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Abstract. In this work, we establish strong asymptotics of multiple orthogonal polynomi-
als of the second type for Angelesco systems with measures that satisfy Szegő conditions.
We consider multi-indices that converge to infinity in the non-marginal directions.
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1. Introduction

1.1. Orthogonal Polynomials. Let ` be a compactly supported Borel measure on the
real line with infinitely many points in supp `, its support. The 𝑛-th monic orthogonal
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polynomial with respect to ` is a monic polynomial 𝑃𝑛p𝑥q of degree 𝑛 such that
ż

𝑥𝑘𝑃𝑛p𝑥q𝑑`p𝑥q “ 0, 𝑘 P t0, 1, . . . , 𝑛 ´ 1u.

It is known that 𝑃𝑛p𝑥q is unique and that all of its zeros are simple and belong to Δp`q “

r𝛼p`q, 𝛽p`qs, the convex hull of supp `, i.e., the smallest interval containing the support
of `. One of the central questions of the analytic theory of orthogonal polynomials is
to identify their asymptotic behavior in the complex plane as the degree 𝑛 Ñ 8. There
are three well-established ways to study such a behavior: obtain weak, ratio, and strong
asymptotics. The case of orthogonal polynomials on a segment has been thoroughly
investigated [40, 28, 39, 22, 36, 37] and we outline some of these results for weak and
strong asymptotics before discussing multiple orthogonality.

1.2. Weak Asymptotics. Weak convergence is intimately related to the logarithmic po-
tential theory in the complex plane. Recall that the logarithmic potential of a compactly
supported positive Borel measure 𝜔 is given by

𝑉𝜔p𝑧q “ ´

ż

log |𝑧 ´ 𝑡|𝑑𝜔p𝑡q.

It is a superharmonic function in the complex plane C, harmonic away from supp𝜔, and it
behaves like ´|𝜔| log |𝑧| ` 𝑜p1q as 𝑧 Ñ 8, where |𝜔| is the mass of 𝜔. One can readily
notice that

1
𝑛

log |𝑃𝑛p𝑧q| “ ´𝑉 `𝑛p𝑧q, `𝑛 :“
1
𝑛

ÿ

𝑥:𝑃𝑛p𝑥q“0
𝛿𝑥 ,

where 𝛿𝑥 is the Dirac’s delta distribution centered at 𝑥 and `𝑛 is the normalized (probability)
counting measure of the zeros of 𝑃𝑛p𝑥q. Denote by 𝐼r𝜔s the logarithmic energy of 𝜔, that
is, 𝐼r𝜔s :“

ş

𝑉𝜔𝑑𝜔. Every compact set𝐾 Ă C is either “small enough” so that 𝐼r𝜔s “ `8

for every probability Borel measure supported on 𝐾 , in which case 𝐾 is called polar, or
there exists a unique minimizer of the logarithmic energy among all probability Borel
measures supported on 𝐾 , say 𝜔𝐾 , called the logarithmic equilibrium distribution on 𝐾 .
The measure ` is called UST-regular (Ullman-Stahl-Totik) precisely when its support is
non-polar and

1
𝑛

log |𝑃𝑛p𝑧q| `𝑉𝜔supp ` p𝑧q “ 𝑜p1q in 𝐷Δp`q :“ CzΔp`q, 𝑛 Ñ 8,

where the error term is locally uniform in 𝐷Δp`q, see [39, Chapter 3, p.61], and C is
the extended complex plane. In this case the normalized counting measures of zeros `𝑛
converge weak˚ to 𝜔supp `, that is,

ş

𝑓 𝑑`𝑛 Ñ
ş

𝑓 𝑑𝜔supp ` for any function 𝑓 continuous on
Δp`q. There is a number of criteria that ensure the UST-regularity of a measure; see [39,
Chapter 4]. For example, write

(1.1) 𝑑`p𝑥q “ `1p𝑥q𝑑𝑥 ` 𝑑`𝑠p𝑥q,

where `𝑠 is singular to the Lebesgue measure. If supp ` “ Δp`q and `1 ą 0 a.e. on Δp`q

then ` is UST-regular, see [39, Chapter 4, p.101], or more generally, if supp ` “ Δp`q and

lim inf
𝑟Ó0

𝑟 log `pr𝑥 ´ 𝑟, 𝑥 ` 𝑟sq ě 0

for almost every 𝑥 P Δp`q, then ` is UST-regular, see [39, Chapter 4, p.110].



