wide class of potentials
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2 A. I. APTEKAREV et al.

{VY , {WZ,Y }Z∼Y }Y ∈V∪O given by the recurrence coefficients of multiple orthogonal polynomials. In
this paper we present results about the spectral properties of such operators (obtained recently
in [6]).

1.3. The lift of potentials from the lattice to a tree. Recall the definition of the consid-
ered class of potentials of operators J . On the lattice N

d, consider an infinite path {�n(1), �n(2), . . .}
originating at �1 := (1, 1, . . . , 1) and satisfying the relation �n(j+1) = �n(j) + �ekj , kj ∈ {1, . . . , d}, for
any j = 0, 1, . . . (we use the standard notation �e1 = (1, 0, . . . , 0), . . . , �ed = (0, . . . , 0, 1)). These are
paths on the d-dimensional lattice for which, as we move from �1 to infinity, the multi-index of each
next vertex is increasing by 1 at exactly one position. Each such path can be mapped bijectively
to a non-self-intersecting path on T that starts at O.

This construction defines a projection Π: V → N
d as follows: given X ∈ V we consider a path

from O to X (which is unique), map it to a path on N
d, and let Π(X) ∈ N

d be the endpoint of the
mapped path. Note that on paths starting at O every vertex Y ∈ V, which is different from O, has
a unique parent, which we denote by Y(p). This allows us to define the following index function:

ı : V → {1, . . . , d}, Y �→ ıY such that Π(Y ) = Π(Y(p)) + �eıY , (1.3)

which, in turn, allows us to distinguish the children of Y ∈ V and write Z = Y(ch), ιZ if Y = Z(p).
Let P := {a�n,i, b�n,i}�n∈Zd

+, i∈{1,...,d} be a collection of real parameters such that

0 < a�n,i, �n ∈ Z
d
+, i ∈ {1, . . . , d}, sup

�n∈Zd
+, i∈{1,...,d}

max{a�n,i, |b�n,i|} < ∞. (1.4)

Using P, we define a potential {VY , {WZ,Y }Z∼Y }Y ∈V∪O on T :

VY :=

⎧
⎪⎪⎨

⎪⎪⎩

bΠ(Y(p)), ıY , Y 	= O,

d∑

i=1

κib�1−�ei,i
, Y = O,

WZ,Y :=

{
aΠ(Y(p)),ıY , Z = Y(p),

aΠ(Y ),i, Z = Y(ch), i,
(1.5)

where the parameter �κ ∈ R
d, |�κ| := κ1 + . . . + κd = 1, in the definition of VO compensates for the

absence of a parent of the root. Clearly, (1.4) implies (1.1), and therefore (1.2) with potential (1.5)
defines an operator J�κ, which is bounded and self-adjoint on �2(V).

Notice that to each vertex �n of the lattice N
d there corresponded two d-dimensional vectors:

a�n := {a�n,i}di=1 and b�n := {b�n,i}di=1, while after the lift to the tree T these vectors are rearranged
so that they form a potential of an electromagnetic Schrödinger operator: scalar potential VY , con-
structed out of the coordinates of b, and vector potential WZ,Y , constructed out of the coordinates
of a.

1.4. Multiple orthogonal polynomials and potentials. In the one-dimensional case, pa-
rameters P := {an, bn}n∈Z+ satisfying (1.4) can be interpreted as the recurrence coefficients of
orthonormal polynomials. This connection provides powerful tools for the analysis of spectral
properties of Jacobi matrices. Let us recall the main facts of the theory of multiple orthogonal
polynomials (MOPs) that were used in [5] to define parameters P for d > 1.

Let �μ := (μ1, . . . , μd), d ∈ N, be a vector of positive finite Borel measures defined on R and �n
be a given multi-index in Z

d
≥0, |�n| ≥ 1.

