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Abstract. Let 𝐷 be a bounded Jordan domain and 𝐴 be its complement on the Riemann sphere. We
investigate the asymptotic behavior in 𝐷 of the best rational approximants in the uniform norm on
𝐴 of functions holomorphic on 𝐴 that admit a multi-valued continuation to quasi every point of 𝐷
with finitely many possible branches. More precisely, we study weak˚ convergence of the normalized
counting measures of the poles of such approximants as well as their convergence in capacity. We place
best rational approximants into a larger class of 𝑛-th root optimal meromorphic approximants whose
behavior we investigate using potential-theory on certain compact bordered Riemann surfaces.
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List of Symbols

General Point Sets:

T,D,C,C unit circle, open unit disk, complex plane, and extended complex plane
T𝑟 ,D𝑟 circle and open disk of radius 𝑟 centered at the origin
𝑇, 𝐷, 𝐴 Jordan curve, its interior domain, and the closure of its exterior domain in C

Riemann Surfaces:

R˚, 𝑝 compact Riemann surface with natural projection 𝑝 : R˚ Ñ C
R R :“ t𝑧 P R˚ : 𝑝p𝑧q P 𝐷u

T a connected component of 𝑝´1p𝑇q homeomorphic to 𝑇
rpp¨q the set of ramification points of a given Riemann surface
𝑚p𝑧q ramification order of a point 𝑧 on a Riemann surface
𝑀 total number of sheets of R

Classes of Functions:
𝐶p𝐸q continuous functions on a set 𝐸
Hp𝐴q functions analytic in some neighborhood of 𝐴
Sp𝐴q subclass of Hp𝐴q of functions multi-valued and quasi everywhere analytic off 𝐴

Ep𝐴q subclass of Hp𝐴q of functions single-valued and quasi everywhere analytic off 𝐴

F pRq class of functions quasi everywhere analytic on R
F p𝐴q subclass of approximated functions analytic on 𝐴
P𝑛 algebraic polynomials of degree at most 𝑛
M𝑛p𝐷q monic algebraic polynomials of degree 𝑛 with all their zeros in 𝐷
R𝑛p𝐷q P𝑛M´1

𝑛 p𝐷q

𝐻8p𝐷q space of bounded holomorphic functions in 𝐷
𝐻8
𝑛 p𝐷q 𝐻8p𝐷qM´1

𝑛 p𝐷q

𝐿2pTq square integrable functions on the unit circle
𝐿8pTq essentially bounded functions on the unit circle
𝐻2 Hardy space of functions in 𝐿2pTq with vanishing Fourier coefficients of negative index
𝐻2

´ 𝐿2pTq a 𝐻2

Operators:

P`, P´ orthogonal projections from 𝐿2pTq onto 𝐻2, 𝐻2
´

Γ 𝑓 Hankel operator from 𝐻2 to 𝐻2
´, ℎ ÞÑ P´p 𝑓 ℎq

𝑠𝑛pΓ 𝑓 q the 𝑛-th singular number of Γ 𝑓

Potential Theory:
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capp𝐾q logarithmic capacity of 𝐾
capΩp𝐾q Greenian capacity of 𝐾 relative to Ω

capp𝐸, 𝐾q capacity of the condenser p𝐸, 𝐾q

𝑔Ωp¨, 𝑤q Green function for Ω with pole at 𝑤
𝑔p𝜎,Ω; 𝑧q Green potential of the measure 𝜎 relative to Ω

𝑉𝜎p𝑧q logarithmic potential of the measure 𝜎
`Ω,𝐾 Green equilibrium distribution on a set 𝐾 Ă Ω relative to Ω

B𝐸𝑣 balayage function of a superharmonic function 𝑣 relative to a set 𝐸
𝜎𝐸 balayage measure of a measure 𝜎 onto a set 𝐸
p𝜎 lift of a measure 𝜎 on 𝐷 to R
𝑝˚p𝜎q projection (pushforward) of a measure 𝜎 on R to 𝐷
Bf𝐴, closfp𝐸q fine boundary and closure of a set 𝐸
𝑏p𝐸q, 𝑖p𝐸q base and the set of finely isolated points of a set 𝐸

Various Symbols:
𝜙 a conformal map from D onto 𝐷
K 𝑓 collection of “branch cuts” for 𝑓
𝐾 𝑓 “branch cut” of minimal Greenian capacity for 𝑓 P Sp𝐴q

} ¨ }𝐾 essential supremum norm on 𝐾
𝜌𝑛p 𝑓 , 𝐴q error of best rational approximation of 𝑓 analytic on 𝐴 by functions in R𝑛p𝐷q

1. Introduction

Rational approximation to holomorphic functions of one complex variable has long been a requisite
chapter of classical analysis with notable applications to number theory [30, 55, 33], spectral theory
[43, 26, 47] and numerical analysis [25, 32, 24, 17]. Over the last decades it became a cornerstone
of modeling in Engineering [64, 65, 50, 1, 27], and it can also be viewed today as a technique to
regularize inverse potential problems [22, 31, 4]. Finding best rational approximants of prescribed
degree to a specific function, say in the uniform norm on a given set, seems out of reach except in
rare, particular cases. Indeed, such approximants depend in a rather convoluted manner, both on
the approximated function and on the set where approximation should take place. Accordingly, the
constructive side of the theory has focused on estimating optimal convergence rates as the degree
grows large and devising approximation schemes coming close to meet them [66, 7, 23, 61], or
else studying the behavior of natural, computationally appealing candidate approximants like Padé
interpolants and their variants [3, 60, 44, 38, 41].

When a function is holomorphic in some neighborhood of a continuum 𝐴, the optimal speed
of convergence for rational approximants on 𝐴 is at least geometric in the degree. Then, a coarse
but manageable estimate of this speed proceeds via asymptotics of the 𝑛-th root of the error of
approximation by rational functions of degree 𝑛. For functions continuable analytically off 𝐴 except
over a polar set containing branchpoints (throughout polar means of logarithmic capacity zero), and
provided that 𝐴 does not divide the extended complex plane, Gonchar and Rakhmanov constructed,
using multipoint Padé interpolants and dwelling on work by the second author, a sequence of rational
approximants whose 𝑛-th root error on 𝐴 is asymptotically the smallest possible. They further showed
that these interpolants converge in capacity on the complement of a compact set 𝐾 minimizing the
capacity of the condenser p𝐴, 𝐾q under the constraint that the function is analytic off𝐾 , and proved that
the normalized counting measures of their poles converge to the condenser equilibrium distribution on
𝐾 [23]. It is remarkable that the set 𝐾 solves a certain geometric extremal problem from logarithmic
potential theory, close in spirit to the Lavrentiev type [34], and that it depends merely on the set where
approximation takes place, on the branchpoints of the approximated function and its monodromy
around them, but nothing else. Such a structure emerges because only the 𝑛-th root of the error is
considered, rather than the error itself. Since then, it has been an open issue whether any 𝑛-th root
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optimal sequence of approximants – in particular a sequence of best approximants – has the same
behavior. The present paper answers this question in the positive, at least when the branchpoints
are finite in number and order. In particular, our results connect, apparently for the first time, the
singularities of best uniform approximants to those of the approximated function. We also address
the case of no branchpoints, when the approximated function is analytic except over a polar set and
the speed of best rational approximation on 𝐴 is known to be faster than geometric with the degree.
We prove that 𝑛-th root optimal approximants converge in capacity outside the singular set of the
function, and that the “most effective” poles converge in a sense to that set.

The gist of the paper becomes more transparent upon observing that the behavior of rational
approximants can be surmised when the function to be approximated extends analytically to a
multiply-sheeted Riemann surface over the complex plane. As rational functions are single-valued,
this topological discrepancy leads the approximants to mark out their domain of approximation by
accumulating poles so as to form a cut, thereby preventing single-valued continuation in the limit. In
the case of (diagonal) multipoint Padé interpolants, this cut has been characterized as being of smallest
weighted capacity in a field that depends on the limiting distribution of the interpolation points, and
poles asymptotically distribute according to the weighted equilibrium measure of that cut; moreover,
the Padé interpolants converge in capacity on the extremal domain thus demarcated. This was
established in [23], dwelling on the works [56, 57, 59, 60, 61] that deal with classical Padé interpolants
and correspond to the zero field and unit weight; see also [45] for early developments along these
lines, and [6] for applications to 𝐿2-best rational approximation on the circle. Subsequently, by
choosing interpolation points adequately and performing surgery to eliminate spurious poles, the
authors of [23] construct, on any continuum 𝐴 not dividing the extended plane and contained in the
analyticity domain of a function indefinitely continuable except over a closed polar set containing
branchpoints, a sequence of rational approximants converging uniformly to that function on 𝐴 as
their degree 𝑛 grows large and whose 𝑛-th root error has a liminf which is smallest possible, as well
as a true limit. For this weakly optimal choice of interpolation points (meaning that the choice is
optimal in the 𝑛-th root sense), the cut 𝐾 of minimum weighted capacity is also the cut minimizing the
condenser capacity of p𝐴, 𝐾q, as well as the cut of minimum Greenian capacity in the complement of
𝐴. The smallest value for the limit of the 𝑛-th root error is a simple, explicit function of this Greenian
capacity, and the poles of the approximants thus constructed distribute asymptotically according to
the Green equilibrium measure of that cut.

Now, assuming in addition that the branchpoints of the continuation off 𝐴 of the function to be
approximated are finite in number and of algebraic type, we shall prove that any sequence of rational
(or meromorphic) approximants of increasing degree 𝑛 whose 𝑛-th root error on 𝐴 converges to the
smallest possible limit – a fortiori every sequence of best approximants – has the same asymptotic
distribution of poles as the particular sequence constructed in [23]. More precisely, if a function
analytic in a simply connected neighborhood of a continuum 𝐴 in the extended complex plane
is indefinitely continuable off that neighborhood except over a closed polar set containing finitely
many branchpoints, all of algebraic type, then the normalized counting measures of the poles of
any sequence of rational approximants of increasing degree 𝑛 with asymptotically optimal 𝑛-th root
error on 𝐴 do converge weak-star, as 𝑛 grows large, to the Green equilibrium distribution of the
compact set of minimum Greenian capacity outside of which the function is single-valued; moreover,
convergence holds in Greenian capacity everywhere off that compact set. Here, Green functions
are understood with respect to the complement of the continuum 𝐴 where approximation takes
place. Finally, if there are no branchpoints, that is, if the approximated function is single-valued
and analytic on the extended complex plane except possibly over a closed polar set 𝐸 , then there are
rational approximants converging on 𝐴 faster than geometrically with the degree. We shall prove
that such sequences of approximants (as well as their meromorphic analogs) converge in capacity
on the extended plane deprived from 𝐸 , and that retaining the singular part that comes close to 𝐸
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generates new sequences of approximants, still converging faster than geometrically with the degree,
while satisfying in addition that any weak-star limit point of the normalized counting measures of
their poles is supported on 𝐸 .

Previously cited references, which deal with Padé or multipoint Padé interpolants, exploit the
connection between denominators thereof and non-Hermitian orthogonal polynomials on a system
of arcs encompassing the singular set of the interpolated function. Indeed, the core of the work
in [59, 23] is to derive asymptotics of such polynomials on extremal systems of arcs like those
constructed in [56, 57], so as to qualify the behavior of the poles of the interpolants when the degree
grows large and deduce from it the desired convergence properties. Here, we proceed in the opposite
direction: we assume that the optimal rate is met in the 𝑛-th root sense and deduce from it the behavior
of the poles. For this we cannot make use of orthogonal polynomials, and in fact it is not even known
if interpolation takes place at all in the case of best approximants. However, the construction from
[56, 57] will still be basic to our purposes.

This work was initiated jointly by the three authors in 2009, but the untimely passing away of the
second one on April 22nd, 2013 prevented him from seeing its completion. Still, some fundamental
ideas are his.

2. Preliminaries and Main Results

Given a function 𝑓 holomorphic in a neighborhood of a closed set 𝐴 Ă C, the error of approxi-
mation of 𝑓 on 𝐴 by rational functions of degree 𝑛 is

(2.1) 𝜌𝑛p 𝑓 , 𝐴q :“ inf
𝑟PR𝑛pCz𝐴q

} 𝑓 ´ 𝑟}𝐴,

where } ¨ }𝐴 stands for the supremum norm on 𝐴 and, for Ω Ă C, we let R𝑛pΩq be the class of
rational functions of type p𝑛, 𝑛q with all their poles in Ω. That is, if P𝑛 denotes the space of algebraic
polynomials of degree at most 𝑛 and M𝑛pΩq the monic polynomials of degree 𝑛 with all zeros in Ω,
then R𝑛pΩq :“ P𝑛M´1

𝑛 pΩq. It was shown by Walsh [66, 2], using interpolation techniques, that

(2.2) lim sup
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q ď exp

 

´ 1{capp𝐴, 𝐾q
(

,

where𝐾 is any closed set disjoint from 𝐴 in the complement of which 𝑓 is holomorphic and capp𝐴, 𝐾q

denotes the capacity of the condenser p𝐴, 𝐾q. A definition of condenser capacity can be found in
[54, Chapter VIII, Section 3]; for our purposes, it is enough to know that if Cz𝐴 is connected, then
capp𝐴, 𝐾q coincides with the Greenian capacity capCz𝐴

p𝐾q defined in Section A.4, see [54, Chapter
VIII, Theorem 2.6 & Corollary 2.7] for this equivalence.

It is known that Walsh’s inequality (2.2) cannot be improved [37]. On the other hand, it was con-
jectured by Gonchar [28] and proven by Parfënov when 𝐴 is a continuum with connected complement
[46] (also later by Prokhorov for any compact set 𝐴 [51]) that

(2.3) lim inf
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q ď exp

 

´ 2{capp𝐴, 𝐾q
(

.

Hence, 𝜌𝑛p 𝑓 , 𝐴q has no limit in general as 𝑛 Ñ 8, and when the limit exists it cannot exceed the
right-hand side of (2.3). For certain classes of functions and certain loci of approximation 𝐴, it was
nevertheless shown that 𝜌𝑛p 𝑓 , 𝐴q does have a limit, which is equal to the right-hand side of (2.3).
More precisely, let Hp𝐴q denote the space of functions holomorphic on a (variable) neighborhood
of 𝐴, and Sp𝐴q Ă Hp𝐴q those functions continuable analytically into the complement of 𝐴 along
any path that avoids some compact polar1 subset of Cz𝐴 (which may depend on the function); we
require in addition that this continuation is not single-valued, namely that there are paths with the
same endpoints leading to different analytic branches. Now, when 𝐴 is a continuum that does not

1see Section A.5 for a definition and basic properties of polar sets, that may be defined as sets of zero logarithmic capacity.
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separate the plane and 𝑓 P Sp𝐴q, it follows from work by the second author in [56, 57, 58] and it
was explicitly stated by Gonchar and Rakhmanov in [23, Theorem 11] that

(2.4) lim
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q “ inf

𝐾
exp

 

´ 2{capp𝐴, 𝐾q
(

,

where the infimum is taken over all compact sets 𝐾 such that 𝑓 admits a single-valued analytic
continuation to Cz𝐾 .

Hereafter, we let 𝑇 Ă C be a Jordan curve with interior domain 𝐷, and we put 𝐴 :“ Cz𝐷. In this
setting 8 P 𝐴, which is no loss of generality for a preliminary Möbius transform can ensure this; in
contrast, our requirement that 𝐷 be a Jordan domain is a regularity assumption on the set 𝐴 where
approximation takes place. Given 𝑓 P Hp𝐴q, let K 𝑓 be the collection of all compact sets 𝐾 Ă 𝐷

such that 𝑓 , initially defined on 𝐴, admits a single-valued analytic continuation to Cz𝐾 . It follows
from [56, 57] that there exists 𝐾 𝑓 P K 𝑓 , unique up to addition and/or removal of a polar set, with

(2.5) cap𝐷p𝐾 𝑓 q ď cap𝐷p𝐾q, 𝐾 P K 𝑓 .

We can and will normalize 𝐾 𝑓 to be the smallest possible, i.e., we make it the intersection of all
𝐾 P K 𝑓 for which cap𝐷p𝐾q is minimal, see [57]. As capp𝐾, 𝐴q “ cap𝐷p𝐾q, in light of equation
(2.4), our main goal is to investigate the asymptotic behavior of sequences t𝑟𝑛u of rational functions
of type p𝑛, 𝑛q meeting this optimal 𝑛-th root rate:

(2.6) lim
𝑛Ñ8

} 𝑓 ´ 𝑟𝑛}
1{𝑛

𝐴
“ exp

 

´ 2{cap𝐷p𝐾 𝑓 q
(

.

We call any such sequence t𝑟𝑛u a sequence of 𝑛-th root optimal rational approximants to 𝑓 on 𝐴.
In order to study t𝑟𝑛u, we are led to consider more general sequences of meromorphic approximants
of the form 𝑟𝑛 ` ℎ𝑛, where ℎ𝑛 is holomorphic in 𝐷 and continuous on 𝐷, see Section 2.3 for the
definitions. Even though best meromorphic approximants may look less natural than rational ones,
they make contact with both the spectral theory of Hankel operators (through AAK theory) and Green
potentials (because they generate errors with constant modulus on 𝑇), while remaining essentially
equivalent to rational approximants as far as 𝑛-th root error rates are concerned [46]. This is why 𝑛-th
root optimal meromorphic approximants (meeting (2.6) in place of 𝑟𝑛) are of principal importance in
our study. Yet, the potential-theoretic tools on Riemann surfaces that we use only allow us to handle
compact surfaces so far, and this induces some finiteness conditions on the functions from the class
Sp𝐴q that we can deal with. These are set forth in the next section.

2.1. Class of Approximated Functions. We consider functions in Hp𝐴q such that
(i) they can be continued into 𝐷 along any path originating on 𝑇 that stays in 𝐷 while avoiding

a closed polar subset of 𝐷 (which may depend on the function);
(ii) they are not single-valued, meaning there are continuations along at least two paths as in (i)

with the same initial and terminal points that lead to distinct function elements, but still they
are finite-valued in that the number of such function elements lying above a point of 𝐷 is
uniformly bounded (the bound may depend on the function);

(iii) their number of branchpoints (points in any neighborhood of which some analytic continu-
ation along a closed path in 𝐷 encircling that point while avoiding the exceptional polar set
leads to a different function element) is finite.

In view of (i) and (ii), such functions lie in Sp𝐴q. Note that (iii) is not superfluous, for there
are functions meeting (i) and (ii) with infinitely many branchpoints. For instance, an open Riemann
surface X made of two copies of Czt0u, glued along a sequence of disjoint cuts in D shrinking to the
point 0, has projection 𝑝 : X Ñ Czt0u a two sheeted covering with infinitely many branchpoints of
order 2. As X carries a holomorphic function 𝑓 assuming more than one value on 𝑝´1p𝑧q for 𝑧 not a
critical value of 𝑝 [18, Theorem 26.7], we deduce on putting 𝐷 “ D and 𝐴 “ CzD that each branch
of 𝑓 ˝ 𝑝´1 is of the announced type.
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We formalize (i), (ii) and (iii) as follows. Let R˚ be an auxiliary algebraic Riemann surface, whose
set of ramification points rppR˚q lies on top of 𝐷. That is, there exists an irreducible polynomial
in two variables 𝑃p𝑧, 𝑎q, of degree at least 2 in 𝑎, such that R˚ “ tp𝑧, 𝑎q : 𝑃p𝑧, 𝑎q “ 0u and all
branchpoints of the algebraic function 𝑎p𝑧q lie in 𝐷. We denote by 𝑝 : R˚ Ñ C the natural projection
𝑝pp𝑧, 𝑎qq “ 𝑧, and we let R Ă R˚ be the (open) Riemann surface defined as

R :“ t𝑧 P R˚ : 𝑝p𝑧q P 𝐷u;

here and below, whenever it causes no confusion, we use letter 𝑧 to denote both points in C and on
R˚. Clearly, the ramification points of R˚ and R are identical: rppR˚q “ rppRq. Let us denote by
R the closure of R in R˚, and define a class of functions F pRq by

(2.7)
F pRq :“

 

𝑓 : 𝑓 is holomorphic and single-valued on Rz𝐸 𝑓 ,

𝐸 𝑓 is closed, 𝑝p𝐸 𝑓 q is polar and contained in 𝐷,
𝑓 p𝑧1q ‰ 𝑓 p𝑧2q for some 𝑧1, 𝑧2 with 𝑝p𝑧1q “ 𝑝p𝑧2q

(

.

In (2.7), we wrote 𝐸 𝑓 for the singular set of 𝑓 on R but it would have been more appropriate to write
𝐸 𝑓 pRq, as the complete Riemann surface of 𝑓 could be significantly larger than R and its singular
set bigger than 𝐸 𝑓 . Since all ramification points of R˚ lie on top of 𝐷, the simple-connectedness of
𝐴 implies that the preimage 𝑝´1p𝑇q consists of finitely many homeomorphic copies of 𝑇 under 𝑝´1;
we generically denote by T such a copy, so that 𝑝 : T Ñ 𝑇 is a homeomorphism. Then, denoting
with a subscript b𝐸 the restriction to a set 𝐸 , the class of functions that we study is defined as

(2.8) F p𝐴q :“
"

𝑓 : 𝑓 is holomorphic on 𝐴 and DR˚, T , p𝑓 P F pRq with 𝑓 b𝑇 “ p𝑓 ˝ p𝑝 bTq´1
*

.

From (2.7) and (2.8), one sees that F p𝐴q Ă Sp𝐴q Ă Hp𝐴q and members of F p𝐴q meet (i), (ii),
(iii). Conversely, when 𝑓 P Hp𝐴q satisfies (i), (ii) and (iii), one can check that 𝑓 P F p𝐴q. Indeed,
if 𝐵 is the closed polar subset of 𝐷 defined by (i), we get from (ii) because 𝐷z𝐵 is connected, see
Section A.5, that the number of sheets of the Riemann surface of 𝑓 above 𝐷z𝐵 is a finite constant,
say 𝑀 . Therefore, since the branchpoints are finitely many by (iii), the algebraic surface R˚ can be
constructed by a classical glueing process described in Section 3.2. The fine point, when applying
to the present case this familiar procedure based on glueing pairwise in a certain order the banks
of 𝑀 copies of a system of cuts joining the branchpoints, is that any two points of 𝐷 can be joined
by a smooth simple arc entirely contained in 𝐷z𝐵, except for its endpoints if they lie in 𝐵. It is so
because 𝐷z𝐵 is a connected open set and each point of 𝐵 is the center of a circle of arbitrary small
radius contained in 𝐷z𝐵, as well as the endpoint of a segment contained in 𝐷z𝐵 (that may even be
chosen to have quasi-any direction). These properties hold because 𝐵 is polar, and therefore thin at
each point of C, see Section A.6.

We also consider functions in Hp𝐴q meeting (i) but not (ii). These are analytic and single-valued
in Cz𝐸 , where 𝐸 Ă 𝐷 is closed and polar, i.e., there are no branchpoints. This case complements
the previous one on putting R˚ “ C and omitting the last requirement in (2.7); we denote the
corresponding class of functions by Ep𝐴q. Since capp𝐴, 𝐸q “ cap𝐷p𝐸q “ 0 when 𝐸 Ă 𝐷 is polar,
see Section A.4, we get from (2.3) and (2.2) that

(2.9) lim
𝑛Ñ8

𝜌
1{𝑛
𝑛 p 𝑓 , 𝐴q “ 0, 𝑓 P Ep𝐴q.

That is to say, some sequence t𝑟𝑛u𝑛PN, 𝑟𝑛 P R𝑛, of rational functions, converges faster than
geometrically towards 𝑓 on 𝐴 as the degree grows large, meaning that

(2.10) lim
𝑛Ñ8

} 𝑓 ´ 𝑟𝑛}
1{𝑛

𝐴
“ 0.

We call any such sequence a sequence of 𝑛-th root optimal rational approximants to 𝑓 P Ep𝐴q on 𝐴.
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2.2. Optimal Rational Approximants. Notions of potential theory in 𝐷 and R play a fundamental
role in what follows, and the reader might want to consult Appendix A for a comprehensive account
thereof. Let us here recall the definition of Green potentials and Green equilibrium distributions.

The Green function 𝑔𝐷p¨, 𝑤q of the domain 𝐷 with pole at 𝑤 P 𝐷 is the unique non-negative
harmonic function in 𝐷zt𝑤u, with logarithmic singularity at 𝑤, whose largest harmonic minorant
is zero. The Green potential of a positive Borel measure a in 𝐷 is 𝑔pa, 𝐷; 𝑧q :“

ş

𝑔𝐷p𝑧, 𝑤q𝑑ap𝑤q.
Putting |a| for the total mass of a, the Greenian capacity (in 𝐷) of a Borel set 𝐵 Ă 𝐷 is defined by

(2.11) cap𝐷p𝐵q :“
ˆ

inf
aě0,|a|“1,supp aĎ𝐵

𝐼𝐷paq

˙´1
, 𝐼𝐷paq :“

ż ż

𝑔p𝑧, 𝑤q𝑑ap𝑤q𝑑ap𝑧q;

the infimum above is taken over all probability Borel measures a supported on 𝐵. For any set 𝑆 Ă 𝐷,
the outer Greenian capacity of 𝑆 in 𝐷 is defined as cap𝐷p𝑆q “ inf cap𝐷p𝑈q, where the infimum
is taken over all open sets 𝑈 Ą 𝑆 in 𝐷 (using again the symbol cap𝐷 causes no confusion for
the outer Greenian capacity is known to coincide with the Greenian capacity on Borel sets). Polar
subsets of 𝐷 are those whose outer Greenian capacity is 0. If 𝐾 is a non-polar compact subset of
𝐷, then there exists a unique Borel probability measure `𝐷,𝐾 supported on 𝐾 , called the Green
equilibrium distribution on 𝐾 relative to 𝐷, such that cap𝐷p𝐾q “ 1{𝐼𝐷p`𝐷,𝐾 q. It is characterized
by the property that its Green potential is bounded on 𝐷 and equal to its maximum (which is then
necessarily 1{cap𝐷p𝐾q) quasi everywhere (that is, up to a polar set) on 𝐾 . To recap:

(2.12) 𝑔p`𝐷,𝐾 , 𝐷; 𝑧q

$

’

&

’

%

ď 1{cap𝐷p𝐾q, 𝑧 P 𝐷,

“ 1{cap𝐷p𝐾q, for q.e. 𝑧 P 𝐾,

ă 1{cap𝐷p𝐾q, 𝑧 P 𝐷z𝐾,

where the last inequality follows from the (generalized) maximum principle for harmonic functions.
We are concerned with two types of asymptotics for sequences of rational approximants: the

weak˚ behavior of the normalized counting measures of their poles, and the convergence in capacity
of the functions themselves. More precisely, given a rational function 𝑟 of type p𝑛, 𝑛q, we define

(2.13) `p𝑟q :“
1
𝑛

ÿ

𝑧:𝑟p𝑧q“8

𝛿𝑧 ,

where each pole 𝑧 appears in the sum as many times as its order. Equivalently ´2𝜋`p𝑟q is the
distributional Laplacian Δplog |𝑞|1{𝑛q, with 𝑞 the denominator of an irreducible form of 𝑟 . One says
that a sequence ta𝑛u of finite Borel measures on 𝐷 converges weak˚ to a measure a, denoted as

a𝑛
𝑤˚
Ñ a as 𝑛 Ñ 8,

if
ş

ℎ𝑑a𝑛 Ñ
ş

ℎ𝑑a for every continuous compactly supported function ℎ on 𝐷. We further say that a
sequence of functions ℎ𝑛 converges in Greenian capacity to a function ℎ on a set𝑈 Ă 𝐷 if

(2.14) lim
𝑛Ñ8

cap𝐷
`

t𝑧 P 𝐹 : |ℎ𝑛p𝑧q ´ ℎp𝑧q| ą 𝜖u
˘

“ 0

for each 𝜖 ą 0 and every compact 𝐹 Ă 𝑈; we denote this claim by ℎ𝑛
cap
Ñ ℎ in 𝑈. The convergence

(2.14) is said to hold at a geometric rate if we can replace 𝜖 in (2.14) by 𝑎𝑛 for some positive
𝑎 “ 𝑎p𝐹q ă 1; the convergence rate is called faster than geometric if (2.14) holds with 𝜖 replaced
by 𝑎𝑛 for any 𝑎 ą 0.

Theorem 2.1. Let 𝑇 Ă C be a Jordan curve, 𝐷 its interior and 𝐴 the complement of 𝐷 Y 𝑇 on the
Riemann sphere. Given 𝑓 P F p𝐴q, let 𝐾 𝑓 P K 𝑓 be such that (2.5) holds and t𝑟𝑛u be a sequence of
𝑛-th root optimal rational approximants to 𝑓 on 𝐴, as defined in (2.6). Then,

(2.15) `p𝑟𝑛q
𝑤˚
Ñ `𝐷,𝐾 𝑓 ,
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where `p𝑟𝑛q is the normalized counting measure of the poles of 𝑟𝑛 and `𝐷,𝐾 𝑓 is the Green equilibrium
distribution on 𝐾 𝑓 relative to 𝐷. Furthermore, it holds that

(2.16)
1
2𝑛

log | 𝑓 ´ 𝑟𝑛|
cap
Ñ 𝑔p`𝐷,𝐾 𝑓 , 𝐷; ¨q ´

1
cap𝐷p𝐾 𝑓 q

in 𝐷z𝐾 𝑓 as 𝑛 Ñ 8,

where 𝑔p`𝐷,𝐾 𝑓 , 𝐷; ¨q is the Green potential of `𝐷,𝐾 𝑓 in 𝐷.

Theorem 2.1 and (2.12) imply that 𝑛-th root optimal rational approximants converge to 𝑓 in
capacity in 𝐷z𝐾 𝑓 at a geometric rate, given pointwise by expt𝑔p`𝐷,𝐾 𝑓 , 𝐷; 𝑧q ´ 1{cap𝐷p𝐾 𝑓 qu. In
fact, convergence in Greenian capacity in 𝐷z𝐾 𝑓 and uniform convergence on 𝐴 together with the
limiting behaviour (2.15) for the poles imply convergence in logarithmic capacity on 𝐷z𝐾 𝑓 at a
geometric rate, less than or equal to expt𝑔p`𝐷,𝐾 𝑓 , 𝐷; 𝑧q ´ 1{cap𝐷p𝐾 𝑓 qu pointwise; see Section A.4
for a definition of logarithmic capacity. This remark is a consequence of the proof of (2.16) given
in Section 3.11, and it equally applies to the forthcoming Theorem 2.4, as well as Theorems 2.2
and 2.5 in which 𝐾 𝑓 gets replaced by a polar set 𝐸 and the convergence takes place at faster than
geometric rate. Moreover, if in Theorem 2.4 the 𝑛-th root optimal approximants 𝑀𝑛 are their own
Nehari modification, then a more precise conclusion holds: expt𝑔p`𝐷,𝐾 𝑓 , 𝐷; 𝑧q ´ 1{cap𝐷p𝐾 𝑓 qu

is the exact pointwise rate of geometric convergence in logarithmic capacity on 𝐷z𝐾 𝑓 like it is in
Greenian capacity on 𝐷z𝐾 𝑓 ; see Section 3.3 for a definition of Nehari modifications.

À

Á

Â

Ã

𝑎2 𝑎3

𝑎2 𝑎3

𝑎4 𝑎5

𝑎4 𝑎5

𝑏1

𝑏2 𝑏3

T
U 𝑓

U 𝑓U 𝑓

Figure 1. Surface R with five ramification points rppRq “ t𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5u (𝑎1 is
not labeled) and four sheets. Ramification point 𝑎1 has order 3 and the remaining points
have order 2. The sequence À-Á-Â-Ã-À represents the monodromy around 𝑎1 while
encircling it clockwise, where the transitions happen across the dashed curves that stand
for the cuts between different sheets of R. The domain U 𝑓 is depicted as a shaded region.
In this example 𝐸0 “ ∅, 𝐸11 “ t𝑝p𝑎1q, 𝑝p𝑎2q, 𝑝p𝑎3qu are the active branch points, and
𝐸10 “ t𝑏u, where 𝑏 “ 𝑝p𝑏1q “ 𝑝p𝑏2q “ 𝑝p𝑏3q. The set 𝐾 𝑓 is a threefold equal to the
natural projection of the solid (purple) curves. The solid curves also represent a different
choice of the transition cuts between different sheets of R, with the latter the domain U 𝑓

will lie entirely on one sheet.

In view of its importance, let us describe in greater detail the set 𝐾 𝑓 . As mentioned before, the
problem of finding elements of minimal capacity in K 𝑓 was extensively studied by the second author
[56, 57, 58]. The existence of such sets for 𝑓 P Hp𝐴q was proven in [56], and one can choose 𝐾 𝑓 so
that 𝐾 𝑓 Ď �̃� for any �̃� P K 𝑓 with cap𝐷p�̃�q “ inf𝐾 cap𝐷p𝐾q, which makes 𝐾 𝑓 unique [57]. The



10 LAURENT BARATCHART, HERBERT STAHL†, AND MAXIM YATTSELEV

topological structure of 𝐾 𝑓 was investigated in [58], where it is shown that

(2.17) 𝐾 𝑓 “ 𝐸0 Y 𝐸1 Y
ď

𝑖

𝐽𝑖

where the 𝐽𝑖 are open analytic arcs, 𝐸1 comprises the endpoints of the arcs 𝐽𝑖 , and 𝐸0 is a subset of the
singular set of 𝑓 in 𝐷 (the singular set consists of those points in 𝐷 to which some continuation of 𝑓
from 𝑇 has a singularity). As soon as 𝑓 P Sp𝐴q, the set 𝐸0 is polar by definition. To understand this
decomposition better when 𝑓 P F p𝐴q, let 𝐽 𝑓 :“ Y𝑖𝐽𝑖 so that 𝐸1 Ă 𝐽 𝑓 . Then 𝑓 possesses a single-
valued continuation into 𝐷z𝐽 𝑓 with singular set 𝐸0, consisting of polar and essential singularities
(but no branching singularities). If T , p𝑓 are as in (2.8) and U 𝑓 is the connected component of
𝑝´1p𝐷z𝐽 𝑓 q containing T in its boundary, then we can further decompose:

𝐸0 “ 𝑝p𝐸
p𝑓

X U 𝑓 q, 𝐸1 “ 𝐸10 Y 𝐸11, 𝐸11 :“ 𝑝
`

rppRq X U 𝑓

˘

, 𝐸10 :“ 𝐸1z𝐸11.

That is, 𝐸11 is the set of “active” branchpoints of 𝑓 , i.e., branchpoints that can be reached by
continuation of 𝑓 from 𝑇 into 𝐷z𝐽 𝑓 , as opposed to those points in rppRq that cannot be so reached.
Also, each 𝑒 P 𝐸10 is an endpoint of at least three arcs 𝐽𝑖 , and generically 𝑓 possesses analytic
continuations to 𝑒 from any direction within 𝐷z𝐽 𝑓 (unless by chance 𝑒 is a singularity of 𝑓 as well),
see Figure 1. As rppRq is finite, so is the collection t𝐽𝑖u in cases that we consider.

For 𝑓 P F p𝐴q, Theorem 2.1 asserts two things: (i) the weak˚ convergence of `p𝑟𝑛q to `𝐷,𝐾 𝑓
whenever t𝑟𝑛u is an 𝑛-th root optimal sequence of rational approximants to 𝑓 on 𝐴, and (ii) the
convergence in capacity of 𝑟𝑛 to 𝑓 at a geometric rate on 𝐷z𝐾 𝑓 . If now 𝑓 P Ep𝐴q and t𝑟𝑛u is a
sequence of 𝑛-th root optimal rational approximants to 𝑓 on 𝐴, i.e., a sequence meeting (2.10) and
thus converging faster than geometrically to 𝑓 on 𝐴, then we shall see that 𝑟𝑛 converges in capacity to
𝑓 at faster than geometric rate in 𝐷. However, one can no longer expect a specific behavior of `p𝑟𝑛q

in this case, for if 𝑅𝑛 is a sequence in R𝑛p𝐷q that converges to zero faster than geometrically on 𝑇 ,
then 𝑟𝑛{2 ` 𝑅𝑛{2 is again a sequence of 𝑛-th root optimal rational approximants to 𝑓 on 𝐴, whereas
the weak˚ limit points of `p𝑅𝑛q can be arbitrary amongst positive measures of mass at most 1 on
𝐷. Thus, faster than geometric convergence does not qualify rational approximants enough to imply
much on the behavior of their poles. Still, those poles of 𝑟𝑛 that stay away from the singular set of
𝑓 cannot account for the rate of convergence. This is made precise in the following result, which
complements Theorem 2.1 in the case of no branchpoints.

Theorem 2.2. Let 𝑇 , 𝐴 and 𝐷 be as in Theorem 2.1. Given 𝑓 P Ep𝐴q, let t𝑟𝑛u be a sequence of
rational functions of type p𝑛, 𝑛q meeting (2.10). Then, it holds that

𝑟𝑛
cap
Ñ 𝑓 in 𝐷z𝐸

at faster than geometric rate, where 𝐸 Ă 𝐷 a closed polar set outside of which 𝑓 is analytic and
single-valued. Moreover, for any neighborhood 𝑉 of 𝐸 there is a sequence t𝑅𝑘𝑛u, 𝑅𝑘𝑛 P R𝑘𝑛p𝑉q,
𝑘𝑛 ď 𝑛, such that the poles of 𝑅𝑘𝑛 are among the poles of 𝑟𝑛 lying in 𝑉 and

(2.18) lim
𝑛Ñ8

} 𝑓 ´ 𝑅𝑘𝑛}
1{𝑛

𝐴
“ 0.

Using neighborhoods 𝑉 shrinking to 𝐸 and a diagonal argument, Theorem 2.2 yields a corollary
of independent interest.