STRONG ASYMPTOTICS OF ANGELESCO MOPS: NON-MARGINAL DIRECTIONS 3

In the case of measures supported on an interval, i.e., when supp ` “ Δ “ r𝛼, 𝛽s, the
above asymptotic formulae can be made very explicit: it holds that

(1.2) 𝑑𝜔Δp𝑥q “
𝑑𝑥

𝜋
a

p𝑥 ´ 𝛼qp𝛽 ´ 𝑥q
and 𝑉𝜔Δp𝑧q “ log |𝜙Δp𝑧q| ´ log

4
𝛽 ´ 𝛼

,

where 𝜙Δp𝑧q is the conformal map of 𝐷Δ onto D such that 𝜙Δp8q “ 0 and 𝜙Δp𝛽q “ 1.
That is, the logarithmic equilibrium distribution on Δ is simply the arcsine distribution on
Δ. One can also readily verify that

(1.3) 𝜙Δp𝑧q “
2

𝛽 ´ 𝛼

ˆ

𝑧 ´
𝛽 ` 𝛼

2
´ 𝑤Δp𝑧q

˙

and 𝑤Δp𝑧q :“
b

p𝑧 ´ 𝛼qp𝑧 ´ 𝛽q,

where the branches are holomorphic off Δ and 𝑤Δp𝑧q “ 𝑧 ` Op1q as 𝑧 Ñ 8.

1.3. Strong Asymptotics. Strong asymptotics of orthogonal polynomials is related to the
function theory of Hardy spaces. Given a closed interval Δ, we denote by 𝐿 𝑝p𝜔Δq the
space of real-valued functions whose moduli are 𝑝-summable with respect to 𝜔Δ. We
further denote by 𝐻2p𝐷Δq the Hardy space of functions holomorphic in 𝐷Δ whose squared
moduli possess harmonic majorants in 𝐷Δ, see [13, Chapter 10, p.168]. This definition is
conformally invariant meaning that 𝑓 P 𝐻2pDq, the standard Hardy space on the unit disk,
if and only if 𝑓 ˝ 𝜙Δ P 𝐻2p𝐷Δq. In particular, any 𝑔 P 𝐻2p𝐷Δq possesses non-tangential
limits from above and below Δ, say 𝑔˘, and 𝑔˘ P 𝐿2p𝜔Δq while log |𝑔˘| P 𝐿1p𝜔Δq. We
shall say that 𝐺 is an outer function in 𝐻2p𝐷Δq if 𝐺 ˝ 𝜙´1

Δ
is an outer function in 𝐻2pDq,

see [13, Section 2.4]. For instance, given a non-negative function 𝑓 P 𝐿2p𝜔Δq such that
log 𝑓 P 𝐿1p𝜔Δq, the function

(1.4) ΩΔp 𝑓 , 𝑧q :“ exp
ˆ

𝑤Δp𝑧q

ż

Δ

log 𝑓 p𝑥q
𝑑𝜔Δp𝑥q

𝑧 ´ 𝑥

˙

is an outer function in 𝐻2p𝐷Δq, ΩΔp 𝑓 ,8q ą 0, and it is also conjugate-symmetric (this
formula is obtained through conformal equivalence with 𝐻2pDq and the known integral
representation of outer functions in that space). For such functions it holds that

(1.5) |ΩΔ˘p 𝑓 , 𝑥q| “ 𝑓 p𝑥q for almost every 𝑥 P Δ.

In particular, any conjugate-symmetric outer function in 𝐻2p𝐷Δq that is positive at infinity
can be recovered through the modulus of its boundary values via (1.4)–(1.5). Notice also
that

(1.6) logΩΔp 𝑓 ,8q “

ż

Δ

log 𝑓 𝑑𝜔Δ.

Given a compactly supported Borel measure `, it is said that ` is a Szegő measure on
an interval Δ Ď Δp`q, which we denote by ` P SzpΔq, if log `1 P 𝐿1p𝜔Δq, see (1.1). In this
case it also holds that log 𝑣Δ P 𝐿1p𝜔Δq, where

(1.7) 𝑑`|Δp𝑥q “ 𝑣Δp𝑥q𝑑𝜔Δp𝑥q ` 𝑑`𝑠
|Δ

p𝑥q

(that is, 𝑣Δp𝑥q “ 𝜋`1p𝑥q
a

p𝑥 ´ 𝛼qp𝛽 ´ 𝑥q for 𝑥 P Δ “ r𝛼, 𝛽s). When studying strong
asymptotics of polynomials orthogonal on the real line, one usually assumes that Δ “ Δp`q

in (1.7). However, in the case of multiple orthogonality, which is the main subject of this
work, it will be important for us to take restrictions of ` onto proper subintervals of Δp`q,
and this is the reason why we write `|Δ in (1.7). When ` P SzpΔq one can define the
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so-called Szegő function of `|Δ, which depends only on the absolutely continuous part of
`, by setting
(1.8) 𝐺p`|Δ, 𝑧q :“ ΩΔ

`?
𝑣Δ, 𝑧

˘

, 𝑧 P 𝐷Δ.