Type I MOPs
{
A

(j)
�n

}d

j=1
are nontrivial (i.e., not identically zero) polynomial coefficients of the

linear form

Q�n(x) :=

d∑

j=1

A
(j)
�n (x) dμj(x), degA

(i)
�n < ni

(
ni = 0 ⇒ A

(i)
�n ≡ 0

)
, i ∈ {1, . . . , d},
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DISCRETE SCHRÖDINGER OPERATOR ON A TREE 3

defined by the orthogonality conditions
∫

xlQ�n(x) = 0, l < |�n| − 1. (1.6)

Type II MOPs P�n(x), degP�n ≤ |�n|, are nontrivial polynomials defined by
∫

P�n(x)x
l dμi(x) = 0, l < ni, i ∈ {1, . . . , d}, �n ∈ Z

d
+. (1.7)

The polynomials of both types always exist, but their uniqueness is not guaranteed. If
degP�n = |�n| for every polynomial P�n(x) satisfying (1.7) that is not identically zero, then the
multi-index �n is said to be normal. In this case P�n(x) is unique up to a multiplicative factor and
we normalize it to be monic, i.e., P�n(x) = x|�n| + . . . . It turns out that �n is normal if and only if
the linear form Q�n(x) is defined uniquely up to multiplication by a constant. In this case, we will
normalize it by ∫

x|�n|−1Q�n(x) = 1. (1.8)

We will say that a vector �μ is perfect if all multi-indices �n ∈ Z
d
+ are normal.

When �μ is perfect, it is known [25] that the polynomials P�n(x) and the forms Q�n(x) satisfy the
following nearest-neighbor recurrence relations (NNRRs):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zP�n(z) = P�n+�ej (z) + b�n,jP�n(z) +
d∑

i=1

a�n,iP�n−�ei(z),

zQ�n(z) = Q�n−�ej (z) + b�n−�ej ,jQ�n(z) +
d∑

i=1

a�n,iQ�n+�ei(z),

j ∈ {1, . . . , d}, �n ∈ N
d. (1.9)

For the coefficients {a�n,i, b�n,i}, we have the representations (see, e.g., [5])

a�n,j =

∫
P�n(x)x

nj dμj(x)∫
P�n−�ej (x)x

nj−1 dμj(x)
, b�n−�ej ,j =

∫
x|�n|Q�n(x)−

∫
x|�n|−1Q�n−�ej (x), �n ∈ N

d. (1.10)

If d > 1, unlike the one-dimensional case, we cannot prescribe {a�n,j} and {b�n,j} arbitrarily. In
fact, these coefficients satisfy the so-called consistency conditions, which is a system of nonlinear
difference equations. This discrete integrable system and the associated Lax pair were studied
in [8, 25].

We can see that if the system of measures �μ is perfect and the NNRR coefficients for the
MOPs (1.6) and (1.7) satisfy (1.4), then the coefficients {a�n,i, b�n,i} i∈{1,...,d} define the potential (1.5)
of a self-adjoint Jacobi matrix J�κ (1.2) on the tree T .

2. ANGELESCO SYSTEMS AND ASYMPTOTICS OF POTENTIALS

2.1. Perfectness of Angelesco systems and zero distribution of MOPs. A well-known
example of a perfect system �μ is the so-called Angelesco systems [3] defined by the condition

suppμj = Δj := [αj , βj ] : Δi ∩Δj = ∅, i 	= j, i, j ∈ {1, . . . , d}. (2.1)

It is easy to see using (1.4) that such �μ is always perfect and therefore the corresponding NNRR
coefficients define a Jacobi matrix via (1.2) and (1.5).

Indeed, condition (1.4) follows directly from (1.10) (see [5]), while the perfectness of �μ can be
established as follows. For any �n ∈ Z

d
+ it follows from the orthogonality relations (1.7) that the

polynomial P�n(x) has nj sign changes on each interval Δj, while conditions (2.1) and degP�n ≤ |�n|
imply that degP�n = |�n|, which is equivalent to perfectness of �n. Thus, the zeros of P�n(x) are simple
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4 A. I. APTEKAREV et al.