Corollary 2.3. If 𝑓 P Ep𝐴q and 𝐸 Ă 𝐷 a closed polar set outside of which 𝑓 is analytic and
single-valued, then there is a sequence of rational functions t𝑟𝑛u, 𝑟𝑛 P R𝑛p𝐷q, converging faster
than geometrically to 𝑓 on 𝐴, and such that every weak˚ cluster point of the sequence t`p𝑟𝑛qu of
normalized counting measures of the poles is supported on 𝐸 .
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2.3. Optimal Meromorphic Approximants. Let 𝐻8p𝐷q denote the space of bounded analytic
functions on 𝐷 and Ap𝐷q the subspace of those extending continuously to 𝐷. When 𝑇 is rectifiable
each ℎ P 𝐻8p𝐷q has a non-tangential limit almost everywhere on 𝑇 with respect to arclength, that
we still call ℎ, and putting } ¨ }𝑇 for the essential supremum norm on 𝑇 (with respect to arclength)
it holds that }ℎ}𝑇 “ }ℎ}𝐷 [12, Theorems 10.3 & 10.5]. When 𝑇 is a non-rectifiable Jordan curve,
however, limiting values of 𝐻8p𝐷q-functions on 𝑇 generally exist at sectorially accessible points
only, and such points may reduce to a set of zero linear measure [49, Theorem 6.25]. This will force
us into a somewhat careful discussion of meromorphic approximants. Remember the set M𝑛p𝐷q of
monic polynomials of degree 𝑛 whose zeros belong to 𝐷, and put

#

𝐻8
𝑛 p𝐷q :“

 

ℎ{𝑞 : ℎ P 𝐻8p𝐷q, 𝑞 P M𝑛p𝐷q
(

,

A𝑛p𝐷q :“
 

ℎ{𝑞 : ℎ P Ap𝐷q, 𝑞 P M𝑛p𝐷q
(

.

That is, 𝐻8
𝑛 p𝐷q is the set of meromorphic function with at most 𝑛 poles in 𝐷 that are bounded near𝑇 ,

and A𝑛p𝐷q is the subset of those extending continuously to 𝑇 . We shall say that t𝑀𝑛u is a sequence
of 𝑛-th root optimal meromorphic approximants to 𝑓 P Sp𝐴q on 𝑇 if 𝑀𝑛 P A𝑛p𝐷q and

(2.19) lim sup
𝑛Ñ8

} 𝑓 ´ 𝑀𝑛}
1{𝑛

𝑇
ď exp

 

´ 2{cap𝐷p𝐾 𝑓 q
(

.

Any sequence of 𝑛-th root optimal rational approximants is a particular sequence of 𝑛-th root optimal
meromorphic ones, by (2.6). When 𝑇 is rectifiable, Corollary 2.6 to come will entail that in (2.19)
the condition 𝑀𝑛 P A𝑛p𝐷q can be traded for the seemingly weaker requirement 𝑀𝑛 P 𝐻8

𝑛 p𝐷q.
However, it is important to require that 𝑀𝑛 P A𝑛p𝐷q when 𝑇 is not rectifiable, for otherwise
the left-hand side of (2.19) may no longer make sense for the essential supremum norm (with
respect to arclength) and the considerations below would not apply. In his proof of (2.3), Parfënov
[46] has shown that the limit inferior of 𝜌1{𝑛

𝑛 p 𝑓 , 𝐴q is the same as the one of the 𝑛-th root of the
error in best meromorphic approximation, see (2.22) for a definition of best (not just 𝑛-th root
optimal) meromorphic approximants. Hence, in light of (2.6), replacing rational approximants with
meromorphic ones does not improve the rate of decay of the 𝑛-th root error, and 𝑛-th root optimal
meromorphic approximants to functions in Sp𝐴q could be defined with the limit superior and the
inequality sign replaced by a full limit and the equality sign in (2.19).

Theorem 2.4. With the notation of Theorem 2.1, let t𝑀𝑛u be a sequence of 𝑛-th root optimal
meromorphic approximants to 𝑓 P F p𝐴q on 𝑇 , see (2.19). Then, the conclusions of Theorem 2.1 hold
with 𝑟𝑛 replaced by 𝑀𝑛.

Let us reiterate that 𝑛-th root optimal rational approximants are just an instance of 𝑛-th root optimal
meromorphic approximants, and therefore Theorem 2.1 is a special case of Theorem 2.4.

When 𝑓 P Ep𝐴q, we define meromorphic approximants in a manner similar to (2.19) but this time
with an eye on (2.9). Namely, we say that t𝑀𝑛u is a sequence of 𝑛-th root optimal meromorphic
approximants to 𝑓 P Ep𝐴q on 𝑇 if 𝑀𝑛 P A𝑛p𝐷q and

(2.20) lim
𝑛Ñ8

} 𝑓 ´ 𝑀𝑛}
1{𝑛

𝑇
“ 0.

The following complements Theorem 2.4 in the case of no branchpoints, and subsumes Theorem 2.2.

Theorem 2.5. With the notation of Theorem 2.2, let t𝑀𝑛u be a sequence of 𝑛-th root optimal
meromorphic approximants on 𝑇 to 𝑓 P Ep𝐴q, see (2.20). Then, the conclusions of Theorem 2.2
hold with 𝑟𝑛 replaced by 𝑀𝑛.

Besides best rational approximants, a noteworthy instance of 𝑛-th root optimal meromorphic
approximants are the AAK (short for Adamyan-Arov-Krein) approximants. These are best mero-
morphic approximants with at most 𝑛 poles. Specifically, consider the following (Nehari-Takagi)
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problem: given 𝑓 P 𝐿8pTq, find 𝑀8
𝑛 P 𝐻8

𝑛 pDq such that

(2.21) } 𝑓 ´ 𝑀8
𝑛 }T “ inf

𝑀P𝐻8
𝑛 pDq

} 𝑓 ´ 𝑀}T.

If 𝑛 “ 0, then (2.21) reduces to the question of best analytic approximation of bounded functions on
the unit circle by elements of 𝐻8pDq, which is the so-called Nehari problem named after [42] (that
deals with an equivalent issue). It is known that 𝑀8

𝑛 always exists and that it is unique when 𝑓 lies in
𝐶pTq `𝐻8pDq, see [47, Chapter 4]. Moreover, if 𝑓 is Dini-continuous on T, then 𝑀8

𝑛 is continuous
on T. Indeed, if we write 𝑀8

𝑛 “ 𝑟𝑛 ` 𝑔 where 𝑟𝑛 P R𝑛pDq and 𝑔 P 𝐻8pDq, we see that 𝑔 must be
the best Nehari approximant to 𝑓 ´ 𝑟𝑛, which is Dini-continuous on T, and the claim follows from
[9]. When 𝑇 is a rectifiable Jordan curve, one can readily replace D by 𝐷 in (2.21) and carry over
to 𝑇 all the properties of best meromorphic approximants on T by conformal mapping. When 𝑇 is
non-rectifiable, the very existence of approximants depends on the analyticity of 𝑓 on 𝑇 , and follows
from the proof of the next corollary to Theorem 2.4.

Corollary 2.6. Let 𝑇 , 𝐴 and 𝐷 be as in Theorem 2.1. Given 𝑓 P F p𝐴q or Ep𝐴q, to each integer 𝑛
there exists a unique 𝑀8

𝑛 P A𝑛p𝐷q such that

(2.22) } 𝑓 ´ 𝑀8
𝑛 }𝑇 “ inf

𝑀PA𝑛p𝐷q
} 𝑓 ´ 𝑀}𝑇 ,

and if 𝑇 is rectifiable then A𝑛p𝐷q can be replaced by 𝐻8
𝑛 p𝐷q in (2.22) without changing 𝑀8

𝑛 . Of
necessity, the conclusions of Theorem 2.4 and 2.5 hold with 𝑀𝑛 replaced by 𝑀8

𝑛 .

Much interest in best meromorphic approximants stems from their striking connection to operator
theory. Denote by 𝐿2pTq the space of square integrable functions on T, and let 𝐻2 Ă 𝐿2pTq be the
Hardy space of functions whose Fourier coefficients with negative index do vanish. It is known that
𝐻2 can be identified with (non-tangential limits on T of) analytic functions in D whose 𝐿2-means on
circles centered at the origin are uniformly bounded, see [12, Theorem 3.4]. Set 𝐻2

´ :“ 𝐿2pTq a𝐻2

to be the orthogonal complement of 𝐻2, which is the Hardy space of 𝐿2-functions whose Fourier
coefficients with nonnegative index are equal to zero. The latter can be identified with functions
analytic in CzD that vanish at infinity, and whose 𝐿2-means with respect to normalized arclength
on circles centered at the origin are uniformly bounded. Let P´ : 𝐿2pTq Ñ 𝐻2

´ be the orthogonal
projection. Given 𝑓 P 𝐿8pTq, one defines the Hankel operator with symbol 𝑓 to be

(2.23) Γ 𝑓 : 𝐻2 Ñ 𝐻2
´, Γ 𝑓 p𝑔q :“ P´p𝑔 𝑓 q.

For 𝑛 a non-negative integer, let 𝑠𝑛pΓ 𝑓 q be the p𝑛 ` 1q-th singular number of the operator Γ 𝑓 , that
is 𝑠𝑛pΓ 𝑓 q :“ infrank 𝑅ď𝑛 }Γ 𝑓 ´ 𝑅}, where the infimum is taken over all operators 𝑅 : 𝐻2 Ñ 𝐻2

´ of
rank at most 𝑛 and } ¨ } stands for the operator norm. Then, one has that

(2.24) } 𝑓 ´ 𝑀8
𝑛 }T “ 𝑠𝑛pΓ 𝑓 q.

If, in addition, 𝑓 P 𝐶pTq ` 𝐻8pDq, then Γ 𝑓 is compact so that 𝑠2𝑛pΓ 𝑓 q is the p𝑛 ` 1q-st eigenvalue
of Γ˚

𝑓
Γ 𝑓 when these are arranged in non-increasing order, and (2.24) becomes a pointwise equality:

(2.25) |p 𝑓 ´ 𝑀8
𝑛 qp𝑧q| “ 𝑠𝑛pΓ 𝑓 q a.e. on T.

Moreover, if 𝑣𝑛 is an p𝑛 ` 1q-st singular vector of Γ 𝑓 , i.e., an eigenvector of Γ˚
𝑓
Γ 𝑓 with eigenvalue

𝑠2𝑛pΓ 𝑓 q, then 𝑀8
𝑛 is explicitly given in terms of 𝑓 and 𝑣𝑛 by the formula

(2.26) 𝑓 ´ 𝑀8
𝑛 “

Γ 𝑓 p𝑣𝑛q

𝑣𝑛
.

Though not obvious at first glance, the right-hand side of (2.26) is independent of which 𝑛-th singular
vector 𝑣𝑛 is chosen and it has constant modulus on T, in accordance with (2.25). The next corollary,
of independent interest, follows from (2.25), (2.19), (2.9), and Theorems 2.4–2.5.
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Corollary 2.7. Let Γ 𝑓 be the Hankel operator with symbol 𝑓 P F
`

CzD
˘

. Then, it holds that

lim
𝑛Ñ8

𝑠
1{𝑛
𝑛 pΓ 𝑓 q “ exp

 

´ 2{capDp𝐾 𝑓 q
(

.

Moreover, if 𝑓 P EpCzDq , then the above limit is equal to 0.

3. Proof of Theorem 2.4

3.1. Existence of Best Meromorphic Approximants. Below, we establish the existence and unique-
ness part of Corollary 2.6, along with the assertion that 𝐻8

𝑛 p𝐷q may replace A𝑛p𝐷q when 𝑇 is
rectifiable. The rest of the corollary will follow from Theorem 2.4 upon conclusion of its proof.

Let 𝜙 : D Ñ 𝐷 be a conformal map. As mentioned in the paragraph before (2.5), 𝜙 extends
to a homeomorphism from D to 𝐷. Let 𝐿2pTq, 𝐻2, and 𝐻2

´ be as defined after Corollary 2.6 and
P` : 𝐿2pTq Ñ 𝐻2, P´ : 𝐿2pTq Ñ 𝐻2

´ be the orthogonal projections. If we pick a continuous
function 𝑓 on 𝑇 , then 𝑓 ˝ 𝜙 is continuous on T and a fortiori it lies in 𝐿2pTq. Set 𝐹 :“ P´p 𝑓 ˝ 𝜙q and
𝐺 :“ P`p 𝑓 ˝ 𝜙q, so that 𝐹 P 𝐻2

´ and 𝐺 P 𝐻2. Since P` ` P´ is the identity operator, it holds that

(3.1) 𝐹p𝑧q “ p 𝑓 ˝ 𝜙qp𝑧q ´ 𝐺p𝑧q, a.e. 𝑧 P T.

Now, if 𝑓 P Hp𝐴q, then 𝑓 ˝ 𝜙p𝑧q is holomorphic in 𝑟 ă |𝑧| ă 1 and continuous in 𝑟 ď |𝑧| ď 1, for 𝑟
close enough to 1. Hence, the right-hand side of (3.1) is holomorphic in 𝑟 ă |𝑧| ă 1 with uniformly
bounded 𝐿2-means on circles centered at the origin, while the left-hand side lies in 𝐻2

´ and both
sides have the same non-tangential limit on T. By an easy variant of Morera’s theorem [21, Chapter
II, Exercise 12], the function equal to 𝐹p𝑧q for |𝑧| ą 1 and to p 𝑓 ˝ 𝜙qp𝑧q ´ 𝐺p𝑧q for 𝑟 ă |𝑧| ă 1 is
holomorphic across T, in particular 𝐹 extends analytically across T and 𝐺 extends continuously to
D. Then, as described after (2.21), the best meromorphic approximant 𝑀8

𝑛 P 𝐻8
𝑛 pDq to 𝑓 ˝ 𝜙 exists

and is unique, moreover it is readily checked that 𝑀8
𝑛 is equal to the sum of 𝐺 (a member of Ap𝐷q)

and of the best approximant to 𝐹 from 𝐻8
𝑛 pDq, which lies in A𝑛pDq because 𝐹 is analytic across T

and so is a fortiori Dini-continuous on T; hence, we get that 𝑀8
𝑛 P A𝑛pDq. If now 𝑀 P A𝑛p𝐷q,

then 𝑀 ˝ 𝜙 P A𝑛pDq and

} 𝑓 ´ 𝑀}𝑇 “ } 𝑓 ˝ 𝜙 ´ 𝑀 ˝ 𝜙}T ě } 𝑓 ˝ 𝜙 ´ 𝑀8
𝑛 }T

by definition of 𝑀8
𝑛 . As 𝑀8

𝑛 ˝ 𝜙´1 P A𝑛p𝐷q, it is the unique best meromorphic approximant to 𝑓

we are looking for. The previous argument also shows that, when 𝑓 P Hp𝐴q, the best meromorphic
approximant to 𝑓 ˝ 𝜙 necessarily belongs to A𝑛pDq. Because composition with 𝜙 is an isometric
isomorphism 𝐿8p𝑇q Ñ 𝐿8pTq (understood with respect to arclength measure) when 𝑇 is rectifiable,
one can equivalently use 𝐻8

𝑛 p𝐷q instead of A𝑛p𝐷q in definition (2.22).

3.2. Reduction to the Unit Disk. Let 𝐾 be a compact subset of D. Since Green potentials are non-
negative superharmonic functions whose largest harmonic minorant is zero, while a characteristic
property of Green equilibrium potentials is to be constant quasi everywhere on the support of their
defining measure while being no greater than this constant everywhere in the domain, it holds that

𝑔p`D,𝐾 ,D; 𝑧q “ 𝑔p`𝐷,𝜙p𝐾 q, 𝐷; 𝜙p𝑧qq and capDp𝐾q “ cap𝐷p𝜙p𝐾qq

where 𝜙 : D Ñ 𝐷 is a conformal map, see (2.12) as well as Sections A.3 and A.4. One has in this
case that `𝐷,𝜙p𝐾 q “ 𝜙˚p`D,𝐾 q, the pushforward of `D,𝐾 under 𝜙. Hence, we get that

1
𝑛

𝑛
ÿ

𝑖“1
𝛿𝑧𝑖

˚
Ñ `D,𝐾 if and only if

1
𝑛

𝑛
ÿ

𝑖“1
𝛿𝜙p𝑧𝑖q

˚
Ñ `𝐷,𝜙p𝐾 q,

where the weak˚ convergence is understood for 𝑛 Ñ 8. Furthermore, by conformal invariance,
a sequence of functions ℎ𝑛 converges in Greenian capacity to a function ℎ in 𝐷 if and only if the
functions ℎ𝑛 ˝ 𝜙 converge in Greenian capacity to the function ℎ ˝ 𝜙 in D.
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Let now R˚ and R be as in Section 2.1. Denote by 𝑀 the number of sheets of R, so that a generic
point in 𝐷 has 𝑀 preimages under the natural projection 𝑝 : R Ñ 𝐷. Let 𝐽 Ă 𝐷 be a smooth
oriented Jordan arc joining two points of 𝑝prppRqq while passing through all others exactly once.
Constructing 𝐽 is tantamount to enumerating the points of 𝑝prppRqq. Write 𝐽 “ Y𝑙𝐽𝑙 where each 𝐽𝑙
connects exactly two points in 𝑝prppRqq. The surface R can be realized as 𝑀 copies𝑈1, . . . ,𝑈𝑀 of
𝐷z𝐽, suitably glued to each other along the banks of the cuts 𝐽𝑙 in each copy𝑈𝑖 (the glueing rule can
be encoded, for example, as a collection of 4-tuples p𝑙, 𝑖, 𝑗 , 𝑘q telling one that the left and right banks
of the cut 𝐽𝑙 in𝑈𝑖 need to be glued to the right bank of the cut 𝐽𝑙 in𝑈 𝑗 and the left bank of the cut 𝐽𝑙
in 𝑈𝑘 respectively, see [40] for a discussion of Hurwitz’s theorem). Using the same gluing rule, we
can construct another 𝑀-sheeted surface S out of the domains 𝜙´1p𝑈1q, . . . , 𝜙´1p𝑈𝑀 q. The map
𝜙 can then be lifted to a conformal map Φ : S Ñ R for which 𝜙p𝜋p𝑧qq “ 𝑝pΦp𝑧qq, 𝑧 P S, where
𝜋 : S Ñ D is the natural projection.

Let 𝑓 P F p𝐴q and p𝑓 P F pRq be as in (2.8) and (2.7). Clearly p𝑓 ˝ Φ P F pSq, and the surface
S˚ can be constructed by gluing 𝑀 copies of CzD to S along the 𝑀 homeomorphic copies of T that
comprise the boundary of S. Argueing as we did after (3.1), we find that 𝐹 :“ P´p 𝑓 ˝ 𝜙q lies in
F pCzDq with the corresponding p𝐹 P F pSq given by p𝑓 ˝ Φ ´ 𝐺 ˝ 𝜋, where 𝐺 :“ P`p 𝑓 ˝ 𝜙q. Note
that the conformal equivalence of Greenian capacities implies that 𝐾𝐹 “ 𝜙´1p𝐾 𝑓 q. Hence, if t𝑀𝑛u

is an 𝑛-th root optimal sequence of meromorphic approximants of 𝑓 in 𝐷 as defined in (2.19), then
t r𝑀𝑛 :“ 𝑀𝑛 ˝ 𝜙´𝐺u is an 𝑛-th root optimal sequence of meromorphic approximants to 𝐹 on T and

p 𝑓 ´ 𝑀𝑛qp𝜙p𝑧qq “ p𝐹 ´ r𝑀𝑛qp𝑧q, 𝑧 P Dz𝐾𝐹 .

Therefore, it is sufficient to study the asymptotic behavior of 𝐹 ´ r𝑀𝑛 as well as the limit distribution
of poles of r𝑀𝑛. That is, it is enough to prove Theorem 2.4 on the unit disk.

3.3. Nehari Modifications. For 𝑓 P HpCzDq and𝑀𝑛 P A𝑛pDq, let ℎ 𝑓 ´𝑀𝑛 be the best holomorphic
(Nehari) approximant of 𝑓 ´𝑀𝑛 in 𝐻8pDq. That is, } 𝑓 ´𝑀𝑛´ ℎ 𝑓 ´𝑀𝑛}T “ infℎP𝐻8pDq } 𝑓 ´𝑀𝑛´

ℎ}𝑇 , and ℎ 𝑓 ´𝑀𝑛 P 𝐻8pDq. Let us set

(3.2) 𝑁p𝑀𝑛qp𝑧q :“ p𝑀𝑛 ` ℎ 𝑓 ´𝑀𝑛qp𝑧q,

and call 𝑁p𝑀𝑛q the Nehari modification of 𝑀𝑛. The discussion after (2.21) shows that 𝑁p𝑀𝑛q lies
in A𝑛pDq. Indeed, we may write 𝑀𝑛 “ 𝑔𝑛 ` 𝑟𝑛 with 𝑟𝑛 P R𝑛pDq and 𝑔𝑛 P ApDq. Then, one
can readily check that ℎ 𝑓 ´𝑀𝑛 “ 𝑔𝑛 ` ℎ 𝑓 ´𝑟𝑛 . As 𝑓 ´ 𝑟𝑛 is analytic across T and in particular
Dini-continuous there, it follows that ℎ 𝑓 ´𝑟𝑛 belongs to ApDq and so does ℎ 𝑓 ´𝑀𝑛 .

Since } 𝑓 ´ 𝑁p𝑀𝑛q}T ď } 𝑓 ´ 𝑀𝑛}T and 𝑁p𝑀𝑛q lies in A𝑛pDq, the sequence t𝑁p𝑀𝑛qu is one of
𝑛-th root optimal meromorphic approximants to 𝑓 , whenever t𝑀𝑛u is such a sequence. It is beneficial
for us to consider Nehari modifications because they enjoy the additional property that the error they
generate has constant modulus on T, i.e., it follows from (2.24) that

(3.3) |p 𝑓 ´ 𝑁p𝑀𝑛qqp𝑧q| “ }Γ 𝑓 ´𝑀𝑛} for a.e. 𝑧 P T.

We claim that it is enough to prove Theorem 2.4 for Nehari modifications only, as we now show.
Assume that Theorem 2.4 holds for t𝑁p𝑀𝑛qu. As the poles of 𝑀𝑛 and 𝑁p𝑀𝑛q are the same, this

automatically yields the statement about weak˚ convergence of the counting measures of the poles.
Moreover, given 𝜖 ą 0 and 𝐾 Ă Dz𝐾 𝑓 a compact set, let us put

𝐸p𝐾, 𝜖, 𝑁p𝑀𝑛qq :“
"

𝑧 P 𝐾 :
ˇ

ˇ

ˇ

ˇ

1
2𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛qqp𝑧q| ´ 𝑔p`D,𝐾 𝑓 ,D; 𝑧q `
1

capDp𝐾 𝑓 q

ˇ

ˇ

ˇ

ˇ

ą 𝜖

*

.

Define 𝐸p𝐾, 𝜖, 𝑀𝑛q analogously. According to our assumption it holds that

(3.4) lim
𝑛Ñ8

capD
`

𝐸p𝐾, 𝜖, 𝑁p𝑀𝑛qq
˘

“ 0,



OPTIMAL RATIONAL APPROXIMANTS 15

and we need to show that (3.4) holds with 𝑁p𝑀𝑛q replaced by 𝑀𝑛. Given Y P p0, 1q, define

𝐹𝑛,Y :“
"

𝑧 P 𝐾 :
1
2𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛qqp𝑧q| ą 𝑔
`

`D,𝐾 𝑓 ,D; ¨
˘

´
1

capDp𝐾 𝑓 q
´ Y𝑚𝐾

*

,

where 𝑚𝐾 :“ min𝐾 𝑔
`

`D,𝐾 𝑓 ,D; ¨
˘

ą 0. Since 𝑁p𝑀𝑛q ´ 𝑀𝑛 is analytic in D, we get from the
maximum modulus principle and the triangle inequality that |𝑁p𝑀𝑛qp𝑧q ´ 𝑀𝑛p𝑧q| ď 2} 𝑓 ´ 𝑀𝑛}T

for 𝑧 P D. Since exptp1 ´ Yq𝑚𝐾 u ą 1, relation (2.19) implies that

2} 𝑓 ´ 𝑀𝑛}T ă
1
2

exp
"

p1 ´ Yq2𝑛 𝑚𝐾 ´
2𝑛

capDp𝐾 𝑓 q

*

for all 𝑛 large enough. Hence, by the previous estimates, it holds for all such 𝑛 and 𝑧 P 𝐹𝑛,Y that
ˇ

ˇ

ˇ

ˇ

𝑁p𝑀𝑛qp𝑧q ´ 𝑀𝑛p𝑧q

𝑓 p𝑧q ´ 𝑁p𝑀𝑛qp𝑧q

ˇ

ˇ

ˇ

ˇ

ă
1
2
𝑒

2𝑛p𝑚𝐾´𝑔p`D,𝐾 𝑓 ,D;𝑧qq
ď

1
2
.

In particular, for any 0 ă Y ă Y1, there exists 𝑛0 depending on 𝐾 and Y1 ´ Y such that

(3.5)
1
2𝑛

ˇ

ˇ

ˇ

ˇ

log
ˇ

ˇ

ˇ

ˇ

𝑓 p𝑧q ´ 𝑀𝑛p𝑧q

𝑓 p𝑧q ´ 𝑁p𝑀𝑛qp𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă pY1 ´ Yq𝑚𝐾

for all 𝑧 P 𝐹𝑛,Y and 𝑛 ě 𝑛0. Therefore, we get from the triangle inequality that
𝐸p𝐾, Y1𝑚𝐾 , 𝑀𝑛q Ď p𝐾z𝐹𝑛,Yq Y 𝐸p𝐾, Y𝑚𝐾 , 𝑁p𝑀𝑛qq “ 𝐸p𝐾, Y𝑚𝐾 , 𝑁p𝑀𝑛qq

for all 𝑛 ě 𝑛0. The above inclusion clearly yields that (3.4) holds with 𝑁p𝑀𝑛q replaced by 𝑀𝑛 for
𝜖 “ Y1𝑚𝐾 . As Y, Y1, and 𝐾 were arbitrary, the claim follows.

3.4. Notation. We fix 𝑓 P F pCzDq and, with a slight abuse of notation, we keep denoting by 𝑓 the
corresponding function in F pRq (that was denoted by p𝑓 in (2.8)). Take t𝑀𝑛u to be a sequence of 𝑛-th
root optimal meromorphic approximants of 𝑓 and let t𝑁p𝑀𝑛qu be the sequence of corresponding
Nehari modifications. Since t𝑁p𝑀𝑛qu is also 𝑛-th root optimal, it holds that

(3.6) lim
𝑛Ñ8

1
𝑛

log } 𝑓 ´ 𝑁p𝑀𝑛q}T “ ´
2

capDp𝐾 𝑓 q
,

see the discussion after (2.19). We shall need an exhaustion of Rz𝐸 𝑓 by open sets with “nice”
boundaries. That is, we consider a sequence tΩ𝑚u𝑚ě1 of open sets such that

(3.7) Ω𝑚 Ă Rz𝐸 𝑓 , Ω𝑚 Ă Ω𝑚`1, BR Ă BΩ𝑚, Rz𝐸 𝑓 “ Y𝑚Ω𝑚,

and each Ω𝑚, when viewed as an open subset with compact closure of R˚, is regular for the Dirichlet
problem, see Section A.7. We will require in addition that _pBΩ𝑚zBRq “ 0 for some Radon measure
_ on R that will be specified at the beginning of Section 3.5 (a Radon measure is a positive Borel
measure which is finite on compact sets). To design regular Ω𝑚 that meet (3.7) is possible because
𝐸 𝑓 , being compact in R, is a countable intersection of compact sets 𝐾𝑙 Ă R with smooth boundary.
Indeed, there is a smooth function ℎ ě 0 on R such that 𝐸 𝑓 is the zero set of ℎ and ℎ ě 𝑐 ą 0
outside a compact neighborhood of 𝐸 𝑓 , hence we can pick 𝐾𝑙 to be the sublevel set t𝑧 : ℎp𝑧q ď 𝑡𝑙u,
where t𝑡𝑙u a sequence of regular values of ℎ tending to 0 (almost every positive number is a regular
value by Sard’s theorem). In fact, using smooth partitions of unity and local coordinates, existence
of such ℎ quickly reduces to the corresponding issue in Euclidean space, where it follows easily from
a combination of [62, Chapter VI, Theorem 2] and [67, Theorem I] (this result is named after H.
Whitney). Furthermore, since the sets 𝐶𝑎,𝑏 :“ t𝑧 : 𝑎 ď ℎp𝑧q ď 𝑏u are compact for 0 ă 𝑎 ă 𝑏 ă Y

and Y ą 0 small enough, _p𝐶𝑎,𝑏q ă 8. So, _pt𝑧 : ℎp𝑧q “ 𝑡uq ‰ 0 for at most countably many
positive 𝑡 ă Y, and we can assume that 𝑡𝑙 chosen above are not such values. The domains Ω𝑚 thus
constructed satisfy all our requirements.

Let Ω be a subdomain of D or R. Given a Borel measure 𝜎 on Ω, we denote the Green potential
of 𝜎 relative to Ω by 𝑔p𝜎,Ω; ¨q, see Section A.2. Hereafter, every measure is Borel unless otherwise
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stated. If 𝜎 is a measure on a Borel set containing Ω, we write for simplicity 𝑔p𝜎,Ω; ¨q to mean
𝑔p𝜎bΩ,Ω; ¨q. Conversely, for a measure 𝜎 on a Borel set 𝐵0 Ă Ω, we still denote by 𝜎 the measure
on Ω mapping a Borel set 𝐵 to 𝜎p𝐵 X 𝐵0q, and write 𝑔p𝜎,Ω; ¨q for its potential. When 𝜎 “

ř

𝑗 𝛿𝑧 𝑗
is a (possibly infinite) sum of Dirac delta measures, we put

(3.8) 𝑏p𝜎,Ω; 𝑧q “ exp
 

´ 𝑔˚p𝜎,Ω; 𝑧q
(

to stand for the corresponding generalized Blaschke product, where 𝑔˚p𝜎,Ω; ¨q is a complexified
Green potential, i.e., it is locally holomorphic in Ωzsuppp𝜎q and Re 𝑔˚p𝜎,Ω; ¨q “ 𝑔p𝜎,Ω; ¨q. If
𝑔p𝜎,Ω; ¨q ” `8, which can happen when the points 𝑧 𝑗 accumulate in Ω or to the boundary BΩ

sufficiently slowly, then 𝑏p𝜎,Ω; ¨q is identically zero. Otherwise, 𝑏p𝜎,Ω; ¨q is well defined up to a
unimodular constant (because the periods of a conjugate function of 𝑔p𝜎,Ω; ¨q are integral multiples
of 2𝜋 by Gauss’ theorem), holomorphic in Ω, unimodular quasi everywhere on BΩ (everywhere if
the latter is regular and the points 𝑧 𝑗 are finite in number), and it vanishes only at the points 𝑧 𝑗 (with
multiplicities represented by repetition).

3.5. Stripped Error of Approximation. We shall study the asymptotics of the error functions
| 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|. In this section, we strip off their poles and zeros to take logarithms and obtain
harmonic functions whose limiting behavior we then investigate. To this end, we set

(3.9) r̀𝑛 :“
ÿ

𝛿𝑣𝑛, 𝑗 , `𝑛 :“ r̀𝑛{𝑛, and ra𝑛 :“
ÿ

𝛿𝑢𝑛, 𝑗 , a𝑛 :“ ra𝑛{𝑛,

where t𝑣𝑛, 𝑗u Ă D are the poles of 𝑁p𝑀𝑛q and t𝑢𝑛, 𝑗u Ă Rz𝐸 𝑓 the zeros of 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝, with
multiplicities counted by repetition. Before we proceed, let us specify the measure _ appearing in
the definition of the exhaustion tΩ𝑚u in the previous subsection. To this end, recall that on a locally
compact space 𝑋 , a sequence of Radon measures t𝜎𝑛u converges vaguely to a Radon measure 𝜎 if
ş

𝑔𝑑𝜎𝑛 Ñ
ş

𝑔𝑑𝜎 for every 𝑔 in 𝐶𝑐p𝑋q, the space of continuous functions with compact support on
𝑋 endowed with the sup-norm. Moreover, if the measures 𝜎𝑛 are locally bounded on 𝑋 , then they do
contain a vaguely convergent subsequence, see for example [14, Theorem 1.41] for an argument on
R𝑛 which is applicable to any 𝜎-compact locally convex space2. Hence, since the measures `𝑛 have
mass at most 1, we get if a𝑛 is locally bounded along some sequence of integers that there exists a
subsequence N Ď N, a measure a˚ on Rz𝐸 𝑓 and a measure ` on D such that a𝑛 and `𝑛 converge
vaguely to a˚ and `, respectively, along N ; if the measures a𝑛 have no locally bounded subsequence,
i.e., if there exists a compact set 𝐾 Ă Rz𝐸 𝑓 such that a𝑛p𝐾q Ñ 8 as N Q 𝑛 Ñ 8, then we put
a˚ “ 0 and we only require the vague convergence `𝑛 Ñ ` along N . In any case we take _ to be
a˚ ` p̀, where p̀ is the lift of ` to R defined via (A.33).

Using (3.8), we define Blaschke products vanishing at the poles of 𝑁p𝑀𝑛q and the zeros of
𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝. Namely, we put

𝑏
𝑝𝑜𝑙𝑒
𝑛 p𝑧q :“ 𝑏p r̀𝑛,D; 𝑧q and 𝑏𝑧𝑒𝑟𝑜𝑛,𝑚 p𝑧q :“ 𝑏pra𝑛,Ω𝑚; 𝑧q.

These functions are not identically zero, as the number of poles of 𝑁p𝑀𝑛q is at most 𝑛 while the
number of zeros of 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝 in each Ω𝑚 is finite. To see the latter point, recall from (3.3)
that | 𝑓 ´ 𝑁p𝑀𝑛q| is constant on T, hence the error 𝑓 ´ 𝑁p𝑀𝑛q can be meromorphically continued
across T by reflection. It implies that 𝑁p𝑀𝑛q can be meromorphically continued across T and this
continuation is necessarily analytic in some neighborhood of T. Thus, 𝑓 ´𝑁p𝑀𝑛q ˝ 𝑝 is analytic in a
neighborhood of BR by the analyticity of 𝑓 there, so the zeros of 𝑓 ´𝑁p𝑀𝑛q ˝ 𝑝 can only accumulate
on 𝐸 𝑓 and not on BR. Thus, there are at most finitely many of them in each Ω𝑚.

Using these Blaschke products, we define

(3.10) ℎ𝑛,𝑚p𝑧q :“
1
𝑛

log
ˇ

ˇ

ˇ
p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝q p𝑧qp𝑏

𝑝𝑜𝑙𝑒
𝑛 ˝ 𝑝qp𝑧q{𝑏𝑧𝑒𝑟𝑜𝑛,𝑚 p𝑧q

ˇ

ˇ

ˇ
, 𝑧 P Ω𝑚,

2Vague convergence is called weak convergence in [14].
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which is harmonic in Ω𝑚. Recall that superharmonic functions on a hyperbolic Riemann surface
are either identically `8 or finite quasi everywhere, and any two of them that coincide almost
everywhere (with respect to Lebesgue measure in local coordinates) are in fact equal (the weak
identity principle), see Section A.1.

Lemma 3.1. There exist a subsequence N 1 Ď N and a non-negative superharmonic function 𝑢1p𝑧q

on R such that
(3.11) ´ ℎ𝑛𝑚 ,𝑚p𝑧q Ñ 𝑢1p𝑧q as 𝑚 Ñ 8,

locally uniformly in 𝑧 P Rz𝐸 𝑓 , for any subsequence t𝑛𝑚u8
𝑚“1 Ď N 1. If 𝑢1 is finite quasi everywhere,

then one has a decomposition
(3.12) 𝑢1 “ 𝑔pa1,R; ¨q ` ℎ1,

where a1 is a finite positive Borel measure supported on 𝐸 𝑓 and ℎ1 is a non-negative harmonic
function on R.

Proof. The regularity of BΩ𝑚 implies that |𝑏𝑧𝑒𝑟𝑜𝑛,𝑚 p𝑧q| ” 1 for 𝑧 P BΩ𝑚, and likewise |𝑏
𝑝𝑜𝑙𝑒
𝑛 p𝑧q| “ 1

for 𝑧 on T. In particular we get that
ˇ

ˇ𝑁p𝑀𝑛qp𝑧q𝑏
𝑝𝑜𝑙𝑒
𝑛 p𝑧q

ˇ

ˇ ď }𝑁p𝑀𝑛q}T, 𝑧 P D,

by the maximum modulus principle for 𝐻8-functions. Set Γ𝑛 :“ Γ 𝑓 ´𝑀𝑛 be the Hankel operator
with symbol 𝑓 ´ 𝑀𝑛, see (2.23). It follows from the definition of the singular values, (2.24), and
(3.2) that }Γ𝑛} “ 𝑠0pΓ𝑛q “ } 𝑓 ´ 𝑁p𝑀𝑛q}T ď } 𝑓 ´ 𝑀𝑛}T. Since the norms } 𝑓 ´ 𝑀𝑛}T tend to zero
by assumption, we get that
(3.13) }𝑁p𝑀𝑛q}T ď } 𝑓 }T ` }Γ𝑛} ď 𝐶 𝑓

for some constant 𝐶 𝑓 that depends only on 𝑓 and the sequence t𝑀𝑛u. Thus, we get from the
maximum principle for harmonic functions that

(3.14) ℎ𝑛,𝑚p𝑧q ď
1
𝑛

log
`

} 𝑓 }BΩ𝑚 ` 𝐶 𝑓
˘

, 𝑧 P Ω𝑚.

Set N0 :“ N . Proceeding inductively on 𝑚 ě 1, we deduce from (3.14) that the sequence
tℎ𝑛,𝑚u𝑛PN𝑚´1 is uniformly bounded above in Ω𝑚 and therefore, by Harnack’s theorem, see Sec-
tion A.1, there exists a subsequence N𝑚 Ď N𝑚´1 such that
(3.15) ℎ𝑛,𝑚p𝑧q Ñ ℎ𝑚p𝑧q as N𝑚 Q 𝑛 Ñ 8

locally uniformly in Ω𝑚, where ℎ𝑚p𝑧q is either identically ´8 or a non-positive harmonic function.
Define N˚ to be the diagonal of the table tN𝑚u8

𝑚“1; that is, the 𝑚-th element of N˚ is the 𝑚-th
element of N𝑚. Then, (3.15) holds along 𝑛 P N˚ for each 𝑚.

Additionally, it follows from the maximum modulus principle for holomorphic functions that
|𝑏𝑧𝑒𝑟𝑜𝑛,𝑚1 p𝑧q| ą |𝑏𝑧𝑒𝑟𝑜𝑛,𝑚2 p𝑧q|, 𝑧 P Ω𝑚1 , 𝑚1 ă 𝑚2.