By its very definition,𝐺 is an outer function in 𝐻2p𝐷Δq whose traces from above and below
of Δ satisfy |𝐺˘p`|Δ, 𝑥q|2 “ 𝑣Δp𝑥q for almost every 𝑥 P Δ. In what follows, we remove
the subscript |Δ from ` in (1.8) if Δ “ Δp`q. It is known, see [40, Chapter XII] and [36,
Section 13.3], that if ` is a Szegő measure on Δp`q, then

𝑃𝑛p𝑧q “ p1 ` 𝑜p1qq

ˆ

4
𝛽 ´ 𝛼

𝜙´1
Δp`q

p𝑧q

˙𝑛
𝐺p`,8q

𝐺p`, 𝑧q

locally uniformly in 𝐷Δp`q.

1.4. Multiple Orthogonal Polynomials. Our primary goal is an extension of the above
results to multiple orthogonal polynomials that can be defined as follows. Let `𝑖 , 𝑖 P 𝐼𝑑 :“
t1, 2, . . . , 𝑑u, 𝑑 ě 2, be positive compactly supported Borel measures on the real line.
Given a multi-index ®𝑛 “ p𝑛1, 𝑛2, . . . , 𝑛𝑑q P Z𝑑`, we denote by 𝑃®𝑛p𝑥q a non-identically zero
monic polynomial of minimal degree such that

(1.9)
ż

𝑥𝑘𝑃®𝑛p𝑥q𝑑`𝑖p𝑥q “ 0, 𝑘 P t0, 1, . . . , 𝑛𝑖 ´ 1u, 𝑖 P 𝐼𝑑 .

Such a polynomial always exists and is unique. We say that a multi-index ®𝑛 is normal if
deg 𝑃®𝑛 “ |®𝑛|, where |®𝑛| “ 𝑛1 ` 𝑛2 ` ¨ ¨ ¨ ` 𝑛𝑑 . Moreover, the system ®̀ “ p`1, `2, . . . , `𝑑q

is called perfect if all the multi-indices are normal. The notion of a MOP was elaborated in
the constructive Diophantine approximations, see, e.g., [27], and it goes back to the famous
proof by Hermite that the number 𝑒 is transcendental [21].

The questions of the asymptotic behavior of MOPs for an arbitrary system ®̀ are hard,
especially if such a system is not perfect. Below, we restrict ourselves to the so-called
Angelesco systems. These are systems of measures ®̀ that satisfy conditions
(1.10) Δp`𝑖q X Δp` 𝑗q “ ∅, 𝑖, 𝑗 P 𝐼𝑑 , 𝑖 ‰ 𝑗 .

It is customary to label measures `𝑖 so that 𝛽p`𝑖q ă 𝛼p` 𝑗q when 𝑖 ă 𝑗 . It was shown by
Angelesco [1] that such systems are always perfect (this system was later rediscovered in
[29]). Moreover, each 𝑃®𝑛p𝑥q has precisely 𝑛𝑖 zeros on Δp`𝑖q, 𝑖 P 𝐼𝑑 . Hence, for Angelesco
systems we can always write
(1.11) 𝑃®𝑛p𝑥q “ 𝑃®𝑛,1p𝑥q𝑃®𝑛,2p𝑥q ¨ ¨ ¨ 𝑃®𝑛,𝑑p𝑥q,

where each 𝑃®𝑛,𝑖p𝑥q is monic and has all its zeros on Δp`𝑖q. The existence of various asymp-
totic limits of MOPs depends on the way multi-index |®𝑛| approaches infinity. Therefore,
given a vector ®𝑐 “ p𝑐1, 𝑐2, . . . , 𝑐𝑑q P p0, 1q𝑑 such that |®𝑐| :“ 𝑐1 ` 𝑐2 ` ¨ ¨ ¨ ` 𝑐𝑑 “ 1, we
restrict our attention to ray sequence of multi-indices defined by
(1.12) Np®𝑐q “

 

®𝑛 : 𝑛𝑖{|®𝑛| Ñ 𝑐𝑖 as |®𝑛| Ñ 8, 𝑖 P 𝐼𝑑
(

.

Of course, there are many ray sequences corresponding to a given vector ®𝑐. In our analysis it
will sometimes be important to distinguish non-marginal ray sequences, i.e., ray sequences
corresponding to ®𝑐 P p0, 1q𝑑 , and marginal ones, i.e., those for which at least one coordinate
𝑐𝑖 vanishes. In the current paper, we handle non-marginal sequences only and the marginal
sequences will be studied in the forthcoming work.

