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Abstract: The notion of a symmetric contour introduced by Stahl and further generalized
by Gonchar and Rakhmanov in connection with theory of rational interpolants with free poles is
recalled. Refinement of this notion proposed by Baratchart and the author is discussed.

1 Multipoint Padé Approximants
In what follows f (z) will always denote a function holomorphic at infinity andV = {Vn }

∞
n=1,Vn =

{vn, i }
2n
i=1, will stand for an interpolation scheme, i.e., a triangular array of not necessarily distinct

nor finite points from a domain to which f (z) possesses a single-valued analytic continuation.
The n-th diagonal multipoint Padé approximant to f (z) associated with an interpolation set
Vn is a rational function [n/n;Vn] f (z) = pn (z)/qn (z) such that deg(pn ) ≤ n, deg(qn ) ≤ n, the
function

Rn (z) :=
qn (z) f (z) − pn (z)

vn (z)
= O

(
z−n−1

)
as z → ∞

and has the same region of analyticity as f (z), where vn (z) =
∏
|vn, i |<∞(z − vn, i ) is the

monic polynomial vanishing at the finite elements of Vn according to their multiplicity. Hence,
[n/n;Vn] f (z) interpolates f (z) at the elements of Vn according to their multiplicity with one
additional interpolation condition at infinity. This approximant always exists as the conditions
placed on Rn (z) amount to solving a system of 2n+1 equations with 2n+2 unknowns. Classical
diagonal Padé approximants, denoted by [n/n] f (z), are recovered from this definition by placing
all the interpolation points at infinity.

Let Γ be a simple positively oriented rectifiable closed curve that encircles the point at infinity
and such that f (z) is analytic across Γ as well as in its exterior, which containsVn . Then it follows
from Cauchy theorem that

0 =
∫
Γ

zk
qn (z) f (z) − pn (z)

vn (z)
dz =

∫
Γ

zk
qn (z) f (z)
vn (z)

dz, k ∈ {0, . . . , n − 1}.

The function f (z) can always be written in the form f (z) = f (∞) +
∫

(z − s)−1dµ(s), where µ
is in general a complex-valued Borel measure (if no better choice for µ can be found, it always
can be taken in the form (2πi)−1 f (s)ds on some curve that lies in the interior of Γ and has the
same properties as Γ). Then Fubini-Tonelli theorem yields that

(1)
∫

skqn (s)
vn (s)

dµ(s) = 0, k ∈ {0, . . . , n − 1}.

That is, qn (z) is a polynomial of the smallest degree (necessarily at most n) orthogonal to all
polynomials of degree at most n − 1 with respect to the measure v−1n (s)dµ(s).
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2 S-Contours and Convergent Interpolation

2 Stahl-Gonchar-Rakhmanov Theory
Let D be an unbounded domain with non-polar boundary (a compact set K is called polar if!

log |z −w |dσ(z)σ(w) = −∞ for every probability Borel measure σ supported on K). Denote
by gD (z,w) the Green function for D with pole at w ∈ D. That is, gD (z,w) is harmonic in
D \ {w}, has logarithmic singularity at w (g(z,w) + log |z − w | is bounded around w if |w | < ∞
and g(z,w)−log |z | is bounded at infinity ifw = ∞), and its trace is equal to zero quasi everywhere
(up to a polar set) on ∂D. The logarithmic capacity of a compact set K is given by

cap(K ) = exp
{
− lim

z→∞

(
gDK (z,∞) − log |z |

)}
,

where DK is the unbounded component of the complement of K , see [4, 5] for the in depth
discussion of the notions of potentials theory.

We shall say that a holomorphic at infinity function f (z) belongs to the Stahl’s class S if
it has an analytic continuation along any path originating at infinity that belongs to C \ E f for
some compact polar set E f and there do exist points in C \ E f that possess distinct continuations.
The following two theorems summarize one of the fundamental contributions of Herbert Stahl to
complex approximation theory [6, 7, 8, 9], in which he exploited orthogonality relations (1) to
obtain results on convergence of Padé approximants for functions in the class S.

Theorem 1. Given f (z) ∈ S, there exists an unbounded domain D f such that the Padé approxi-
mants [n/n] f (z) converge in capacity to f (z) in D f with the rate function exp{−2ngD f (z,∞)}.
That is, for any compact set K ⊂ D f and any ε > 0, it holds that

(2) lim
n→∞

cap
{
z ∈ K : ���| f (z) − [n/n] f (z) |1/2n − e−gDf

(z,∞) ��� > ε
}
= 0.

The domain D f is the largest in the sense that if D is a domain with cap(D \ D f ) > 0, then no
subsequence of [n/n] f (z) converges in capacity to f (z) everywhere in D.