Therefore, we get from (3.10) and (3.14) that ℎ𝑚1p𝑧q ď ℎ𝑚2p𝑧q ď 0 for 𝑧 P Ω𝑚1 when 𝑚1 ă 𝑚2.
Thus, if a finite limit ℎ𝑚˚

p𝑧q exists for some index 𝑚˚, then it exists for all 𝑚 ą 𝑚˚. Hence, either
the functions ℎ𝑛,𝑚 converge to ´8 as N˚ Q 𝑛 Ñ 8 locally uniformly in each Ω𝑚, in which case
ℎ𝑚 ” ´8 for all 𝑚, or else the functions ℎ𝑚 are finite and harmonic for all 𝑚 large enough.

If ℎ𝑚 ” ´8 for all 𝑚, select for each 𝑚 some 𝑛𝑚 P N˚ such that ℎ𝑛,𝑚p𝑧q ă ´𝑚 for 𝑧 P Ω𝑚´1
and all 𝑛 ě 𝑛𝑚; we may require in addition that 𝑛𝑚 ą 𝑛𝑚´1 for 𝑚 ě 1. Then (3.11) holds with
N 1 :“ t𝑛𝑚u8

𝑚“1 and 𝑢1 ” `8.
If on the contrary the functions ℎ𝑚 are finite, they form an increasing sequence on Ωℓ for 𝑚 ě ℓ

and fixed ℓ. As they are non-positive, they converge locally uniformly in Rz𝐸 𝑓 to a non-positive
harmonic function, say ´𝑢1, again by Harnack’s theorem. Since 𝐸 𝑓 is a closed polar set and 𝑢1

is non-negative, it follows from the Removability theorem, see Section A.5, that 𝑢1 extends to a
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superharmonic function on R that we keep denoting by 𝑢1. Because 𝑢1 is superharmonic on R and
harmonic on Rz𝐸 𝑓 , its Laplacian is a negative Radon measure ´a1 supported on 𝐸 𝑓 , which is
necessarily finite since 𝐸 𝑓 is compact. Thus, by the Riesz representation theorem, see Section A.3,
equation (3.12) takes place with ℎ1 the largest harmonic minorant of 𝑢1.

Given 𝑚, choose �̃�𝑚 P N˚ such that |ℎ𝑛,𝑚p𝑧q ´ ℎ𝑚p𝑧q| ď 1{𝑚 for 𝑧 P Ω𝑚´1 and all 𝑛 ě �̃�𝑚.
Define N 1 :“ t�̃�𝑚u8

𝑚“1, where we again additionally require that �̃�𝑚 ą �̃�𝑚´1. Given a compact set
𝐾 Ă Rz𝐸 𝑓 and 𝜖 ą 0, we can pick 𝑚 large enough that

𝐾 Ď Ω𝑚´1, 1{𝑚 ď 𝜖{2, and |𝑢1p𝑧q ` ℎ𝑚p𝑧q| ď 𝜖{2, 𝑧 P 𝐾.

Then, it follows from the last two inequalities that |ℎ𝑛,𝑚p𝑧q ` 𝑢1p𝑧q| ď 𝜖 for 𝑧 P 𝐾 and any
N 1 Q 𝑛 ě �̃�𝑚. Since 𝜖 and 𝐾 were arbitrary, this finishes the proof of (3.11). �

Lemma 3.2. If 𝑢1 ı `8 in Lemma 3.1, then ℎ1 in (3.12) continuously extends to BR and

(3.16) ℎ1p𝑧q “

$

&

%

2
capDp𝐾 𝑓 q

, 𝑧 P T ,

0, 𝑧 P BRzT .

Proof. Let Ω˚ :“ 𝑝´1pt𝑧 : 𝑟 ă |𝑧| ă 1uq, with 𝑟 ą 0 close enough to 1 that Ω˚zBR Ă Ω𝑚 for
each 𝑚. It follows from the proof of Lemma 3.1 that ℎ𝑛,𝑚p𝑧q Ñ ℎ𝑚p𝑧q as N 1 Q 𝑛 Ñ 8, locally
uniformly in Ω˚zBR. Given a connected component Ω of Ω˚, let 𝛿RzΩ

𝑧 be its harmonic measure, see
Section A.9. Then

(3.17) log |𝑝p𝑧q ´ p1 ` 𝜖q𝑝pbq| “

ż

log |𝑝pZq ´ p1 ` 𝜖q𝑝pbq|𝑑𝛿
RzΩ
𝑧 pZq, 𝑧 P Ω,

for any b P BΩX BR and 𝜖 ą 0, see (A.28). It then follows from the monotone convergence theorem
that we can take 𝜖 “ 0 in (3.17). Recall that 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝 is analytic across BR X BΩ and hence
is non-vanishing there except perhaps for finitely many zeros counting multiplicities. Since ℎ𝑛,𝑚 is
harmonic in Ω, is continuous on BΩzBR, and is equal to 1

𝑛
log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝| on BR X BΩ (i.e.,

it is continuous on BΩzBR except perhaps for finitely many logarithmic singularities), we get from
(3.17) and (A.28) that

ℎ𝑛,𝑚p𝑧q “

ż

BΩzBR
ℎ𝑛,𝑚𝑑𝛿

RzΩ
𝑧 `

ż

BRXBΩ

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧 , 𝑧 P Ω.

By (3.6) the pointwise limit of 1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝| on BR is minus the right-hand side of (3.16)
except perhaps for a finite subset of BRzT , where | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝| may go to zero, contained in

 

Z | D [ ‰ Z : 𝑝pZq “ 𝑝p[q, 𝑓 pZq “ 𝑓 p[q
(

zT .

As 𝛿RzΩ
𝑧 does not charge polar, thus finite sets, the convergence in fact holds almost everywhere with

respect to 𝛿RzΩ
𝑧 for each fixed 𝑧. So, if we can justify the second equality in the following relation:

(3.18) ℎ𝑚p𝑧q “ lim
N1Q𝑛Ñ8

ˆ
ż

BΩzBR
ℎ𝑛,𝑚𝑑𝛿

RzΩ
𝑧 `

ż

BRXBΩ

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧

˙

“

ż

BΩzBR
ℎ𝑚𝑑𝛿

RzΩ
𝑧 `

ż

BRXBΩ

lim
NQ𝑛Ñ8

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧 ,

we shall get that ℎ𝑚p𝑧q solves a Dirichlet problem on Ω with boundary data equal to ℎ𝑚 bBΩzBR on
BΩzBR, and to the negative of the right-hand side of (3.16) on BR X BΩ. As such, ℎ𝑚 must extend
continuously to BΩ where it is equal to the boundary data, since BΩ is non-thin at any of its points.
Subsequently, as ℎ𝑚 converges to ´𝑢1 locally uniformly on Rz𝐸 𝑓 (see the proof of Lemma 3.1),
passing to the limit in the leftmost and rightmost sides of (3.18) when 𝑚 Ñ 8 yields that 𝑢1 extends
continuously to BΩ X BR with values given there by the right-hand side of (3.16). This will give us
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the desired conclusion, because a1 is compactly supported in R and therefore 𝑔pa1,R; ¨q continuously
extends by zero to BR since R is regular.

Altogether, it only remains to justify the swapping of the limit and integration signs in (3.18). On
BΩzBR, one can invoke the dominated convergence theorem. Thus, we only need to consider the
integral over BR X BΩ. According to Vitali’s convergence theorem, it is enough to show that for
every 𝜖 ą 0 there exists 𝛿 ą 0 and 𝑛Y P N for which

(3.19)
ż

𝐸

ˇ

ˇ

ˇ

ˇ

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|

ˇ

ˇ

ˇ

ˇ

𝑑𝛿
RzΩ
𝑧 ă 𝜖 as soon as |𝛿

RzΩ
𝑧 p𝐸q| ă 𝛿 and 𝑛 ě 𝑛Y .

For this, we first deduce from (3.13) that

(3.20)
ż

BR

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧 ď

1
𝑛

log
`

} 𝑓 }BR ` 𝐶 𝑓
˘

as 𝛿RzΩ
𝑧 is a probability measure. Now, if BR X BΩ “ T , then it follows from (3.6) that

(3.21)
ż

𝐸

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧 ą ´𝑐𝛿

RzΩ
𝑧 p𝐸q,

for any 𝐸 Ď T and some positive constant 𝑐. If BR X BΩ “ T 1 ‰ T , set 𝑑p[q :“ 𝑓 p[q ´ 𝑓 pZq

where [ P T 1, Z P T , and 𝑝p[q “ 𝑝pZq. Then, we get from (3.13) that

(3.22) log |p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝qp[q| ě log
ˇ

ˇ|𝑑p[q| ´ }Γ𝑛}
ˇ

ˇ “ log
ˇ

ˇ

ˇ

ˇ

|𝑑p[q|2 ´ }Γ𝑛}2

|𝑑p[q| ` }Γ𝑛}

ˇ

ˇ

ˇ

ˇ

ě log
ˇ

ˇ|𝑑p[q|2 ´ }Γ𝑛}2ˇ
ˇ ´ logp} 𝑓 }T1 ` 𝐶 𝑓 q.

Since 𝐸 𝑓 , the singular set of 𝑓 , and rppRq, the ramification set of R, are closed and lie on top of D,
𝑑p[q extends to a holomorphic function, non-identically zero in a neighborhood of T 1. Then,

Dp[q :“ 𝑑p[q𝑑p𝑝´1p1{𝑝p[qq satisfies Dp[q “ |𝑑p[q|2, [ P T 1,

and is holomorphic about T 1. Pick an open set 𝑊 Ą T 1 such that 𝑊 X rppRq “ ∅ and D is
holomorphic in 𝑊 with no zero on B𝑊 ; then, so is D ´ }Γ𝑛}2 for 𝑛 large as }Γ𝑛}2 Ñ 0. Let ℓ and
ℓ𝑛 be minimal degree polynomials, normalized by imposing }ℓ}T “ }ℓ𝑛}T “ 1, such that

Dp[q

ℓp𝑝p[qq
and

Dp[q ´ }Γ𝑛}2

ℓ𝑛p𝑝p[qq

are holomorphic and non-vanishing in 𝑊 . Since }Γ𝑛}2 Ñ 0, the zeros of D ´ }Γ𝑛}2 in 𝑊 tend to
those of D by Rouché’s theorem, and so our normalization implies that ℓ𝑛 Ñ ℓ uniformly in 𝑊 as
𝑛 Ñ 8. Hence, pD ´ }Γ𝑛}2q{pℓ𝑛 ˝ 𝑝q converges to D{pℓ𝑛 ˝ 𝑝q uniformly in 𝑊 , in particular it is
uniformly bounded away from zero there. Consequently, it follows from (3.22) that

(3.23) log |p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝qp[q| ě 𝐶 ` log |ℓ𝑛p𝑝p[qq|, [ P T 1,

for some finite constant 𝐶. Note that log |ℓ𝑛| ď 0 in D according to our normalization. Let us write
ℓ𝑛p𝑥q “ 𝑎𝑛

ś

𝑖p𝑥 ´ 𝑥𝑖,𝑛q and define the reciprocal polynomial ℓ̃𝑛 of ℓ𝑛 by

ℓ̃𝑛p𝑥q :“ 𝑎𝑛

ź

𝑖

"

𝑥 ´ 𝑥𝑖,𝑛 if |𝑥𝑖,𝑛| ě 1,
1 ´ 𝑥𝑥𝑖,𝑛 if |𝑥𝑖,𝑛| ă 1.

Clearly |ℓ𝑛pbq| “ |ℓ̃𝑛pbq| for |b| “ 1, and the maximum principle for harmonic functions implies that

(3.24)
ż

T1

log |ℓ̃𝑛p𝑝p[qq|𝑑𝛿
RzΩ
𝑧 ě log

ˇ

ˇℓ̃𝑛p𝑝p𝑧qq
ˇ

ˇ, 𝑧 P Ω,
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since both sides of (3.24) are harmonic in Ω and have the trace log |ℓ𝑛p𝑝p[qq| on T 1 while the
left-hand side has zero trace on BΩzT 1 and the right-hand side satisfies log |ℓ𝑛 ˝ 𝑝| ď 0 there. Thus,
we get from (3.23) and (3.24) that

ż

T1

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
RzΩ
𝑧 ě

𝐶

𝑛
`

1
𝑛

ż

T1

log |ℓ̃𝑛p𝑝p[qq|𝑑𝛿
RzΩ
𝑧

ě
𝐶

𝑛
`

1
𝑛

log
ˇ

ˇℓ̃𝑛p𝑝p𝑧qq
ˇ

ˇ.(3.25)

As the last term goes to zero uniformly on Ω and since ℓ̃𝑛 Ñ ℓ̃, where ℓ̃ is the reciprocal polynomial
of ℓ defined similarly to ℓ̃𝑛, the estimate (3.19) now follows from (3.20), (3.21), and (3.25). �

3.6. Asymptotic Distributions of Poles and Zeros. Recall the measures `𝑛 introduced in (3.9).
Since these measures have mass at most 1, it follows from Helly’s selection theorem [54, Theo-
rem 0.1.3] that there exists a Borel measure `1, supported in D with mass at most 1, such that

(3.26) `𝑛
𝑤˚
Ñ `1 as N 1 Q 𝑛 Ñ 8,

perhaps at a cost of further restricting N 1, where 𝑤˚
Ñ stands for weak˚ convergence of finite (signed)

measures (a sequence of Borel measures t𝜎𝑛u on a locally compact space 𝑋 converges weak˚ to a
measure 𝜎 if

ş

𝑔𝑑𝜎𝑛 Ñ
ş

𝑔𝑑𝜎 for every continuous function 𝑔 in 𝐶0p𝑋q, the completion of 𝐶𝑐p𝑋q in
the supremum norm). Observe that `1

bD “ `, where ` was defined as the vague limit `𝑛 in D along
N Ě N 1. In particular, `𝑛

𝑤˚
Ñ ` in D.

Lemma 3.3. For any subsequence t𝑛𝑚u8
𝑚“1 Ď N 1, it holds that

(3.27) lim inf
𝑚Ñ8

1
𝑛𝑚

log
ˇ

ˇ𝑏
𝑝𝑜𝑙𝑒
𝑛𝑚 p𝑧q

ˇ

ˇ

´1
"

ě

“

*

𝑔p`,D; 𝑧q,

where the inequality holds for every 𝑧 P D and equality holds for quasi every 𝑧 P D.

Proof. Observe that 1
𝑛

log
ˇ

ˇ𝑏
𝑝𝑜𝑙𝑒
𝑛 p𝑧q

ˇ

ˇ

´1
“ 𝑔p`𝑛,D; 𝑧q, see (3.8). Since `𝑛

𝑤˚
Ñ ` onD, the conclusion

follows from the Principle of Descent and the Lower Envelope Theorem, see Section A.7. �

We cannot immediately get an analog of the previous lemma for the measures a𝑛 “ ra𝑛{𝑛, because
we do not know if these Radon measures on Rz𝐸 𝑓 have uniformly bounded masses. Instead, we
shall study the asymptotic behavior of their Green potentials in the style of Lemmas 3.1 and 3.2.

Lemma 3.4. If the Radon measures 𝜎𝑛 converge vaguely to 𝜎, 𝐾 Ă 𝐸 is compact, and 𝜎pB𝐾q “ 0,
then the restrictions 𝜎𝑛 b𝐾 have uniformly bounded masses, 𝜎𝑛 b𝐾

𝑤˚
Ñ 𝜎b𝐾 on 𝐾 , and 𝜎𝑛pB𝐾q Ñ 0.

Proof. For each Y ą 0 there is an open set 𝑉 Ą B𝐾 such that 𝜎p𝑉q ă Y (by outer regularity of 𝜎),
and an open set 𝑊 with compact closure satisfying 𝑉 Ą 𝑊 Ą 𝑊 Ą B𝐾 together with a continuous
function 𝜑 ě 0, supported in 𝑉 , which is 1 on 𝑊 (by Urysohn’s lemma). Thus, 𝐾Y :“ 𝐾z𝑊 is a
compact subset of int𝐾 (the interior of 𝐾) such that, for 𝑛 large enough that |

ş

𝜑𝑑𝜎𝑛 ´
ş

𝜑𝑑𝜎| ă Y,

𝜎𝑛pB𝐾q ď 𝜎𝑛p𝐾z𝐾Yq ď 𝜎𝑛p𝑊q ď

ż

𝜑𝑑𝜎𝑛 ă Y `

ż

𝜑𝑑𝜎 ď 2Y.

Therefore
ş

𝑔𝑑𝜎𝑛 Ñ
ş

𝑔𝑑𝜎 as 𝑛 Ñ 8 for any bounded continuous function 𝑔 on int𝐾 [11, Propo-
sition 6.18], and since 𝜎𝑛pB𝐾q Ñ 0 while 𝜎pB𝐾q “ 0 it implies the weak˚ convergence of 𝜎𝑛 b𝐾 to
𝜎b𝐾 . The uniform boundedness of the masses 𝜎𝑛p𝐾q “

ş

𝐾
1𝑑𝜎𝑛 now follows. �

From now on we employ standard notation D𝑟 :“ t𝑧 : |𝑧| ă 𝑟u and T𝑟 :“ BD𝑟 .
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Lemma 3.5. There exist a subsequence N2 Ď N 1 and a non-negative superharmonic function 𝑢2p𝑧q

on R such that

(3.28) lim inf
𝑚Ñ8

1
𝑛

log
ˇ

ˇ𝑏𝑧𝑒𝑟𝑜𝑛𝑚 ,𝑚
p𝑧q

ˇ

ˇ

´1
"

ě

“

*

𝑢2p𝑧q

for any t𝑛𝑚u8
𝑚“1 Ď N2, where the inequality in (3.28) holds everywhere on Rz𝐸 𝑓 while the equality

needs only to hold quasi everywhere. When 𝑢2 ı `8, it holds that

(3.29) 𝑢2 “ 𝑔pa2,R; ¨q ` ℎ2

for some Radon measure a2 carried by R and some non-negative function ℎ2 harmonic on R.

Proof. Observe that 1
𝑛

log
ˇ

ˇ𝑏𝑧𝑒𝑟𝑜𝑛,𝑚 p𝑧q
ˇ

ˇ

´1
“ 𝑔pa𝑛,Ω𝑚; 𝑧q according to (3.8). Below, we distinguish

two cases: (i) when the measures a𝑛 possess a subsequence which is locally bounded in Rz𝐸 𝑓 , i.e.,
having uniformly bounded masses on each compact subset of Rz𝐸 𝑓 , and (ii) when there exists a
compact set 𝐾 Ă Rz𝐸 𝑓 such that a𝑛p𝐾q Ñ 8 as N 1 Q 𝑛 Ñ 8.

In case (ii) relation (3.28) holds with 𝑢2 ” 8 and N2 “ N 1 because min𝑤P𝐾 𝑔Ωℓ p𝑧, 𝑤q ą 0 for
𝑧 P Ωℓ and every ℓ such that 𝐾 Ă Ωℓ , and therefore

𝑔pa𝑛1
𝑚
,Ω𝑚; 𝑧q ě 𝑔pa𝑛1

𝑚
,Ωℓ ; 𝑧q ě a𝑛1

𝑚
p𝐾q min

𝑤P𝐾
𝑔Ωℓ p𝑧, 𝑤q Ñ 8

as 𝑚 Ñ 8 and t𝑛1
𝑚u8

𝑚“1 Ď N 1, where the first inequality holds for 𝑚 ě ℓ.
In case (i), the measures a𝑛 converge vaguely to a˚ in Rz𝐸 𝑓 along N 1. Let t𝑟𝑙u

8
𝑙“1 be a positive

real sequence increasing to 1 with 𝑟1 large enough that 𝑝pBΩ𝑚zBRq Ă D𝑟1 and a˚p𝑝´1pT𝑟𝑙 qq “ 0
for each 𝑙. This is possible, because for 0 ă 𝑎 ă 𝑏 ă 1 the set Y𝑎ď𝑟ď𝑏𝑝

´1pT𝑟 q is compact, so there
are at most countably many 𝑟 P r𝑎, 1q with a˚p𝑝´1pT𝑟 qq ‰ 0.

We now argue by double induction over𝑚 and 𝑙: the reasoning below should be applied inductively
in 𝑚 ě 1, so as to define a sequence of integers N𝑚 for each 𝑚. Let Ω𝑚,𝑙 :“ Ω𝑚 X 𝑝´1pD𝑟𝑙 q and
proceed inductively in 𝑙 ě 1, starting with N𝑚,0 :“ N𝑚´1 where N0 “ N 1. Since a𝑛pΩ𝑚q ă 8 for
each 𝑛, 𝑚 by definition of a𝑛, we can define

(3.30) ℎ𝑛,𝑚,𝑙p𝑧q :“ 𝑔pa𝑛,Ω𝑚; 𝑧q ´ 𝑔
`

a
𝑛 bΩ𝑚,𝑙 ,Ω𝑚; 𝑧

˘

, 𝑧 P Ω𝑚,𝑙 ,

which is a non-negative harmonic function in Ω𝑚,𝑙 . By Harnack’s theorem, either there is a subse-
quence N𝑚,𝑙 Ď N𝑚,𝑙´1 of indices 𝑛 along which ℎ𝑛,𝑚,𝑙 Ñ ℎ𝑚,𝑙 , locally uniformly in Ω𝑚,𝑙 , for some
non-negative harmonic function ℎ𝑚,𝑙 , or else ℎ𝑛,𝑚,𝑙 tends to infinity with 𝑛 P N𝑚,𝑙´1, locally uni-
formly inΩ𝑚,𝑙 . In the latter case, we setN𝑚,𝑙 :“ N𝑚,𝑙´1 and ℎ𝑚,𝑙 ” `8. Clearly, ℎ𝑛,𝑚,𝑙 ě ℎ𝑛,𝑚,𝑙`1
and so, for fixed 𝑚, either ℎ𝑚,𝑙 ” `8 for all 𝑙 or the ℎ𝑚,𝑙 are finite for 𝑙 large enough. Let N𝑚 be
the diagonal of the table tN𝑚,𝑙u8

𝑙“1. Since N𝑚 is eventually a subsequence of every N𝑚,𝑙 , it holds
that ℎ𝑛,𝑚,𝑙 Ñ ℎ𝑚,𝑙 as N𝑚 Q 𝑛 Ñ 8 for every 𝑙 ě 1, locally uniformly in Ω𝑚,𝑙 .

In another connection, since a˚pBΩ𝑚,𝑙q “ 0 by construction and the a
𝑛 bΩ𝑚,𝑙 have uniformly

bounded mass over 𝑛 by the assumptions of the considered case, we deduce from Lemma 3.4 that

a
𝑛 bΩ𝑚,𝑙

𝑤˚
Ñ a˚

bΩ𝑚,𝑙
on Ω𝑚,𝑙 as N0 Q 𝑛 Ñ 8.

Now, a
𝑛 bΩ𝑚,𝑙 defines a measure on Ω𝑚 in a natural way, and the weak˚ convergence above implies

weak˚ convergence onΩ𝑚, because every continuous function with compact support inΩ𝑚 restricts to
a continuous function onΩ𝑚X𝑝´1pD𝑟𝑙 q which itself extends toΩ𝑚,𝑙 “ Ω𝑚X𝑝´1pD𝑟𝑙 q continuously
by zero. AsΩ𝑚 is a regular open set with compact closure on the surface R˚, the Principle of Descent
and the Lower Envelope Theorem yield for any subsequence N˚ Ď N0 that

lim inf
N˚Q𝑛Ñ8

𝑔
`

a
𝑛 bΩ𝑚,𝑙 ,Ω𝑚; 𝑧

˘

"

ě

“

*

𝑔
`

a˚

bΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

,

where the inequality holds everywhere in Ω𝑚 and the equality may only hold quasi everywhere.
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In view of (3.30), the above inequality and the very definition of N𝑚 imply that

(3.31) lim inf
N˚Q𝑛Ñ8

𝑔
`

a𝑛,Ω𝑚; 𝑧
˘

"

ě

“

*

𝑔
`

a˚

bΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

` ℎ𝑚,𝑙p𝑧q, 𝑧 P Ω𝑚,𝑙 ,

along any subsequence N˚ Ď N𝑚, where the inequality holds everywhere in Ω𝑚,𝑙 while the equality
needs only to hold quasi everywhere. As the left-hand side of (3.31) does not depend on 𝑙 and
the right-hand side is superharmonic, we get from the weak identity principle that successive right-
hand sides are superharmonic continuations of each other when 𝑙 increases. Let 𝑢𝑚p𝑧q be the
superharmonic function in Ω𝑚 given on each Ω𝑚,𝑙 by the right-hand side of (3.31). Since a smooth
function with compact support in Ω𝑚 is eventually supported in Ω𝑚,𝑙 for large 𝑙, we get from the
definition that either 𝑢𝑚 ” `8 or Δ𝑢𝑚 “ ´a˚. In the latter case, the Riesz representation theorem
yields that
(3.32) 𝑢𝑚p𝑧q “ 𝑔pa˚,Ω𝑚; 𝑧q ` ℎ𝑚p𝑧q, 𝑧 P Ω𝑚,

for some non-negative harmonic function ℎ𝑚, which is the largest harmonic minorant of 𝑢𝑚.
Let rN be the diagonal of the table tN𝑚u8

𝑚“1. As rN is eventually a subsequence of each N𝑚, we
get from (3.31) that for each 𝑚 and any subsequence N˚ Ď rN it holds that

(3.33) lim inf
N˚Q𝑛Ñ8

𝑔pa𝑛,Ω𝑚; 𝑧q
"

ě

“

*

𝑢𝑚p𝑧q,

where the inequality takes place everywhere in Ω𝑚 and equality at least quasi everywhere. Because
the left-hand side of (3.33) increases with 𝑚, we have that 𝑢𝑚p𝑧q ď 𝑢𝑚`1p𝑧q for quasi every 𝑧 P Ω𝑚.
Thus, either 𝑢𝑚 ” `8 for all 𝑚 large enough or else 𝑢𝑚 is finite quasi everywhere on Ω𝑚 for all 𝑚.
In the latter case, since Δ𝑢𝑚 “ Δ𝑢𝑚`1 bΩ𝑚 (“ ´a˚

bΩ𝑚 ), we get that 𝑢𝑚`1 ´ 𝑢𝑚 is harmonic on Ω𝑚.
Hence, 0 ď 𝑢𝑚 ď 𝑢𝑚`1 everywhere on Ω𝑚, and so 𝑢2 :“ lim𝑚 𝑢𝑚 is positive and superharmonic
on Rz𝐸 𝑓 . If 𝑢2 ” `8 we are done, for we get (3.28) from (3.33) with N2 “ rN . Otherwise 𝑢2 is
locally integrable and therefore (3.32), together with the Riesz representation theorem, imply that
(3.34) 𝑢2p𝑧q “ 𝑔pa˚,Rz𝐸 𝑓 ; 𝑧q ` ℎ̃p𝑧q, 𝑧 P Rz𝐸 𝑓 ,

where ℎ̃p𝑧q is a non-negative function that is the largest harmonic minorant of 𝑢2 on Rz𝐸 𝑓 .
As 𝐸 𝑓 is polar and compact in R, we deduce from the Removability theorem and the Riesz

representation theorem that
(3.35) ℎ̃p𝑧q “ ℎ2p𝑧q ` 𝑔pã,R; 𝑧q, 𝑧 P Rz𝐸 𝑓 ,

where ℎ2 is a non-negative harmonic function on R and ã a finite positive measure supported on
𝐸 𝑓 . Moreover, since for 𝑧 P Rz𝐸 𝑓 the function 𝑔Rp𝑧, ¨q ´ 𝑔Rz𝐸 𝑓 p𝑧, ¨q is non-negative harmonic
on Rz𝐸 𝑓 and bounded above near 𝐸 𝑓 , the Removability theorem for harmonic functions yields that
𝑔Rp𝑧, ¨q´𝑔Rz𝐸 𝑓 p𝑧, ¨q ” 0 as it extends to a non-negative harmonic minorant of 𝑔Rp𝑧, ¨q on R. Hence,

(3.36) 𝑔pa˚,Rz𝐸 𝑓 ; 𝑧q “ 𝑔pa˚,R; 𝑧q, 𝑧 P Rz𝐸 𝑓 ,

and equations (3.34)–(3.36) imply that 𝑢2p𝑧q extends superharmonically to the entire surface R by
(3.37) 𝑢2p𝑧q “ 𝑔pa2,R; 𝑧q ` ℎ2p𝑧q, a2 “ a˚ ` ã.

Now, for any subsequence t�̃�𝑚u8
𝑚“1 Ď rN , it holds in view of (3.33) that for each𝑚0 P N and 𝑧 P Ω𝑚0

(3.38) lim inf
𝑚Ñ8

𝑔
`

a�̃�𝑚 ,Ω𝑚; 𝑧
˘

ě lim inf
𝑚Ñ8

𝑔
`

a�̃�𝑚 ,Ω𝑚0 ; 𝑧
˘

ě 𝑢𝑚0p𝑧q,

and we obtain the inequality in (3.28) by letting 𝑚0 tend to infinity.
Thus, it only remains to prove the equality quasi everywhere in (3.28) when 𝑢2p𝑧q is quasi

everywhere finite. As before, the argument should be applied inductively on 𝑚 with rN0 :“ rN . The
functions 𝑔𝑛,𝑙,𝑚 :“ 𝑔pa𝑛,Ω𝑙; ¨q ´ 𝑔pa𝑛,Ω𝑚; ¨q are non-negative and harmonic in Ω𝑚 for 𝑙 ą 𝑚.
Therefore, by Harnack’s theorem, there are subsequences rN𝑚,𝑙 Ď rN𝑚,𝑙´1, rN𝑚,0 :“ rN𝑚´1 such that
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𝑔𝑛,𝑙,𝑚 converges locally uniformly to some function 𝐻𝑙,𝑚 harmonic in Ω𝑚 as rN𝑚,𝑙 Q 𝑛 Ñ 8 (note
that 𝑔𝑛,𝑙,𝑚 cannot go to `8 otherwise so would 𝑔pa𝑛,Ω𝑙; ¨q, and in view of (3.33) 𝑢𝑙p𝑧q would be
infinite for quasi every 𝑧, contradicting that 𝑢𝑙 ď 𝑢2 ă 8). Of necessity, 𝐻𝑙,𝑚 “ 𝑢𝑙 ´ 𝑢𝑚 by (3.33),
and a diagonal argument gives us a single subsequence rN˚

𝑚 Ď rN along which the convergence
𝑔𝑛,𝑙,𝑚 Ñ 𝐻𝑙,𝑚 takes place for any 𝑙 ą 0. Now, for fixed 𝑚 and each 𝑙 ą 𝑚, select �̃�𝑙 P rN˚

𝑚 such that

(3.39)
ˇ

ˇ𝑔𝑛,𝑙,𝑚p𝑧q ´
`

𝑢𝑙p𝑧q ´ 𝑢𝑚p𝑧q
˘ˇ

ˇ ď 1{𝑙, 𝑧 P Ω𝑚´1, �̃�𝑙 ď 𝑛 P rN˚
𝑚 .

Since the functions 𝑢𝑙 ´ 𝑢𝑚 are harmonic in Ω𝑚 and increase with 𝑙, they converge locally uniformly
to 𝑢2 ´ 𝑢𝑚 there by Harnack’s theorem and the definition of 𝑢2. Thus, taking (3.39) into account,
for any 𝜖 ą 0 there exists 𝐿 ą 0 such that

(3.40)
ˇ

ˇ𝑔𝑛,𝑙,𝑚p𝑧q ´
`

𝑢2p𝑧q ´ 𝑢𝑚p𝑧q
˘
ˇ

ˇ ď 𝜖, 𝑧 P Ω𝑚´1, 𝑙 ě 𝐿, �̃�𝑙 ď 𝑛 P rN˚
𝑚 .

Define rN𝑚 :“ t�̃�𝑙u
8
𝑙“1. Then it follows from (3.40) and (3.33) that

(3.41) lim inf
𝑙Ñ8

𝑔
`

a𝑛𝑙 ,Ω𝑙; 𝑧
˘

“ lim inf
𝑙Ñ8

𝑔
`

a𝑛𝑙 ,Ω𝑚; 𝑧
˘

` lim
𝑙Ñ8

𝑔𝑛𝑙 ,𝑙,𝑚p𝑧q “ 𝑢2p𝑧q

for quasi every 𝑧 P Ω𝑚´1, whenever t𝑛𝑙u
8
𝑙“1 Ď rN𝑚. Finally, let N2 be the diagonal sequence of the

table
 

rN𝑚
(8

𝑚“1. Since N2 is eventually a subsequence of every rN𝑚 it follows from (3.41) that

(3.42) lim inf
𝑚Ñ8

𝑔
`

a𝑛𝑚 ,Ω𝑚; 𝑧
˘

“ 𝑢2p𝑧q, t𝑛𝑚u8
𝑚“1 Ď rN2, for q.e. 𝑧 P Rz𝐸 𝑓 ,

which is the equality case in (3.28). �

3.7. Logarithmic Error Function. Hereafter, we redefine N to be N2 constructed in Lemma 3.5.
By Lemmas 3.1, 3.3 and 3.5, the limits (3.6), (3.11), (3.27), and (3.28) hold along this new sequence.

Since ` is finite, there is a 𝐺 𝛿 polar set r𝑁0 Ă D such that 𝑔p`,D; 𝑥q ă `8 for 𝑥 P Dz r𝑁0, see
Sections A.3 and A.5. Let us put 𝑁0 :“ 𝑝´1p r𝑁0q, which is a 𝐺 𝛿 polar subset of R, see Section A.5.
We now introduce the function 𝑙𝑒𝑟 : Rz𝑁0 Ñ r´8,`8q (“ler” for “logarithmic error”), by putting

(3.43) 𝑙𝑒𝑟p𝑧q :“ 𝑔p`,D; 𝑝p𝑧qq ´ 𝑢1p𝑧q ´ 𝑢2p𝑧q, 𝑧 P Rz𝑁0,

where 𝑢1 and 𝑢2 are as in Lemmas 3.1 and 3.5. Clearly, 𝑙𝑒𝑟p𝑧q is a 𝛿-subharmonic function (the
difference of two subharmonic functions), and it is well defined for 𝑧 R 𝑁0 since 𝑔p`,D; 𝑝p𝑧qq is
finite there. As introduced, 𝑙𝑒𝑟 depends on the choice of the subsequence N , but later we shall see
that it is in fact unique.

Lemma 3.6. There exists a polar set 𝐴0 Ă Rz𝑁0 such that, whenever 𝑧1, 𝑧2 are distinct points in
Rz𝑁0 with 𝑝p𝑧1q “ 𝑝p𝑧2q and 𝑙𝑒𝑟p𝑧𝑖q ă 0 for 𝑖 “ 1, 2, then 𝑧1, 𝑧2 P 𝐴0.

Proof. By the equality quasi everywhere in (3.27), there exists a polar set 𝐴1 Ă D such that, for
every 𝑥 P Dz𝐴1, one can find a sequence N𝑥 Ď N along which

lim
N𝑥Q𝑛Ñ8

1
𝑛

log
ˇ

ˇ𝑏
𝑝𝑜𝑙𝑒
𝑛 p𝑥q

ˇ

ˇ

´1
“ 𝑔p`,D; 𝑥q.

Together with (3.10), (3.11), the inequality in (3.28) and (3.43), this gives us

(3.44) lim sup
N𝑥Q𝑛Ñ8

1
𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝q p𝑧q| ď 𝑙𝑒𝑟p𝑧q

for every 𝑧 R 𝑁0 such that 𝑧 P 𝑝´1p𝑥q with 𝑥 R 𝐴1 Y 𝑝p𝐸 𝑓 q. Assume now that 𝑧1, 𝑧2 P Rz𝑁0
satisfy 𝑧1 ‰ 𝑧2 and 𝑝p𝑧1q “ 𝑝p𝑧2q, as well as 𝑙𝑒𝑟p𝑧𝑖q ă 0 for 𝑖 “ 1, 2. Let 𝑥 P D be such that
𝑧1, 𝑧2 P 𝑝´1p𝑥q. If 𝑥 R 𝐴1 Y 𝑝p𝐸 𝑓 q, it follows from (3.44) that

𝑓 p𝑧1q “ lim
N𝑥Q𝑛Ñ8

𝑁p𝑀𝑛qp𝑝p𝑧1qq “ lim
N𝑥Q𝑛Ñ8

𝑁p𝑀𝑛qp𝑝p𝑧2qq “ 𝑓 p𝑧2q
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and necessarily 𝑧1, 𝑧2 P 𝐴2 :“
 

Z | D [ ‰ Z : 𝑝pZq “ 𝑝p[q, 𝑓 pZq “ 𝑓 p[q
(

. Now, the conditions
placed on the class F pRq imply that the set 𝐴2 is finite, and therefore the lemma holds with
𝐴0 :“ 𝑝´1`𝐴1 Y 𝑝p𝐸 𝑓 q Y 𝑝p𝐴2q

˘

which is polar, as inverse image under 𝑝 of a polar set. �

Lemma 3.7. The inequality 𝑙𝑒𝑟p𝑧q ą ´8 holds for quasi every 𝑧 P Rz𝑁0. In particular 𝑢1 ı `8

and 𝑢2 ı `8 in Lemmas 3.1 and 3.5, so ℎ1 and ℎ2 are finite non-negative harmonic functions on R.

Proof. Since 𝑔p`;D; 𝑝p¨qq is finite on Rz𝑁0 while 𝑢1, 𝑢2 are non-negative and either identically `8

or finite quasi everywhere, 𝑙𝑒𝑟 is in turn either identically ´8 or finite quasi everywhere on Rz𝑁0.
The former possibility contradicts Lemma 3.6, therefore the latter prevails so that 𝑢1 ı `8 and
𝑢2 ı `8. Hence, Lemmas 3.1 and 3.5 imply that ℎ1 and ℎ2 are finite on R. �

Due to the previous lemma, we can rewrite (3.43) as

(3.45) 𝑙𝑒𝑟p𝑧q “ 𝑔p`,D; 𝑝p𝑧qq ´ 𝑔pa,R; 𝑧q ´ ℎRp𝑧q, 𝑧 P Rz𝑁0,

where we have set a :“ a1 ` a2, which is a locally finite measure on R with quasi everywhere finite
potential, and ℎR :“ ℎ1 ` ℎ2 which is a positive harmonic function on R.

Lemma 3.8. It holds that lim𝑧ÑZ ℎRp𝑧q “ 0 for every Z P BRzT .

Proof. Fix Z P BRzT , and let b P T be such that 𝑝pZq “ 𝑝pbq. We claim that

(3.46) lim inf
𝑧ÑZ

ℎRp𝑧q “ 0.