There is a large body of literature on asymptotics of MOPs. We shall provide some
relevant references further below in Section 3 related to Angelesco systems. Besides them
another well-studied class of vector-measures is known as Nikishin systems, see [30, 31, 15].
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For Nikishin systems and their generalizations, weak, ratio, and strong asymptotics were
obtained in [19, 6, 3, 7, 14, 33] (also see the references therein). Certain extensions of
Totik’s results [41] on asymptotics of orthogonal polynomials with varying weights are
essential to our approach. We discuss these extensions in Section 4. In turn, the material
in Section 4 relies on extensions of pioneering results in [24, 25] on ratio asymptotics and
the work by de la Calle Ysern and López Lagomasino [10], see also Stahl’s paper [38]
on strong asymptotics of orthogonal polynomials with respect to reciprocal polynomial
weights, which we derive in Section 5.

2. Weak Asymptotics of MOPs

Given ®𝑐 P p0, 1q𝑑 , |®𝑐| “ 1, it was shown by Gonchar and Rakhmanov [18] that there
exists a unique vector of positive Borel measures ®𝜔 ®𝑐 “ p𝜔 ®𝑐,1, 𝜔 ®𝑐,2, . . . , 𝜔 ®𝑐,𝑑q such that
(2.1) supp𝜔 ®𝑐,𝑖 “: Δ®𝑐,𝑖 Ď Δp`𝑖q, Δ®𝑐,𝑖 “ r𝛼®𝑐,𝑖 , 𝛽®𝑐,𝑖s, |𝜔 ®𝑐,𝑖| “ 𝑐𝑖 , 𝑖 P 𝐼𝑑 ,

and

(2.2) 𝑉𝜔 ®𝑐, 𝑗 p𝑥q `
ÿ

𝑖P𝐼𝑑

𝑉𝜔 ®𝑐,𝑖 p𝑥q

#

“ ℓ®𝑐, 𝑗 , 𝑥 P Δ®𝑐, 𝑗 ,

ą ℓ®𝑐, 𝑗 , 𝑥 P Δp` 𝑗qzΔ®𝑐, 𝑗 ,

for some constants ℓ®𝑐, 𝑗 , 𝑗 P 𝐼𝑑 (the presence of a strict inclusionΔ®𝑐,𝑖 Ĺ Δp`𝑖q is colloquially
known as a pushing effect; it can happen to none, some, or all but one intervals, see
Proposition 2.2 further below). The vector-equilibrium measure ®𝜔 ®𝑐 can also be defined
via the energy minimization process similar to the logarithmic equilibrium measures. The
central result of [18] is the following theorem.

Theorem 2.1. Let t𝑃®𝑛p𝑧qu®𝑛 be the table of multiple orthogonal polynomials with respect
to an Angelesco system of measures ®̀. Fix a non-marginal ray sequence Np®𝑐q. Assume
that each `𝑖 is absolutely continuous with respect to the Lebesgue measure on Δp`𝑖q and
`1
𝑖
p𝑥q ą 0 almost everywhere on Δp`𝑖q. Then, it holds for each 𝑖 P 𝐼𝑑 that

lim
Np®𝑐q

1
𝑛𝑖

log |𝑃®𝑛,𝑖p𝑧q| “ ´𝑐´1
𝑖
𝑉𝜔 ®𝑐,𝑖 p𝑧q

locally uniformly in 𝐷Δp`𝑖q. Moreover, the normalized counting measures of the zeros of
the polynomials 𝑃®𝑛,𝑖p𝑥q converge weak˚ to 𝑐´1

𝑖
𝜔 ®𝑐,𝑖 along Np®𝑐q for any 𝑖 P 𝐼𝑑 .

In the remaining part of this section we provide a more detailed description of the
vector-equilibrium measure ®𝜔 ®𝑐 . What follows is taken from [42, Section 2].

Given pairwise disjoint closed intervals pΔ1,Δ2, . . . ,Δ𝑑q, define 𝔖 to be a p𝑑 ` 1q-
sheeted compact Riemann surface realized as follows: take 𝑑 ` 1 copies of the extended
complex plane; cut the zeroth copy along Y𝑖P𝐼𝑑Δ𝑖 and denote it by 𝔖0; cut the 𝑖-th copy
along a single interval Δ𝑖 and denote it by 𝔖𝑖 , 𝑖 P 𝐼𝑑; glue 𝔖𝑖 , 𝑖 P 𝐼𝑑 , to 𝔖0 crosswise
along the corresponding cut. Denote by 𝜋 the natural projection from 𝔖 onto C that takes
a point on 𝔖𝑘 and maps it into the corresponding point in the cut plane.