The complement ∆ f := C \ D f has very special structure.

Theorem 2. The set ∆ f can be decomposed as ∆ f = E0∪E1∪
⋃
∆ j , where E0 ⊆ E f , E1 consists

of isolated points to which f (z) has unrestricted continuations from infinity leading to at least two
distinct function elements, and ∆ j are open analytic arcs. The set ∆ f possesses the S-property

(3)
∂gD f (z,∞)

∂n+
=
∂gD f (z,∞)

∂n−
on

⋃
∆ j,

where ∂/∂n± are the one-sided normal derivatives on
⋃
∆ j . Define hD f (z) := ∂zgD f (z),

2∂z := ∂x − i∂y . The function h2D f
(z) is holomorphic in C \ (E0 ∪ E1), has a zero of order

2 at infinity, and the arcs ∆ j are orthogonal critical trajectories of the quadratic differential
h2D f

(z)dz2. For each point e ∈ E0 ∪ E1 denote by i(e) the number of different arcs ∆ j incident
with e. If E f is finite, then

(4) h2D f
(z) =

∏
e∈E0∪E1

(z − e)i (e)−2
∏
e∈E2

(z − e)2 j (e),

where E2 is the set of critical points of gD f (z) with j (e) standing for the order of e ∈ E2, i.e.,
∂
j
z gD f (e) = 0 for j ∈ {1, . . . , j (e)} and ∂ j (e)+1

z gD f (e) , 0.

Informally, Padé approximants converge to f (z) in the complement of a branch cut ∆ f that
can be characterized as the one of smallest logarithmic capacity or equivalently the one with the
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symmetry property (3). The latter property becomes essential in understanding the extension of
Stahl’s work to multipoint Padé approximants.

Given a positive finite Borel measure ω supported in a domain D, denote by

GD (z, ω) :=
∫

gD (z,w)dω(w)

the Green potential of ω relative to D. The potential GD (z, ω) is superharmonic in D and, if
extended by zero toC\D, is subharmonic in some neighborhood ofC\D. Therefore, it possesses
a distributional Laplacian in this neighborhood, i.e., ω̂ := ∆GD (·, ω)/(2π), which is a positive
Borel measure supported on ∂D and is called the balayage ofω out of D. The measure δ̂(∞), the
balayage of the delta mass at infinity, is also known as the logarithmic equilibrium distribution
of ∂D as well as C \ D.

Gonchar and Rakhmanov [3] have proposed the following generalization of the symmetry
property (3) (more generally, they introduced a notion of a contour symmetric in an external
field, which specializes to (5) in the case of multipoint Padé approximants). Let ∆ be a system
of finitely many Jordan arcs that does not separate the plane. Assume that almost every point of
∆ belongs to an analytic subarc. It is said that ∆ is symmetric with respect to a positive Borel
measure ω supported in D := C \ ∆ (has the S-property with respect to ω) if

(5)
∂GD (z, ω)

∂n+
=
∂GD (z, ω)

∂n−
a.e. on ∆.

To make use of (5), one shall choose an interpolation scheme that is asymptotic to ω. More
precisely, given ∆, D, and ω as in (5), a function f (z) analytic in D, and an interpolation scheme
V supported in D, that is, ∩n∪k≥nVk ⊂ D, it is said thatV is asymptotic to ω if

ωn
∗
→ ω as n → ∞, ωn :=

1
2n

2n∑
i=1

δ(vn, i ),

where δ(v) is the Dirac’s delta distribution supported at v (as usual, ωn
∗
→ ω as n → ∞ if∫

φdωn →
∫
φdω as n → ∞ for every function φ continuous in D and supported on a closed

subset of D). The following is an adaptation of [3, Lemmas 1 and 2] to the case of multipoint
Padé approximants.

Theorem 3. Let ∆, D, and ω be as in (5). If a function f (z) is holomorphic in D and the jump of
f (z) across ∆ is non-zero almost everywhere, then the diagonal multipoint Padé approximants
[n/n;Vn] f (z) associated with an interpolation scheme V asymptotic to ω converge to f (z) in
logarithmic capacity in D with the rate function exp{−2nGD (z, ω)} in the sense of (2). Moreover,
the normalized counting measures of the poles of [n/n;Vn] f (z) converge weak∗ to ω̂.

It should be stressed that the above theorem assumes existence of a symmetric contour while
Stahl’s theorem proves it but in a very specific case.