Indeed, if lim inf𝑧ÑZ ℎRp𝑧q “ 𝑙 ą 0, take 0 ă 2𝜖 :“ mint𝑙, 2{capDp𝐾 𝑓 qu. Let 𝑆 Ă D be the radial
segment t𝑧 : 𝑧 “ 𝑟 𝑝pZq, 𝑟 P r1 ´ 𝛿, 1qu and 𝑆Z (resp. 𝑆b ) be the connected component of 𝑝´1p𝑆q

accumulating on BR to Z (resp. b). If 𝛿 ą 0 is small enough, then

(3.47) ℎRp𝑧q ě 𝜖, 𝑧 P 𝑆Z Y 𝑆b ,

by Lemma 3.2. Furthermore, Lemma 3.6 yields that either 𝑙𝑒𝑟p𝑧1q ě 0 or 𝑙𝑒𝑟p𝑧2q ě 0 if 𝑝p𝑧1q “

𝑝p𝑧2q P 𝑆z𝑝p𝐴0 Y 𝑁0q. In particular, we get from (3.45) and (3.47) that

(3.48) 𝑔p`,D; 𝑧q ě 𝜖, 𝑧 P 𝑆z𝑝p𝐴0 Y 𝑁0q,

where we notice that 𝐴0 Y 𝑁0 as well as 𝑝p𝐴0 Y 𝑁0q are polar. This contradicts Lemma A.5, applied
with 𝑔p𝜎, 𝐷; ¨q “ 𝑔p`,D; ¨q and b being 𝑝pZq, since 𝑅𝜖 {2 from that lemma would necessarily be a
subset of 𝑝p𝐴0 Y 𝑁0q. This proves our claim (3.46).

Next, assume for a contradiction that lim sup𝑧ÑZ ℎRp𝑧q “ 𝑙1 ą 0, and pick 0 ă 2𝜖 ď

mint𝑙1, 2{capDp𝐾 𝑓 qu such that the level line 𝐿 𝜖 :“ t𝑧 : ℎRp𝑧q “ 𝜖u is a smooth 1-dimensional
submanifold of R (this can be achieved according to Sard’s theorem). Notice that Z must be a limit
point of 𝐿 𝜖 because any neighborhood of Z in R˚ contains a connected open set 𝑈 Q Z with 𝑈 X R
connected (𝑝 is a local homeomorphism at Z and we may take 𝑝p𝑈q to be a disk) in which ℎR
assumes values arbitrary close to 0 and 𝑙1 by definition of lim inf and lim sup; hence, as ℎRp𝑈 X Rq

is connected, it contains the value 𝜖 .
Let 𝐷0 be a disk centered at 𝑝pZq of small enough radius so that 𝐷Z and 𝐷 b , the components of

𝑝´1p𝐷0q in R˚ that contain respectively Z and b, are in one-to-one correspondence with 𝐷0 under 𝑝.
Decreasing the radius of 𝐷0 if necessary, we can assume that ℎRp𝑧q ě 𝜖{2 for 𝑧 P 𝐷 b by Lemma 3.2.
Let us redefine

(3.49) 𝑆Z :“ 𝐿 𝜖 X 𝐷Z , 𝑆 :“ 𝑝p𝑆Z q, and 𝑆b :“ 𝑝´1p𝑆q X 𝐷 b .

Observe that ℎR cannot be constant in view of (3.46) and (3.16). Therefore, no connected component
of 𝑆 can be a closed curve in 𝐷0 by the maximum principle for harmonic functions. In addition, if 𝑆
has a connected component, say 𝑆˚, accumulating at 𝑧˚ P T, then

𝑔p`,D; 𝑧q ě 𝜖{2, 𝑧 P 𝑆˚z𝑝p𝐴0 Y 𝑁0q,
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exactly as in (3.48). Let 𝑅𝜖 {3 be as in Lemma A.5, applied with 𝑔p𝜎, 𝐷; ¨q “ 𝑔p`,D; ¨q and b being
𝑧˚. Then 𝑆˚ must intersect every circle t𝑧 P D : |𝑧 ´ 𝑧˚| “ 1 ´ 𝑟u, 𝑟 P 𝑅𝜖 {3, by connectedness.
Necessarily, the intersection must be a subset of 𝑝p𝐴0 Y 𝑁0q and therefore polar. Since contractive
maps do not increase the logarithmic capacity [52, Theorem 5.3.1], this means that 𝑅𝜖 {3 is polar,
which contradicts Lemma A.5 (as we explain in Section A.4, polar subsets of D have Greenian and
logarithmic outer capacity zero). Thus, 𝑆 is a system of smooth curves, each connected component
of which has at least one limit point on B𝐷0 X D. Consequently, if 𝑇0 Ă 𝐷0 is a circle centered at
𝑝pZq, then any connected component of 𝑆 intersecting the interior of 𝑇0 must intersect 𝑇0 as well
since it accumulates at a point of B𝐷0. That is, 𝑆 must intersect any such circle and we arrive at a
contradiction exactly as above. �

The exceptional set where inequality is strict in Lemmas 3.3 and 3.5 a priori depends on the
subsequence t𝑛𝑚u under consideration. The next lemma shows that there exists a polar set outside
of which equality holds, both in (3.27) and (3.28), for one and the same subsequence, see (3.50).

Lemma 3.9. For quasi every 𝑧 P R, there is a sequence N𝑧 “ t𝑛𝑧𝑚u8
𝑚“1 Ď N such that

# lim
𝑚Ñ8

𝑔pa𝑛𝑧𝑚 ,Ω𝑚; 𝑧q “ 𝑢2p𝑧q,

lim
𝑚Ñ8

𝑔p`𝑛𝑧𝑚 ,D; 𝑝p𝑧qq “ 𝑔p`,D; 𝑝p𝑧qq.

Proof. Our goal is to show that there exists a subsequence t𝑛˚
𝑚u Ď N such that

(3.50) lim inf
𝑚Ñ8

`

𝑔pa𝑛˚
𝑚
,Ω𝑚; 𝑧q ` 𝑔p`𝑛˚

𝑚
,D; 𝑝p𝑧qq

˘

“ 𝑔p`,D; 𝑝p𝑧qq ` 𝑢2p𝑧q

for quasi every 𝑧 P R. Since the inequalities in (3.27) and (3.28) hold for every 𝑧 P R, this will
indeed imply the claim of the lemma.

To prove (3.50), we shall rewrite the sum of two potentials in the left-hand side as a single potential
on R. To this end, we lift `𝑛 and ` to R via the construction described in (A.33). Specifically, with
the notation introduced there, it follows from (A.34) that

(3.51) 𝑔p p̀𝑛,R; 𝑧q “ 𝑔p`𝑛,D; 𝑝p𝑧qq and 𝑔p p̀,R; 𝑧q “ 𝑔p`,D; 𝑝p𝑧qq, 𝑧 P R .
Now, we can write 𝑔pa𝑛,Ω𝑚; 𝑧q ` 𝑔p`𝑛,D; 𝑝p𝑧qq as a sum of three terms:

(3.52) 𝑔pa𝑛 ` p̀𝑛,Ω𝑚; 𝑧q `
`

𝑔p p̀𝑛 bΩ𝑚 ,R, 𝑧q ´ 𝑔p p̀𝑛,Ω𝑚; 𝑧q
˘

` 𝑔p p̀𝑛 bRzΩ𝑚 ,R; 𝑧q,

and we shall study their behavior separately.
To start, recall that ` “ `1

bD, where `1 is the weak˚ limit of `𝑛 along N in D. Thus, by the
discussion after (A.34), an analogous relation holds between p̀ and p̀𝑛. Namely, since `𝑛 has total
mass 1, the total mass of p̀𝑛 is equal to 𝑀 , the number of sheets of R. In particular, the sequence p̀𝑛

converges weak˚ on R to p̀

1, and on R to p̀

1
bR “ p̀.

Since the sets Ω𝑚 exhaust Rz𝐸 𝑓 , it holds that p̀pRzΩ𝑚q ´ p̀p𝐸 𝑓 q Ñ 0 as 𝑚 Ñ 8. Moreover,
as each RzΩ𝑚 is compact with boundary of p̀-measure zero, it follows from Lemma 3.4 that the
measures p̀𝑛 bRzΩ𝑚 converge weak˚ to p̀bRzΩ𝑚 along N . In particular, p̀𝑛pRzΩ𝑚q ´ p̀pRzΩ𝑚q Ñ 0
as 𝑛 Ñ 8. Hence, for each 𝑚 there exists 𝑛1

𝑚 P N such that

| p̀𝑛pRzΩ𝑚q ´ p̀p𝐸 𝑓 q| ď 2| p̀pRzΩ𝑚q ´ p̀p𝐸 𝑓 q| as soon as 𝑛 ě 𝑛1
𝑚.

Let 𝜎 be a weak˚ limit point on R of the family t p̀𝑛1
𝑚 bRzΩ𝑚u𝑚PN. Clearly suppp𝜎q Ď 𝐸 𝑓 and 𝜎 is

also a weak˚ limit point of this family on the fixed compact set RzΩ1. Thus, integrating against any
function which is identically 1 on RzΩ1 and passing to the limit gives us 𝜎p𝐸 𝑓 q “ p̀p𝐸 𝑓 q by our
very choice of 𝑛1

𝑚. In another connection, if 𝜑 : R Ñ r0, 1s is a continuous function with compact
support which is 1 on a compact set 𝐾 Ď 𝐸 𝑓 , then

𝜎p𝐾q ď

ż

𝜑𝑑𝜎 ď lim sup
𝑚

ż

𝜑𝑑 p̀𝑛1
𝑚 bRzΩ𝑚 ď lim

𝑚

ż

𝜑𝑑 p̀𝑛1
𝑚

“

ż

𝜑𝑑 p̀.
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As the infimum over 𝜑 of the rightmost term above is p̀p𝐾q by Urysohn’s lemma and the outer
regularity of Radon measures, we get that 𝜎 ď p̀b𝐸 𝑓 by the inner regularity of Radon measures on
R, see [53, Theorem 2.18]. Altogether, we deduce that 𝜎 “ p̀b𝐸 𝑓 , and consequently the measures
p̀𝑛1
𝑚 bRzΩ𝑚 converge weak˚ to p̀b𝐸 𝑓 along N 1 :“ t𝑛1

𝑚u. In particular,

(3.53) lim
𝑚Ñ8

𝑔p p̀𝑛1
𝑚 bRzΩ𝑚 ,R; 𝑧q “ 𝑔p p̀b𝐸 𝑓 ,R; 𝑧q, 𝑧 P Rz𝐸 𝑓 ,

which settles the asymptotic behavior of the last term in (3.52) along the sequence of indices t𝑛1
𝑚u𝑚.

Notice that by the definition of 𝑛1
𝑚, if N 1 is replaced by an arbitrary subsequence t𝑛2

𝑚u𝑚 thereof, then
(3.53) continues to hold along this new subsequence of indices. This will be used in the forthcoming
steps.

Next, let 𝑓𝑚p𝑧, 𝑤q :“ 𝑔Rp𝑧, 𝑤q ´ 𝑔Ω𝑚p𝑧, 𝑤q for 𝑧, 𝑤 P Ω𝑚. Clearly, 𝑓𝑚p𝑧, ¨q is harmonic in Ω𝑚

and continuous on Ω𝑚, by the regularity of Ω𝑚. Its boundary values are equal to 𝑔Rp𝑧, ¨q on BΩ𝑚, in
particular they are identically zero on BR. Fix 𝑧 P Rz𝐸 𝑓 , and let 𝑘 be an integer such that 𝑧 P Ω𝑘 .
Then, we get for all 𝑚 ą 𝑘 that

(3.54) 0 ď 𝑓𝑚p𝑧, 𝑤q ď max
𝑤PBΩ𝑚zBR

𝑔Rp𝑧, 𝑤q ď max
𝑤PBΩ𝑘`1

𝑔Rp𝑧, 𝑤q “: 𝐶𝑘 , 𝑤 P Ω𝑚,

where the constant 𝐶𝑘 is finite, independent of 𝑚, and we used the maximum principle for harmonic
functions twice (once for 𝑓𝑚p𝑧, ¨q on Ω𝑚 and once for 𝑔Rp𝑧, ¨q on RzΩ𝑘`1). Observe further that the
functions 𝑓𝑚p𝑧, ¨q, 𝑚 ą 𝑘 , are not only positive harmonic in each Ω𝑙 for fixed 𝑙 satisfying 𝑘 ă 𝑙 ď 𝑚,
but form a decreasing sequence there. Therefore they converge in Ω𝑙 to a non-negative harmonic
function, say 𝑓 t𝑙up𝑧, ¨q, by Harnack’s theorem. As this claim is true for all large 𝑙, the 𝑓 t𝑙up𝑧, ¨q

inductively define a harmonic function 𝑓 p𝑧, ¨q on Rz𝐸 𝑓 that satisfies 0 ď 𝑓 p𝑧, ¨q ď 𝐶𝑘 when 𝑧 P Ω𝑘 .
Thus, it extends harmonically to the entire surface R by the Removability theorem for harmonic
functions, and as its trace on BR is zero we conclude that 𝑓 p𝑧, ¨q ” 0.

Observe now that 𝑓𝑚p𝑧, 𝑤q “ 𝑓𝑚p𝑤, 𝑧q for 𝑚 large enough so that 𝑧, 𝑤 P Ω𝑚. Thus, it is
jointly harmonic in both variables [35, p. 561]. Hence, by Harnack’s theorem and the diagonal
argument, any subsequence of t 𝑓𝑚p¨, ¨qu has a further subsequence converging locally uniformly
in Rz𝐸 𝑓 ˆ Rz𝐸 𝑓 , and we know from what precedes that the limit function can only be zero. In
particular, it holds that

(3.55) [𝑙,𝑚 :“ max
𝑧,𝑤PΩ𝑙

𝑓𝑚p𝑧, 𝑤q Ñ 0 as 𝑚 Ñ 8,

where we used that each 𝑓𝑚p¨, ¨q extends continuously by zero to BRˆBR, and therefore the maximum
principle for harmonic functions can be applied to show that the convergence is indeed uniform on
Ω𝑙 . Given 𝑚, define

𝑙𝑚 :“ max
 

𝑙 : 1 ď 𝑙 ď 𝑚, [𝑙,𝑚 ď 1{𝑙
(

.

It follows from (3.55) that 𝑙𝑚 Ñ 8 and [𝑙𝑚 ,𝑚 Ñ 0 when 𝑚 Ñ 8, whence for each fixed 𝑧 P Ω𝑘 and
all 𝑚 ą 𝑘 it holds that

0 ď

ż

Ω𝑚

𝑓𝑚p𝑧, 𝑤q𝑑 p̀𝑛p𝑤q “

˜

ż

Ω𝑚zΩ𝑙𝑚

`

ż

Ω𝑙𝑚

¸

𝑓𝑚p𝑧, 𝑤q𝑑 p̀𝑛p𝑤q

ď 𝐶𝑘 p̀𝑛pΩ𝑚zΩ𝑙𝑚q ` 𝑀[𝑙𝑚 ,𝑚,(3.56)

where we used (3.54) while recalling that 𝑀 is the number of sheets of R, which is a bound for the
total mass of each p̀𝑛. Now, we obtain from Lemma 3.4 and our choice of Ω𝑚 that the measures p̀𝑛

converge weak˚ to p̀ along N , not only on R, but also on every compact set of the form Ω𝑚zΩ𝑙𝑚 .
Hence, taking into account that p̀

`

pRz𝐸 𝑓 qzΩ𝑙𝑚

˘

Ñ 0 as 𝑚 Ñ 8, we can associate to each 𝑚 an
integer 𝑛2

𝑚 P N 1 such that 𝑛2
𝑚 ě 𝑛1

𝑚 and

p̀𝑛2
𝑚

`

Ω𝑚zΩ𝑙𝑚

˘

Ñ 0 as 𝑚 Ñ 8.
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Clearly, the choice of N2 :“ t𝑛2
𝑚u is independent of 𝑧. Thus, we get from (3.56) together with the

choices of t𝑙𝑚u and N2 that for every 𝑧 P Rz𝐸 𝑓 it holds

(3.57) lim
𝑚Ñ8

𝑔p p̀𝑛2
𝑚 bΩ𝑚 ,R; 𝑧q ´ 𝑔p p̀𝑛2

𝑚
,Ω𝑚; 𝑧q “ lim

𝑚Ñ8

ż

Ω𝑚

𝑓𝑚p𝑧, 𝑤q𝑑 p̀𝑛2
𝑚

p𝑤q “ 0,

which settles the asymptotic behavior of the middle term in (3.52) along N2.
Lastly, to describe asymptotics of the first term in (3.52), we need to repeat some steps of the proof

of Lemma 3.5 with a𝑛 replaced by a𝑛 ` p̀𝑛. Recall the definition of the sets Ω𝑚,𝑙 given just before
(3.30). We may adjust it so that pa˚ ` p̀qpBΩ𝑚,𝑙q “ 0. Indeed, BΩ𝑚,𝑙 “ pBΩ𝑚zBRq Y 𝑝´1pT𝑟𝑙 q. We
already know that pa˚ ` p̀qpBΩ𝑚zBRq “ 0, so we only need to ensure that pa˚ ` p̀qp𝑝´1pT𝑟𝑙 qq “ 0
for each 𝑙. This can be achieved as before since p̀ is finite and therefore a˚ ` p̀ is still a Radon
measure. Since p̀

1pBΩ𝑚,𝑙q “ p̀pBΩ𝑚,𝑙q “ 0 by construction, it follows from Lemma 3.4 that

p̀

𝑛 bΩ𝑚zΩ𝑚,𝑙

𝑤˚

Ñ p̀

1

bΩ𝑚zΩ𝑚,𝑙
and p̀𝑛p𝑝´1pT𝑟𝑙 qq Ñ 0

for all 𝑚, 𝑙. So, when 𝑧 P Ω𝑚,𝑙 , we get that

(3.58) lim
N2Q𝑛Ñ8

𝑔
`

p̀

𝑛 bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

“ lim
N2Q𝑛Ñ8

𝑔
`

p̀

𝑛 bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

“ 𝑔
`

p̀

1

bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

“ 𝑔
`

p̀bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

since 𝑔Ω𝑚p¨, 𝑧q is continuous on Ω𝑚zΩ𝑚,𝑙 and vanishes on BR by regularity of Ω𝑚. Moreover, the
convergence is locally uniform in 𝑧 P Ω𝑚,𝑙 by the continuity of Green functions with respect to both
variables off the diagonal. From (3.58) and the reasoning used after (3.30), it follows that

lim
N2Q𝑛Ñ8

𝑔
`

pa𝑛 ` p̀𝑛q bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

“ ℎ𝑚,𝑙p𝑧q ` 𝑔
`

p̀bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

,

locally uniformly in Ω𝑚,𝑙 for each 𝑙 and some subsequence N2
𝑚 of N2. Arguing as we did to obtain

(3.31), but applying this time the Lower Envelope theorem to pa𝑛 ` p̀𝑛q bΩ𝑚,𝑙 , we get in view of the
above limit that

lim inf
rN2Q𝑛Ñ8

𝑔pa𝑛 ` p̀𝑛,Ω𝑚; 𝑧q “ 𝑔ppa˚ ` p̀q bΩ𝑚,𝑙 ,Ω𝑚; 𝑧q ` ℎ𝑚,𝑙p𝑧q ` 𝑔
`

p̀bΩ𝑚zΩ𝑚,𝑙
,Ω𝑚; 𝑧

˘

“ 𝑔pa˚ ` p̀,Ω𝑚; 𝑧q ` ℎ𝑚p𝑧q

for quasi every 𝑧 P Ω𝑚, where rN2 is the diagonal of the table tN2
𝑚u8

𝑚“1 and to get the second
equality we used (3.32) along with the explanation preceding it on the inductive definition of 𝑢𝑚 by
the right-hand side of (3.31). The previous equation stands analog to (3.33), and continues to hold
if rN2 is replaced by any subsequence thereof. Now, the last part of the proof in Lemma 3.5 was
predicated on the limit

𝑢𝑚p𝑧q “ 𝑔pa˚,Ω𝑚; 𝑧q ` ℎ𝑚p𝑧q Ñ 𝑢2p𝑧q as 𝑚 Ñ 8, 𝑧 P Rz𝐸 𝑓 ,

where 𝑢𝑚 were initially defined inductively by the right-hand side of (3.31) and their limit 𝑢2 assumed
the form (3.34). In the present case, 𝑢𝑚 is replaced by 𝑢𝑚`𝑔p p̀,Ω𝑚; ¨q and the monotone convergence
theorem together with the polar character of 𝐸 𝑓 imply that

lim
𝑚
𝑔p p̀,Ω𝑚; 𝑧q “ 𝑔p p̀,Rz𝐸 𝑓 ; 𝑧q “ 𝑔p p̀bRz𝐸 𝑓 ,R; 𝑧q, 𝑧 P Rz𝐸 𝑓 .

Hence, arguing as we did after (3.38), we obtain similarly to (3.42) that

(3.59) lim inf
𝑚Ñ8

𝑔pa𝑛˚
𝑚

` p̀𝑛
˚
𝑚
,Ω𝑚; 𝑧q “ 𝑢2p𝑧q ` 𝑔p p̀bRz𝐸 𝑓 ,R; 𝑧q,

for quasi every 𝑧 P Rz𝐸 𝑓 and some subsequence t𝑛˚
𝑚u Ď rN2. The desired limit (3.50) now follows

from (3.51), (3.52), (3.53), (3.57), and (3.59). �
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Hereafter we shall deal with the fine topology, which is the coarsest topology for which super-
harmonic and therefore 𝛿-subharmonic functions are continuous. In this connection, the reader may
want to consult the definitions and properties collected in Section A.5.

Recall the definition of 𝑁0 Ă R before (3.43) as being the `8-set of 𝑔p`,D; 𝑝p¨qq, i.e., 𝑁0 “

𝑝´1p r𝑁0q where r𝑁0 Ă D is the `8-set of 𝑔p`,D; ¨q. Clearly, 𝑁0 is a finely closed and polar 𝐺 𝛿-set.
Let us define

(3.60) 𝐺˘ :“
 

𝑧 P Rz𝑁0 : ˘𝑙𝑒𝑟p𝑧q ą 0
(

.

It is easily seen from (3.43) that 𝑙𝑒𝑟 : Rz𝑁0 Ñ r´8,`8q is finely continuous and that 𝐺´ and 𝐺`

are finely open in Rz𝑁0. Since 𝑁0 is polar, if the complement of either 𝐺` or 𝐺´ in Rz𝑁0 is thin at
a point 𝑧, then the respective complement in R is also thin at 𝑧. Hence, 𝐺` and 𝐺´ are in fact finely
open in R. Hereafter, we put 𝐷˘ :“ 𝑝p𝐺˘q.

Lemma 3.10. For 𝑧 P 𝐺` and any Z P R with 𝑝pZq “ 𝑝p𝑧q, it holds that Z P 𝐺` and 𝑙𝑒𝑟p𝑧q “

𝑙𝑒𝑟pZq. In particular 𝐺` “ 𝑝´1p𝐷`q. Moreover, 𝐷` is finely open.

Proof. By the definition of 𝑙𝑒𝑟 given in (3.45), we get from equation (3.10) together with Lem-
mas 3.1, 3.7, and 3.9 (recall N2 was renamed as N at the top of Section 3.7) that there exists a polar
set 𝐵 Ă R with the following property: for each 𝑧 P 𝐺`z𝐵 there is a subsequence N𝑧 Ă N such that

(3.61)

$

’

&

’

%

lim
N𝑧Q𝑛Ñ8

1
𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝q p𝑧q| “ 𝑙𝑒𝑟p𝑧q,

lim
N𝑧Q𝑛Ñ8

𝑔p`𝑛,D; 𝑝p𝑧qq “ 𝑔p`,D; 𝑝p𝑧qq,

where we note that 𝑔p`,D; 𝑝p𝑧qq ă `8 since 𝑧 R 𝑁0. Without loss of generality, we may assume
that 𝐵 contains 𝑝´1p𝑝p𝐸 𝑓 qq and 𝐴0, since both sets are polar, see Lemma 3.6 for the definition of
𝐴0. As 𝑙𝑒𝑟p𝑧q ą 0 and 𝑓 p𝑧q is finite on 𝐺`z𝐵, the above limit implies that

lim
N𝑧Q𝑛Ñ8

1
𝑛

log
ˇ

ˇ𝑁p𝑀𝑛qp𝑝p𝑧qq
ˇ

ˇ “ 𝑙𝑒𝑟p𝑧q.

Now, if Z P Rz𝐵 is such that 𝑝pZq “ 𝑝p𝑧q, obviously Z R 𝑁0 and in addition Z R 𝐸 𝑓 , by definition
of 𝐵. Thus, on account of the finiteness of 𝑓 pZq, we get that

(3.62) lim
N𝑧Q𝑛Ñ8

1
𝑛

log
ˇ

ˇ p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝q pZq
ˇ

ˇ “ lim
N𝑧Q𝑛Ñ8

1
𝑛

log
ˇ

ˇ𝑁p𝑀𝑛qp𝑝p𝑧qq
ˇ

ˇ “ 𝑙𝑒𝑟p𝑧q.

On the other hand, from the second equation in (3.61), we deduce as in (3.44) that the first limit in
(3.62) is at most 𝑙𝑒𝑟pZq, whence 0 ă 𝑙𝑒𝑟p𝑧q ď 𝑙𝑒𝑟pZq. In particular, Z P 𝐺`, and reversing the roles
of 𝑧 and Z gives 𝑙𝑒𝑟p𝑧q “ 𝑙𝑒𝑟pZq. This proves the first assertion of the lemma when 𝑧 P 𝐺`z𝐵.

To prove it on all of 𝐺`, pick 𝑧, Z P R such that 𝑝p𝑧q “ 𝑝pZq and let 𝐷0 Ă D be a disk centered
at 𝑝p𝑧q. Denote by 𝐷𝑧 , 𝐷Z the connected components of 𝑝´1p𝐷0q that contain 𝑧, Z respectively, and
make 𝐷0 small enough so that 𝐷𝑧 X rppRq Ď t𝑧u and 𝐷Z X rppRq Ď tZu. Let as before 𝑚pbq be
the ramification order of b, so that 𝐷𝑧 (resp. 𝐷Z ) is (isomorphic to) an 𝑚p𝑧q-sheeted cyclic covering
of 𝐷0. For 𝑥 P 𝐷0z r𝑁0, define

𝑔p𝑥q :“ 𝑚pZq
ÿ

bP𝑝´1p𝑥qX𝐷𝑧

𝑚pbq𝑙𝑒𝑟pbq ´ 𝑚p𝑧q
ÿ

bP𝑝´1p𝑥qX𝐷Z

𝑚pbq𝑙𝑒𝑟pbq.

It follows from (3.45) and (A.32) that
ÿ

bP𝑝´1p𝑥qX𝐷𝑧

𝑚pbq𝑙𝑒𝑟pbq “ 𝑚p𝑧q𝑔p`,D; 𝑥q ´ 𝑔
`

𝑝˚pa b𝐷𝑧 q,D; 𝑥
˘

´
ÿ

bP𝑝´1p𝑥qX𝐷𝑧

𝑚pbq
`

𝑔
`

a bRz𝐷𝑧 ,R; b
˘

` ℎRpbq
˘

.
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Notice that the last summand above is a continuous, even harmonic function in 𝐷0. Hence, the
sum itself is finely continuous in 𝐷0z r𝑁0. Likewise, the second sum in the definition of 𝑔 is finely
continuous in 𝐷0z r𝑁0 and so is 𝑔. In particular, 𝑈 :“ t𝑥 P 𝐷0z r𝑁0 : 𝑔p𝑥q ‰ 0u is finely open, and
since 𝑝p𝐺`q is finely open by Lemma A.2 the set𝑈X 𝑝p𝐺`q is in turn finely open. From the first part
of the proof, it follows that if 𝑥 P p𝐷0 X 𝑝p𝐺`qqz𝑝p𝐵q then 𝑔p𝑥q “ 0, whence𝑈 X 𝑝p𝐺`q Ď 𝑝p𝐵q.
Thus, 𝑈 X 𝑝p𝐺`q must be empty as 𝑝p𝐵q is polar, that is, 𝑔 ” 0 on 𝐷0 X 𝑝p𝐺`q. Now, it can be
readily checked that

𝑔p𝑝p𝑧qq “ 𝑚p𝑧q𝑚pZq
`

𝑙𝑒𝑟p𝑧q ´ 𝑙𝑒𝑟pZq
˘

,

and therefore 𝑙𝑒𝑟p𝑧q “ 𝑙𝑒𝑟pZq if 𝑧 P 𝐺`, thereby proving the first assertion of the lemma. The
second is then obvious, and the third follows from Lemma A.2. �

Lemma 3.11. The set 𝐺´ lies schlicht over D. That is, 𝑝 : 𝐺´ Ñ 𝐷´ is a bijection. Moreover,
𝐺´ X rppRq “ ∅, and for each 𝑧 P 𝐺´ we have that

(3.63) 𝑙𝑒𝑟pZq “ 0 for all Z P 𝑝´1p𝑝p𝑧qqzt𝑧u.

Proof. Pick 𝑧 P 𝐺´zrppRq and let 𝐷0 Ă RzrppRq be a conformal disk centered at 𝑧, homeomorphic
under 𝑝 to a Euclidean disk 𝑝p𝐷0q; note that 𝑝´1p𝐷0qz𝐷0 is open. Define 𝑈 :“ 𝐺´ X 𝐷0 and
𝑉 :“

`

𝑝´1p𝐷0qz𝐷0
˘

X 𝑝´1p𝑝p𝑈qq. Clearly 𝑈 and 𝑉 are disjoint finely open subsets of R, by
Lemma A.2. In view of Lemma 3.6, there is a polar set 𝐴0 Ă Rz𝑁0 such that 𝑉 X 𝐺´ Ď 𝐴0.
Thus, 𝑉 X𝐺´ must be empty as otherwise it is finely open. This shows that 𝐺´zrppRq lies schlicht
over D. However, the complement of a schlicht set is always non-thin at any ramification point by
Lemma A.4. Hence, 𝐺´ cannot be a fine neighborhood of a ramification point, and since it is finely
open 𝐺´ X rppRq “ ∅. Altogether, 𝐺´ lies schlicht over D and (3.63) now follows from this and
Lemma 3.10. �

3.8. Modified Logarithmic Error Function. In this subsection we modify the function 𝑙𝑒𝑟p𝑧q by
clearing out parts of D and R from the support of ` and a, respectively. We shall accomplish this via
the technique of balayage, described in Section A.9. Let us start with some preliminary geometric
considerations. Recall that any connected (topological) 1-manifold embedded in R is a Jordan curve.

Lemma 3.12. For each 𝜖 ą 0 there exists a Jordan curve 𝐽 Ă 𝐺´ such that 𝑝p𝐽q is a Jordan curve
included in t𝑧 : 1 ´ 𝜖 ă |𝑧| ă 1u and 𝑝prppRqq belongs to the interior domain of 𝑝p𝐽q. Moreover,
there exists a finely connected component of 𝐺´, say 𝐺𝐽 , such that 𝐽 Ă 𝐺𝐽 .

Proof. We may assume that 𝜖 is small enough that 𝑝prppRqq Ă D1´𝜖 . In particular, 𝑝 is injective
on every conformal disk centered at a point of BR with radius smaller than or equal to 𝜖 .

Recall that R is a subset of a Riemann surface R˚ lying over C. Define 𝐺˚
´ :“ 𝐺´ Y T Y D,

where D is the connected component of 𝑝´1pCzDq that borders T . Let us show that for each [ P T
there is a disk 𝐷[ Ă t𝑧 : 1 ´ 𝜖 ă |𝑧| ă 1 ` 𝜖u, centered at 𝑝p[q with radius 𝑟[ , such that the circle
B𝐷[ is included in 𝑝p𝐺˚

´q. In fact, we can pick 𝑟[ so that there exist radii 𝑟 1
[ arbitrarily close but

not equal to 𝑟[ for which each disk 𝐷1
[ centered at 𝑝p[q of radius 𝑟 1

[ also satisfies B𝐷1
[ Ă 𝑝p𝐺˚

´q.
Indeed, like we did to establish Lemma 3.9, let p̀ be the lift ` to R , see (A.33). By definition,
𝑙𝑒𝑟p𝑧q ě 0 for 𝑧 P Rzp𝐺´ Y 𝑁0q. Therefore, if [ P T is a limit point of Rz𝐺´, then we get from
(3.16), (3.45), the definition of ℎRp𝑧q, and the identity 𝑔p p̀,R; Zq “ `8 when Z P 𝑁0 that

lim inf
Rz𝐺´QZÑ[

𝑔p p̀,R; Zq ě 2{capDp𝐾 𝑓 q.

The claim now follows from Lemma A.5 by taking 1 ´ 𝑟[ to be an accumulation point of 𝑅1{capDp𝐾 𝑓 q

in p1 ´ 𝜖, 1q.
Let 𝑈[ be the connected component of 𝑝´1p𝐷[q containing [, which is an open subset of R˚

satisfying B𝑈[ Ă 𝐺˚
´. Since the collection t𝑈[u[ covers T , which is compact, it contains a

finite subcover, say t𝑈[𝑖u. Replacing 𝐷[𝑖 by some 𝐷1
[𝑖

as above if needed, we can ensure by
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(finite) induction on 𝑖 that B𝑈[𝑖 and B𝑈[ 𝑗 may intersect only transversally for 𝑖 ‰ 𝑗 , and that
B𝑈[𝑖 X B𝑈[ 𝑗 X B𝑈[𝑘 “ ∅ if 𝑖, 𝑗 , 𝑘 are all distinct. Then 𝑉 :“ Y𝑖𝑈[𝑖 is an open neighborhood
of T with boundary B𝑉 included in 𝐺˚

´ that consists of a finite union of disjoint Lipschitz-smooth
Jordan curves. In fact, there are exactly two such curves, one in R and D, because each connected
component of B𝑉 can be continuously deformed into T via radial retraction within𝑉 . We can choose
the component within R to be 𝐽 since Lipschitz curves are finely connected in R, see Section A.5. �

Recall now the finely open subsets 𝐷` and 𝐷´ of D introduced before Lemma 3.10. Denote by
𝐷𝐽 the union of all finely connected components of 𝐷` Y 𝐷´ that lie entirely within the interior
domain of 𝑝p𝐽q, where 𝐽 was introduced in Lemma 3.12. Note that 𝐷𝐽 is finely open because so are
the fine components of finely open sets, see Section A.5. Define

(3.64) 𝐷1 :“ 𝐷𝐽 Y 𝑖pDz𝐷𝐽 q and 𝑉 1 :“ 𝑝´1p𝐷1q,

where 𝑖p¨q is the subset of finely isolated points. Thus, it follows from (A.9) and Lemma A.2 that 𝐷1

and 𝑉 1 are finely open while

(3.65) 𝑏
`

Dz𝐷1
˘

“ Dz𝐷1 and 𝑏
`

Rz𝑉 1
˘

“ Rz𝑉 1,

where 𝑏p¨q stands for the base of a set (in particular, Dz𝐷1 has no finely isolated points). In other
words, 𝐷1 and 𝑉 1 are regular finely open sets, see Section A.7. Recall from Section A.9 the notation
𝜎𝐸 for the balayage of the measure 𝜎 onto the set 𝐸 .

Lemma 3.13. Let 𝑁1 :“ 𝑝´1p r𝑁1q, where r𝑁1 is the `8-set of 𝑔
`

`p1q,D; ¨
˘

and we set

(3.66) `p1q :“ `Dz𝐷1

and ap1q :“ aRz𝑉 1

.

Then 𝑁1 Ď 𝑁0, 𝑁1z𝑉 1 “ 𝑁0z𝑉 1, and for every 𝑧 P Rz𝑁1 we can define

𝑙𝑒𝑟p1qp𝑧q :“ 𝑔
`

`p1q,D; 𝑝p𝑧q
˘

´ 𝑔
`

ap1q,R; 𝑧
˘

´ ℎRp𝑧q

with values in r´8,`8q. This function satisfies

(3.67) 𝑙𝑒𝑟p1qp𝑧q “

#

𝑙𝑒𝑟p𝑧q, 𝑧 P Rzp𝑉 1 Y 𝑁1q,

0, 𝑧 P 𝑉 1z𝑁1.

Proof. Since the Green potential of a measure dominates the Green potential of any balayage of that
measure, as explained at the beginning of Section A.9, it holds that

𝑔
`

`p1q,D; 𝑧
˘

ď 𝑔
`

`,D; 𝑧
˘

ă `8, 𝑧 P Rz𝑁0,

by the very definition of 𝑁0. Thus, 𝑁1 Ď 𝑁0 and the upper equality in (3.67) as well as equality
𝑁1z𝑉 1 “ 𝑁0z𝑉 1 are consequences of (3.65) and (A.22). Since ℎRp𝑧q is a harmonic function on R
and 𝑉 1 X BR “ ∅ by construction (recall that 𝑝p𝑉 1q lies interior to 𝑝p𝐽q), equation (A.39) yields that

(3.68)
ż

ℎRp𝑥q𝑑𝛿
Rz𝑉 1

𝑧 p𝑥q “ ℎRp𝑧q, 𝑧 P 𝑉 1.

Since 𝑉 1 is a regular finely open set, Lemma A.6 implies that 𝛿Rz𝑉 1

𝑧 is carried by Bf𝑉
1 and does not

charge polar sets. As 𝑙𝑒𝑟p𝑧q “ 0 for quasi every 𝑧 P Bf𝑉
1 by the definition of 𝑉 1, we get from the

definition of 𝑙𝑒𝑟p1q, (3.68), (A.25), Lemma A.7, and (3.45) that

𝑙𝑒𝑟p1qp𝑧q “

ż

`

𝑔p`,D; 𝑝p𝑥qq ´ 𝑔pa,R; 𝑥q ´ ℎRp𝑥q
˘

𝑑𝛿
Rz𝑉 1

𝑧 p𝑥q

“

ż

𝑙𝑒𝑟p𝑥q𝑑𝛿
Rz𝑉 1

𝑧 p𝑥q “ 0

for 𝑧 P 𝑉 1z𝑁1, which proves the lower equality in (3.67). �
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Let𝐺𝐽 be as in Lemma 3.12 for some small 𝜖 ą 0. Denote by𝐺˚
𝐽

the union of𝐺𝐽 and the annular
region delimited by 𝐽 and T ; the latter is diffeomorphic under 𝑝 to t𝑧 : 1 ´ 𝜖 ă |𝑧| ă 1u if we fix 𝜖
small enough. Clearly,𝐺˚

𝐽
is a fine domain that lies schlicht overD. Let G be the collection of all fine

domains 𝐺 Ă R lying schlicht over D and containing 𝐺˚
𝐽
. The set G is partially ordered by inclusion

and every chain in it is bounded above by the union of its elements. Therefore, by Zorn’s lemma, G
possesses a maximal element, say 𝐺max. Note that if Rz𝐺max is thin at two points Z1, Z2 P R, then
𝑝pZ1q ‰ 𝑝pZ2q as otherwise 𝐺max could not be schlicht over D by Lemma A.2. Hence, it follows
from (A.9) and the maximality of 𝐺max that Rz𝐺max is its own base.