Let 𝔖®𝑐 be the surface corresponding to pΔ®𝑐,1,Δ®𝑐,2, . . . ,Δ®𝑐,𝑑q. Denote by 𝐸 ®𝑐 the set
of ramification points of 𝔖®𝑐 , i.e., 𝐸 ®𝑐 “ tα®𝑐,1,β®𝑐,1, . . . ,α®𝑐,𝑑 ,β®𝑐,𝑑u Ă 𝔖®𝑐,0, where
𝜋pα®𝑐,𝑖q “ 𝛼®𝑐,𝑖 and 𝜋pβ®𝑐,𝑖q “ 𝛽®𝑐,𝑖 . Define

(2.3) h®𝑐,𝑖p𝑧q :“
ż

𝑑𝜔 ®𝑐,𝑖p𝑥q

𝑥 ´ 𝑧
, 𝑧 P 𝐷Δ ®𝑐,𝑖 , 𝑖 P 𝐼𝑑 ,

and puth®𝑐,0p𝑧q :“ ´
ř

𝑖P𝐼𝑑
h®𝑐,𝑖p𝑧q. Define ℎ ®𝑐 to be the function on𝔖®𝑐 such thath®𝑐|𝔖 ®𝑐,𝑘 “

h®𝑐,𝑘 ˝ 𝜋|𝔖 ®𝑐,𝑘 for all 𝑘 P t0, 1, . . . , 𝑑u.
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Proposition 2.2. The function h®𝑐 extends continuously to 𝔖®𝑐z𝐸 ®𝑐 and is in fact a rational
function on 𝔖®𝑐 . It has a simple zero at each point on top of infinity, a single simple zero

z®𝑐,𝑖 P 𝔖®𝑐,0 X 𝜋´1pr𝛽®𝑐,𝑖 , 𝛼®𝑐,𝑖`1sq

for each 𝑖 P t1, 2, . . . , 𝑑 ´ 1u, a simple pole at each element of 𝐸 ®𝑐 (if z®𝑐,𝑖 coincides
with either β®𝑐,𝑖 or α®𝑐,𝑖`1, then it cancels the corresponding pole), and otherwise it is
non-vanishing and finite. Moreover, z®𝑐,𝑖 “ β®𝑐,𝑖 (resp. z®𝑐,𝑖 “ α®𝑐,𝑖`1) if and only if

𝑉𝜔 ®𝑐,𝑖 p𝑧q `
ÿ

𝑗P𝐼𝑑

𝑉𝜔 ®𝑐, 𝑗 p𝑧q ´ ℓ®𝑐,𝑖 ą 0

for 𝑥 P p𝛽®𝑐,𝑖 , 𝛽®𝑐,𝑖`𝜖q (resp. 𝑥 P p𝛼®𝑐,𝑖`1 ´𝜖, 𝛼®𝑐,𝑖`1q) for some 𝜖 ą 0, 𝑖 P t1, 2, . . . , 𝑑´1u.
Furthermore, we have for every 𝑖 P 𝐼𝑑 that

(2.4) 𝑉𝜔 ®𝑐,𝑖 p𝑧q `
ÿ

𝑗P𝐼𝑑

𝑉𝜔 ®𝑐, 𝑗 p𝑧q ´ ℓ®𝑐,𝑖 “ Re

˜

ż 𝑧

𝛼®𝑐,𝑖

`

h®𝑐,𝑖p𝑠q ´ h®𝑐,0p𝑠q
˘

𝑑𝑠

¸

,

where 𝛼®𝑐,𝑖 can be replaced by any point on Δ®𝑐,𝑖 as the integrand is purely imaginary on
Δ®𝑐,𝑖 . It also holds that

(2.5) 𝑑𝜔 ®𝑐,𝑖p𝑥q “
`

h®𝑐,𝑖`p𝑥q ´ h®𝑐,𝑖´p𝑥q
˘ 𝑑𝑥

2𝜋i
, 𝑖 P 𝐼𝑑 .

Finally, if t®𝑐𝑛u Ă p0, 1q𝑑 , |®𝑐𝑛| “ 1, is sequence of vectors that converge to ®𝑐, then the
measures 𝜔 ®𝑐𝑛 ,𝑖 converge weak˚ to 𝜔 ®𝑐,𝑖 for each 𝑖 P 𝐼𝑑 .