(nj zeros on each Δj) and the polynomial itself can be factored as

P�n(x) =
d∏

j=1

P
(j)
�n (x), P

(j)
�n (x) :=

nj∏

k=1

(
x− x

(j)
k,�n

)
,

{
x
(j)
k,�n

}nj

k=1
⊂ Δj, j ∈ {1, . . . , d}. (2.2)

Notice that for marginal multi-indices a MOP reduces to a regular orthogonal polynomial:

�n = n�ej ⇒ P�n(x) = P (j)
n (x), j ∈ {1, . . . , d}, (2.3)

where P
(j)
n is a usual orthogonal polynomial with respect to the measure μj on Δj.

Along ray sequences, i.e., sequences N�c = {�n} such that

ni = ci|�n|+ o(|�n|), i ∈ {1, . . . , d}, �c = (c1, . . . , cd) ∈ (0, 1)d, |�c | :=
d∑

i=1

ci = 1, (2.4)

the limiting zero distribution of the polynomials P�n was obtained by Gonchar and Rakhmanov [15].
Elaborating on

{
x
(j)
k,�n

}nj

k=1
⊂ Δj, they have obtained a complete description (in terms of the vector

equilibrium potentials) of the limiting measures νj of the zero counting measures of the polynomi-
als P

(j)
�n and, in particular, of their supports

supp νj = Δ�c,j ⊆ Δj, i ∈ {1, . . . , d}. (2.5)

It is clear that for marginal rays with nj = 0 as |�n| → ∞ it holds that Δ�c,j = ∅. However, as
cj increases (and therefore the ray sequence moves away from the marginal one) the interval Δ�c,j

increases as well, exhibiting strict inclusion in (2.5), until it coincides with the support of the
measure of orthogonality (which indeed happens for the marginal ray |�n| = nj). The possibility of
strict inclusion in (2.5) is called a pushing effect.

2.2. Ray asymptotics of the recurrence coefficients. Motivated by the spectral prop-
erties of the operators J�κ (see (1.2) and (1.5)), let us consider the limiting behavior of the po-
tentials generated by Angelesco systems when the discrete space variables {nj} approach infinity,
i.e., |�n| → ∞. The limits of the recurrence coefficients for d > 1 (as in the case d = 1) can be
conveniently described with the help of algebraic functions whose branch points are the endpoints
of the intervals supporting the limiting measures of the zero distribution of MOPs.

We can define a (d + 1)-sheeted compact Riemann surface R�c with branch points at the end-
points of the intervals Δ�c,i in the following way. Take d + 1 copies of C. Cut one of them along
the union

⋃d
i=1Δ�c,i; this copy is henceforth denoted by R

(0)
�c . Cut each of the remaining copies

along exactly one interval Δ�c,i, so that no two copies have the same cut, and denote this copy
by R

(i)
�c . To form R�c, take R

(i)
�c and glue the banks of the cut Δ�c,i crosswise to the banks of the

corresponding cut on R
(0)
�c . It can easily be verified that the Riemann surface thus constructed has

genus 0. Denote by π�c the natural projection from R�c to C. We will also employ the notation z(i)

for a point on R
(i)
�c with π�c(z

(i)) = z, i = 0, 1, . . . , d, and z for any point on R�c with π�c(z) = z.
Since R�c has genus zero, one can arbitrarily prescribe zero/pole multisets of rational functions

on R�c as long as the multisets have the same cardinality. Hence, we define χ�c(z) to be the rational
function on R�c with a single pole at ∞(0) and such that

χ�c(z
(0)) = z +O(z−1) as z → ∞. (2.6)

This is in fact a conformal map of R�c onto the Riemann sphere (it is uniquely defined by (2.6)).
Further, let us define constants {A�c,i, B�c,i}di=1 by

χ�c(z
(i)) = B�c,i +A�c,iz

−1 +O(z−2) as z → ∞. (2.7)