3 Szegő-type Convergence
If onewants to strengthen convergence in capacity to uniformconvergence, the notion of symmetry
needs to be refined. Let us start with a case of a single arc. Let ∆ be a rectifiable Jordan arc
with endpoints ±1 oriented from −1 to 1. Set w(z) :=

√
z2 − 1, w(z)/z → 1 as z → ∞, to

be the branch holomorphic in C \ ∆. Define Φ(z) := z + w(z), z ∈ D := C \ ∆, which is a
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non-vanishing univalent holomorphic function in D except for a simple pole at infinity. Observe
that Φ+(s)Φ−(s) ≡ 1 for s ∈ ∆. Let v ∈ D. Define

Φ(z, v) :=
Φ(z) − Φ(v)
1 − Φ(v)Φ(z)

, |v | < ∞, and Φ(z,∞) :=
1
Φ(z)

, z ∈ D.

EachΦ(z, v) is a holomorphic function in D with a simple zero at v and non-vanishing otherwise.
Given an interpolation schemeV in D, let

Φn (z) :=
∏
v∈Vn

Φ(z, v), z ∈ D.

It is holomorphic in D with 2n zeros there and its traces on ∆ satisfy Φn+(s)Φn−(s) ≡ 1.
The following definition has been proposed in [2] by Baratchart and the author. It is said
that ∆ is symmetric with respect to an interpolation scheme V if the functions Φn (z) satisfy
|Φn±(s) | = O(1) uniformly on ∆ and Φn (z) = o(1) locally uniformly in D as n → ∞. This
notion has the following connection to (5), see [2, Theorem 1].

Theorem 4. Let ∆ be a rectifiable Jordan arc such that for the endpoints x = ±1 and all s ∈ ∆
sufficiently close to x it holds that |∆s,x | ≤ c|x − s |β , β > 1/2, where |∆s,x | is the arclength of
the subsarc of ∆ joining s and x. Then the following are equivalent:

(a) there existsV supported in D such that ∆ is symmetric with respect toV;
(b) there exists a probability Borel measure ω supported in D such that (5) holds;
(c) ∆ is an analytic Jordan arc, i.e., there exists a univalent function Ξ(z) holomorphic in

some neighborhood of [−1, 1] such that ∆ = Ξ([−1, 1]).

As expected, the proof shows that if ∆ is symmetric with respect to V and ω is a weak∗
limit point of the normalized counting measures of the elements of Vn , then ∆ is symmetric with
respect to ω. Moreover, the following result holds, see [2, Theorem 4].

Theorem 5. Let ∆ be an analytic Jordan arc connecting ±1 symmetric with respect to an
interpolation schemeV . Let

(6) f (z) :=
1
2πi

∫
∆

ρ(s)
s − z

ds
w+(s)

, z ∈ D,

where ρ(s) is a non-vanishing Dini-continuous complex-valued function on ∆. Then

(7) f (z) − [n/n;Vn] f (z) =
1 + o(1)
w(z)

S2
ρ (z)Φn (z)

locally uniformly in D, where Sρ (z) = exp
{w (z)

2πi

∫
∆

log ρ(s)
w+ (s)

ds
s−z

}
is the Szegő function of ρ.

The above results can be generalized to more complicated geometries in the following way,
see [10]. Let E = {e0, . . . , e2g+1} be a set of 2g + 2 distinct points in C and

(8) S :=
{
(z,w) : w2 = (z − e0) · · · (z − e2g+1), z ∈ C

}

be a hyperelliptic Riemann surface, necessarily of genus g. Define the natural projection π :
S → C by π(z,w) = z and denote by E = {e0, . . . , e2g+1} the set of ramification points ofS. We
shall use bold lower case letters z, s, etc. to denote points onS with natural projections z, s, etc.
We utilize the symbol ·∗ for the conformal involution on S, that is, z∗ = (z,−w) if z = (z,w).
Given v ∈ S \ E, denote by g(z, v) a function that is harmonic in S \ {v, v∗}, normalized so that
g(e0, v) = 0, and such that

g(z, v) +
{

log |z − v |, |v | < ∞,

− log |z |, v = ∞,
and g(z, v) −

{
log |z − v |, |v | < ∞,

− log |z |, v = ∞,
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are harmonic functions of z around v and v∗, respectively. Such a function always exists as it is
simply the real part of an integral of the third kind differential with poles at v and v∗ that have
residues −1 and 1, respectively, and whose periods are purely imaginary.

Definition 6. Let ∆ be a system of open analytic arcs together with the set E of their endpoints
and V , Vn = {vn, i }

2n
i=1, be an interpolation scheme in D := C \ ∆. We say that ∆ is symmetric

with respect to (S,V ) if
(i) S \ ∆, ∆ := π−1(∆), consists of two disjoint domains, say D(0) and D(1), and no closed

proper subset of ∆ has this property;
(ii) the sums

∑2n
i=0 g

(
z, v (0)

n, i

)
are uniformly bounded above and below on ∆ and converge to

−∞ locally uniformly in D(1), where z(i) := π−1(z) ∩ D(i), z ∈ D.