It can be deduced from this proposition that there is a one-to-one correspondence between
®𝑐 P p0, 1q𝑑 , |®𝑐| “ 1, and vectors p𝑧1, 𝑧2, . . . , 𝑧𝑑´1q such that 𝑧1 ă 𝑧2 ă ¨ ¨ ¨ ă 𝑧𝑑´1 and
𝑧𝑖 P p𝛼p`𝑖q, 𝛽p`𝑖`1qq. On the one hand, ®𝑐 corresponds to p𝜋pz®𝑐,1q, 𝜋pz®𝑐,2q, . . . , 𝜋pz®𝑐,𝑑qq.
On the other hand, let p𝑧1, 𝑧2, . . . , 𝑧𝑑´1q be as described. Set

𝛼1 “ 𝛼p`1q, 𝛼𝑖`1 “ maxt𝛼p`𝑖`1q, 𝑧𝑖u, 𝛽𝑖 “ mint𝛽p`𝑖q, 𝑧𝑖u, and 𝛽𝑑 “ 𝛽p`𝑑q,

where 𝑖 P 𝐼𝑑zt𝑑u. Define 𝔖 with respect to the intervals Δ𝑖 “ r𝛼𝑖 , 𝛽𝑖s, 𝑖 P 𝐼𝑑 . Let h be
a rational function on 𝔖 with the zero/pole divisor as described in Proposition 2.2 where
the simple zero in the gap 𝔖0 X 𝜋´1pr𝛽𝑖 , 𝛼𝑖`1sq has natural projection 𝑧𝑖 , 𝑖 P 𝐼𝑑zt𝑑u.
Normalize this function to have residue 1 at the point on top of infinity on 𝔖0. Define
measures 𝜔𝑖 via (2.5) and let 𝑐𝑖 “ |𝜔𝑖|, 𝑖 P 𝐼𝑑 . Then, |®𝑐| “ 1 and one can use (2.4) to show
that 𝜔𝑖 “ 𝜔 ®𝑐,𝑖 , 𝑖 P 𝐼𝑑 .

The following two facts about measures 𝜔 ®𝑐,𝑖 are important for the forthcoming analysis.
Notice that it readily follows from (2.5) that these measures are absolutely continuous with
respect to the Lebesgue measure, i.e., 𝑑𝜔 ®𝑐,𝑖p𝑥q “ 𝜔1

®𝑐,𝑖p𝑥q𝑑𝑥.

Proposition 2.3. For each ®𝑐 P p0, 1q𝑑 , |®𝑐| “ 1 and 𝑖 P 𝐼𝑑 , the density 𝜔1

®𝑐,𝑖p𝑥q is non-
vanishing on p𝛼®𝑐,𝑖 , 𝛽®𝑐,𝑖q. Moreover,

lim
𝑥Ò𝛽 ®𝑐,𝑖

𝜔1

®𝑐,𝑖p𝑥qp𝛽®𝑐,𝑖 ´ 𝑥q˘1{2

exists and is positive and finite, where one needs to take exponent 1{2 if h®𝑐 has a pole at
β®𝑐,𝑖 and exponent ´1{2 if h®𝑐 is finite at β®𝑐,𝑖 , 𝑖 P 𝐼𝑑 . Furthermore, analogous claims hold
at each 𝛼®𝑐,𝑖 .

Proof. Let 𝔖®𝑐 be the Riemann surface defined after Theorem 2.1. Denote by 8𝑘 the
point on top of infinity that belongs to 𝔖®𝑐,𝑘 , 𝑘 P t0, 1, . . . , 𝑑u. Let 𝜒®𝑐 : 𝔖®𝑐 Ñ C be the
conformal map such that 𝜒®𝑐,0p𝑧q “ 𝑧 ` Op1{𝑧q as 𝑧 Ñ 8, where, as before, 𝜒®𝑐,𝑘p𝑧q is the
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pull-back to C of 𝜒®𝑐 from 𝔖®𝑐,𝑘 , 𝑘 P t0, 1, . . . , 𝑑u. That is, 𝜒®𝑐 is a rational function on 𝔖®𝑐
with a simple pole at 80 and no constant term in its Laurent expansion there. The specified
behavior at 80 determines 𝜒®𝑐 uniquely (the difference of any two such functions must be a
constant function as it has no poles and is analytic everywhere on 𝔖®𝑐; as it vanishes at 80,
this difference is identically zero). The uniqueness immediately yields that

𝜒®𝑐,𝑘p𝑧q “ 𝜒®𝑐,𝑘p𝑧q, 𝑘 P t0, 1, . . . , 𝑑u.

Thus, the preimage of the real line is the cycle that proceeds along segments of the real line
when sheets 𝔖®𝑐,𝑘 are identified with cut planes in the following manner:

80
𝔖 ®𝑐,0
Ñ α®𝑐,1

𝔖 ®𝑐,1
Ñ 81

𝔖 ®𝑐,1
Ñ β®𝑐,1

𝔖 ®𝑐,0
Ñ α®𝑐,2

𝔖 ®𝑐,2
Ñ ¨ ¨ ¨

𝔖 ®𝑐,𝑑
Ñ 8𝑑

𝔖 ®𝑐,𝑑
Ñ β®𝑐,𝑑

𝔖 ®𝑐,0
Ñ 80.