Then the following theorem holds.
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Theorem 2.1 [5]. Assume that the measure μi is absolutely continuous with respect to the
Lebesgue measure on Δi and that the density dμi(x)/dx extends to a holomorphic and nonvanishing
function in some neighborhood of Δi for each i ∈ {1, . . . , d}. Further, let N�c = {�n} be a sequence of
multi-indices for which (2.4) holds. Then the recurrence coefficients {a�n,i, b�n,i} from (1.9) and (1.10)
satisfy

lim
N�c

a�n,i = A�c,i, lim
N�c

b�n,i = B�c,i, �c ∈ (0, 1)d, i ∈ {1, . . . , d}. (2.8)

When d = 1 and we denote the single interval of orthogonality by [α, β], the corresponding
conformal map χ can be explicitly written as

χ(z(k)) =
z + (α+ β)/2 + (−1)k

√
(z − α)(z − β)

2
(2.9)

for k ∈ {0, 1}, and therefore A = (β − α)2/16 and B = (β + α)/2, as expected.
The existence of limits in (2.8) and expression (2.7) for A�c,i and B�c,i were obtained using the

strong asymptotics of MOPs derived in [5] and [26]. Thus, we can say that the asymptotics of the
potentials is found as a part of the solution of the scattering problem for the operator J�κ (see [5]
for details). Note that when d = 2 and �c = (1/2, 1/2), the limits of the coefficients of the so-called
step line recurrence relations (relations satisfied by MOPs with indices along the diagonal) were
obtained in [9]. These limits were expressed with the help of conformal mappings of R�c, defined
similarly to (2.6), and were based on the formulae of the strong asymptotics for MOPs obtained
in [4] in the case where the measures of orthogonality were absolutely continuous with densities
dμi(x)/dx, i = 1, 2, belonging to the Szegő class.

3. ESSENTIAL SPECTRUM OF THE SCHRÖDINGER–ANGELESCO
OPERATORS ON A BINARY TREE

3.1. Main theorem. Let us now describe new results whose details and proofs can be found
in [6]. They are concerned with binary rooted trees (d = 2) and the essential spectrum of the
operators J (1.2) on them. The following theorem is the main result of our work.

Theorem 3.1 [6]. The essential spectrum of the Jacobi matrix J�κ (1.2) generated by the
potentials (1.5) of the Angelesco systems (2.1) on two intervals (d = 2) satisfying the conditions of
Theorem 2.1 is given by

σess(J�κ) = Δ1 ∪Δ2. (3.1)

Thus, for any pair of disjoint intervals Δ1 ∩ Δ2 = ∅ there exists an operator J on a binary
rooted tree whose essential spectrum is equal to these two intervals.

3.2. About the proof. Asymptotics of the potentials along marginal rays. Recall
that in the case d = 1 one can prove Theorem 3.1 as follows (see, for example, [19]). One begins
with the fact that the coefficients P := {an, bn}n∈Z+ of the recurrence relations for the orthogonal
polynomials with respect to some measure μ supported on Δ := suppμ have limits as n → ∞
when dμ(x)/dx > 0 a.e. on Δ. This is Rakhmanov’s theorem [21, 22] (see also [13]). It further
follows from Weyl’s criterion that compact perturbations of a self-adjoint operator do not change
the essential spectrum. That is, the essential spectrum σess(J ) of the Jacobi matrix J (when d = 1)
that corresponds to the measure μ is equal to the essential spectrum of the Jacobi matrix J∞ with
constant coefficients (the limits of an and bn as n → ∞). Then on the last step one needs to find
the spectrum σ(J∞).