Lemma 3.14. Any maximal domain 𝐺max P G is a Euclidean domain. Moreover, no connected
component of Rz𝐺max (resp. Dz𝑝p𝐺maxq) consists of a single point.

Proof. Observe that𝐺max cannot contain a ramification point of R as it is finely open and lies schlicht
over D, see Lemma A.4. Thus, for every Z P 𝐺max there exists 𝑟0 ą 0 such that each component of

𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| ă 𝑟0
(˘

is in one-to-one correspondence with t𝑧 P D : |𝑧 ´ 𝑝pZq| ă 𝑟0u under 𝑝. Let 𝑉 be the component
containing Z . Since the intersection 𝑉 X𝐺max is finely open, 𝑉z𝐺max is thin at Z and therefore there
is 𝑟1 P p0, 𝑟0q such that

𝑉 X 𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| “ 𝑟1
(˘

Ă 𝐺max,

see Section A.6. Now, as 𝐺max lies schlicht over D, it holds that
(3.69) 𝐺max X

`

𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| “ 𝑟1
(˘

z𝑉
˘

“ ∅.
Further, since 𝐺max is finely connected, we necessarily have that

𝐺max X
`

𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| ă 𝑟1
(˘

z𝑉
˘

“ ∅,
otherwise 𝐺max would intersect the fine boundary of 𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| ă 𝑟1

(˘

z𝑉 which
is contained in 𝑝´1` 𝑧 P D : |𝑧 ´ 𝑝pZq| “ 𝑟1

(˘

z𝑉 (in fact, equal to it by regularity), thereby
contradicting (3.69). The maximality of 𝐺max now yields that

𝑝´1` 𝑧 P D : |𝑧 ´ Z | ă 𝑟1
(˘

X𝑉 Ă 𝐺max,

hence Z belongs to the Euclidean interior of𝐺max and so𝐺max is Euclidean open. Thus, its connected
components are open and therefore finely open. Hence, 𝐺max is a Euclidean domain since it is finely
connected by definition.

To prove the second assertion, assume to the contrary that a point Z P Rz𝐺max is a connected
component of the latter. We claim that any open neighborhood 𝑊 of Z contains an open set 𝑂 Q Z

whose boundary B𝑂 is a smooth Jordan curve C contained in 𝐺max. To see this, assume with no
loss of generality that 𝑊 Ă R, and put 𝐹 :“ Rz𝐺max X𝑊 . The latter is closed in R, so there is a
smooth function ℎ : R Ñ R` of which 𝐹 is the zero set, see Section 3.4. Given a sequence t𝑐𝑛u

of regular values of ℎ tending to 0, let 𝑂𝑛 be the connected component containing Z of the open set
t𝑧 : ℎp𝑧q ă 𝑐𝑛u. The sets 𝑂𝑛 form a (strictly) nested sequence of connected open sets containing Z ,
whose intersection is connected and contained in 𝐹 whence reduces to Z . If𝑂𝑛𝑘 X B𝑊 ‰ ∅ for some
increasing subsequence of indices 𝑛𝑘 , take 𝑧𝑛𝑘 P 𝑂𝑛𝑘 X B𝑊 and extract from t𝑧𝑛𝑘 u a subsequence
converging to 𝑧 P B𝑊 , which is possible due to compactness of the latter. On the other hand, since
𝑂𝑛𝑘`1 Ă 𝑂𝑛𝑘 , 𝑧 P X𝑘𝑂𝑛𝑘 “ tZu P 𝑊zB𝑊 , which is a contradiction. Therefore, 𝑂𝑛 Ă 𝑊 for 𝑛 large
enough and B𝑂𝑛 X 𝐹 “ ∅ by construction, so we may set 𝑂 “ 𝑂𝑛 and C :“ B𝑂𝑛 for any 𝑛 large
enough, because B𝑂𝑛 is a connected component of the level set ℎ´1p𝑐𝑛q, and thus it is a smooth
Jordan curve. This proves the claim.

If Z R rppRq, let us pick𝑊 so small that 𝑝 is injective on each connected component of 𝑝´1p𝑝p𝑊qq.
We now argue as before, observing thatC Ă 𝐺max and p𝑝´1p𝑝pCqqzCqX𝐺max “ ∅ (by schlichtness),
so that𝐺max Xp𝑝´1p𝑝p𝑂qqz𝑂q “ ∅ because𝐺max is connected and p𝑝´1p𝑝pCqqzCq is the boundary
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of 𝑝´1p𝑝p𝑂qqz𝑂. Thus, by maximality,𝐺max should contain𝑂 which contradicts the fact that Z P 𝑂.
Finally, if Z P rppRq then Lemma A.3 contradicts the existence of C.

This proves that no connected component of Rz𝐺max consists of a single point. To show the same
is true ofDz𝑝p𝐺maxq, observe that such a component would consist, by the same reasoning as before,
of a 𝑧 P B𝑝p𝐺maxq lying interior to Jordan curves of arbitrary small diameter contained in 𝑝p𝐺maxq.
For 𝛾 : r0, 2𝜋s Ñ 𝑝p𝐺maxq such a parametrized Jordan curve, let b P 𝐺max satisfy 𝑝pbq “ 𝛾p0q

(“ 𝛾p2𝜋q). Let further ℓ : r0, 2𝜋s Ñ R be a continuous lift of 𝛾 starting at b, i.e., ℓp0q “ b and
𝑝pℓp𝑡qq “ 𝛾p𝑡q for 𝑡 P r0, 2𝜋s. Of necessity ℓpr0, 2𝜋sq Ă 𝐺max, because 𝑝pB𝐺maxq X 𝑝p𝐺maxq “ ∅
since 𝐺max is open and lies schlicht over D, while 𝑝 is an open map; then schlichtness again implies
that ℓ is a parametrized Jordan curve in 𝐺max, and it is the unique lift of 𝛾 to 𝐺max.

Set 𝑝´1p𝑧q “ tZ1, . . . , Zℓu, and let 𝐷𝑧 be an open disk centered at 𝑧 such that each connected
component of 𝑝´1p𝐷𝑧q is (isomorphic to) a 𝑚pZ 𝑗q-sheeted cyclic covering 𝐷Z 𝑗 of 𝐷𝑧 ; in addition,
we require that 𝐷𝑧 is so small that 𝐷Z 𝑗 Ă 𝑈Z 𝑗 for all 𝑗 , where 𝑈Z 𝑗 is as in Lemma A.3. Let
𝛾 : r0, 2𝜋s Ñ 𝐷𝑧 be a parametrized Jordan curve containing 𝑧 in its interior, and ℓ : r0, 2𝜋s Ñ 𝐺max
the associated lift. Necessarily ℓpr0, 2𝜋sq is contained in a single component of 𝑝´1p𝐷𝑧q, say 𝐷Z 𝑗 ,
and it must contain Z 𝑗 in its interior (otherwise ℓ would be a unit in 𝜋1p𝐷Z 𝑗 zZ 𝑗q and so would be
𝛾 “ 𝑝 ˝ ℓ in 𝜋1p𝐷𝑧z𝑧q). Now, if 𝑚pZ 𝑗q ą 1, then we contradict Lemma A.3. Hence, ℓ is valued in a
𝐷Z 𝑗 such that 𝑚pZ 𝑗q “ 1, which is thus homeomorphic to 𝐷𝑧 under 𝑝.

Let 𝛾𝑛 be a sequence of Jordan curves in 𝐷𝑧 , containing 𝑧 in their interior and shrinking to 𝑧
when 𝑛 Ñ 8. Let further ℓ𝑛 be the corresponding sequence of lifts to 𝐺max. By what precedes,
some subsequence ℓ𝑚𝑛 shrinks to Z 𝑗 in 𝐷Z 𝑗 , for some 𝑗 such that 𝐷Z 𝑗 is homeomorphic to 𝐷𝑧 under
𝑝. Moreover, ℓ𝑚𝑛 contains Z 𝑗 in its interior. We can now argue as we did to show that no connected
component of Rz𝐺max consists of a single point, and contradict the maximal character of 𝐺max. This
completes the proof of the lemma. �

Define 𝐷max :“ 𝑝p𝐺maxq and𝑉max :“ 𝑝´1p𝐷maxq. Notice that both sets are open by Lemma 3.14
along with openness and continuity of 𝑝.

Lemma 3.15. Let 𝑁2 :“ 𝑝´1p r𝑁2q, where r𝑁2 is the `8-set of 𝑔
`

`p2q,D; ¨
˘

and we set

(3.70) `p2q :“
`

`p1q
˘Dz𝐷max and ap2q :“

`

ap1q
˘Rz𝑉max

.

Then 𝑁2 “ 𝑁1z𝑉max, and for 𝑧 P Rz𝑁2 we can define

(3.71) 𝑙𝑒𝑟p2qp𝑧q :“ 𝑔
`

`p2q,D; 𝑝p𝑧q
˘

´ 𝑔
`

ap2q,R; 𝑧
˘

´ ℎRp𝑧q.

In this case it holds that

(3.72)

$

&

%

lim sup
ZÑ𝑧

𝑙𝑒𝑟p2qpZq ď ´2{capDp𝐾 𝑓 q, 𝑧 P T ,

𝑙𝑒𝑟p2qpZq “ 0, 𝑧 P Rzp𝐺max Y 𝑁2q.

Moreover, we have that

(3.73)
›

›`p2q
›

›

#

“ }`} if suppp`p1qq X 𝐷max “ ∅,
ă }`} otherwise.

Proof. By Lemma 3.14 the setDz𝐷max is closed inD and none of its connected components reduces
to a point. Hence, it has no finely isolated points (remember that a connected set cannot be thin at
an accumulation point, see discussion after (A.8)). Thus, Dz𝐷max is its own base. Consequently,
Rz𝑉max is also its own base by Lemma A.2. Therefore, we get from (A.22) that

(3.74) `p2qp𝐷maxq “ ap2qp𝑉maxq “ 0.

This implies that the potentials of `p2q and ap2q are harmonic in 𝐷max and 𝑉max, respectively.
Moreover, since B𝐷maxzT is separated from T by the very definition of𝐺max, B𝑉maxzBR is necessarily
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separated from BR and these potentials extend continuously by zero to T and BR respectively by the
regularity of the latter, see the discussion after (A.12). Therefore, 𝑙𝑒𝑟p2q extends harmonically to
the whole of 𝑉max and continuously to BRzT by Lemma 3.8. So, as in Lemma 3.13, the inclusion
𝑁2 Ď 𝑁1z𝑉max follows directly from (A.21) and the equality 𝑁2 “ 𝑁1z𝑉max is then deduced from
(A.22). In addition, the first inequality in (3.72) holds in view of (3.16), the definition of ℎR given
after (3.45), and the fact that ℎ2 is non-negative, see Lemma 3.5.

Since 𝑁1z𝑉 1 “ 𝑁0z𝑉 1 by Lemma 3.13 we have that Rzp𝑉 1 Y𝑉max Y 𝑁0q “ Rzp𝑉 1 Y𝑉max Y 𝑁1q.
Moreover, 𝑙𝑒𝑟p𝑧q “ 0 on this set by the very definitions of 𝑉 1 and 𝑉max. Further,

Rzp𝑉max Y 𝑁2q “ Rzp𝑉max Y 𝑁1q “ pRzp𝑉 1 Y𝑉max Y 𝑁1qq Y p𝑉 1z𝑁1q.

Since Dz𝐷max and Rz𝑉max are their own bases, it therefore follows from (A.22) and (3.67) that

(3.75) 𝑙𝑒𝑟p2qp𝑧q “ 𝑙𝑒𝑟p1qp𝑧q “ 0, 𝑧 P Rzp𝑉max Y 𝑁2q.

To study the values of 𝑙𝑒𝑟p2q on 𝑉maxz𝐺max, let us show that this is an open set. Indeed, since
𝑝p𝐺maxq “ 𝑝p𝑉maxq “ 𝐷max, for each Z P 𝑉max there exists a disk 𝐷 𝑝pZ q Ă 𝐷max, centered at
𝑝pZq, and a point 𝑧 P 𝐺max with 𝑝p𝑧q “ 𝑝pZq such that 𝐷Z Ă 𝑉max and 𝐷𝑧 Ă 𝐺max, where 𝐷Z
and 𝐷𝑧 are the connected components of 𝑝´1p𝐷 𝑝pZ qq that contain Z and 𝑧, respectively. If Z ‰ 𝑧,
then 𝐷Z X 𝐺max “ ∅ since 𝐺max lies schlicht over D and therefore 𝐷𝑧 Ă 𝑉maxz𝐺max as claimed.
Moreover, since Rz𝑉max is its own base, we get from Lemma A.1 that Rzp𝑉maxz𝐺maxq is also its own
base.

Pick 𝑧 P 𝑉maxz𝐺max and notice that 𝑉maxz𝐺max consists of at most finitely many connected
components. Let 𝑉𝑧 be the component containing 𝑧. As 𝐺max contains the annular region delimited
by 𝐽 and T and lies schlicht over D, it follows that Bp𝑉maxz𝐺maxq X BR “ BRzT . Since ℎR ” 0 on
BRzT by Lemma 3.8, we get from Lemmas A.6 and A.10 that

(3.76)
ż

ℎRp𝑥q𝑑𝛿
Rz𝑉𝑧
𝑧 p𝑥q “

ż

ℎRp𝑥q𝑑𝛿
Rzp𝑉maxz𝐺maxq
𝑧 p𝑥q “ ℎRp𝑧q.

Since 𝑉𝑧 , 𝑉maxz𝐺max, and 𝐺max are Euclidean open sets, it holds that B𝑉𝑧 Ď Bp𝑉maxz𝐺maxq Ď B𝑉max,
a set on which 𝑙𝑒𝑟p1qp𝑧q is zero except possibly on 𝑁2 by (3.75). Consequently, in view of (3.71), we
see upon using Lemma A.7, (A.25), and (3.76) that

𝑙𝑒𝑟p2qp𝑧q “

ż

𝑙𝑒𝑟p1qp𝑥q𝑑𝛿
Rz𝑉𝑧
𝑧 p𝑥q “ 0,

where the second equality follows from Lemma A.6 as Bf𝑉𝑧 Ď B𝑉𝑧 and 𝑙𝑒𝑟p1qp𝑥q “ 0 quasi and
therefore 𝛿Rz𝑉𝑧

𝑧 -almost everywhere on Bf𝑉𝑧 .
Finally, we get from (A.24) and (A.38) that }`p2q} “ }`p1q} when suppp`p1qq X 𝐷max “ ∅ and

}`p2q} ă }`p1q} otherwise as well as that }`p1q} “ }`}, which proves (3.73). �

3.9. Projected Logarithmic Error Function. Recall that 𝑧 P B𝐺max is called accessible if there
exists a continuous map 𝜓 on r0, 1s such that 𝜓p𝑡q P 𝐺max for 𝑡 P r0, 1q and 𝜓p1q “ 𝑧.

Lemma 3.16. It holds that card
`

𝑝´1p𝑧q X pB𝐺maxz𝐸˚q
˘

ď 2 for all except countably many 𝑧 P

B𝐷max, where 𝐸˚ Ă B𝐺max is the subset of non-accessible points.

Proof. Since T Ă B𝐷max and 𝑝´1pTq X B𝐺max “ T , we only need to consider 𝑧 P B𝐷max X D.
The set pB𝐷max XDqz𝑝prppRqq can be covered by countably many open sets of the form 𝐷𝑥 , where
𝑥 P pB𝐷max X Dqz𝑝prppRqq and 𝐷𝑥 Ă D is a disk centered at 𝑥, small enough that each component
of 𝑝´1p𝐷𝑥q is homeomorphic to 𝐷𝑥 under 𝑝. Hence, it is enough to show that for each such 𝐷𝑥 and
all 𝑧 P B𝐷max X 𝐷𝑥 but countably many, one has card

`

𝑝´1p𝑧q X pB𝐺maxz𝐸˚q
˘

ď 2. Fix 𝐷𝑥 and let
𝑥1, . . . , 𝑥𝑁 denote the preimages of 𝑥 under 𝑝. We write𝑉𝑥ℓ for the connected component of 𝑝´1p𝐷𝑥q

containing 𝑥ℓ , 1 ď ℓ ď 𝑁 . Then, each 𝑧 P 𝐷𝑥 has preimages 𝑧1, . . . , 𝑧𝑁 under 𝑝, with 𝑧ℓ P 𝑉𝑥ℓ .
When 𝑧 P B𝐷max X 𝐷𝑥 , it follows from the definition of accessibility that if 𝑧ℓ P B𝐺maxz𝐸˚, then
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there is a continuous arc 𝜓𝑧ℓ : r0, 1s Ñ 𝐺max such that 𝜓𝑧ℓ p𝑡q P 𝐺max for 𝑡 P r0, 1q and 𝜓𝑧ℓ p1q “ 𝑧ℓ .
Moreover, on shortening and reparametrizing the arc if necessary, we may assume that 𝜓𝑧ℓ is valued
in 𝑉𝑥ℓ . Now, if 𝑝´1p𝑧q X pB𝐺maxz𝐸˚q contains 3 distinct points, say 𝑧ℓ 𝑗 for 𝑗 “ t1, 2, 3u, then
𝑝p𝜓𝑧ℓ𝑗 q are Jordan arcs having only the point 𝑧 in common, because 𝐺max lies schlicht over D and
the 𝑉𝑥ℓ𝑗 are disjoint. Thus, 𝑇𝑧 :“ Y 𝑗 𝑝p𝜓𝑧ℓ𝑗 q is a triod, and if we had uncountably many such 𝑧 then
some triple pℓ1, ℓ2, ℓ3q would occur uncountably many times. Assigning different colors to 𝜓𝑧ℓ1 , 𝜓𝑧ℓ2
and 𝜓𝑧ℓ3 , we get and uncountable collection of colored triods 𝑇𝑧 whose arcs of different colors never
meet, again because 𝐺max lies schlicht over D and the 𝑉𝑥ℓ𝑗 are disjoint. However, this contradicts the
Moore triod theorem [49, Proposition 2.18], thereby finishing the proof. �

Put 𝐾max :“ Dz𝐷max. It follows from Lemma 3.14 that 𝑓 has a single-valued meromorphic
continuation throughout 𝐷maxz𝑝p𝐸 𝑓 q and 𝐾max is a compact subset ofD. Hence, 𝐾max P K 𝑓 , where
K 𝑓 was defined just before (2.5). Clearly, the measure `p2q is supported on 𝐾max.

Lemma 3.17. Let 𝑚Z be the ramification order of Z P R. Define

(3.77) 𝑙𝑒𝑟prp𝑧q :“
ÿ

ZP𝑝´1p𝑧q

𝑚Z 𝑙𝑒𝑟
p2qpZq, 𝑧 P Dz r𝑁2.

Then 𝑙𝑒𝑟pr is a 𝛿-subharmonic function in D such that 𝑙𝑒𝑟prp𝑧q “ 0 when 𝑧 P 𝐾maxz r𝑁2 and

lim sup
𝑧ÑZ

𝑙𝑒𝑟prp𝑧q ď ´2{capDp𝐾 𝑓 q, Z P T.

Moreover, there exist non-negative measures `pr and apr, supported on B𝐷max, and a non-negative
function ℎpr, harmonic in D, such that `pr ď 2`p2q and for 𝑧 P Dz r𝑁2

(3.78) 𝑙𝑒𝑟prp𝑧q “ 𝑔p`pr,D; 𝑧q ´ 𝑔papr,D, 𝑧q ´ ℎprp𝑧q ´ 2{capDp𝐾 𝑓 q.

Proof. The first two claims of the lemma follow readily from (3.72) and the computation in (A.11).
Let p̀p2q be the pullback of `p2q onto R, see (A.33) and (A.34). Then we can equivalently write

𝑙𝑒𝑟p2qp𝑧q “ 𝑔
`

p̀

p2q,R; 𝑧
˘

´ 𝑔
`

ap2q,R; 𝑧
˘

´ ℎRp𝑧q

“ 𝑔p`R,R; 𝑧q ´ 𝑔paR,R; 𝑧q ´ ℎRp𝑧q,

where `R ´ aR “ p̀

p2q ´ ap2q and `R, aR are positive mutually singular measures on 𝑝´1p𝐾maxq, i.e.,
`R ´ aR is the Riesz charge of a 𝛿-subharmonic function 𝑙𝑒𝑟p2q. Clearly, aR ď ap2q, `R ď p̀

p2q, and
for any Borel set 𝐵 Ă 𝑝´1p𝐾maxqzrppRq that lies schlicht over D it holds that

(3.79) `Rp𝐵q ď `p2qp𝑝p𝐵qq.

Similarly to the computation in (A.11), one can show that
ř

ZP𝑝´1p𝑧q 𝑚Z ℎpZq is harmonic in D
when ℎ is harmonic on R. Hence, it follows from the maximum principle for harmonic functions
and Lemma 3.2 that

ÿ

ZP𝑝´1p𝑧q

𝑚Z ℎRpZq “ 2{capDp𝐾 𝑓 q ` ℎprp𝑧q, ℎprp𝑧q :“
ÿ

ZP𝑝´1p𝑧q

𝑚Z ℎ
2pZq.

Thus, if we set `pr “ 𝑝˚p`Rq and apr “ 𝑝˚paRq, see (A.32), we get (3.78).
As explained in Lemma 3.15, Rz𝑉max is its own base and 𝑉maxz𝐺max, 𝐺max are disjoint open sets.

Hence, Rz𝐺max is its own base by Lemma A.1. Moreover, the function 𝑙𝑒𝑟p2q is equal to zero on this
set by (3.72). Hence, we get from the proof of [13, Theorem 2] (that carries over mutatis mutandis
to any hyperbolic surface) the implication:

(3.80) 𝛿
Rz𝐺max
𝑧 p𝐹q “ 0 ñ p`R ` aRqp𝐹q “ 0

for any 𝐹 Ă Rz𝐺max and some (therefore any) 𝑧 P 𝐺max. In particular, it follows from Lemma A.6
that suppp`R ` aRq Ď B𝐺maxzT and that this measure does not charge polar sets. Hence, since 𝐺max
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lies schlicht over 𝐷max, it holds that suppp`pr ` aprq Ď B𝐷maxzT. Moreover, let �̃� be the set of points
𝑧 P B𝐷max such that card

`

𝑝´1p𝑧q X pB𝐺maxz𝐸˚q
˘

ą 2, where 𝐸˚ is the set of non-accessible points
of B𝐺max. It follows from Lemma 3.16 that �̃� is at most countable and therefore is not charged by
`pr. Of course, the same is true of 𝑝prppRqq, as it is a finite set. For any Borel set 𝐵 Ď B𝐷max, let
�̃� :“ 𝐵zp�̃� Y 𝑝prppRqqq. Then, we obtain

`prp𝐵q “ `prp�̃�q “ `R
`

𝑝´1p�̃�q X B𝐺max
˘

“ `R
`

𝑝´1p�̃�q X pB𝐺maxz𝐸˚q
˘

ď 2`p2qp𝐵q,

where the third equality follows from [13, Corollary 2], which says that the Riesz charge of a 𝛿-
subharmonic function cannot charge points that are non-accessible from the complement of the base
of its zero set, and the last inequality is due to Lemma 3.16 and (3.79). �

3.10. Computation of the logarithmic error function. Lemma 3.17 implies that 𝑙𝑒𝑟prp𝑧q “ 0 for
𝑧 P 𝐾maxz r𝑁2. Hence, it follows from (3.78) and properties of the Green equilibrium potential that

(3.81) 𝑔
`

`pr,D; 𝑧
˘

´ 𝑔papr,D; 𝑧q ´ ℎprp𝑧q “ 2
capDp𝐾maxq

capDp𝐾 𝑓 q
𝑔
`

`D,𝐾max ,D; 𝑧
˘

for 𝑧 P 𝐾maxz r𝑁2 (since 𝐾max is equal to its own base, 𝑔
`

`D,𝐾max ,D; ¨
˘

” 1{capDp𝐾maxq on 𝐾max).
Assume that either apr is a non-zero measure or ℎpr is strictly positive (harmonic) function in D.
Then, since 𝐾max is separated from T, it would hold that

𝑔
`

`pr,D; 𝑧
˘

ą 2
capDp𝐾maxq

capDp𝐾 𝑓 q
𝑔
`

`D,𝐾max ,D; 𝑧
˘

for 𝑧 P 𝐾maxz r𝑁2. Since suppp`D,𝐾max q Ď 𝐾max and 𝐾max is its own base, the Strong Domination
Principle, see Section A.6, implies that the above inequality holds everywhere inD. Thus, integrating
both sides of this inequality against `D,𝐾max which is a probability measure, we get on using Tonelli’s
theorem on the left-hand side and multiplying by capDp𝐾maxq that

(3.82) }`pr} ą 2
capDp𝐾maxq

capDp𝐾 𝑓 q
.

On the one hand, by Lemma 3.17 and equation (3.73) together with the very construction of `, we
have that }`pr} ď 2}`p2q} ď 2}`} ď 2. On the other hand holds capDp𝐾maxq ě capDp𝐾 𝑓 q, see (2.5).
These observations clearly show that (3.82) is impossible. Hence, it is necessarily the case that
(3.83) apr “ 0 and ℎprp𝑧q ” 0, 𝑧 P D.

Then, one can rewrite (3.81) as

(3.84) 𝑔
`

`pr,D; 𝑧
˘

“ 2
capDp𝐾maxq

capDp𝐾 𝑓 q
𝑔
`

`D,𝐾max ,D; 𝑧
˘

for 𝑧 P 𝐾maxz r𝑁2. Using now the Strong Domination Principle in both directions, we get that (3.84)
holds for every 𝑧 P D. Therefore,

(3.85) `p2q ě
1
2
`pr “

capDp𝐾maxq

capDp𝐾 𝑓 q
`D,𝐾max

which, upon recalling once again (2.5) and the fact that `D,𝐾max is a probability measure, gives us

(3.86) capDp𝐾maxq “ capDp𝐾 𝑓 q and `p2q “ `D,𝐾max .

In particular r𝑁2 “ ∅ and the first equality in (3.86), combined with the minimality and uniqueness
of 𝐾 𝑓 , yields that 𝐾max “ 𝐾 𝑓 . In addition, as }`p2q} “ 1 by (3.86), we get from (3.73) that
suppp`p1qq X 𝐷max “ ∅ and therefore `p1q “ `p2q, by (A.22), (3.70), and the fact that Dz𝐷max is its
own base (because so is Rz𝐺max and we can use Lemma A.2). Moreover, we also get from (3.73) that
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suppfp`
p1qq X 𝐷max “ ∅ (note that suppfp`

p1qq exists because `p1q is admissible, see Section A.9).
Remembering that the fine open set 𝐷1 is regular by (3.65), we get from (A.24) and Lemma A.6 that
suppfp`

p1qq Ą Y𝑡Bf𝐷
1
𝑡 where 𝐷1

𝑡 are the finely connected components of 𝐷1 such that `p𝐷𝑡q ‰ 0.
However, since 𝐾max(= 𝐾 𝑓 ) has no fine interior by inspection of (2.17), each Bf𝐷

1
𝑡 must intersect

𝐷max whenever 𝐷1
𝑡 is nonempty. Hence, ` cannot charge 𝐷1 as otherwise it would contradict that

suppfp`
p1qq X 𝐷max “ ∅. Consequently, since Dz𝐷1 is its own base, we conclude in view of (A.22)

and (3.66) that `p1q “ `. Thus, we obtain altogether that

(3.87) `D,𝐾 𝑓 “ `p2q “ `p1q “ ` “ `1,

where the last equality comes from the inequalities ` ď `1 and }`1} ď 1, see (3.26). In addition,
since `D,𝐾 𝑓 has finite potential everywhere, we get that r𝑁0 “ 𝑁0 “ ∅ whence also r𝑁1 “ 𝑁1 “ ∅.

From (3.87) one sees that ` does not charge 𝐷max, implying in view of (3.43) that 𝑙𝑒𝑟 is subhar-
monic on 𝑉max “ 𝑝´1p𝐷maxq. In particular, since 𝑔p`D,𝐾max ,D; ¨q extends continuously by zero on
T and ℎ1 by 2{capDp𝐾 𝑓 q on T , see Lemma 3.2), while fine lim𝑧ÑZ 𝑙𝑒𝑟p𝑧q “ 𝑙𝑒𝑟pZq ă 0 when Z P 𝐽

by the fine continuity of 𝑙𝑒𝑟 and the fact that 𝐽 Ă 𝐺´, it follows from the relative fine boundary max-
imum principle [20, Theorem 10.8] that 𝑙𝑒𝑟 ă 0 in the annular region ApT , 𝐽q bounded by T and
𝐽, since it is bounded above by the fine potential 𝑔p p̀D,𝐾max ,R; ¨q there, see (A.34). Let now 𝐺1 be a
finely connected component of𝐺`. Since𝐺` “ 𝑝´1p𝑝p𝐺`qq by Lemma 3.10 and ApT , 𝐽q Ă 𝐺´,
𝑝p𝐺1q lies in the interior of 𝑝p𝐽q. Hence, 𝐷1 “ 𝑝p𝐺1q P 𝐷𝐽 and by what precedes 𝐷1 X 𝐾 𝑓 “ ∅ as
otherwise ` “ `D,𝐾 𝑓 would charge 𝐷1 because it is carried by the whole set 𝐾 𝑓 according to (A.30),
i.e., it cannot be carried by 𝐾 𝑓 z𝐷1 (which is finely closed). Consequently, 𝐺1 X 𝑝´1p𝐾 𝑓 q “ ∅
which implies that 𝑙𝑒𝑟 ď 0 on 𝑝´1p𝐾 𝑓 q, and the relative fine boundary maximum principle in turn
implies that 𝑙𝑒𝑟 ď 0 on 𝑉max. Moreover, 𝑙𝑒𝑟 ă 0 on 𝐺max as it is strictly negative on ApT , 𝐽q.
Immediately we deduce that 𝐺` “ ∅ and 𝐺max Ď 𝐺´. Furthermore, since 𝐺´ lies schlicht over
D by Lemma 3.11 while 𝐾 𝑓 has no fine interior, maximality of 𝐺max implies that 𝐺max “ 𝐺´.
Altogether, we obtain that 𝐷1 “ 𝑉 1 “ ∅ and 𝐺´ “ 𝐺max. In particular, the step of Lemma 3.13 is
vacuous and ap1q “ a as well as 𝑙𝑒𝑟 “ 𝑙𝑒𝑟p1q. Moreover, 𝑙𝑒𝑟p𝑧q “ 0 holds for 𝑧 P Rz𝐺max.

Next, by (3.85), (3.87) and the construction of the measures `pr, `R in Lemma 3.17, along with
the discussion after (3.80), one has

2`D,𝐾 𝑓 “ 2`p2q “ `pr “ 𝑝˚p`Rq and `R ď p p̀D,𝐾 𝑓 q bB𝐺max .

Lemma 3.16 now yields that this last inequality is in fact an equality. As `R ´ aR is the Riesz charge
of 𝑙𝑒𝑟p2q that vanishes on Rz𝐺max by (3.72), the discussion after (3.80) implies aR “ a

p2q

bB𝐺max
, and

since apr “ 𝑝˚paRq we get from (3.83) and (3.70) that

(3.88) 0 “ ap2qp𝐺maxq “ ap1qp𝐺maxq “ ap𝐺maxq,

where the middle equality holds by (A.24) and Lemma A.6 (because 𝛿Rz𝐺max
𝑧 is a strictly positive

function of 𝑧 in the regular open set 𝐺max), while the last equality comes from 𝑙𝑒𝑟 “ 𝑙𝑒𝑟p1q. Recall
that a “ a2 ` a1 “ a˚ ` ã ` a1, see (3.45) and (3.37), where a˚ the vague limit point of ta𝑛u in R,
see Lemma 3.5. As 𝑙𝑒𝑟p𝑧q “ 0 for 𝑧 P Rz𝐺max and 𝑙𝑒𝑟 is a 𝛿-subharmonic function, we get from
[13, Theorem 2] that its Riesz charge is supported on B𝐺max. In view of (3.88), it entails that

(3.89) p p̀D,𝐾 𝑓 q b𝑝´1p𝐾 𝑓 qzB𝐺max
“ a “ a2 “ a˚,

where ã ` a1 “ 0 since it is a measure supported on 𝐸 𝑓 , see Lemma 3.1 and (3.35), while a does
not charge polar sets by the first equality above. Since a “ ap1q and ap1q has no mass in 𝑉max by
(3.89), the step of Lemma 3.15 was also vacuous. We thus get that 𝑙𝑒𝑟 “ 𝑙𝑒𝑟p2q, and it follows from
(3.83) together with the construction of ℎpr in Lemma 3.17 that ℎR “ ℎ1. Therefore, the inequality
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in (3.72) is in fact an equality by Lemma 3.2, and consequently

(3.90) 𝑙𝑒𝑟p𝑧q “

#

2𝑔p`D,𝐾 𝑓 , ,D; 𝑝p𝑧qq ´ 2{capDp𝐾 𝑓 q, 𝑧 P 𝐺max,

0, 𝑧 P Rz𝐺max,

as both sides of (3.90) are continuous on R, equal to zero on Rz𝐺max, equal to ´2{capDp𝐾 𝑓 q on
T , and harmonic in 𝐺max so that the equality in 𝐺max is consequence of the maximum principle for
harmonic functions.

Notice that we started our proof with the limit (3.6) taking place along the full sequence N of
integers, that was later refined into a subsequence in Section 3.5, and refined still further in Section 3.7
to a subsequence N along which all the above results hold. However, we could have initiated our
argument using any subsequence N0 Ă N in (3.6) with the same conclusions holding along some
N Ď N0. Hence, if there existed a subsequence along which either `1 ‰ `D,𝐾 𝑓 , a1 ‰ 0, ã ‰ 0, or a˚

are not as in the left-hand side of (3.89), or if ℎ2 were not equal to zero, then we could use it as N0 in
(3.6) to arrive at a contradiction. Hence, all lemmas of this section hold along the full sequence N.

3.11. Convergence in Capacity. Our next task is to establish that

(3.91)
1
2𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛qqp𝑧q|
cap
Ñ 𝑔

`

`D,𝐾 𝑓 ,D; 𝑧
˘

´
1

capDp𝐾 𝑓 q
, 𝑧 P Dz𝐾 𝑓 ,

as 𝑛 Ñ 8. Let 𝑉 be an open neighborhood of 𝑝´1p𝐾 𝑓 q on R whose closure is disjoint from 𝐾 , and
𝑈 be an open subset of R containing 𝐾 X 𝐺max whose closure is disjoint from the closure of 𝑉 . In
particular, T Ă B𝑈 while T and B𝑈zT are disjoint compact sets. For convenience, we also assume
that 𝑉 “ 𝑝´1p𝑝p𝑉qq. Recall from (3.8)–(3.10) the relation

1
2𝑛

log |p 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝qp𝑧q| “
1
2
`

ℎ𝑛,𝑛p𝑧q ` 𝑔p`𝑛,D; 𝑝p𝑧qq ´ 𝑔pa𝑛,Ω𝑛; 𝑧q
˘

, 𝑧 P Ω𝑛.

We have established in the previous section that the functions ℎ𝑛,𝑛 converge to ´ℎR locally uniformly
in Rz𝐸 𝑓 , see Lemma 3.1 (notice that N 1 may now be replaced with N by the last remark in
Section 3.10). As in Lemma 3.2, we can write

ℎ𝑛,𝑛p𝑧q “

ż

B𝑈zT
ℎ𝑛,𝑛𝑑𝛿

Rz𝑈
𝑧 `

ż

T

1
𝑛

log | 𝑓 ´ 𝑁p𝑀𝑛q ˝ 𝑝|𝑑𝛿
Rz𝑈
𝑧 , 𝑧 P 𝑈,

where 𝛿Rz𝑈
𝑧 is the harmonic measure of 𝑈. The above formula, the circularity of the error (3.3) and

the optimality of the approximants (3.6), (3.16) together with the locally uniform convergence just
mentioned show that the functions ℎ𝑛,𝑛 converge uniformly to ´ℎR on𝑈 and therefore on 𝐾 . Since

1
2
`

´ ℎRp𝑧q ` 𝑔p`D,𝐾 𝑓 ,D; 𝑝p𝑧qq ´ 𝑔pa,R; 𝑧q
˘

“
1
2
𝑙𝑒𝑟p𝑧q “ 𝑔p`D,𝐾 𝑓 , ,D; 𝑝p𝑧qq ´

1
capDp𝐾 𝑓 q

for 𝑧 P 𝐺max by (3.45) and (3.90), we only need to establish that

(3.92)

$

&

%

lim
𝑛Ñ8

cap
`

t𝑧 P 𝐾 : |𝑔p`𝑛,D; 𝑝p𝑧qq ´ 𝑔p`D,𝐾 𝑓 ,D; 𝑝p𝑧qq| ą 𝑎u
˘

“ 0,

lim
𝑛Ñ8

cap
`

t𝑧 P 𝐾 : |𝑔pa𝑛,Ω𝑛; 𝑧q ´ 𝑔pa,R; 𝑧q| ą 𝑎u
˘

“ 0,

for any 𝑎 ą 0, where capp¨q is the logarithmic capacity, see (A.6). This will simultaneously prove
the claim made after Theorem 2.1 as well as (3.91) because 𝑡 ÞÑ 𝑔𝐷p𝑡, 𝑧q ` log |𝑧 ´ 𝑡| is bounded
uniformly for 𝑧 P 𝐹 for any compact 𝐹 Ă D, so that (3.93) yields an analogous claim for the Greenian
capacity on any compact subset of 𝐺max.