In particular, we have that ˘Imp𝜒®𝑐,0˘p𝑥qq ą 0 for 𝑥 P p𝛼®𝑐,𝑖 , 𝛽®𝑐,𝑖q, 𝑖 P 𝐼𝑑 . Let
𝑝2𝑖´1 :“ 𝜒®𝑐pα®𝑐,𝑖q, 𝑝2𝑖 :“ 𝜒®𝑐pβ®𝑐,𝑖q, 𝑥2𝑖´1 :“ 𝜒®𝑐p8𝑖q, 𝑖 P 𝐼𝑑 ,

and 𝑥2𝑖 :“ 𝜒®𝑐pz®𝑐,𝑖q, 𝑖 P 𝐼𝑑zt𝑑u. Then, it holds that
(2.6) 𝑝2𝑖´1 ă 𝑥2𝑖´1 ă 𝑝2𝑖 , 𝑖 P 𝐼𝑑 , and 𝑝2𝑖 ď 𝑥2𝑖 ď 𝑝2𝑖`1, 𝑖 P 𝐼𝑑zt𝑑u.

It also can be readily seen that

(2.7) h®𝑐 “
p𝜒®𝑐 ´ 𝑥1qp𝜒®𝑐 ´ 𝑥2q ¨ ¨ ¨ p𝜒®𝑐 ´ 𝑥2𝑑´1q

p𝜒®𝑐 ´ 𝑝1qp𝜒®𝑐 ´ 𝑝2q ¨ ¨ ¨ p𝜒®𝑐 ´ 𝑝2𝑑q
“

2𝑑
ÿ

𝑖“1

𝛾𝑖

𝜒®𝑐 ´ 𝑝𝑖

(this is not the reduced form because 𝑥2𝑖 can be equal to either 𝑝2𝑖 or 𝑝2𝑖`1 as explained in
Proposition 2.2). Clearly, it holds that

𝛾𝑘 “

𝑘´1
ź

𝑖“1

𝑝𝑘 ´ 𝑥𝑖

𝑝𝑘 ´ 𝑝𝑖

2𝑑
ź

𝑖“𝑘`1

𝑝𝑘 ´ 𝑥𝑖´1

𝑝𝑘 ´ 𝑝𝑖
ě 0,

where the last inequality follows from (2.6) (notice also that
ř2𝑑
𝑖“1 𝛾𝑖 “ 1 as follows from

the normalization of h®𝑐 at 80). Since h®𝑐 is a rational function on 𝔖®𝑐 , it necessarily holds
that h®𝑐,0˘p𝑥q “ h®𝑐,𝑖¯p𝑥q, 𝑥 P Δ®𝑐,𝑖 for each 𝑖 P 𝐼𝑑 . Thus, we get from (2.5) and (2.7) that

𝜋𝜔1

®𝑐,𝑖p𝑥q “
h®𝑐,0´p𝑥q ´ h®𝑐,0`p𝑥q

2i
“ ´Imph®𝑐,0`p𝑥qq “

2𝑑
ÿ

𝑖“1

𝛾𝑖Imp𝜒®𝑐,0`p𝑥qq

|𝜒®𝑐,0`p𝑥q ´ 𝑝𝑖|
2 ą 0

for 𝑥 P p𝛼®𝑐,𝑖 , 𝛽®𝑐,𝑖q and each 𝑖 P 𝐼𝑑 as claimed. Moreover, we get for each 𝑖 P 𝐼𝑑 that

𝜒®𝑐,0p𝑧q “ 𝑝2𝑖 ` 𝑞2𝑖p𝑧 ´ 𝛽®𝑐,𝑖q
1{2 ` Opp𝑧 ´ 𝛽®𝑐,𝑖qq

for 𝑧 R Δ®𝑐,𝑖 and sufficiently close to 𝛽®𝑐,𝑖 , where we take the principal branch of the square
root and 𝑞2𝑖 ą 0 since 𝜒®𝑐 is conformal. Then, we get for each 𝑙 P 𝐼𝑑 that

𝜋𝜔1

®𝑐,𝑙p𝑥q “ p𝛾2𝑙{𝑞2𝑙qp𝛽®𝑐,𝑙 ´ 𝑥q´1{2 ` Op1q

if 𝛾2𝑙 ‰ 0, i.e., z®𝑐,𝑙 ‰ β®𝑐,𝑙 , or

𝜋𝜔1

®𝑐,𝑙p𝑥q “ p𝛽®𝑐,𝑙 ´ 𝑥q1{2
2𝑑
ÿ

𝑖“1,𝑖‰2𝑙

𝛾𝑖𝑞2𝑙

p𝑝2𝑙 ´ 𝑝𝑖q
2 ` Opp𝛽®𝑐,𝑙 ´ 𝑥qq

otherwise. Since analogous claims hold at each 𝛼®𝑐,𝑙 , this finishes the proof of the proposi-
tion. �

3. Strong Asymptotics of MOPs

We keep all the notation given in the introduction and Section 2.
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3.1. Uniformity of Szegő Measures. To describe the strong limits of multiple orthogonal
polynomials we need to define an analog of the Szegő functions (1.8).