In the multidimensional case (d = 2) the proof of Theorem 3.1 follows similar lines. We start by
investigating the limits of P := {a�n,i, b�n,i}2i=1 as |�n| → ∞, the coefficients of the recurrence relations
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6 A. I. APTEKAREV et al.

for MOPs of an Angelesco system (μ1, μ2) with suppμi = Δi := [αi, βi], i = 1, 2. However, unlike
the case d = 1, where there exists a unique limiting Jacobi matrix, in the multidimensional case
(see (2.8), (2.7), and (2.5)) there exists a continuum of limit points of the potential P parametrized
by �c := (c, 1 − c), c ∈ [0, 1]. Notice that Theorem 2.1 does not describe all of them, as it omits the
marginal cases N(c,1−c), c ∈ {0, 1} (i.e., boundary layer):

Ni−1 := N(i−1,2−i), n1 = (i− 1)|�n|+ o(|�n|), n2 = (2− i)|�n|+ o(|�n|),

i = 1, 2, |�n| → ∞.
(3.2)

Our main technical achievement in [6] is the extension for d = 2 of the results in [5] about the
strong asymptotics of MOPs of Angelesco systems to the whole region of �c: �c ∈ [0, 1]2. That is, the
following theorem holds.

Theorem 3.2. Let �μ satisfy the conditions of Theorem 2.1 for d = 2. Then the ray limits

lim
Nc

a�n,i = Ac,i, lim
Nc

b�n,i = Bc,i, i = 1, 2, Nc := N(c,1−c), (3.3)

exist for any c ∈ [0, 1]. Moreover, for c ∈ (0, 1) they are the same as in (2.8), while for marginal
rays (3.2) it holds that A0,1 = 0 and

A0,2 =
(β2 − α2)

2

16
, B0,1 =

1

2

(
α1 +

α2 + β2
2

−
√

(α2 − α1)(β2 − α1)

)
, B0,2 =

β2 + α2

2

and analogous formulae hold for A1,1, A1,2, B1,1, and B1,2.
Therefore, when d = 2, Theorem 3.2, together with (2.7) and (2.9), provides a full description

of the limits of Angelesco potentials P := {a�n,i, b�n,i}�n∈Z2
+, i=1,2.

3.3. About the proof. Limiting Jacobi matrices on a tree and their spectrum. The
next step of the proof of Theorem 3.1 consists in establishing the connection between the essential
spectrum of J (1.2) and its limiting operators J ′. First, as in [11], let us clarify the definition of
the limiting operator, the so-called right limit, on trees (d = 2).

Let G be a 3-homogeneous tree (without root) with a marked vertex O′ ∈ VG. An operator J ′

with potential {ṼY , {W̃Z,Y }Z∼Y }Y ∈VG
is defined on G via (1.2). Let {Yn}, n ∈ N, be a path on V:

Yn ∼ Yn+1 for all n ∈ N (i.e., it is an infinite branch of T ). Let Br(Y ) stand for a ball in V of
radius r ∈ N with center at Y . Following the structure of the tree, we fix the labeling of vertices in
Br(Yn) and Br(O

′) so that

Y ∈ Br(Yn) ←→ Y ′ ∈ Br(O
′) with Yn ←→ O′.

The operator J ′ is called the right limit or R-limit of the operator J along {Yn} (which will be
denoted by J R−→ J ′) if

∃{nj} ⊂ N : VY → ṼY ′ , WZ,Y → W̃Z′,Y ′ , Y ∈ Br(Ynj), j → ∞, (3.4)

for any fixed r ∈ N (recall that Y ′ ∈ Br(O
′) and Z ∼ Y , which implies that Z ′ ∼ Y ′).

In [11, Theorem 4], it was shown that the essential spectrum of a self-adjoint operator on a
graph coincides with the closure of the union of the spectra of all its R-limits:

σess(J ) =
⋃

J ′

σ(J ′), J R−→ J ′. (3.5)

To apply (3.5) to the problem of finding σess(J�κ) for the operators J�κ (1.2) generated by the
potentials (1.5) of the Angelesco systems (2.1) supported on intervals Δ1 and Δ2, we introduce a
family of operators that have the same totality of right limits as J�κ.
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To this end, we fix a type for each edge of the rooted tree T , assuming that two edges emanate
from the root: one edge {O,Y ′} of the first type (we write t({O,Y ′}) = 1) and another edge {O,Y ′′}
of the second type (we write t({O,Y ′′}) = 2). In this case, every vertex Y ∈ V is incident with
three edges of types iY , 1, and 2. Accordingly, we say that a vertex Y ∈ V has type i ∈ {1, 2} if it
is incident with two edges of type i.