Write `𝑛 “ `𝑛,1 ``𝑛,2, where `𝑛,1 :“ `𝑛 b𝑝p𝑉 q. Notice that `𝑛,1
˚

Ñ `D,𝐾 𝑓 . Since these measures
have at most unit mass, the differences 𝑔p`𝑛,1,D; 𝑝p¨qq ´ 𝑔p`D,𝐾 𝑓 ,D; 𝑝p¨qq converge uniformly to
zero on B𝑈zT . As they are identically equal to zero on T , they converge to zero uniformly on𝑈 and
hence on 𝐾 by the maximum principle for harmonic functions. Recall that any Green potential of a
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measure supported in the unit disk can be written as a difference of the logarithmic potentials of the
measure and of its balayage onto T, see (A.29). It was shown in [6, Lemma 21] that if compactly
supported measures converge weak˚ to the zero measure, then their logarithmic potentials converge
to zero in capacity in C. Hence, the potentials 𝑔p`𝑛,2,D; ¨q converge to zero in capacity on 𝐾 , which
finishes the proof of the first limit in (3.93).

The proof of the second limit in (3.93) proceeds similarly, but requires more detailed analysis. As
we have shown in the previous subsection, the measures a𝑛 bΩ𝑛 converge vaguely to a˚ on R, where
a˚ stands for the left-hand side of (3.89). Hence,

(3.93) a𝑛,1 :“ a
𝑛 b𝑉XΩ𝑛

𝑤˚
Ñ a˚

on R. The functions 𝑔Rp𝑧, 𝑤q ´ 𝑔Ω𝑛p𝑧, 𝑤q uniformly converge to zero for 𝑤 P 𝑉 and 𝑧 P 𝐾 , see
(3.55) (we continue 𝑔Ω𝑛p𝑧, 𝑤q by zero to RzΩ𝑛). Therefore, as the measures a𝑛,1 have uniformly
bounded masses (they converge weak˚ to a finite measure), we get that
(3.94) lim

𝑛Ñ8

`

𝑔pa𝑛,1,R; 𝑧q ´ 𝑔pa𝑛,1,Ω𝑛; 𝑧q
˘

“ 0

uniformly on 𝐾 . Moreover, since the potentials 𝑔pa𝑛,1,R; ¨q are positive harmonic functions on𝑈 for
all 𝑛 large, they converge uniformly to 𝑔pa˚,R; ¨q on 𝐾 (they converge pointwise on𝑈 by (3.94), then
uniformly on B𝑈zT by Harnack’s theorem applied in a neighborhood of B𝑈zT , and thus uniformly
on𝑈 by the maximum principle for they are identically zero on T ). That is, we get from (3.95) that
(3.95) lim

𝑛Ñ8
𝑔pa𝑛,1,Ω𝑛; 𝑧q “ 𝑔pa˚,R, 𝑧q

uniformly on 𝐾 . Next, let a𝑛,2 :“ a
𝑛 b𝐺maxz𝑉

. As the measures a𝑛 converge vaguely to a˚, the
measures a𝑛,2 converge vaguely to the zero measure. We claim that these measures have uniformly
bounded masses with respect to 𝑛. To see this, pick Y ą 0 and let 0 ă [ ă 𝛿 be such that

ℎ𝑛,𝑛p𝑧q ` 𝑔p`D,𝐾 𝑓 ,D; 𝑝p𝑧qq ă ´Y, 𝑧 P 𝑅[ :“ t𝑧 P 𝐺max : 1 ´ [ ď |𝑝p𝑧q| ď 1u

for all 𝑛 large enough. This is possible since 𝑔p`D,𝐾 𝑓 ,D; 𝑝p¨qq is a continuous function in 𝑈 and is
equal to 0 on T , while ℎ𝑛,𝑛 converge uniformly to ℎR , which is equal to ´2{capDp𝐾 𝑓 q on T . We
may assume that 𝑓 does not vanish in 𝑅[ , for we may add a constant to it while adding the same
constant to the approximants 𝑀𝑛. If each circle T𝑟 for 1 ´ 2[{3 ă 𝑟 ă 1 ´ [{3 contained a 𝑧 with
|𝑔p`𝑛,D, 𝑧q ´ 𝑔p`D,𝐾 𝑓 ,D, 𝑧q| ě Y{2 for infinitely many 𝑛, then it would imply that

cap
`

t𝑧 P 𝑅𝑟 : |𝑔p`𝑛,D, 𝑧q ´ 𝑔p`D,𝐾 𝑓 ,D, 𝑧q| ą Y{2u
˘

ě [{12 ą 0,
because contractive maps, in particular, circular projection, do not increase the logarithmic capacity
[52, Theorem 5.3.1] and (remember that cappr𝑎, 𝑏sq “ |𝑏´ 𝑎|{4). Clearly, this would contradict the
first limit in (3.93). Hence, for each 𝑛 large enough, there is 𝑟𝑛 P r1 ´ 2[{3, 1 ´ [{3s such that

𝑔p`𝑛,D, 𝑝p𝑧qq ` ℎ𝑛,𝑛p𝑧q ´ 𝑔pa𝑛,R, 𝑧q ă 𝑔p`𝑛,D, 𝑝p𝑧qq ` ℎ𝑛,𝑛p𝑧q ă ´Y{2

for 𝑧 P 𝑝´1pT𝑟𝑛q X 𝑅[ . Thus, since 𝑓 does not vanish in 𝑅[ , we get that | 𝑓 ´ 𝑁p𝑀𝑛q| ă | 𝑓 | on T𝑟𝑛
for all 𝑛 large enough. Besides, the same inequality certainly holds on T and therefore, by Rouché’s
theorem, the number of zeros of 𝑓 ´ 𝑁p𝑀𝑛q in 𝑅[ is less that the number of its poles (at most 𝑛)
plus the degree of 𝑓 on TY T𝑟𝑛 (which is bounded by a constant independently of 𝑛). Hence a𝑛 has
bounded mass in 𝑅[ , which proves the claim. Thus, the measures a𝑛,2 and respectively the measures
𝑝˚pa𝑛,2q strongly converge to zero. As above, this means that the potentials 𝑔p𝑝˚pa𝑛,2q,D; 𝑝p¨qq

and, by (A.32), the potentials 𝑔pa𝑛,2,R; ¨q converge to zero in capacity on 𝐾 . As the latter potentials
majorize 𝑔pa𝑛,2,Ω𝑛; ¨q, we get that the potentials 𝑔pa𝑛,2,Ω𝑛; ¨q converge to zero in capacity on 𝐾 .
Finally, define a𝑛,3 :“ a𝑛 ´ a𝑛,1 ´ a𝑛,2. The potentials 𝑔pa𝑛,3,Ω𝑛; ¨q form a sequence of positive
harmonic functions in 𝐺maxz𝑉 . By Harnack’s theorem there exists a subsequence of indices, say
N0, along which these potentials converge locally uniformly on 𝑈 to some non-negative harmonic
function, say ℎ0. Now, we can initiate the proof Theorem 2.4 in Section 3.5 with N0 instead of the



OPTIMAL RATIONAL APPROXIMANTS 39

whole sequenceN. Then it would follow from (3.89) and (3.96) that the function ℎ2 from Lemma 3.5
must coincide with ℎ0 in 𝑈. Proceeding with the remainder of the proof we again inevitably arrive
at the conclusion that ℎ2 ” 0. Hence, the potentials 𝑔pa𝑛,3,Ω𝑛; ¨q converge to 0 locally uniformly
on 𝐺maxz𝑉 , and, in particular, on B𝑈zT . As these potential are identically zero on T , they converge
to zero uniformly on 𝑈 and hence on 𝐾 by the maximum principle for harmonic functions. This
finishes the proof of the second limit in (3.93) and, respectively, of Theorem 2.4.

4. Proof of Theorem 2.5

Since the considerations of Sections 3.2 and 3.3 still apply, we can assume that 𝐷 “ D, i.e., that 𝑓
is analytic inCz𝐸,where 𝐸 Ă D is closed polar, and we may replace t𝑀𝑛u by the sequence t𝑁p𝑀𝑛qu

of its Nehari modifications. Write 𝑁p𝑀𝑛q “ ℎ𝑛{𝑏𝑛, where ℎ𝑛 P ApDq and 𝑏𝑛 is a Blaschke product
vanishing at the poles of 𝑁p𝑀𝑛q according to their multiplicities. That is, 𝑏𝑛 “ 𝑞𝑛{r𝑞𝑛, where
𝑞𝑛 P M𝑛pDq is a polynomial such that 𝑞𝑛𝑀𝑛 P ApDq and r𝑞𝑛p𝑧q :“ 𝑧𝑛𝑞𝑛p1{𝑧q is the reciprocal
polynomial. We have that

| 𝑓 p𝑧q ´ pℎ𝑛{𝑏𝑛qp𝑧q| “ |p𝑏𝑛 𝑓 qp𝑧q ´ ℎ𝑛p𝑧q|, 𝑧 P T,

since Blaschke products are unimodular on the unit circle. Thus, ℎ𝑛 is in fact the best Nehari
approximant of 𝑏𝑛 𝑓 in ApDq. Recall that the above expressions converge to zero faster than
geometrically to zero by the very choice of t𝑀𝑛u.

Our goal is to show that ℎ𝑛{𝑏𝑛 converge in logarithmic capacity to 𝑓 in Dz𝐸 at faster than
geometric rate. That is, we fix a compact set 𝐾 Ă D disjoint from 𝐸 and we will prove that
(4.1) lim

𝑛Ñ8
cap

`

t𝑧 P 𝐾 : |𝑒𝑛p𝑧q| ą 𝑎𝑛u
˘

“ 0 for any 𝑎 ą 0,

where 𝑒𝑛p𝑧q :“ 𝑓 p𝑧q ´ pℎ𝑛{𝑏𝑛qp𝑧q is the approximation error. This will establish convergence in
logarithmic capacity on compact subsets of Dz𝐸 . Subsequently, as we pointed out in Section 3.11,
(4.1) yields an analogous claim for the Greenian capacity on any compact subset of Dz𝐸 .

Since capp𝐸q “ 0, it follows from [52, Theorems 5.5.2 & 5.5.4] that for each [ ą 0 there is 𝑘 P N
and 𝑝𝑘 P M𝑘p𝐸q (we can take 𝑝𝑘 to be the 𝑘-th Fekete polynomial for 𝐸) such that

(4.2) 𝐸 Ă 𝐿[ :“
 

Z P C : |𝑝𝑘pZq| ă [𝑘
(

.

Pick [ ă mintdistp𝐾, 𝐸q , 1u to be adjusted later. Of necessity 𝐾 X 𝐿[ “ ∅, because |𝑝𝑘p𝑧q| ě

distp𝐾, 𝐸q𝑘 for 𝑧 P 𝐾 . Let 𝛾 Ă 𝐿[ be a system of closed curves encompassing each point of 𝐸
exactly once, and such that distp𝛾, 𝐸q ă distpT, 𝐸q{4. Then, one has that

(4.3) 𝑓 p𝑧q “

ż

𝛾

𝑓 pbq

𝑧 ´ b

𝑑b

2𝜋i
, 𝑧 P Czint 𝛾,

by the Cauchy formula, where int 𝛾 is the union of the bounded components of the complement of 𝛾.
Since P´ evaluated at |𝑧| ą 1 coincides with the Cauchy projection having kernel p2𝜋ip𝑧´ Zqq´1𝑑Z
on T, the Hankel operator Γ𝑏𝑛 𝑓 acts on 𝑣 P 𝐻2 by

(4.4) Γ𝑏𝑛 𝑓 p𝑣qp𝑧q “

ż

T

𝑏𝑛pZq 𝑓 pZq𝑣pZq

𝑧 ´ Z

𝑑Z

2𝜋i
, |𝑧| ą 1.

Inserting (4.3) into (4.4) yields by Fubini’s theorem and the Cauchy formula for 𝐻2-functions that

(4.5) Γ𝑏𝑛 𝑓 p𝑣qp𝑧q “

ż

𝛾

𝑏𝑛pbq 𝑓 pbq𝑣pbq

𝑧 ´ b

𝑑b

2𝜋i
, 𝑧 P Czint 𝛾.

Observe that (4.5), initially proven for |𝑧| ą 1, actually defines an analytic extension to the exterior of
𝛾 of Γ𝑏𝑛 𝑓 p𝑣q “ P´p𝑏𝑛 𝑓 𝑣q P 𝐻2

´ (and therefore an extension to Cz𝐸 since 𝛾 could be taken arbitrary
close to 𝐸). Next, recall that a first singular vector of the Hankel operator Γ𝑏𝑛 𝑓 is an element 𝑣0 P 𝐻2

of unit norm that maximizes }Γ𝑏𝑛 𝑓 p𝑣q} over all 𝑣 P 𝐻2 with }𝑣}2 “ 1, and that it always can be
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chosen to be outer3, see for instance [5, p. 62]. Then, we get from (4.5) and (2.26) (applied with
𝑛 “ 0 and 𝑓 replaced by 𝑓 𝑏𝑛) that

(4.6) p𝑒𝑛𝑏𝑛qp𝑧q “ p𝑏𝑛 𝑓 ´ ℎ𝑛qp𝑧q “
1

𝑣0p𝑧q

ż

𝛾

𝑏𝑛pbq 𝑓 pbq𝑣0pbq

𝑧 ´ b

𝑑b

2𝜋i
, 𝑧 P Dzint 𝛾.

Note that the right-hand side of (4.6) is analytic in Dzint 𝛾, since 𝑣0 is outer and thus has no zeros in
D. Let 𝐵𝑘 :“ 𝑝𝑘{r𝑝𝑘 . Similarly to (4.3)–(4.6), it holds that

(4.7) P´

`

𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘

˘

p𝑧q “
1

2𝜋i

ż

𝛾

𝑏𝑛pbq 𝑓 pbq𝐵ℓ
𝑘
pbq

𝑧 ´ b
𝑑b, 𝑧 P Dzint 𝛾,

where ℓ P N is such that ℓ𝑘 ď 𝑛 ă pℓ ` 1q𝑘 and the right-hand side again defines an analytic
extension of the left-hand side into the exterior of 𝛾. Indeed, we can express the left-hand side of
(4.7) for |𝑧| ą 1 as the Cauchy integral of 𝑒𝑛𝑏𝑛𝐵ℓ𝑘 on T like we did in (4.4) for P´p𝑏𝑛 𝑓 𝑣q. Since
𝑒𝑛𝑏𝑛 is analytic across T and 𝐵𝑘 P HpDq, we then deform the contour of integration into a circle
of radius slightly smaller than 1, which can be done without changing the value of the integral by
Cauchy’s theorem. Subsequently, we insert (4.6) in this integral and use Fubini’s theorem and the
residue formula as before to get (4.7).

Recall that distpT, 𝐸q ě distp𝐾, 𝐸q ą [ by construction. Observe also that |𝑝𝑘 | ď [𝑘 on 𝛾 by
(4.2) and that |r𝑝𝑘 | ě distpT, 𝐸q𝑘 in D. Since |𝑏𝑛| ď 1, we get from our choice of ℓ that

(4.8)
ˇ

ˇP´

`

𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘

˘

p𝑧q
ˇ

ˇ ď

ˆ

[

distpT, 𝐸q

˙𝑛´𝑘
|𝛾|} 𝑓 }𝛾

distp𝑧, 𝛾q
, 𝑧 P Dzint 𝛾,

where |𝛾| stands for the arclength of 𝛾. In another connection, it follows from [48, Lemma] that for
any Y P p0, 1{3q there exists𝑊𝑛 Ă D such that capp𝑊𝑛q ď 3Y and

|𝑝ℓ𝑘pZq𝑞𝑛pZq| ą Y𝑛`ℓ𝑘}𝑝ℓ𝑘𝑞𝑛}T, Z P Dz𝑊𝑛.

As |r𝑝ℓ
𝑘
r𝑞𝑛|p𝑧q ď }r𝑝ℓ

𝑘
r𝑞𝑛}T “ }𝑝ℓ

𝑘
𝑞𝑛}T for 𝑧 P D by the maximum principle and the definition of the

reciprocal polynomial, we get that |p𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q| ě Y𝑛`𝑘ℓ for 𝑧 P Dz𝑊𝑛. Since P` `P´ is the identity

operator, we can use the analytic continuation provided by (4.7) to write

(4.9) 𝑒𝑛p𝑧q “
P`p𝑒𝑛𝑏𝑛𝐵

ℓ
𝑘
qp𝑧q ` P´p𝑒𝑛𝑏𝑛𝐵

ℓ
𝑘
qp𝑧q

𝑏𝑛p𝑧q𝐵ℓ
𝑘
p𝑧q

, 𝑧 P Dzint 𝛾.

The estimate |p𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q| ě Y𝑛`𝑘ℓ for 𝑧 P Dz𝑊𝑛, (4.8), and the definition of ℓ give us that

(4.10)

ˇ

ˇ

ˇ

ˇ

ˇ

P´p𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q

𝑏𝑛p𝑧q𝐵ℓ
𝑘
p𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
Y2𝑛

ˆ

[

distpT, 𝐸q

˙𝑛´𝑘
|𝛾|} 𝑓 }𝛾

distp𝑧, 𝛾q
, 𝑧 P Dzpint 𝛾 Y𝑊𝑛q.

Now, given 0 ă Y ă 1 and 0 ă 𝑎 ă 1, choose [ in (4.2) so that 0 ă [ ă 𝑎Y2distpT, 𝐸q. Choice of [
of course fixes 𝑘 in (4.2). Then, since 𝐾 lies exterior to 𝛾 because 𝐾 X 𝐿[ “ ∅, we get from (4.10)
that there exists a natural number 𝑛0 “ 𝑛0p 𝑓 , 𝐾, Y, [, 𝛾q for which

(4.11)

ˇ

ˇ

ˇ

ˇ

ˇ

P´p𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q

𝑏𝑛p𝑧q𝐵ℓ
𝑘
p𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ă 𝑎𝑛, 𝑛 ě 𝑛0, 𝑧 P 𝐾z𝑊𝑛.

Next, as }𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘
}T “ }𝑒𝑛}T Ñ 0 faster than geometrically with 𝑛 by hypothesis, (4.8) and the

triangle inequality yield that

(4.12)
›

›P`p𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘q
›

›

T
“
›

›𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘 ´ P´p𝑒𝑛𝑏𝑛𝐵

ℓ
𝑘q
›

›

T
ď 𝐶

ˆ

[

distpT, 𝐸q

˙𝑛

, 𝑛 ě 𝑛1
0,

3An outer function 𝑤 P 𝐻 2 is of the form 𝑤p𝑧q “ 𝛼 exp
!

ş

T
b`𝑧

b´𝑧
log |𝑤pbq|

|𝑑b |

2𝜋

)

, with 𝑤bT P 𝐿2pTq and |𝛼| “ 1.
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for some constant 𝐶 “ 𝐶p 𝑓 , 𝐸, 𝛾q and some 𝑛1
0 depending on 𝐶 and the speed of approximation of 𝑓

by ℎ𝑛{𝑏𝑛. Subsequently, as in (4.11), we get from the estimate |p𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q| ě Y𝑛`𝑘ℓ for 𝑧 P Dz𝑊𝑛,

(4.12), and the maximum modulus principle that

(4.13)

ˇ

ˇ

ˇ

ˇ

ˇ

P`p𝑒𝑛𝑏𝑛𝐵
ℓ
𝑘
qp𝑧q

𝑏𝑛p𝑧q𝐵ℓ
𝑘
p𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ă 𝑎𝑛, 𝑛 ě 𝑛2
0 , 𝑧 P 𝐾z𝑊𝑛,

for some natural number 𝑛2
0 “ 𝑛2

0p 𝑓 , 𝐾, Y, [, 𝛾q. Because Y and 𝑎 can be arbitrarily small and
capp𝑊𝑛q ď 3Y, (4.1) now follows from (4.9), (4.11) and (4.13).

Having proven that 𝑀𝑛
cap
Ñ 𝑓 in 𝐷z𝐸 at faster than geometric rate whenever it is a sequence of

𝑛-th root optimal meromorphic approximants to 𝑓 , we turn to the construction of rational functions
𝑅𝑘𝑛 P R𝑘𝑛p𝐷q such that the poles of 𝑅𝑘𝑛 are among the poles of 𝑀𝑛 lying in 𝑉 and (2.18) holds,
where 𝑉 any open set such that 𝐸 Ă 𝑉 Ă 𝑉 Ă 𝐷. Let 𝐵 Ą 𝐸 be a closed set contained in 𝑉 which is
regular for the Dirichlet problem, see Section A.7. Such a 𝐵 is easily constructed as a sublevel set, for
some small regular value, of a smooth non-negative function whose zero set is 𝐸 , see, for example,
discussion after (3.7). Then the Green equilibrium potential 𝐺p𝑧q :“ 𝑔p`𝐷,𝐵, 𝐷; 𝑧q is harmonic in
𝐷z𝐵, continuous on 𝐷, strictly less than the constant 1{cap𝐷p𝐵q on 𝐷z𝐵 and equal to that constant
on 𝐵, see (2.12) or Section A.4 for a more detailed discussion. Since B𝑧𝐺p𝑧q is holomorphic in
𝐷z𝐵, the critical points of 𝐺 are isolated and cannot accumulate in 𝐷z𝐵, so we can find an interval
r𝑡1, 𝑡2s Ă p0, 1{cap𝐷p𝐵qq that is free of critical values and such that 𝐺´1pr𝑡1, 𝑡2sq Ă 𝑉 . For any
𝑡 P r𝑡1, 𝑡2s, 𝛾p𝑡q :“ 𝐺´1p𝑡q is a 1-dimensional compact manifold, i.e., a finite union of disjoint
real analytic closed curves 𝛾1,𝑡 , . . . , 𝛾𝑁 ,𝑡 , none of which lies interior to another (by the maximum
principle), and such that 𝐵 Ă int 𝛾p𝑡q Ă int 𝛾p𝑡q Ă 𝑉 . Note that 𝑁 is independent of 𝑡 P r𝑡1, 𝑡2s since
any such 𝑡 is a regular value; note also that the total length |𝛾p𝑡q| “

ř𝑁
𝑗“1 |𝛾 𝑗 ,𝑡 | is bounded above

independently of 𝑡, say by a constant 𝐿, because the gradient ∇𝐺 is normal to 𝛾 𝑗 ,𝑡 at its every point
and therefore the divergence formula implies for any 𝑡 P r𝑡1, 𝑡2s:

𝑡|𝛾p𝑡q| min
𝑧P𝐺´1p𝑡q

}∇𝐺p𝑧q} ď 𝑡2|𝛾p𝑡2q| max
𝑧P𝐺´1p𝑡2q

}∇𝐺p𝑧q} ´

ż

𝐺´1pr𝑡 ,𝑡2sq

}∇𝐺}2𝑑𝑥𝑑𝑦.

Pick 𝑎 ą 0, set 𝐾 :“ maxt}∇𝐺p𝑧q} : 𝑧 P 𝐺´1pr𝑡1, 𝑡2squ and let 𝑛𝑎 P N be so large that

(4.14) cap
`

t𝑧 P 𝐺´1pr𝑡1, 𝑡2sq : | 𝑓 p𝑧q ´ 𝑀𝑛p𝑧q| ą 𝑎𝑛u
˘

ă
𝑡2 ´ 𝑡1

4𝐾
, 𝑛 ě 𝑛𝑎 .

Such a 𝑛𝑎 exists by the first part of the proof. Let 𝐴𝑛 be the set whose capacity is estimated in
(4.14). Assume for the moment that for each 𝑡 P r𝑡1, 𝑡2s there exists 𝑧 P 𝐺´1p𝑡q X 𝐴𝑛. Then the
image of 𝐴𝑛 under 𝐺{𝐾 : 𝐺´1pr𝑡1, 𝑡2sq Ñ R is equal to the interval r𝑡1{𝐾, 𝑡2{𝐾s whose capacity
is p𝑡2 ´ 𝑡1q{p4𝐾q. However, since contractive maps do not increase the logarithmic capacity [52,
Theorem 5.3.1], the capacity of 𝐺p𝐴𝑛q{𝐾 should be strictly smaller than p𝑡2 ´ 𝑡1q{p4𝐾q by (4.14).
Hence, for each 𝑛 ě 𝑛𝑎 there is 𝑡𝑛 P r𝑡1, 𝑡2s for which

(4.15)
ˇ

ˇ

ˇ

ˇ

ż

𝛾p𝑡𝑛q

𝑓 pbq ´ 𝑀𝑛pbq

𝑧 ´ b

𝑑b

2𝜋i

ˇ

ˇ

ˇ

ˇ

ď
𝐿𝑎𝑛

2𝜋distp𝑇,𝑉q
, 𝑧 P 𝑇.

Pick a positive sequence t𝑎𝑘u converging to 0 and, without loss of generality, arrange things so that
𝑛𝑎𝑘 ă 𝑛𝑎𝑘`1 . Define

𝐽𝑛p𝑧q :“
ż

𝛾p𝑡𝑛𝑎𝑘
q

𝑀𝑛pbq

𝑧 ´ b

𝑑b

2𝜋i
, 𝑧 P 𝐷z𝑉, 𝑛𝑎𝑘 ď 𝑛 ă 𝑛𝑎𝑘`1 .

Clearly, 𝐽𝑛 is a rational function retaining the singular part of 𝑀𝑛 inside the system of arcs 𝛾p𝑡𝑛𝑎𝑘 q,
and it is of type p𝑘𝑛 ´ 1, 𝑘𝑛q where 𝑘𝑛 ď 𝑛 is the number of the poles of 𝑀𝑛 inside this system of
arcs, counting multiplicities. If we put 𝑅𝑘𝑛 :“ 𝐽𝑛, then since 𝑎𝑘 Ñ 0 we get from (4.15) and the
Cauchy formula that (2.18) holds, as desired.
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Appendix A. Potential Theory on a Riemann Surface

Even though the proof of Theorem 2.4 in Sections 3.3–3.10 was carried out for 𝐷 “ D, this
appendix is written for a general Jordan domain 𝐷 since specializing 𝐷 to the unit disk would only
shorten the proofs of Lemmas A.5 and A.10 by a couple of paragraphs but otherwise would not lead
to any further simplifications.

A.1. Subharmonic Functions. Let 𝑑 be the differential and ˚ the conjugation operators on a
connected Riemann surface. The Laplacian Δ :“ 𝑑˚𝑑 takes smooth functions to 2-forms. If 𝑈 is
an open subset of the surface and 𝑢 : 𝑈 Ñ R a locally integrable function (against the area-form
˚1, where 1 is the constant unit function, or equivalently against the Lebesgue measure pi{2q𝑑𝑧^ 𝑑𝑧

in any system of local coordinates 𝑧, 𝑧), the distributional Laplacian Δ𝑢 is the 0-current acting on a
smooth compactly supported functions 𝜑 on𝑈 by

ş

𝑢Δ𝜑. When Δ𝑢 “ 0, one says that 𝑢 is harmonic
on𝑈, and such functions are in fact smooth (even real analytic) by Weyl’s lemma [18, Theorem 24.9].
Subharmonic functions on𝑈 are defined as upper-semicontinuous functions 𝑢 : 𝑈 Ñ r´8,8q such
that, if 𝑉 is open in 𝑈 and ℎ : 𝑉 Ñ R is harmonic, then 𝑢 ´ ℎ is either constant or fails to have
a maximum in 𝑉 . On open subsets of C, this definition coincides with the usual one; see [52,
Definition 2.2.1 & Theorem 2.4.1]. A superharmonic function is the negative of a subharmonic
function. A difference of two subharmonic functions is sometimes called a 𝛿-subharmonic function.

Harmonicity and subharmonicity are local properties: 𝑢 is harmonic (resp. subharmonic) on
𝑈 if and only if its restriction to every open subset is, or equivalently if and only if 𝑢 ˝ 𝜑´1 is
harmonic (resp. subharmonic) on the open set 𝜑p𝑉 X 𝑈q Ă C whenever p𝑉, 𝜑q is a local chart.
Thus, standard facts regarding such functions on open subsets of a Riemann surface follow from their
planar counterparts, using charts. In particular, the integrability theorem [52, Theorem 2.5.1] states
that a subharmonic function which is not identically ´8 is locally integrable, and therefore it has a
distributional Laplacian. Hence, two subharmonic functions that coincide almost everywhere (with
respect to area measure) are in fact equal, for either they are both identically ´8 or they have the
same distributional Laplacian, and so their difference is harmonic; this is the weak identity principle.
The following is a variant of Harnack’s theorem [52, Theorem 1.3.10] and of [52, Theorem 2.4.6].

Harnack’s Theorem. A sequence of harmonic functions on 𝑈 that is bounded below has a sub-
sequence that converges locally uniformly on 𝑈, either to `8 or to a harmonic function. For
an increasing sequence, convergence holds along the full sequence. A decreasing sequence of
subharmonic functions converges pointwise to a subharmonic function.

A locally integrable function 𝑢 is subharmonic if and only ifΔ𝑢 is a Radon measure on the surface;
that is, Δ𝑢 is a positive linear form on continuous functions with compact support. Indeed, as this
statement is local, it reduces to its planar analog. The “only if” part follows from [52, Section 3.7].
As to the “if” part, let 𝑊 Ă C be open and a be a finite positive Borel measure carried by 𝑊 .
The logarithmic potential of a, i.e., 𝑉 ap𝑧q :“

ş

log |𝑧 ´ 𝑡|´1𝑑ap𝑡q, is superharmonic on C with
distributional Laplacian ´a, so if 𝑢 is locally integrable on𝑊 with Δ𝑢 “ a there, then ℎ :“ 𝑢`𝑉 ab𝑊
is harmonic and therefore 𝑢 “ ´𝑉 ab𝑊 ` ℎ is subharmonic in𝑊 (as in the main text, for a set 𝐸 (that
may require further qualification), a subscript b𝐸 indicates “restriction to 𝐸”).

A.2. Green Functions. Throughout, Ω will be a subdomain of some ambient algebraic Riemann
surface R˚ such that 𝑝pΩq is a bounded domain in C, where 𝑝 stands for the canonical projection;
in particular the results apply to Ω “ R with 𝑝pΩq “ 𝐷, see beginning of Section 2.1. Since the
lift to Ω of a positive non-constant superharmonic function on 𝑝pΩq is again positive, non-constant,
and superharmonic, Ω is hyperbolic and as such possesses Green functions [15, Theorem IV.3.7].
Notice also that there exists a subdomain Ω1 Ă R˚ with 𝑝pΩ1q bounded such that Ω Ă Ω1, where an
overline (as in Ω) always denotes the closure in R˚.
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Recall that the Green function forΩwith pole at 𝑤, denoted by 𝑔Ωp¨, 𝑤q, is the unique function that
is harmonic and positive in Ωzt𝑤u with a logarithmic singularity at 𝑤 and whose largest harmonic
minorant is identically zero. By a logarithmic singularity at 𝑤, it is meant that if p𝑉, 𝜑q is a
coordinate chart on Ω such that 𝑤 P 𝑉 and 𝜑p𝑤q “ 0, then 𝑔Ωp𝜑´1p¨q, 𝑤q ` log | ¨ | is harmonic on
𝜑p𝑉q. Obviously 𝑔Ωp¨, 𝑤q ą 0 everywhere on Ω, by the minimum principle for harmonic functions.
Recall also that if a superharmonic function on Ω is not identically `8 and has a harmonic minorant,
then it has the largest one whose construction can be carried out as in the Euclidean case [29,
Theorem 4.3.5], because Poisson modifications can be performed locally.

Clearly, 𝑔Ωp¨, 𝑤q is superharmonic and Δ𝑔Ωp¨, 𝑤q “ ´𝛿𝑤 , where 𝛿𝑤 is the Dirac mass at 𝑤.
Moreover, 𝑔Ω is symmetric in that 𝑔Ωp𝑧, 𝑤q “ 𝑔Ωp𝑤, 𝑧q [15, Theorem IV.3.10]. Symmetry entails
that 𝑔Ωp𝑧, 𝑤q is separately harmonic in 𝑧 and 𝑤, and therefore jointly harmonic on tp𝑧, 𝑤q P ΩˆΩ :
𝑧 ‰ 𝑤u [36, p. 561]; in particular, p𝑧, 𝑤q ÞÑ 𝑔Ωp𝑧, 𝑤q is continuous off the diagonal. Note that

(A.1) 𝑔Ωp𝑧, 𝑤q ď 𝑔Ω1 p𝑧, 𝑤q, 𝑧, 𝑤 P Ω Ď Ω1,

because 𝑔Ωp¨, 𝑤q ´ 𝑔Ω1 p¨, 𝑤q is a harmonic minorant of 𝑔Ωp¨, 𝑤q and therefore must be non-positive.
Thus, if 𝐹1, 𝐹2 are relatively closed subsets ofΩwith 𝐹1X𝐹2 “ ∅, we deduce that p𝑧, 𝑤q ÞÑ 𝑔Ωp𝑧, 𝑤q

is bounded on 𝐹1 ˆ𝐹2 because 𝑔Ω1 p𝑧, 𝑤q is continuous on the compact set 𝐹1 ˆ𝐹2 wheneverΩ Ă Ω1.
We also remark that to each 𝑤 P Ω there is an open set 𝑉 Q 𝑤 and a constant 𝐶 “ 𝐶p𝑉q such that

(A.2)
ż

𝑉

𝑔Ωp𝑧, 𝑤1q ˚1p𝑧q ă 𝐶, 𝑤1 P 𝑉,

a result that follows by uniformization from the corresponding fact on the disk [29, Theorem 4.4.12].
Moreover, if a sequence of open sets Ω𝑛 increases to Ω as 𝑛 Ñ 8, it follows from (A.1) that
𝑔Ωp¨, 𝑤q bΩ𝑛 ´ 𝑔Ω𝑛p¨, 𝑤q is a decreasing sequence of positive harmonic functions that must converge
locally uniformly in Ω, by Harnack’s theorem; as the limit is necessarily a non-negative harmonic
minorant of 𝑔Ωp¨, 𝑤q, it must be identically zero.

A.3. Green Potentials. A Green potential in Ω is a non-negative superharmonic function whose
largest harmonic minorant is identically zero. Given 𝜎, a Radon measure in Ω, let us put

(A.3) 𝑔p𝜎,Ω; 𝑧q :“
ż

𝑔Ωp𝑧, 𝑤q𝑑𝜎p𝑤q.

This is a superharmonic function of 𝑧 P Ω which is either identically `8, or locally integrable
with distributional Laplacian ´𝜎 by Fubini’s theorem. If 𝑔p𝜎,Ω; ¨q is not identically `8, using the
monotone convergence and Fubini’s theorem, the proof of [29, Lemma 4.3.6] carries over to integrals
instead of sums to show that the largest harmonic minorant of 𝑔p𝜎,Ω; ¨q is the integral against 𝑑𝜎p𝑤q

of the largest harmonic minorants of the 𝑔Ωp¨, 𝑤q, namely zero. Thus, 𝑔p𝜎,Ω; ¨q is a Green potential.
Conversely, it follows from the Riesz representation theorem stated below that every Green potential
has the form (A.3). Notice that if 𝜎pΩq ă 8, then 𝑔p𝜎,Ω; ¨q ı `8, for if 𝑉 Ă Ω is as in (A.2) and
𝑊 is a nonempty open set with𝑊 Ă 𝑉 , then

ż

𝑊

𝑔p𝜎,Ω; 𝑧q˚1p𝑧q ă 𝐶𝜎p𝑉q ` 𝐶1𝜎pΩz𝑉q

ż

𝑊

˚1

by Fubini’s theorem, where 𝐶1 is an upper bound for 𝑔Ωp𝑧, 𝑤q on pΩz𝑉q ˆ𝑊 .

Riesz Representation Theorem. Let 𝑢 ı `8 be a superharmonic function on Ω that has a
harmonic minorant. Then 𝑢 “ 𝑔p𝜎,Ω; ¨q ` ℎ, where ℎ is the largest harmonic minorant of 𝑢 and
𝜎 :“ ´Δ𝑢.

Proof. Assume first that 𝜎pΩq ă 8. Then, 𝑔p𝜎,Ω; ¨q ı `8 and therefore ℎ :“ 𝑢 ´ 𝑔p𝜎,Ω; ¨q is
harmonic on Ω. Clearly, ℎ is a minorant of 𝑢. Since the largest harmonic minorant of 𝑔p𝜎,Ω; ¨q is
zero, ℎ is the largest harmonic minorant of 𝑢. If 𝜎pΩq “ 8, pick Ω𝑚 to be an increasing exhaustion
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of Ω by relatively compact open sets. Put 𝜎𝑚 :“ 𝜎bΩ𝑚 , which are finite measures on Ω𝑚 because
𝜎 is a Radon measure. By what precedes, 𝑢 bΩ𝑚 “ 𝑔p𝜎𝑚,Ω𝑚; ¨q ` ℎ𝑚, where ℎ𝑚 is the largest
harmonic minorant of 𝑢 bΩ𝑚 . As the functions 𝑔Ω𝑚p¨, 𝑤q increase locally uniformly to 𝑔Ωp¨, 𝑤q

while ℎ𝑚 decrease and are bounded below by any harmonic minorant of 𝑢, we get by monotone
convergence and Harnack’s theorem that 𝑢 “ 𝑔p𝜎,Ω; ¨q ` ℎ, where ℎ is harmonic and necessarily
𝑔p𝜎,Ω; ¨q ı `8. We now conclude the proof as in the first case. �

This version of the Riesz representation theorem featuring the weak-Laplacian may be compared
to the more abstract formulation for Green spaces (of which Ω is a special case) in [8, Section VI.7],
that does not refer to the Laplacian; see also the planar statement of [52, Theorem 4.5.4].

The previous considerations allow us to simplify in our case the notion of admissibility of a
measure given in [19, Section 1] and [20, Section I.3]. According to that definition, a measure
𝜎 is admissible if it is integrable against continuous Green potentials with compactly supported
Laplacian. Fubini’s theorem immediately implies that 𝑔p𝜎,Ω; ¨q ı `8 if 𝜎 is admissible. In
the present Greenian context the condition 𝑔p𝜎,Ω; ¨q ı `8 is also sufficient for (and therefore
equivalent to) admissibility of 𝜎. Indeed, if a is compactly supported in Ω with continuous potential,
let 𝑉 be an open set such that supp a Ă 𝑉 Ă 𝑉 Ă Ω. By continuity, there exists 𝐶 such that
𝑔pa,Ω; 𝑧q ď 𝐶, 𝑧 P Ω. Since 𝑔p𝜎,Ω; ¨q ı `8, the same is true for the potential of 𝜎bΩz𝑉 . As this
potential is harmonic in 𝑉 and is not equal identically to `8 there, it is finite and locally bounded in
𝑉 . Hence, 𝑔p𝜎bΩz𝑉 ,Ω; 𝑧q ď 𝐶1, 𝑧 P supp a. Therefore, it follows from Fubini’s theorem that

ż

𝑔pa,Ω; 𝑧q𝑑𝜎p𝑧q ď 𝐶𝜎p𝑉q ` 𝐶1apΩq.