The first condition above says that ∆ does not separate the plane and serves as a branch cut
for w(z) from (8) (w(z)/zg+1 → 1 as z → ∞), which has a non-zero jump across every subarc
of ∆. The second one is essentially a non-Hermitian Blaschke-type condition. It is in fact true
that if ∆ is symmetric with respect to (S,V ) and V is asymptotic to a measure ω, then ∆ is
symmetric with respect to ω. The following can be said about the existence of such contours, see
[10, Theorem 3.2].

Theorem 7. Given S as in (8) and v ∈ C \ E, there always exists a contour ∆v symmetric with
respect to (S,Vv ), whereVv consists of sets containing only the point v. Further, let c > 0 be a
constant such that Lc := {s : gDv (s,∞) = c} is a smooth Jordan curve, where Dv := C \ ∆v . If
Ξ(z) is a univalent function in the interior of Lc such that Ξ(e) = e for every e ∈ E, then there
exists an interpolation schemeV in C \Ξ(∆) such that Ξ(∆) is symmetric with respect to (S,V ).

The right-hand side of (7) is obviously defined explicitly, but also can be characterized as a
function with a certain zero/pole divisor that solves a particular boundary value problem. We take
this second approach to define functions describing the asymptotic behavior of the multipoint
Padé approximants for more general contours ∆.

Proposition 8. Let ∆ be as in Definition 6 and ρ(s) be a Lipschitz continuous and non-vanishing
function on ∆. There exists a sectionally meromorphic in S \ ∆ function Ψn (z) whose zeros and
poles there are described by the divisor1

(9) (n − g)∞(1) + zn,1 + · · · + zn,g − n∞(0)

for some set of g points zn, i on S, and whose traces on ∆ are continuous and satisfy

(10) Ψn−(s) =
(
ρ(s)/vn (s)

)
Ψn+(s), s ∈ ∆,

where ∆ is oriented so that D(0) lies to the left of ∆. If two functions Ψ(z),Ψ∗(z) satisfy (9) and
(10), then Ψ(z)/Ψ∗(z) = R(π(z)) for some rational function R(z) with at most g/2 poles. In
particular, if the set {zn, i }

g
i=1 does not contain involution-symmetric pairs (zn, i = z∗n, j for some

i , j), then Ψn (z) is unique up to a multiplicative constant.

The sets {zn, i }
g
i=1 can be independently introduced as solutions of a certain explicitly defined

Jacobi inversion problem. The asymptotics of Padé approximants now can be describes as follows
[10, Theorem 3.7].

1A meromorphic function Ψ(z) has a zero/pole divisor
∑

i mi xi −
∑

ni yi if Ψ(z) has a zero of order mi at xi , a
pole of order ni at yi , and otherwise is non-vanishing and finite.
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Theorem 9. Given S as in (8), let ∆ be symmetric with respect to (S,V ) for some interpolation
scheme V supported in D = C \ ∆ and f (z) be given by (6), where ρ(s) is a non-vanishing
Lipschitz continuous function on ∆. Further, let N∗ ⊆ N be a subsequence such that the sets
{zn, i }

g
i=1 as well as their topological limit points inS

g \ Σg , the quotient ofSg by the symmetric
group Σg , contain neither involution-symmetric pairs nor∞(0). Then

f (z) − [n/n;Vn] f (z) =
vn (z)
w(z)

Ψn
(
z(1))

Ψn
(
z(0)) 1 + εn1(z) + εn2(z)Υn

(
z(1))

1 + εn1(z) + εn2(z)Υn
(
z(0))

for n ∈ N∗, where εni (z) = o(1) locally uniformly in D and vanish at infinity and Υn (z) is a
rational function on S that vanishes at ∞(0) and whose divisor of poles is equal to zn,1 + · · · +
zn,g +∞

(1). Moreover, it holds that

�����
vn (z)
w(z)

Ψn
(
z(1))

Ψn
(
z(0)) �����

≤ CK exp



2n∑
i=1

g
(
z(1), v (0)

n, i

)

= o(1)

for every closed subset K ⊂ D, where the last estimate follows from Definition 6(ii).

It needs to be stressed that this theorem is conditional. Even though Theorem 7 describes
some symmetric contours, it is by no means comprehensive. More importantly, Theorem 9 is
conditional on existence of a sequence N∗. Existence of such a sequence is known only for the
case of classical Padé approximants, i.e., V = V∞, see [1, Propositions 2.2 and 2.5] or [10,
Theorem 3.6].
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