Define a family of operators {Lc}, c ∈ [0, 1], by

(Lcψ)Y =
∑

j∈{1,2}, Y ′∼Y, t(Y,Y ′)=j

√
Ac,j ψY ′ +Bc,ιY ψY , (3.6)

where the definition at the root is not essential for what is presented further below (due to the
Weyl criterion [23]), just as the dependence of J�κ on the parameter �κ, which we can also ignore:
J := J�κ.

Therefore, it follows from the definitions of the operator Lc (3.6) and the right limit (3.4), as
well as from (3.3), that the totality of right limits of J coincides with the totality of right limits of
the family {Lc}:

{
J ′ : J R−→ J ′} =

⋃

c∈[0,1]

{
J ′′ : Lc

R−→ J ′′}. (3.7)

Further, applying (3.5) to the closures of both sides of (3.7) gives

σess(J ) =
⋃

c∈[0,1]

⋃

{J ′′ : Lc
R−→J ′′}

σ(J ′′). (3.8)

Now, applying (3.5) to Lc, we get
⋃

{J ′′ : Lc
R−→J ′′}

σ(J ′′) = σess(Lc).

The spectrum of Lc can be found directly by considering its action on vertices of the first and
second types (see [6] for details), which gives

σess(Lc) = Δc,1 ∪Δc,2.

Finally, it follows from the already mentioned work of Gonchar and Rakhmanov [15] that
⋃

c∈[0,1]
(Δc,1 ∪Δc,2) = Δ1 ∪Δ2,

which, in view of (3.8), yields (3.1).

3.4. Consequences for compact perturbations. As we have already noted at the end of
Subsection 1.4, far from all potentials satisfying (1.4) come from the coefficients of the recurrence
relations (1.9) for MOPs (1.6), (1.7) when d > 1. This is, in particular, true for the operators {Lc}
(see (3.6)). Nevertheless, the Angelesco potentials (1.5), (1.10), (2.1) can serve as a convenient
“background” class of potentials for discrete electromagnetic Schrödinger operators on (d + 1)-
homogeneous rooted trees whose essential spectrum consists of d arbitrary disjoint intervals (which
we have demonstrated in the case d = 2).

Let d = 2 and P := {â�n,i, b̂�n,i}�n∈N2, i=1,2 be a general class of potentials defined in (1.4). Further,
let the constants {Ac,1, Ac,2, Bc,1, Bc,2}c∈[0,1] be the limits of the recurrence coefficients for some
Angelesco system generated by the intervals Δ1 and Δ2, i.e., be defined via (2.7).
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We will write P ∈ PAng(Δ1,Δ2) if P satisfies

lim
Nc

â�n,i = Ac,i, lim
Nc

b̂�n,i = Bc,i, c ∈ [0, 1], i ∈ {1, 2} (3.9)

(let us stress that P might not be a collection of the recurrence coefficients of an Angelesco system).
Let the Jacobi matrix J̃ be given by (1.2), (1.5) with coefficients P ∈ PAng(Δ1,Δ2). Then it

follows from Theorem 3.1 that
σess(J̃ ) = Δ1 ∪Δ2.

Note that the constants {Ac,1, Ac,2, Bc,1, Bc,2}, considered as functions of the parameter c ∈ [0, 1],
can be described via a system of differential equations and parametrizations of Riemann surfaces Rc,
as was recently demonstrated in [10].
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approximants,” Nonlinearity 29 (5), 1487–1506 (2016).
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