A.4. Capacities. Given two Radon measures 𝜎1 and 𝜎2 on Ω, we put

p𝜎1, 𝜎2qΩ :“
ż

𝑔p𝜎1,Ω; 𝑧q𝑑𝜎2p𝑧q “

ż

𝑔p𝜎2,Ω; 𝑧q𝑑𝜎1p𝑧q,

which is either a non-negative number or `8. The Green energy of𝜎 is defined as 𝐼Ωp𝜎q :“ p𝜎, 𝜎qΩ.
The Greenian capacity relative to Ω of a compact set 𝐾 Ă Ω is a non-negative number

(A.4) capΩp𝐾q :“
1

inf`PPp𝐾 q 𝐼Ωp`q
,

where Pp𝐾q is the set of Borel probability measures on 𝐾 . The Greenian capacity of a Borel set 𝐵
is given by

(A.5) capΩp𝐵q :“ sup
𝐾Ă𝐵

capΩp𝐾q “ inf
𝑈Ą𝐵

capΩp𝑈q,

where the supremum is taken over all compact subsets of 𝐵, the infimum is taken over all open
sets containing 𝐵, and the equality is due to a theorem by Choquet [8, Section VIII.4]. When 𝐾
is compact and capΩp𝐾q ą 0, there exists a unique `Ω,𝐾 P Pp𝐾q, called the Green equilibrium
measure of 𝐾 in Ω, to meet the infimum in (A.4). It is characterized by the fact that for some constant
𝐶(“ 1{capΩp𝐾q), the Green equilibrium potential 𝑔p`Ω,𝐾 ,Ω; 𝑧q satisfies 𝑔p`Ω,𝐾 ,Ω; 𝑧q ď 𝐶 for
𝑧 P Ω with 𝑔p`Ω,𝐾 ,Ω; 𝑧q “ 𝐶 for 𝑧 P 𝐾z𝐸 , where 𝐸 has Greenian capacity zero; this can be shown
as in the Euclidean case [54, Theorems II.5.11 & II.5.12].

In the case of an arbitrary set 𝐵, the infimum in (A.5) introduces the outer Greenian capacity of 𝐵
and will serve as a definition of capΩp𝐵q. However, it may no longer match the supremum (the latter
defines the inner Greenian capacity of 𝐵).

When Ω Ă C, another notion of capacity is instrumental in this paper, namely the logarithmic
capacity defined for a compact set 𝐾 Ă C as

(A.6) capp𝐾q :“ exp
"

´ inf
`PPp𝐾 q

ż

𝑉 `p𝑧q𝑑`p𝑧q

*

,
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where𝑉 `p𝑧q is the logarithmic potential of ` defined earlier in Section A.1. The logarithmic capacity
of a Borel subset of C and the outer logarithmic capacity of an arbitrary subset are defined via the
same process as for Greenian capacity, based on the analog of (A.5), see [52, 54] (note that in [52],
capp𝐸q denotes the inner logarithmic capacity and potentials carry a sign opposite to the current
one). If 𝐾 is compact and capp𝐾q ą 0, then there is a unique `𝐾 P Pp𝐾q, called the logarithmic
equilibrium measure of 𝐾 , that realizes the infimum in (A.6). It is characterized by the fact that for
some constant 𝐶(“ ´ log capp𝐾q), the logarithmic equilibrium potential 𝑉 `𝐾 p𝑧q is at most 𝐶 for
𝑧 P 𝐾 and in fact equal to 𝐶 on 𝐾 except possibly for a subset of logarithmic capacity zero.

Both the Greenian and logarithmic capacities are right continuous on compact sets, meaning that

cappX8
𝑗“1𝐾 𝑗q “ lim

𝑛
cappX𝑛

𝑗“1𝐾 𝑗q and capΩpX8
𝑗“1𝐾 𝑗q “ lim

𝑛
capΩpX𝑛

𝑗“1𝐾 𝑗q

if the 𝐾 𝑗 are compact; see [52, Theorem 5.1.3(a)] for the logarithmic case, the Greenian one being
argued the same way with an obvious adaptation of [52, Lemma 3.3.3]. In addition, the (outer)
Greenian and logarithmic capacities are left continuous:

cappY8
𝑗“1𝐸 𝑗q “ lim

𝑛
cappY𝑛

𝑗“1𝐸 𝑗q and capΩpY8
𝑗“1𝐸 𝑗q “ lim

𝑛
capΩpY𝑛

𝑗“1𝐸 𝑗q;

for the logarithmic capacity this follows from [52, Theorem 5.1.3(b)] combined with Choquet’s
theorem, and the Greenian case can be handled similarly, compare to [8, Section VIII.4].

One form of the domination principle for Green potentials says that if 𝑔p𝜎,Ω; ¨q ď 𝑣 on supp𝜎
(the support of 𝜎) for some superharmonic function 𝑣, then 𝑔p𝜎,Ω; ¨q ď 𝑣 everywhere on Ω; in fact,
we shall state a stronger version in Section A.6. It implies the continuity theorem, saying that if the
restriction of 𝑔p𝜎,Ω; ¨q to supp𝜎 is continuous at 𝑧0 P supp𝜎 then 𝑔p𝜎,Ω; ¨q is continuous at 𝑧0.
When 𝜎 is a positive Borel measure with compact support such that 𝑔p𝜎,Ω; 𝑧q ă `8 for 𝜎-a.e.
𝑧, there is an increasing sequence of measures 𝜎𝑘 supported on supp𝜎, having continuous Green
potentials and converging to 𝜎 in the strong (total variation) sense, such that 𝑔p𝜎𝑘 ,Ω; ¨q increases
pointwise to 𝑔p𝜎,Ω; ¨q on Ω. The proof is mutatis mutandis the same as for logarithmic potentials
[54, Lemma I.6.10], using the continuity theorem for Green potentials. In particular, if 𝐾 is compact
with capΩp𝐾q ą 0, we find upon letting 𝜎 be the Green equilibrium distribution that there exist
nonzero positive measures supported on 𝐾 whose Green potentials are continuous.

When Ω Ă C, a subset of Ω has (outer) Greenian capacity zero if and only if it has (outer)
logarithmic capacity zero. Indeed, it is enough to verify this claim on compact sets since capacity
is left continuous and a set of outer (Greenian or logarithmic) capacity zero is contained in a Borel
(even 𝐺 𝛿) set of capacity zero, by definition. Moreover, by the increasing character of 𝑔Ωp𝑧, 𝑤q with
Ω, we may assume that Ω is simply connected. Then the result follows by comparing the logarithmic
kernel logp1{|𝑧´𝑤|q with the Green kernel 𝑔Ωp𝑧, 𝑤q “ log |p1 ´ 𝜑p𝑧q𝜑p𝑤qq{p𝜑p𝑧q ´ 𝜑p𝑤qq|, where
𝜑 is a conformal map Ω Ñ D. A property holding pointwise except on a set of outer Greenian
capacity zero (equivalently: logarithmic capacity zero if Ω Ă C) is said to hold quasi everywhere.

A.5. Fine Topology. A basis for the fine topology on Ω is given by all sets of the form

(A.7) X𝑚
𝑖“1

 

𝑧 P 𝐵 : 𝑣𝑖p𝑧q ă 𝛼𝑖
(

,

where 𝐵 Ď Ω is open, 𝑣𝑖 are superharmonic functions on 𝐵, and 𝛼𝑖 are constants. Consequently,
all superharmonic functions Ω Ñ p´8,`8s are finely continuous (equivalently: all subharmonic
functions Ω Ñ r´8,`8q are finely continuous), and the fine topology is the coarsest with this
property because, by the Riesz representation theorem and the monotonicity of Green functions with
respect to the domain, each set of the form (A.7) contains one for which 𝑣𝑖 are Green potentials. In
particular, we may as well require in (A.7) that 𝑣𝑖 be defined and superharmonic on the whole of Ω.
Hence, the present definition modeled after [29, Definition 6.5.1] (which deals with the Euclidean
case) is equivalent to [8, Definition I.1]. It is known that the fine topology on Ω is locally connected
[20, Corollary to Theorem 9.11], and that the fine connected components of a finely open set are
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finely open [19, Corollary 1]. Moreover, Lipschitz curves are finely connected [19, Theorem 7], so
that Euclidean domains are fine domains as well.

As a general convention, we use the prefix “fine” to signify that a notion is understood with respect
to the fine topology. This way we distinguish the latter from the classical, Euclidean topology (more
precisely: the one induced on Ω by the Euclidean topology of charts). The fine boundary of a set 𝑆
is denoted by Bf𝑆, and its fine closure by closf.

A set 𝐸 Ă Ω is called polar (in Ω) if there is a superharmonic function 𝑢 ı `8 on Ω such that
𝑢p𝑧q “ `8 for 𝑧 P 𝐸 . Superharmonic functions not identically `8 are locally integrable, therefore
polar sets have area measure zero, see Section A.1. By definition a polar set is contained in a 𝐺 𝛿

polar set, and every 𝐺 𝛿 polar set arises as the `8-set of a superharmonic function [8, Section VI.9].
If 𝑈 is a fine domain and 𝐸 is polar, then 𝑈z𝐸 is again a fine domain [19, Theorem 6]. In fact,
polar sets are exactly the sets of zero outer Greenian capacity (equivalently: of zero outer logarithmic
capacity if Ω Ă C) defined in Section A.4; this is justified in Section A.9, but we take it presently
for granted (we stress that [52] defines polar sets as having inner capacity zero, thereby making for a
larger class of non-Borel polar sets). One consequence is: if Ω1 Ą Ω is hyperbolic and 𝐸 is polar in
Ω, then it is polar in Ω1 as well; indeed, since 𝑔Ω1 p¨, 𝑤q ě 𝑔Ωp¨, 𝑤q, it is clear that 𝐸 has zero outer
Greenian capacity in Ω1 if it does in Ω. Conversely, it is obvious from the definition that 𝐸 is polar
in Ω if it is polar in Ω1 Ą Ω, therefore we may speak of a polar set without specifying a hyperbolic
subset of R˚ in which 𝐸 is contained.

A countable union of polar sets is polar, for if 𝐸𝑘 is included in the `8-set of a superharmonic
function 𝑢𝑘 ı `8 while 𝐾 Ă Ω is compact and of positive Lebesgue measure, then there are 𝑡𝑘 ą 0
such that 𝑢 :“

ř

𝑘 𝑡𝑘𝑢𝑘 is summable on 𝐾 (therefore 𝑢 ı `8) and is superharmonic with value
`8 at each point of Y𝑘𝐸𝑘 . So, if 𝐸 Ă Ω is polar and 𝑝 : R˚ Ñ C is the natural projection, then
𝑝p𝐸q is polar. Indeed, for 𝑉 Ă Ω a domain such that 𝑝 : 𝑉 Ñ 𝑝p𝑉q is a homeomorphism, a ˝ 𝑝´1 is
superharmonic on 𝑝p𝑉q when a is superharmonic on𝑉 , andΩzrppR˚q can be covered with countably
many such domains while rppR˚q is finite. Conversely, if 𝑉 Ă C is a bounded open set and 𝐸 Ă 𝑉

is polar, then 𝑝´1p𝐸q is polar because 𝑣 ˝ 𝑝 is superharmonic as soon as 𝑣 is superharmonic on 𝑉 .
If 𝑢 ı `8 is superharmonic and finite on a polar set 𝐸 , then 𝐸 has outer Δ𝑢-measure zero [8,

Section VI.9, item 𝛽q]. Consequently a Radon measure 𝜎 of finite Green energy cannot charge a
polar set 𝐸 , for we may assume 𝜎 has compact support (since Ω is 𝜎-compact) and as in Section A.4
there is an increasing sequence of measures 𝜎𝑘 converging strongly to 𝜎 with 𝑔p𝜎𝑘 ,Ω; ¨q continuous,
whence 𝜎p𝐸q “ lim𝑘 𝜎𝑘p𝐸q “ 0.

Removability Theorem. If 𝐸 Ă Ω is a (relatively) closed polar set while 𝑢 is superharmonic on
Ωz𝐸 and locally bounded below in a neighborhood of 𝐸 , then 𝑢 extends in a unique manner to
a superharmonic function on Ω. Moreover, if 𝑢 is harmonic in Ωz𝐸 and locally bounded in a
neighborhood of 𝐸 , then 𝑢 extends harmonically to Ω.

Proof. The proof of the first statement carries over to hyperbolic Riemann surfaces from its planar
version, see [52, Theorem 3.6.1]. When 𝑢 is harmonic inΩz𝐸 and locally bounded in a neighborhood
of 𝐸 , it extends both to a subharmonic and a superharmonic function on Ω by the first part. Since Δ𝑢
does not depend on the extension because 𝐸 has Lebesgue measure zero, we deduce that Δ𝑢 “ 0. �

The removability theorem implies the following result.

Generalized Minimum Principle. If 𝑢 is superharmonic and bounded below on some open set
𝑈 Ă 𝑈 Ă Ω, and if moreover lim inf𝑈Q𝑧Ñb 𝑢p𝑧q ě 0 for quasi every b P B𝑈, then 𝑢 ě 0 in𝑈.

Proof. Given Y ą 0, let 𝐸Y :“ tZ P B𝑈 : lim inf𝑧Ñb 𝑢p𝑧q ď ´Yu. Then 𝐸Y is a closed polar
set and the function 𝑤 : Ω Ñ p´8,`8s given by minp𝑢,´Yq on 𝑈 and ´Y on Ωzp𝑈 Y 𝐸Yq is
superharmonic on Ωz𝐸Y , by the glueing theorem, see [52, Theorem 2.4.5] for a planar version of
this local result. As 𝑤 is bounded below, it extends to a superharmonic function on Ω. Because
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𝑈 Y 𝐸Y Ă 𝑈 Ă Ω, it holds that lim inf𝑧Ñb 𝑤p𝑧q “ ´Y for any b P BΩ. Thus, 𝑤 ě ´Y in Ω by the
classical minimum principle contained in the very definition of superharmonic functions. �

The hypothesis “𝑢 is bounded below” can be relaxed somewhat: it is enough to assume that
𝑢 ě ´𝑔 where 𝑔 is a semi-bounded potential, meaning that it is the increasing pointwise limit of a
sequence of locally bounded potentials, see [20, Theorem 9.1]. Note that 𝑔p𝜎,Ω; ¨q is semi-bounded
when it is finite 𝜎-a.e., for we may assume 𝜎 has compact support (as Ω is a countable union of
compact sets) and then appeal to properties of the measures 𝜎𝑘 in Section A.4. In fact, 𝑔p𝜎,Ω; ¨q is
semi-bounded if and only if it is finite 𝜎-a.e. in Ω, which is also if and only if 𝜎 does not charge
polar sets, see [20, Section I.2.6, Theorem].

A.6. Thinness. Fine topology can also be introduced via the notion of thinness. A set 𝐸 Ă Ω is
said to be thin at Z P Ω if Z is not a fine limit point of 𝐸 . Equivalently, 𝐸 is thin at Z if and only if
either Z R 𝐸 or there exists a function 𝑣, superharmonic in a neighborhood of Z , such that

(A.8) lim inf
𝐸Q𝑧ÑZ ,𝑧 “Z

𝑣p𝑧q ą 𝑣pZq;

see [29, Theorem 6.6.3] for a proof of this equivalence in the Euclidean setting, which applies to
hyperbolic Riemann surfaces as well and also shows that 𝑣 in (A.8) may be taken superharmonic on
the whole of Ω. Hence, the above definition of thinness (which is local) matches [8, Definition I.2]
(whose local character is not immediate, see [8, Theorem VII.1]). Setting lim inf over the empty set
to `8 by convention, (A.8) may still be regarded as characterizing thinness at Z R 𝐸 , upon letting
𝑣 ” 0. Note that when the limit inferior in (A.8) is taken over a full Euclidean neighborhood of Z ,
superharmonicity of 𝑣 implies that the inequality gets replaced by an equality. Clearly, 𝐸 is thin at Z
if and only if for some (hence any) chart p𝑉, 𝜑q with Z P 𝑉 , the planar set 𝜑p𝑉 X 𝐸q is thin at 𝜑pZq,
and a countable union of thin sets at Z is again thin at Z .

A set 𝑉 is a fine neighborhood of Z P 𝑉 if and only if the complement of 𝑉 is thin at Z , see [8,
Theorem I.3]. In particular, if 𝑉 is finely open and 𝑍 is polar, then 𝑉z𝑍 is finely open. The points of
𝐸 Ă Ω at which 𝐸 is thin form a polar set, and 𝐸 is thin at each of its points if and only if it is polar [8,
Theorem VII.7 & Corollary]. One consequence of 𝐸 being thin at Z is that, locally in a chart p𝑉, 𝜑q

with Z P 𝑉 , there are arbitrary small circles centered at 𝜑pZq which do not meet 𝜑p𝐸 X 𝑉q, see [29,
Theorem 6.7.9]; in the same vein, 𝜑p𝑉z𝐸q contains a segment of the form r𝜑pZq, 𝜑pZq ` 𝑟𝑒𝑖 \ s with
𝑟 “ 𝑟p\q ą 0 for quasi-every direction 𝑒𝑖 \ in T, see [52, Theorem 5.4.3]. In particular, a connected
set cannot be thin at an accumulation point and therefore polar sets are totally disconnected.

The base 𝑏p𝐸q of a set 𝐸 is the set of points in Ω at which 𝐸 is non-thin, and 𝐸 is called a base if
𝑏p𝐸q “ 𝐸 . It is known that 𝑏p𝐸q is a finely closed 𝐺 𝛿 set, see [8, Proposition VII.8]. We record the
following, elementary fact.

Lemma A.1. Let 𝐸, 𝐹 Ă Ω be disjoint finely open sets such that Ωzp𝐸 Y 𝐹q is a base. Then Ωz𝐸

and Ωz𝐹 are bases as well.

Proof. If 𝑥 P pΩz𝐸qXpΩz𝐹q “ Ωzp𝐸Y𝐹q, the latter set is non-thin at 𝑥 by assumption and therefore
so is Ωz𝐸 . If now 𝑥 P pΩz𝐸q X 𝐹 “ 𝐹, then the fine openness of 𝐹 implies that Ωz𝐹 is thin at 𝑥 and
so is 𝐸 Ă Ωz𝐹. However, if Ωz𝐸 were also thin at 𝑥 in this case, then Ω “ 𝐸 Y pΩz𝐸q would be
thin at 𝑥 which is impossible. Hence, Ωz𝐸 is non-thin at any of its points, therefore it is a base. �

The notion of a base generates a strong form of the domination principle, see [8, Theorem VIII.4].

Strong Domination Principle. Let 𝑣 be a non-negative superharmonic function in Ω such that
𝑣 ě 𝑔p𝜎,Ω; ¨q quasi everywhere on a set 𝐸 such that 𝜎pΩz𝑏p𝐸qq “ 0. Then 𝑣 ě 𝑔p𝜎,Ω; ¨q

everywhere in Ω.
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The fine closure of 𝐸 is equal to closfp𝐸q “ 𝑏p𝐸q Y 𝑖p𝐸q, where 𝑖p𝐸q is the set of finely isolated
points of 𝐸 , see [8, Proposition V.10]. The finely closed sets are precisely those for which 𝑏p𝐸q Ď 𝐸 .
Note that 𝑏p𝐸q X 𝑖p𝐸q “ ∅ and therefore, if 𝑉 is finely open, we have that

(A.9) 𝑏pΩz𝑉q “ Ωz𝑉 1, 𝑉 1 :“ 𝑉 Y 𝑖pΩz𝑉q,

where we observe that 𝑉 1 is in turn finely open. For any set 𝐸 , the fine boundary Bf𝐸 is finely closed
and, as shown in [20, Lemma 12.3], it holds that

(A.10) 𝑖pBf𝐸q “ 𝑖p𝐸q Y 𝑖pΩz𝐸q and 𝑏pBf𝐸q “ 𝑏p𝐸q X 𝑏pΩz𝐸q.

The next lemma connects fine topologies in 𝐷 and R (defined at the beginning of Section 2.1).

Lemma A.2. The map 𝑝 : R Ñ 𝐷 is finely open and finely continuous, that is, 𝑝p𝑉q and 𝑝´1p𝑈q

are finely open when 𝑉 Ă R and𝑈 Ă 𝐷 are finely open. Moreover, 𝑖pRz𝑝´1p𝑈qq “ 𝑝´1p𝑖p𝐷z𝑈qq.

Proof. Let𝑉 Ă R be finely open and Z P 𝑉 . Denote by �̃� a Euclidean disk centered at 𝑝pZq of small
enough radius so that𝑂, the connected component of 𝑝´1p�̃�q containing Z , contains no ramification
points of R except possibly Z itself (if 𝑚pZq ą 1) and 𝑂 X 𝑝´1p𝑝pZqq “ tZu. Since 𝐸 :“ 𝑂z𝑉 is
thin at Z , there exists a superharmonic function 𝑣 in 𝑂 for which (A.8) takes place. We claim that

(A.11) �̃�p𝑧q :“

#
ř

𝑤P𝑂X𝑝´1p𝑧q 𝑣p𝑤q, 𝑧 P �̃�zt𝑝pZqu,

𝑚pZq𝑣pZq, 𝑧 “ 𝑝pZq,

is superharmonic on �̃�. Indeed, by shrinking �̃� if needed, we may assume that 𝑣 is the increasing
limit of a sequence of continuous superharmonic functions 𝑣𝑛 on 𝑂, see [52, Corollary 2.7.3] for
a proof of this fact in the planar case that carries over to R using local charts. Define �̃�𝑛 similarly
to (A.11), only replacing 𝑣 with 𝑣𝑛. Clearly, �̃�𝑛 is superharmonic on t𝑧 P �̃� : 𝑧 ‰ 𝑝pZqu. Since
it is bounded around 𝑝pZq by the continuity of a𝑛, the restriction �̃�𝑛 b�̃�z𝑝pZ q uniquely extends to a
superharmonic function on �̃� by the Removability Theorem. Of necessity, the value at 𝑝pZq of this
extension is given by

lim inf
𝑧Ñ𝑝pZ q,𝑧‰𝑝pZ q

�̃�𝑛p𝑧q “ 𝑚pZq𝑣𝑛pZq “ �̃�𝑛p𝑝pZqq,

where the first equality comes from the continuity of 𝑣𝑛 at Z . Hence, �̃�𝑛p𝑧q is superharmonic on �̃� and
so is its increasing limit �̃�. This proves the claim. In another connection, the lower semicontinuity
of 𝑣 shows that the analog of (A.8) holds for �̃� when the limit inferior is taken along 𝑝p𝐸q. As
�̃�z𝑝p𝑉q Ď 𝑝p𝐸q, we get that 𝐷z𝑝p𝑉q is thin at 𝑝pZq so that 𝑝p𝑉q is finely open, as claimed.

To show the second claim, observe that the lift of a function from 𝐷 to R preserves superhar-
monicity and that Rz𝑝´1p𝑈q “ 𝑝´1p𝐷z𝑈q. The identity 𝑖pRz𝑝´1p𝑈qq “ 𝑝´1p𝑖p𝐷z𝑈qq is now
straightforward. �

In Lemma A.3 below, we single out for easy reference a basic geometric fact, used at several places
in the paper. We say that a continuous injective map 𝛾 : T Ñ R is a parametrized Jordan curve in
R and we simply call the image 𝛾pTq a (non-parametrized) Jordan curve. On a hyperbolic Riemann
surface R, any Jordan curve Γ homotopic to a point is uniquely the boundary of a (topological) disk
𝑂 Ă R [63, Theorem 2.4]; we say that 𝑂 is the interior of Γ, and we write 𝑂 “ intΓ. That Γ is
homotopic to a point in particular holds if it is included in a simply connected open set 𝑈 which is
the domain of a chart. Recall also that 𝐸 Ă R is called schlicht over 𝑈 Ă C if 𝑈 Ą 𝑝p𝐸q and the
restriction 𝑝 b𝐸 : 𝐸 Ñ 𝑈 is injective.

Lemma A.3. Let 𝐸 Ă R be schlicht over 𝐷 and b P rppRq. There exists a neighborhood 𝑈b of b
such that no Jordan curve in𝑈b contains b in its interior and simultaneously is contained in 𝐸 .
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Proof. Let𝑈 be a simply connected domain of a chart containing b, so that every Jordan curveTÑ 𝑈

is homotopic to a point. Let 𝑂 Ă 𝐷 be a disk centered at 𝑝pbq and 𝑂 b the connected component of
𝑝´1p𝑂q containing b, with 𝑂 small enough that 𝑂 b Ă 𝑈 and 𝑂 b X rppRq “ tbu; this is possible
since R˚ is compact. Then 𝑂 b is a neighborhood of b which is (isomorphic via a biholomorphic
map fixing b to) an 𝑚pbq-sheeted cyclic covering of 𝑂. So, if we identify the homotopy groups
𝜋1p𝑂 b ztbuq and 𝜋1p𝑂zt𝑝pbquq with the infinite cyclic group generated by the symbol 𝑎, the induced
morphism 𝑝˚ : 𝜋1p𝑂 b ztbuq Ñ 𝜋1p𝑂zt𝑝pbquq is the map 𝑎 ÞÑ 𝑎𝑚pbq. Now, a parametrized Jordan
curve 𝛾 : T Ñ 𝑂 b containing b in its interior is a generator of the fundamental group of 𝑂 b ztbu.
Hence, 𝑝 ˝ 𝛾 is the 𝑚pbq-power of a generator of the fundamental group of𝑂zt𝑝pbqu, in particular it
has winding number ˘𝑚pbq with respect to 𝑝pbq. However, if 𝛾 is valued in 𝐸 , then 𝑝 ˝ 𝛾 : TÑ 𝑂

is a parametrized Jordan curve because 𝑝 is injective on 𝐸 , and therefore it has winding number
˘1 with respect to 𝑝pbq. This contradicts the assumption that 𝑚pbq ą 1, showing that 𝑈b :“ 𝑂 b

satisfies our requirements. �

The next lemma, used in the proof of Lemma 3.11, depends on Lemma A.3.

Lemma A.4. If 𝐸 Ă R is schlicht over 𝐷 and b P rppRq, then Rz𝐸 is non-thin at b.

Proof. Let p𝑈b , 𝜑q be a chart around b, with 𝑈b as in Lemma A.3 and 𝜑pbq “ 0. If Rz𝐸 is thin at
b, then there is a circle T𝑟 :“ t|𝑧| “ 𝑟u Ă 𝜑p𝑈b q such that 𝜑´1pT𝑟 q Ă 𝐸 . As 𝜑´1 : T𝑟 Ñ 𝑈b is a
Jordan curve in 𝐸 that contains b in its interior, this contradicts Lemma A.3. �

A.7. Regularity. Thinness is intimately connected to the notion of a regular boundary point with
respect to the Dirichlet problem. Given a Euclidean open set𝑈 with𝑈 Ă Ω, a point Z P B𝑈 is called
regular if for any continuous function 𝜓 on B𝑈 it holds that

lim
𝑈Q𝑧ÑZ

𝐻𝜓p𝑧q “ 𝜓pZq,

where 𝐻𝜓p𝑧q is the Perron-Wiener-Brelot solution of the Dirichlet problem on 𝑈 with boundary
data 𝜓, see [8, Section VI.6, item 𝛾q] for a description of the Perron-Wiener-Brelot process; other
boundary points are called irregular. When all its boundary points are regular, we say that 𝑈 itself
is regular. It is known that Z P B𝑈 is regular if and only if

(A.12) lim
𝑈Q𝑧ÑZ

𝑔𝑈 p𝑧, 𝑤q “ 0

for some (and then any) 𝑤 in each connected component of𝑈. Moreover, Z is irregular if and only if
the complement of 𝑈 is thin at Z [8, Theorem VII.13]. This entails that regularity is a local notion,
in particular each point of B𝑈 is regular as soon as the latter is locally connected, as follows from the
analogous property in a Euclidean space [52, Theorem 4.2.2].

Let 𝜎 be a finite measure, compactly supported in 𝑈. As 𝑔𝑈 p𝑧, 𝑤q is bounded for 𝑤 P supp𝜎
and 𝑧 outside of a neighborhood of the latter, see Section A.2, we get from (A.12) and the dominated
convergence theorem that 𝑔p𝜎,𝑈; ¨q extends continuously by zero to the set of regular points of B𝑈.
When 𝜎 is not compactly supported, a weaker result is stated in Section A.8 (Lemma A.5).

Regular points of finely open sets are defined analogously: when𝑈 is finely open, Z P Bf𝑈 is said
to be regular if Ωz𝑈 is non-thin at Z . By (A.10), the set of regular points is then 𝑏pBf𝑈q, and if Bf𝑈

is its own base one says that𝑈 is regular, see [20, Section IV.12].
The following results are the natural analogs, for Green potentials on regular open sets of hyperbolic

surfaces, of their logarithmic counterparts in the plane, see [54, Theorems I.6.8 & I.6.9].

Principle of Descent and Lower Envelope Theorem. Let 𝑈 be a regular open set with compact
closure 𝑈 Ă Ω. If 𝜎𝑛 are positive measures on 𝑈 with uniformly bounded masses that converge
weak˚ to some measure 𝜎 as 𝑛 Ñ 8, then
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(1) [Principle of Descent]

(A.13) lim inf
𝑛Ñ8

𝑔p𝜎𝑛,𝑈; 𝑧𝑛q ě 𝑔p𝜎,𝑈; 𝑧q, 𝑧𝑛 Ñ 𝑧 P 𝑈.

(2) [Lower Envelope Theorem]

(A.14) lim inf
𝑛Ñ8

𝑔p𝜎𝑛,𝑈; 𝑧q “ 𝑔p𝜎,𝑈; 𝑧q for quasi every 𝑧 P 𝑈.

Proof. The arguments are a minor variation of those used in [54]. For𝑀 ą 0 and 𝑧 P 𝑈, observe from
(A.12) that 𝜑𝑀,𝑧p𝑤q :“ mint𝑀, 𝑔𝑈 p𝑧, 𝑤qu is continuous on 𝑈 and zero on B𝑈, locally uniformly
with respect to 𝑧. Thus, 𝜑𝑀,𝑧 lies in the closure of the space 𝐶𝑐p𝑈q of continuous functions on 𝑈
with compact support endowed with the sup norm. Moreover, |𝜑𝑀,𝑧𝑛 ´ 𝜑𝑀,𝑧 | is arbitrary small
on 𝑈 for 𝑛 large enough, by the minimum principle and the continuity of Green functions off the
diagonal. Hence, as 𝜎𝑛

𝑤˚
Ñ 𝜎, we get that lim𝑛

ş

𝜑𝑀,𝑧𝑛𝑑𝜎𝑛 “
ş

𝜑𝑀,𝑧𝑑𝜎 and consequently, by
monotone convergence, we deduce (A.13) from the relations

𝑔p𝜎,𝑈; 𝑧q “ lim
𝑀Ñ8

ż

𝜑𝑀,𝑧𝑑𝜎 “ lim
𝑀Ñ8

lim
𝑛

ż

𝜑𝑀,𝑧𝑛𝑑𝜎𝑛 ď lim inf
𝑛

𝑔p𝜎𝑛,𝑈; 𝑧𝑛q.

Next, assume to the contrary that 𝑔p𝜎,𝑈; 𝑧q ă lim inf𝑛 𝑔p𝜎𝑛,𝑈, 𝑧q for 𝑧 P 𝐾 , where 𝐾 Ă 𝑈 is such
that cap𝑈 p𝐾q ą 0. Clearly, we may suppose that 𝐾 is compact and so we can find a nonzero measure
𝜎˚, supported on 𝐾 , such that 𝑔p𝜎˚,𝑈; ¨q is continuous on 𝑈, see Section A.4. Then by Fatou’s
lemma it holds that

(A.15)
ż

𝑔p𝜎,𝑈; 𝑧q𝑑𝜎˚p𝑧q ă

ż

lim inf
𝑛

𝑔p𝜎𝑛,𝑈; 𝑧q𝑑𝜎˚p𝑧q ď lim inf
𝑛

ż

𝑔p𝜎𝑛,𝑈; 𝑧q𝑑𝜎˚p𝑧q.

Moreover, as 𝑔p𝜎˚,𝑈; ¨q extends continuously by zero on B𝑈, see discussion after (A.12), it lies in
the closure of 𝐶𝑐p𝑈q. Therefore, by Fubini’s theorem,

lim
𝑛

ż

𝑔p𝜎𝑛,𝑈; 𝑧q𝑑𝜎˚p𝑧q “ lim
𝑛

ż

𝑔p𝜎˚,𝑈; 𝑧q𝑑𝜎𝑛p𝑧q “

ż

𝑔p𝜎˚,𝑈; 𝑧q𝑑𝜎p𝑧q “

ż

𝑔p𝜎,𝑈; 𝑧q𝑑𝜎˚p𝑧q,

thereby contradicting (A.15). �

A.8. Superlevel Sets of Green Potentials. In this section we restrict attention to a planar simply
connected domain 𝐷, which is the interior of a Jordan curve 𝑇 . In this case, any conformal map
𝜙 : D Ñ 𝐷 extends to a homeomorphism from D onto 𝐷 [49, Theorem 2.6], that we continue to
denote with 𝜙. Clearly, such a domain 𝐷 is regular. As mentioned in the previous subsection, if 𝜎
is a finite Borel measure compactly supported in 𝐷, then 𝑔p𝜎, 𝐷; ¨q continuously extends by zero to
𝑇 . If 𝜎 is not compactly supported this may not hold, but when 𝐹 is a relatively closed subset of D
with a limit point b P T, it was shown in [39] that

(A.16) lim
𝜖Ñ0

capDp𝐹 X t|𝑧 ´ b| ă 𝜖uq ą 0 ñ lim inf
𝐹Q𝑧Ñb

𝑔p𝜎,D; 𝑧q “ 0,

and if the rightmost limit holds for every finite measure 𝜎, then the implication can be reversed.
This result is in fact stated in [39] with 𝑔p𝜎,D; 𝑧q replaced by p1 ´ |𝑧|q𝑔pa,D; 𝑧q where a is any
measure whose Green potential is not identically `8, but the latter condition is equivalent to saying
that the measure 𝑑𝜎p𝑧q :“ p1 ´ |𝑧|q𝑑ap𝑧q is finite and then convergence to zero along 𝐹 of the limit
inferior of p1 ´ |𝑧|q𝑔pa,D; 𝑧q and of 𝑔p𝜎,D; 𝑧q are equivalent, see [39, Section 3, Lemma]. It is also
pointed out in [39, Equation (2.5)] that the leftmost limit in (A.16) can be equivalently replaced by
capDp𝐹 X t|𝑧 ´ b| ă 𝜖uq “ 8 for every 𝜖 ą 0 (note that instead of the Greenian capacity capDp𝐸q

that we use, [39] employs the hyperbolic capacity expt´1{capDp𝐸qu). In Lemma A.5 below, we
derive a useful consequence of (A.16). With the notation of this lemma, we stress that a stronger
conclusion in fact holds quasi everywhere, namely 𝑈𝜖 is thin at quasi every point of 𝑇 (this can be
deduced from general properties of balayage covered in Section A.9). The interest of Lemma A.5
lies with the fact that its conclusion holds at every point of 𝑇 .
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Lemma A.5. Let 𝜎 be a finite measure in 𝐷, and for 𝜖 ą 0 set 𝑈𝜖 :“ t𝑧 P 𝐷 : 𝑔p𝜎, 𝐷; 𝑧q ą 𝜖u.
Let b P 𝑈 𝜖 X 𝑇 and 𝜙 : DÑ 𝐷 be a conformal map such that 𝜙p1q “ b. Then there exists a closed
set 𝑅𝜖 Ă r0, 1s such that 𝑅𝜖 X p1 ´ 𝛿, 1q is non-polar for any 𝛿 P p0, 1q, and for each 𝑟 P 𝑅𝜖 one
has𝑈𝜖 X 𝜙pt𝑧 P D : |1 ´ 𝑧| “ 1 ´ 𝑟uq “ ∅.

Proof. Suppose initially that 𝐷 “ D. Without loss of generality, we can assume that b “ 1. First,
we shall show that

(A.17) lim
𝛿Ñ0

capDp𝑈𝜖 X 𝐷 𝛿q “ 0,

where 𝐷 𝛿 :“ t𝑧 P D : |𝑧 ´ 1| ă 𝛿u. For Z P D, let 𝑆pZq :“ t𝑧 P D : 𝑔Dp𝑧, Zq ě log 2u. It was
shown in [39, Section 3, Lemma] that there exists 𝛿0 “ 𝛿p𝜖q ą 0 for which

ż

Dz𝑆pZ q

𝑔Dp𝑧, Zq𝑑𝜎p𝑧q ď 𝜖{2, |Z | ą 1 ´ 𝛿0.

In particular, this inequality holds for Z P 𝐷 𝛿0 . Hence, for any compact subset 𝐹 Ă 𝑈𝜖 X 𝐷 𝛿0 , it
holds when Z P 𝐹 that

(A.18) ℎpZq :“
ż

𝑆pZ q

𝑔Dp𝑧, Zq𝑑𝜎p𝑧q “ 𝑔p𝜎,D; Zq ´

ż

Dz𝑆pZ q

𝑔Dp𝑧, Zq𝑑𝜎p𝑧qą𝜖{2.

Assume to the contrary that the limit in (A.17) is larger that 2[ ą 0 (the limit must exist as
capDp𝑈𝜖 X 𝐷 𝛿q decreases with 𝛿). Since 𝑈𝜖 is an open set, we get from (A.5) that for any 𝛿 ą 0
there exists a compact set 𝐹𝛿 Ă 𝑈𝜖 X 𝐷 𝛿 for which capDp𝐹𝛿q ě [. This entails that there exist a
sequence 𝛿𝑛 Ñ 0 and disjoint compact sets 𝐹𝑛 Ă 𝑈𝜖 X 𝐷 𝛿𝑛 with capDp𝐹𝑛q ě [. Let a𝑛 be the
Green equilibrium distribution on 𝐹𝑛 and 𝐹˚

𝑛 :“ t𝑧 P 𝑆pZq : for some Z P 𝐹𝑛u. In view of (A.18),

𝜖{2 ď

ż

𝐹𝑛

ℎpZq𝑑a𝑛pZq ď
1
[
𝜎p𝐹˚

𝑛 q Ñ 0,

where the second inequality and the fact that lim𝑛 𝜎p𝐹˚
𝑛 q Ñ 0 can be established as in the proof of

[39, Theorem 1] (compare to p. 486 of that reference). This contradiction proves (A.17).
Let T : 𝐷1 Ñ p0, 1q be defined by 𝑧 ÞÑ T𝑧 :“ 1 ´ |1 ´ 𝑧| and put 𝑉𝜖 :“ 𝑈𝜖 X 𝐷1. Denoting by

T𝑉𝜖 the set tTZ : Z P 𝑉𝜖 u, we claim that

(A.19) lim
𝛿Ñ0

capDpT𝑉𝜖 X 𝐷 𝛿q “ 0.

Before proving (A.19), let us show why it implies the lemma. For this, consider 𝑅𝜖 :“ r0, 1szT𝑉𝜖 ,
which is a closed set. If the conclusion of the lemma were not true, there would exist 𝛿0 ą 0
such that 𝑅𝜖 X p1 ´ 𝛿0, 1q is polar. By definition of T this would imply that capDpT𝑉𝜖 X 𝐷 𝛿q “

capDpp1 ´ 𝛿, 1qq “ 8 for any 𝛿 ă 𝛿0 (the last equality follows at once from the definition of the
Greenian capacity), which contradicts (A.19).

We are now left to demonstrate (A.19). Assume to the contrary that it does not hold, i.e., there
exists [ ą 0 such that for any 𝛿 ą 0 there is a compact set 𝐹𝛿 Ă T𝑉𝜖 X𝐷 𝛿 for which capDp𝐹𝛿q ě [.
The previous inequality means that there exists a probability measure `𝛿 supported on 𝐹𝛿 such that

ż ż

𝑔Dp𝑥, 𝑦q𝑑`𝛿p𝑥q𝑑`𝛿p𝑦q ď
1
[
.

Since 𝑈𝜖 is open, so is 𝑉𝜖 and one easily sees that each 𝑧 P 𝑉𝜖 X 𝐷 𝛿 has a neighborhood, say 𝑂𝑧 ,
whose closure is contained in 𝑉𝜖 X 𝐷 𝛿 and whose circular projection T𝑂𝑧 is an open subinterval
of p0, 1q. These subintervals form an open cover of 𝐹𝛿 , which necessarily has a finite subcover, say
T𝑂𝑧1 , . . . , T𝑂𝑧𝑁 . The closure 𝐾𝛿 of 𝑂𝑧1 Y ¨ ¨ ¨ Y 𝑂𝑧𝑁 is a compact subset of 𝑉𝜖 X 𝐷 𝛿 , and clearly
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𝐹𝛿 Ă T𝐾𝛿 . In particular, there exists a probability measure a𝛿 on 𝐾𝛿 such that a𝛿T´1 “ `𝛿 , see for
example [52, Theorem A.4.4]. Then, by Fubini’s theorem, it holds that

1
[

ě

ż ż

𝑔Dp𝑥, 𝑦q𝑑`𝛿p𝑥q`𝛿p𝑦q “

ż ż

𝑔DpT𝑧, T𝑤q𝑑a𝛿p𝑧q𝑑a𝛿p𝑤q,

and if we can show that 𝑔DpT𝑧, T𝑤q ě 𝑔Dp𝑧, 𝑤q then we will deduce from the above estimate that

capDp𝑈𝜖 X 𝐷 𝛿q “ capDp𝑉𝜖 X 𝐷 𝛿q ě capDp𝐾𝛿q ě [ ą 0 for any 𝛿 ą 0,

which of course contradicts (A.17). Hence, the proof has been reduced to the verification of
𝑔DpT𝑧, T𝑤q ě 𝑔Dp𝑧, 𝑤q for 𝑧, 𝑤 P 𝐷1, that we now carry out. Since 𝑔Dp𝑧, 𝑤q “ log |p1´𝑧�̄�q{p𝑧´𝑤q|

and T is real-valued, we need to show that

(A.20) 𝐸 :“ |1 ´ T𝑧T𝑤|2|𝑧 ´ 𝑤|2 ´ |1 ´ 𝑧�̄�|2|T𝑧 ´ T𝑤|2 ě 0.

Set 𝑎b :“ 1 ´ 𝑧 and 𝑏[ :“ 1 ´ 𝑤, where 𝑎, 𝑏 P p0, 1q and |b| “ |[| “ 1 with Reb,Re[ P p0, 1q.
Then

𝐸 “ |𝑎 ` 𝑏 ´ 𝑎𝑏|2|𝑎b ´ 𝑏[|2 ´ |𝑎b ` 𝑏[̄ ´ 𝑎𝑏b[̄|2|𝑎 ´ 𝑏|2

“ p𝑆 ` 2𝑎𝑏𝑈qp𝑇 ´ 2𝑎𝑏𝑉q ´ p𝑆 ` 2𝑎𝑏𝑊qp𝑇 ´ 2𝑎𝑏q

where 𝑆 :“ 𝑎2`𝑏2`p𝑎𝑏q2,𝑇 :“ 𝑎2`𝑏2,𝑈 :“ 1´𝑎´𝑏,𝑉 :“ Repb[̄q, and𝑊 :“ Repb[´𝑎[´𝑏bq.
Therefore,

𝐸 “ 2𝑎𝑏
`

𝑆p1 ´𝑉q ` 𝑇p𝑈 ´𝑊q ` 2𝑎𝑏p𝑊 ´𝑈𝑉q
˘

“ 2𝑎𝑏
`

p𝑆 ` 2𝑎𝑏𝑈qp1 ´𝑉q ` p𝑇 ´ 2𝑎𝑏qp𝑈 ´𝑊q
˘

“ 2𝑎𝑏
`

p𝑎 ` 𝑏 ´ 𝑎𝑏q2p1 ´𝑉q ` p𝑎 ´ 𝑏q2p𝑈 ´𝑊q
˘

.

Because 𝑉 ď 1, the above expression can be estimated from below as

𝐸 ě 2𝑎𝑏p𝑎 ´ 𝑏q2p1 ´𝑉 `𝑈 ´𝑊q

“ 2𝑎𝑏p𝑎 ´ 𝑏q2`2 ´ Repb[̄ ` b[q ´ 𝑎p1 ´ Re[q ´ 𝑏p1 ´ Rebq
˘

,

and since 1 ´ Re[, 1 ´ Reb, 1 ´ 𝑎 as well as 1 ´ 𝑏 are all positive, it therefore holds that

𝐸 ě 2𝑎𝑏p𝑎 ´ 𝑏q2`Re[ ` Reb ´ Repb[̄ ` b[q
˘

“ 2𝑎𝑏p𝑎 ´ 𝑏q2`Re[ ` Reb ´ 2Re[Reb
˘

“ 2𝑎𝑏p𝑎 ´ 𝑏q2`Re[p1 ´ Rebq ` Rebp1 ´ Re[q
˘

.

As Reb,Re[ P r0, 1s, this establishes (A.20) and completes the proof of the lemma when 𝐷 “ D.
Finally, it remains to reduce the case of a general domain 𝐷 to the one of the unit disk. Using [52,

Theorem A.4.4] once more, let a be a finite measure in D such that a𝜙´1 “ 𝜎. Then

𝑔p𝜎, 𝐷; 𝜙p𝑧qq “

ż

𝑔𝐷p𝜙p𝑧q, Zq𝑑𝜎pZq “

ż

𝑔𝐷p𝜙p𝑧q, 𝜙p𝑤qq𝑑ap𝑤q

“

ż

𝑔Dp𝑧, 𝑤q𝑑ap𝑤q “ 𝑔pa,D; 𝑧q, 𝑧 P D,

by conformal equivalence of Green functions. Since 𝜙 : D Ñ 𝐷 is a bijection, the superlevel set
t𝑧 P D : 𝑔pa,D; 𝑧q ą 𝜖u is equal to 𝜙´1p𝑈𝜖 q, from which the desired result follows. �
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A.9. Balayage. Let 𝑣 be a non-negative superharmonic function on Ω and 𝐸 be a subset of Ω.
The balayage function (or regularized reduction) of 𝑣 relative to 𝐸 , denoted by B𝐸𝑣 , is the lower
semi-continuous regularization of

(A.21) inf
 

𝑢| 𝑢 is superharmonic and positive in Ω, 𝑢 ě 𝑣 on 𝐸
(

,

see [29, Section 5.3] for an account onR𝑛 that carries over to Ω without change; in fact, B𝐸𝑣 coincides
with the infimum in (A.21) except perhaps on a polar set where lower semi-continuous regularization
may modify the value. The balayage function B𝐸𝑣 is superharmonic in Ω, harmonic in Ωz𝐸 , and
equal to 𝑣 on 𝑏p𝐸q [8, Section VIII.1]. Clearly, B𝐸𝑣 ď 𝑣 everywhere, since 𝑣 qualifies as one of the
functions 𝑢 in (A.21). The balayage function B𝐸𝑣 does not change if 𝐸 gets replaced by 𝑏p𝐸q or by
closfp𝐸q; in fact, it remains invariant if 𝐸 is altered by a polar set.

When 𝐸 is compact, the Strong Domination Principle and properties of the Green equilibrium
potential 𝑔p`Ω,𝐸 ,Ω; ¨q imply that B𝐸1 “ capΩp𝐸q𝑔p`Ω,𝐸 ,Ω; ¨q. Thus, it follows from the left
continuity of B𝐸1 with respect to 𝐸 , see [8, Section VI.10 e)], and the monotone convergence theorem
that the outer Greenian capacity of an arbitrary set 𝐸 Ă Ω is the mass of ΔB𝐸1 (in fact, this is the way
the outer capacity is defined in [8, Section VIII.4]). From this and [8, Theorem VIII.12], we deduce
in particular that 𝐸 is polar if and only if capΩp𝐸q “ 0, justifying a claim made in Section A.5.

If 𝑣 is the Green potential of a positive Borel measure 𝜎, then B𝐸𝑣 is a Green potential as well [8,
Section VI.11] and the measure 𝜎𝐸 such that B𝐸𝑣 “ 𝑔p𝜎𝐸 ,Ω; ¨q is called the balayage of 𝜎 relative
to 𝐸 . The measure 𝜎𝐸 is characterized as the unique measure satisfying

(A.22) 𝜎𝐸
`

Ωz𝑏p𝐸q
˘

“ 0 and 𝑔p𝜎,Ω; 𝑧q “ 𝑔
`

𝜎𝐸 ,Ω; 𝑧
˘

, 𝑧 P 𝑏p𝐸q,

see [8, Theorem VIII.3]. From (A.22), one deduces at once that

(A.23) p𝜎𝐸q𝐹 “ 𝜎𝐹 , 𝐹 Ă 𝐸 Ă Ω.

Moreover, it holds by [8, Section VI.12, Equation (13)] that

(A.24) 𝜎𝐸p𝐵q “

ż

𝛿𝐸𝑥 p𝐵q𝑑𝜎p𝑥q, 𝐵 Borel,

while it follows from [8, Section VI.12, Equation (9)] and Fubini’s theorem that

(A.25) 𝑔
`

𝜎𝐸 ,Ω; 𝑧
˘

“

ż

𝑔p𝜎,Ω; 𝑥q𝑑𝛿𝐸𝑧 p𝑥q.

Since 𝑔p𝜎𝐸 ,Ω; ¨q ď 𝑔p𝜎,Ω; ¨q for any Radon measure 𝜎 by the just discussed properties of balayage,
it follows from Fubini’s theorem that

ş

a𝑑𝜎𝐸 ď
ş

a𝑑𝜎 for any Green potential a. Since any non-
negative superharmonic function a is an increasing limit of potentials, see [10, Lemma 1.1], monotone
convergence yields that

ş

a𝑑𝜎𝐸 ď
ş

a𝑑𝜎 remains valid for such functions as well, see also [20,
Section I.3]. In particular, the mass of 𝜎𝐸 cannot exceed the mass of 𝜎.

The fine support of a Radon measure 𝜎, denoted by suppf 𝜎 when it exists, is the smallest finely
closed carrier of 𝜎. A sufficient condition for its existence is that 𝜎 does not charge polar sets,
in which case suppf 𝜎 is its own base, see [8, Theorem VII.12]. If 𝜎 is admissible, meaning that
𝑔p𝜎,Ω; ¨q ı `8, see Section A.3, and if 𝜎p𝐹q “ 0 for some polar set 𝐹, then 𝜎𝐸p𝐹q “ 0 for any
𝐸 Ă Ω [19, Theorem 1] (as usual, 𝜎p𝐹q means the outer 𝜎-measure of 𝐹 when the latter is not
Borel). In particular, if 𝜎 is admissible and 𝜎p𝑏p𝐸qq “ 0, then 𝜎𝐸 does not charge polar sets since
it is carried by 𝑏p𝐸q. Thus, suppf 𝜎

𝐸 exists in this case. An important special case is handled by the
following lemma, the first item of which follows from the preceding discussion.

Lemma A.6. [19, Corollary 1 to Theorem 4] [20, Corollaries 2 & 3 to Theorem 12.7]

(i) If𝑊 is finely open and either 𝑧 P 𝑊 or 𝑧 P 𝑖pΩz𝑊q, then 𝛿Ωz𝑊
𝑧 does not charge polar sets.
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(ii) Let 𝑉 be a regular finely open set, 𝑧 P 𝑉 , and 𝑉𝑧 the fine component of 𝑉 containing 𝑧. Then
𝑉𝑧 is regular, and Ωz𝑉𝑧 is largest among all the bases 𝐵 such that 𝛿𝐵𝑧 “ 𝛿

Ωz𝑉
𝑧 . Moreover,

the fine support of 𝛿Ωz𝑉
𝑧 exists and

(A.26) suppf 𝛿
Ωz𝑉
𝑧 “ Bf𝑉𝑧 Ă Bf𝑉.

(iii) Let𝑈 be a fine domain and 𝑧 P 𝑈 or 𝑧 P 𝑖pΩz𝑈q. Then the fine support of 𝛿Ωz𝑈
𝑧 exists and

(A.27) suppf 𝛿
Ωz𝑈
𝑧 “ 𝑏pBf𝑈q “ 𝑏pΩz𝑈q X Bf𝑈.

Let now 𝑂 Ă Ω be (Euclidean) open, 𝑧 P 𝑂, and 𝑂𝑧 the connected component of 𝑂 containing
𝑧. If we let 𝑉 be the regular finely open set obtained by adjoining to 𝑂 the polar set 𝑖pΩz𝑂q and
𝑉𝑧 the fine component containing 𝑧, then we get from [19, Theorem 6] (see discussion there) that
𝑂𝑧 “ 𝑉𝑧z𝑖pΩz𝑂q. Thus, since the balayage function remains the same if the set relative to which it
is defined is altered by a polar set, Lemma A.6 (ii) implies that

𝛿
Ωz𝑂
𝑧 “ 𝛿

Ωz𝑉
𝑧 “ 𝛿

Ωz𝑉𝑧
𝑧 “ 𝛿

Ωz𝑂𝑧
𝑧

and the latter is carried by the regular points of B𝑂𝑧 . Moreover, if 𝑂 has compact closure in Ω, then
𝛿
Ωz𝑂
𝑧 is a probability measure, and for ℎ a harmonic function in 𝑂 with continuous extension to 𝑂:

(A.28) ℎp𝑧q “

ż

ℎ 𝑑𝛿
Ωz𝑂
𝑧 , 𝑧 P 𝑂.

Indeed, (A.28) follows from [8, Section VI.12, application 1] since ℎ is the Perron-Wiener-Brelot
solution of the Dirichlet problem4 in 𝑂 with boundary data ℎ bB𝑂; see [8, Section VI.6, item 𝛾q].
Equality in (A.28) shows that the measure 𝛿Ωz𝑂

𝑧 does not depend on Ω, provided that the latter is
hyperbolic and compactly contains 𝑂. It is called the harmonic measure for 𝑂 (at 𝑧). More general
versions of (A.28), involving the fine Dirichlet problem and cases where𝑂 is non-compact, are stated
in Theorem A.8 and Lemma A.9 further below.

When Ω Ă C and 𝑂 is compact in Ω, it follows from [54, Chapter II, Theorem 5.1] that

(A.29) 𝑔p𝜎,𝑂, 𝑧q “ 𝑉𝜎p𝑧q ´𝑉𝜎
Ωz𝑂

p𝑧q, 𝑧 P Ω,

where 𝑉𝜎 is the logarithmic potential of 𝜎 and the left-hand side is interpreted as 0 for 𝑧 P 𝑏pΩz𝑂q.
More general versions when 8 P Ω may be found in [54]. If moreover 𝑂 is a domain with 𝐾 Ă 𝑂 a
non-polar compact set such that Ωz𝐾 regular and 𝑂z𝐾 is non-thin at every point of 𝐾 , then
(A.30) suppf `𝑂,𝐾 “ 𝐾.

Indeed, 𝐾 is its own base and 𝐾 “ Bfp𝑂z𝐾q by assumption, while `𝑂,𝐾 is the balayage onto 𝐾 of
the equilibrium measure on the plate B𝑂 of the condenser pB𝑂, 𝐾q [54, Chapter VIII, Theorem 2.6].
Thus, (A.30) follows from (A.24) and (A.27).

A.10. Green Potentials in 𝐷 and on R. In this subsection, we connect Green functions and
potentials on the domain 𝐷 and surface R defined in Section 2.1. First, let us show that

(A.31) 𝑔𝐷p𝑥, 𝑦q “
ÿ

𝑧P𝑝´1p𝑥q

𝑚p𝑧q𝑔Rp𝑧, 𝑤q,

where 𝑚p𝑧q is the ramification order of R at 𝑧 and 𝑤 is an arbitrary element of the fiber 𝑝´1p𝑦q. To
check (A.31), note that for fixed 𝑦 R 𝑝prppRqq and 𝑤 P R with 𝑝p𝑤q “ 𝑦, the right-hand side is well
defined and harmonic as a function of 𝑥 P 𝐷zp𝑝prppRqq Y t𝑦uq. Thus, it is harmonic for 𝑥 P 𝐷zt𝑦u

by the Removability Theorem and the continuity of Green functions off the diagonal. Moreover, the
right-hand side clearly has a logarithmic singularity at 𝑦, and since lim𝑧ÑBR 𝑔Rp𝑧, 𝑤q “ 0 by the

4In fact, the right-hand side of (A.28) is the Perron-Wiener-Brelot solution of the Dirichlet problem on𝑂 with boundary data
ℎ as soon as the latter is summable against 𝛿Ωz𝑂

𝑧 for one (and then any) 𝑧 in each component of𝑂.
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regularity of R in R˚, its largest harmonic minorant is zero. This proves (A.31) when 𝑦 R 𝑝prppRqq,
and the general case follows by continuity of Green functions off the diagonal. Consequently, if a
is a Radon measure on R and 𝑝˚paq denotes its pushforward under 𝑝 (the measure on 𝐷 such that
𝑝˚paqp𝐵q “ ap𝑝´1p𝐵qq for a Borel set 𝐵), integrating (A.31) against 𝑝˚paq with respect to 𝑦 and
changing variables yields

(A.32) 𝑔p𝑝˚paq, 𝐷; 𝑥q “
ÿ

𝑧P𝑝´1p𝑥q

𝑚p𝑧q𝑔pa,R; 𝑧q.

In the other direction, for a Radon measure 𝜎 on 𝐷, let us define p𝜎 by

(A.33) p𝜎p𝐵q :“
ż

𝑝p𝐵q

ÿ

𝑧P𝑝´1p𝑥qX𝐵

𝑚p𝑧q𝑑𝜎p𝑥q, 𝐵 Ă R, 𝐵 Borel.

As 𝑝p𝐵q is Borel when 𝐵 is Borel, one easily checks that (A.33) defines a Radon measure on R. In
fact, one can verify that p𝜎 “ 𝜎˚ `

ř

𝑧PrppRq 𝑚p𝑧q𝜎pt𝑝p𝑧quq𝛿𝑧 , where 𝜎˚ is the pullback measure
resulting from Carathéodory’s construction as applied to the map 𝐵 ÞÑ 𝜎p𝑝p𝐵qz𝑝prppRqqq defined
on Borel subsets of R, see [16, Theorem 2.10.10].

Partitioning 𝐷z𝑝prppRqq into countably many Borel sets 𝐵𝑘 such that 𝑝 : 𝑝´1p𝐵𝑘q Ñ 𝐵𝑘
induces a homeomorphism on each connected component of 𝑝´1p𝐵𝑘q, and invoking the Removability
Theorem to proceed by superharmonicity from the case where Z R rppRq, one deduces from (A.33)
and (A.31) that
(A.34) 𝑔 pp𝜎,R; Zq “ 𝑔p𝜎, 𝐷; 𝑝pZqq, Z P R .

As a consequence of definition (A.33), we claim that if a sequence t`𝑛u of finite positive measures
supported on a fixed compact set 𝐾 Ă 𝐷 converges weak˚ to ` on 𝐷, then the sequence t p̀𝑛u

converges weak˚ to p̀ on R. Indeed, the total mass of `𝑛 is necessarily bounded independently of 𝑛
by some 𝐶 ą 0 (this follows from the Banach-Steinhaus principle) and therefore, in view of (A.33),
the total mass of p̀𝑛 is bounded by 𝑀𝐶, where 𝑀 is the number of sheets of R. Hence, an arbitrary
subsequence of t p̀𝑛u has a subsequence, say t p̀𝑛𝑘 u, that converges weak˚ on R to some finite
measure, say 𝑠. It follows from the Lower Envelope Theorem that lim inf𝑘 𝑔p p̀𝑛𝑘 ,R; 𝑧q “ 𝑔p𝑠,R; 𝑧q
for quasi every 𝑧 P R. Similarly, (A.34) and the Lower Envelope Theorem, applied this time to
t`𝑛𝑘 u, yield that lim inf𝑘 𝑔p p̀𝑛𝑘 ,R; 𝑧q “ 𝑔p`, 𝐷; 𝑝p𝑧qq “ 𝑔p p̀,R; 𝑧q for quasi every 𝑧 P R. Thus,
𝑔p𝑠,R; ¨q “ 𝑔p p̀,R; ¨q quasi everywhere on R, and the claim follows by taking Laplacians on both
sides of this equality.

In the previous construction, R may of course be replaced by another saturated connected bordered
surface S Ă R˚ with bounded projection such that R Ă S. Therefore,

´

`𝑛
𝑤˚
Ñ ` in 𝐷

¯

ñ

´

p̀𝑛
𝑤˚
Ñ p̀ in R

¯

,

because t`𝑛u also converges weak˚ in 𝑝pSq Ą 𝐷 whence the measures p̀𝑛 converge weak˚ on S,
while having their supports contained in R. The “hat measure” constructed in (A.33) is instrumental
both in the proof of Lemma 3.9 and of the following technical result, needed in the paper.

Lemma A.7. Let 𝜎 be a measure in 𝐷. Given 𝐸 Ă 𝐷, set p𝐸 :“ 𝑝´1p𝐸q. Then it holds that

𝑔
`

𝜎𝐸 , 𝐷; 𝑝p𝑧q
˘

“

ż

𝑔p𝜎, 𝐷; 𝑝p𝑥qq𝑑𝛿
p𝐸
𝑧 p𝑥q.

Proof. If 𝑢 is superharmonic on 𝐷, it is obvious from (A.34) that
´

𝑢p𝑧q ě 𝑔p𝜎, 𝐷; 𝑧q, 𝑧 P 𝐸

¯

ñ

´

𝑢p𝑝pbqq ě 𝑔pp𝜎,R; bq, b P p𝐸

¯

.

As 𝑢 ˝ 𝑝 is superharmonic on R, this and the definition of balayage imply that

(A.35) 𝑔
`

𝜎𝐸 , 𝐷; 𝑝pZq
˘

ě 𝑔
`

p𝜎
p𝐸 ,R; Z

˘

, Z P R.
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Conversely, averaging over Z P 𝑝´1pt𝑧uq, equation (A.34) yields that

(A.36) 𝑔p𝜎, 𝐷; 𝑧q “
1
𝑀

ÿ

ZP𝑝´1pt𝑧uq

𝑚pZq𝑔pp𝜎,R; Zq, 𝑧 P 𝐷,

with 𝑀 being the total number of sheets of R, entailing when 𝑣 is superharmonic on R that
´

𝑣pZq ě 𝑔pp𝜎,R; Zq, Z P p𝐸

¯

ñ

´ 1
𝑀

ÿ

ZP𝑝´1p𝑧q

𝑚pZq𝑣pZq ě 𝑔p𝜎, 𝐷; 𝑧q, 𝑧 P 𝐷

¯

.

Now, the function 𝑧 ÞÑ
ř

ZP𝑝´1p𝑧q 𝑚pZq𝑣pZq is well-defined and superharmonic on 𝐷z𝑝prppRqq and
therefore on the whole domain 𝐷 by the Removability Theorem. Thus, by the definition of balayage,
we obtain when 𝑣 is superharmonic on R that

´

𝑣pZq ě 𝑔pp𝜎,R; Zq, Z P p𝐸

¯

ñ

´ 1
𝑀

ÿ

ZP𝑝´1p𝑧q

𝑚pZq𝑣pZq ě 𝑔p𝜎𝐸 , 𝐷; 𝑧q, 𝑧 P 𝐷

¯

,

and taking the infimum over 𝑣 before taking the lower semi-continuous regularization gives us, by
virtue of the Strong Domination Principle, that

1
𝑀

ÿ

ZP𝑝´1p𝑧q

𝑚pZq𝑔pp𝜎
p𝐸 ,R; Zq ě 𝑔p𝜎𝐸 , 𝐷; 𝑧q, 𝑧 P 𝐷.

Combining the above estimate with (A.35), we deduce that

𝑔
`

𝜎𝐸 , 𝐷; 𝑝p𝑧q
˘

“ 𝑔
`

p𝜎
p𝐸 ,R; 𝑧

˘

, 𝑧 P R,
and the conclusion now follows from (A.25) and (A.34). �

A.11. Dirichlet problem. The Dirichlet problem on a domain consists in finding a harmonic func-
tion in that domain with given boundary data. In the fine Dirichlet problem, one looks for a finely
harmonic function on a fine domain to meet prescribed boundary data. A real-valued function ℎ on
a fine domain 𝑉 is finely harmonic if it is finely continuous, and if the fine topology on 𝑉 has a basis
comprised of finely open sets 𝐸 with closfp𝐸q Ă 𝑉 such that

ℎp𝑧q “

ż

ℎ𝑑𝛿
Ωz𝐸
𝑧 for every 𝑧 P 𝐸

(in particular ℎ must be integrable with respect to 𝛿Ωz𝐸
𝑧 for all 𝑧 P 𝐸 and each 𝐸); one may even

assume that 𝐸 is regular and has compact closure (with respect to the Euclidean topology) in 𝑉 , see
[20, Sections 8 & 14]. Note that a function harmonic in a domain is finely harmonic on any fine
subdomain, see [20, Theorem 8.7].

If 𝑉 is a regular finely open set (recall that it means Ωz𝑉 is its own base), then 𝑏pBf𝑉q “ Bf𝑉 by
(A.10) whence the result below is a special case of [20, Theorem 14.1] and its proof.

Theorem A.8. Let 𝑉 Ă Ω be a finely open set such that Ωz𝑉 is non-thin at every point of itself, i.e.,
such that 𝑉 is regular. If 𝜓 is a finely continuous function on Bf𝑉 , majorized in absolute value there
by a finite semi-bounded potential on Ω, say 𝑔, then

(A.37) ℎ𝜓p𝑧q :“
ż

𝜓𝑑𝛿
Ωz𝑉
𝑧 “

ż

𝜓𝑑𝛿Bf𝑉
𝑧 , 𝑧 P 𝑉,

is the unique finely continuous extension of 𝜓 to closfp𝑉q that is finely harmonic in𝑉 and is majorized
in absolute value there by a semi-bounded potential. In fact, it holds that |ℎ𝜓| ď 𝑔 on closfp𝑉q.

The lemma below addresses the question as to when constant functions solve the fine Dirichlet
problem on 𝑉 Ă Ω or, equivalently by (A.37), as to when the balayage of 𝛿𝑧 out of 𝑉 , 𝑧 P 𝑉 , has unit
mass. We recall that an overline, as in 𝑉 , or a B sign, as in BΩ, refer respectively to the closure and
boundary with respect to the Euclidean topology induced by the ambient Riemanian manifold (R˚ or
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C). In contrast, fine closures and fine boundaries as in Bf𝑉 and closfp𝑉q refer to the fine topology on
Ω; thus, BΩ is “invisible” from the point of view of fine topology in Ω, and if 𝑉 Ă Ω then B𝑉 X BΩ

is disjoint from Bf𝑉 as the latter is included in Ω.
Lemma A.9. Let 𝑉 be a proper nonempty regular fine domain in Ω, which itself is regular within
the ambient Riemann surface (R˚ or C). Then it holds for 𝑧 P 𝑉 that

(A.38)
ż

𝑑𝛿
Ωz𝑉
𝑧

#

“ 1 if 𝑉 X BΩ “ ∅,
ă 1 if Bf𝑉 X BΩ “ ∅ and 𝑉 X BΩ ‰ ∅.

Moreover, if either condition on the right-hand side of (A.38) holds, then for any harmonic function
ℎ on Ω one has

(A.39) ℎp𝑧q “

ż

ℎ𝑑𝛿
Ωz𝑉
𝑧 , 𝑧 P 𝑉,

provided that |ℎ| is majorized on 𝑉 by a semi-bounded potential in Ω when 𝑉 X BΩ ‰ ∅.
Proof. Let 𝐾 Ă Ω be non-polar and compact. Set, for brevity, 𝑔𝐾 :“ capΩp𝐾q𝑔p`Ω,𝐾 ,Ω; ¨q,
where `Ω,𝐾 indicates, as in Section A.4, the Green equilibrium distribution on 𝐾 . Since `Ω,𝐾 has
finite energy, 𝑔𝐾 is semi-bounded. As BΩ is regular in the ambient Riemann surface, 𝑔𝐾 extends
continuously by zero to BΩ, see Section A.7. Since capΩp𝐾q ą 0, it holds that 𝑔𝐾 ď 1 in Ω, see the
paragraph after (A.5), and 𝑔𝐾 “ 1 on 𝑏p𝐾q because 𝑔𝐾 “ B𝐾1 , see Section A.9. Moreover, 𝑔𝐾 ă 1
in each connected component 𝑈 of Ωz𝐾 such that B𝑈 X BΩ ‰ ∅ by the maximum principle for
harmonic functions.

When𝑉 is compactly included in Ω, we may put 𝐾 :“ 𝑉 in what precedes, and then capΩp𝐾q ą 0
as otherwise 𝑉 itself would be polar and therefore empty, since it is finely open. The infimum of 𝑔𝐾
on 𝐾 is attained by lower semi-continuity, and it is strictly positive because nonzero Green potentials
are never zero. Therefore, if ℎ is harmonic on Ω, the potential 𝑐𝑔𝐾 majorizes |ℎ| on 𝐾 for sufficiently
large 𝑐 ą 0. The uniqueness part of Theorem A.8 now implies that ℎ b𝑉 is the solution of the fine
Dirichlet problem with boundary data ℎ bBf𝑉 . Hence, (A.39) is just (A.37) while the upper equality
in (A.38) follows by taking ℎ ” 1.

Assume next that 𝑉 X BΩ ‰ ∅ and Bf𝑉 X BΩ “ ∅. Then 𝐾 :“ Bf𝑉 is a compact subset of Ω
which is non-polar, for if Bf𝑉 were polar, then either 𝑉 or Ωz𝑉 would be polar [19, Theorem 2] and
𝑉 would be either empty or irregular, a contradiction. Note that a subdomain of Ωz𝐾 is also a fine
domain [19, Theorem 2] and thus, if it contains both a point in 𝑉 and a point in Ωz𝑉 , then it must
contain a point in Bf𝑉 which is impossible by the definition of 𝐾 . Hence, 𝑉z𝐾 is Euclidean open.

Let𝑈 be a connected component of 𝑉z𝐾 such that B𝑈 X BΩ ‰ ∅; it exists because 𝑉 X BΩ ‰ ∅.
Since Bf𝑉 “ 𝑏pBf𝑉q Ď 𝑏p𝐾q by assumption, 𝑔𝐾 “ 1 on Bf𝑉 (see the beginning of the proof). Hence,
as 𝑔𝐾 is a semi-bounded potential on Ω, it follows from Theorem A.8 that ℎ1 ď 𝑔𝐾 in 𝑉 , where
ℎ1p𝑧q is the solution of the fine Dirichlet problem on 𝑉 with boundary data identically 1 on Bf𝑉 , see
(A.37). In particular, ℎ1 ď 𝑔𝐾 ă 1 in𝑈 by the maximum principle for harmonic functions.

Let 𝐹 Ă 𝑈 be a closed disk. Observe that 𝑉z𝐹 is a fine domain as otherwise 𝐹 would finely
disconnect 𝑈 whereas 𝑈z𝐹 is a domain and therefore also a fine domain. Put 𝛿˚

𝑧 :“ 𝛿
pΩz𝑉 qY𝐹
𝑧 ,

𝑧 P 𝑉z𝐹, and observe that 𝛿˚

𝑧 bBf𝐹
is a non-trivial measure by (A.27) and since BfppΩz𝑉q Y 𝐹q “

Bf𝑉 Y Bf𝐹, where the union is disjoint and 𝑏pBf𝐹q “ Bf𝐹 “ B𝐹. We now get from (A.23) and (A.27),
applied to the fine domain 𝑉z𝐹, that

(A.40) 𝛿
Ωz𝑉
𝑧 “

`

𝛿˚
𝑧

˘Ωz𝑉
“
`

𝛿˚

𝑧 bBf𝑉

˘Ωz𝑉
`
`

𝛿˚

𝑧 bBf𝐹

˘Ωz𝑉
“ 𝛿˚

𝑧 bBf𝑉
`
`

𝛿˚

𝑧 bBf𝐹

˘Ωz𝑉
,

where we observe that the balayage out of 𝑉 does not change measures supported on 𝑏pBf𝑉q “ Bf𝑉

by (A.22). Since ℎ1 ă 1 on Bf𝐹 as Bf𝐹 Ă 𝑈, we get from (A.24) and (A.26) that

0 ă
`

𝛿˚

𝑧 bBf𝐹

˘Ωz𝑉
pBf𝑉q “

ż

𝛿
Ωz𝑉
𝑥 pBf𝑉q𝑑𝛿˚

𝑧 bBf𝐹
p𝑥q “

ż

ℎ1p𝑥q𝑑𝛿˚

𝑧 bBf𝐹
p𝑥q ă 𝛿˚

𝑧 bBf𝐹
pBf𝐹q
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which implies, in view of (A.40), that ℎ1p𝑧q “ 𝛿
Ωz𝑉
𝑧 pBf𝑉q ă 𝛿˚

𝑧 ppΩz𝑉q Y 𝐹q ď 1 as claimed.
Finally, let ℎ be a harmonic function on Ω which is majorized on 𝑉 in absolute value by a semi-

bounded potential. Because ℎ is also finely harmonic on 𝑉 and finely continuous on closfp𝑉q, we
deduce from Theorem A.8 that it is the solution of the fine Dirichlet problem on 𝑉 with boundary
data ℎ bBf𝑉 and that (A.39) holds. �

Lemma A.10. Let𝑉 Ă R be a proper regular fine domain such that Bf𝑉X BR “ ∅ and𝑉X BR ‰ ∅
(the lower assumption on the right-hand side of (A.38) when Ω “ R). Let further ℎ be a harmonic
function in R such that lim𝑧Ñb ℎp𝑧q “ 0 for every b P 𝑉 X BR. Then identity (A.39) holds.

Proof. In view of Lemma A.9, it is enough to show that ℎ is majorized on 𝑉 by a semi-bounded
potential. Note, as in the proof of Lemma A.9, that Bf𝑉 is non-polar. Let us show that BR X 𝑉

consists of a union of connected components of BR. Indeed, any such componentΓ is a 1-dimensional
compact topological submanifold of R˚, and as such it has a tubular neighborhood 𝑁 that may be
chosen so thin that 𝑁XBf𝑉 “ ∅. Then, if Z1, Z2 P Γ and Z1 P 𝑉 while Z2 R 𝑉 , we can find 𝑧1 P 𝑁X𝑉

close to Z1 and 𝑧2 P 𝑁 X Ωz𝑉 close to Z2. The points 𝑧1, 𝑧2 can be joined by a smooth arc contained
in 𝑁 . However, such an arc is finely connected [19, Theorem 7], but cannot meet Bf𝑉 by construction,
a contradiction that proves our claim.

Assume first that 𝐷 “ D is the unit disk. Any function 𝑢 harmonic in an annular region
t𝑟 ă |𝑧| ă 1u that extends continuously toT by zero can be harmonically extended to t𝑟 ă |𝑧| ă 1{𝑟u

by reflection, i.e., by setting 𝑢p𝑧q :“ ´𝑢p1{𝑧q for 𝑧 P t1 ă |𝑧| ă 1{𝑟u. Due to the smoothness of
this extension it necessarily holds that |𝑢p𝑧q| ď 𝐶𝜌p1 ´ |𝑧|q for 𝑟 ă 𝜌 ď |𝑧| ď 1. As ℎ is harmonic
on R, this principle used around each of the finitely many connected components of 𝑉 X BR yields
that |ℎp𝑧q| ď 𝐶p1 ´ |𝑝p𝑧q|q for 𝑧 P 𝑉 and some constant 𝐶 ą 0. On the other hand, the function
𝑔𝑟 p𝑧q :“ ´ log maxt𝑟, |𝑧|u is a continuous (thus bounded and therefore semi-bounded) potential in
D for any 𝑟 P p0, 1q (this is the Green equilibrium potential of t|𝑧| ď 𝑟u). It can be readily verified
that 𝑔𝑟 p𝑧q ě p1 ´ |𝑧|q in D when 𝑟 ď 𝑒´1. Thus, |ℎp𝑧q| ď 𝐶𝑔𝑟 p𝑝p𝑧qq, 𝑧 P 𝑉 , for any such 𝑟 . As
𝑔𝑟 p𝑝p𝑧qq is a (bounded) potential on R by (A.34), the claim of the corollary follows.

In the general case, let 𝜙 : DÑ 𝐷 be a conformal map. Recall that 𝜙 extends to a homeomorphism
from D onto 𝐷. Clearly, 𝜙 is also a homeomorphism for the fine topology since 𝑣 is superharmonic
(resp. harmonic) on 𝐷 if and only if so is 𝑣 ˝ 𝜙 on D. Moreover, 𝑔 is a bounded potential on 𝐷 if and
only if 𝑔 ˝ 𝜙 is such a potential on D. Hence, the result just proven on the disk carries over to 𝐷 by
conformal mapping. �
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