Proposition 3.1. Let tΔ𝑖u𝑖P𝐼𝑑 be a collection of pairwise disjoint closed intervals and
t`𝑖u𝑖P𝐼𝑑 be positive Borel measures such that `𝑖 P SzpΔ𝑖q for each 𝑖 P 𝐼𝑑 . There exists
a unique collection of functions t𝑆𝑖p𝑧qu𝑖P𝐼𝑑 such that each 𝑆𝑖p𝑧q is a conjugate-symmetric
outer function in 𝐻2p𝐷Δ𝑖

q with 𝑆𝑖p8q ą 0 and it holds that

(3.1) |𝑆𝑖˘p𝑥q|2
ź

𝑗P𝐼𝑑 , 𝑗‰𝑖

𝑆 𝑗p𝑥q “ 𝑣Δ𝑖
p𝑥q for a.e. 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 ,

where 𝑣Δ𝑖
p𝑥q is the Radon-Nikodym derivative of `𝑖 w.r.t. 𝜔Δ𝑖

, see (1.7).

We point out that for absolutely continuous measures 𝑑`𝑖 “ `1
𝑖
p𝑥q𝑑𝑥 with smooth non-

vanishing densities `1
𝑖
p𝑥q, the integral representation of functions 𝑆𝑖p𝑧q was obtained in [7],

see also [42, Section 6]. This representation is similar to formulae (1.4), (1.8) and it uses a
Cauchy-like kernel on the Riemann surface 𝔖 that corresponds to pΔ1,Δ2, . . . ,Δ𝑑q.

To account for the pushing effect, we further strengthen the notion of a Szegő measure.
We shall say that a measure ` is uniformly Szegő on a closed interval Δ, and denote this
by ` P USzpΔq, if ` P SzpΔq and for any sequence of closed intervals tΔ𝑛u such that
Δ𝑛 Ď Δp`q and Δ𝑛 Ñ Δ as 𝑛 Ñ 8, there is 𝑛0 such that ` P SzpΔ𝑛q for 𝑛 ě 𝑛0 and

(3.2) lim
𝑛Ñ8

ż

ˇ

ˇ log `1p𝑥q ´ log `1p𝑙ΔÑΔ𝑛
p𝑥qq

ˇ

ˇ𝑑𝜔Δp𝑥q Ñ 0 ,

where 𝑙ΔÑΔ𝑛
p𝑥q is a linear function with a positive leading coefficient that maps Δ onto Δ𝑛.

We call the class “uniform Szegő” to emphasize that small perturbations of the endpoints
of Δ result in small changes of the value of the Szegő function at infinity. In fact, this is
true for the whole Szegő function locally uniformly away from Δ.

Proposition 3.2. Let tΔ𝑖u𝑖P𝐼𝑑 be a collection of pairwise disjoint closed intervals and
t`𝑖u𝑖P𝐼𝑑 be a collection of positive Borel measures such that `𝑖 P USzpΔ𝑖q for each 𝑖 P 𝐼𝑑 .
Further, let tΔ𝑛,𝑖u𝑖P𝐼𝑑 , 𝑛 P N, be collections of pairwise disjoint closed intervals such that
Δ𝑛,𝑖 Ď Δp`𝑖q and Δ𝑛,𝑖 Ñ Δ𝑖 as 𝑛 Ñ 8 for each 𝑖 P 𝐼𝑑 . Then
(3.3) 𝑆𝑛,𝑖p𝑧q Ñ 𝑆𝑖p𝑧q as 𝑛 Ñ 8

locally uniformly in 𝐷Δ𝑖
for each 𝑖 P 𝐼𝑑 , where t𝑆𝑖p𝑧qu𝑖P𝐼𝑑 and t𝑆𝑛,𝑖p𝑧qu𝑖P𝐼𝑑 are the collec-

tion of functions guaranteed by Proposition 3.1 for tΔ𝑖u𝑖P𝐼𝑑 and tΔ𝑛,𝑖u𝑖P𝐼𝑑 , respectively.

Since the concept of uniformly Szegő measures is important to our analysis, let us
provide a different characterization of this class. To this end, given an integrable function
\ on an interval Δ, we let

p𝐼𝛾\qp𝑥q :“
1

?
𝜋

ż 𝑥

𝛾

\p𝑡q𝑑𝑡
a

|𝑥 ´ 𝑡|
, 𝑥 P Δ,

where 𝛾 P Δ is fixed, which is a version of the so-called Riemann-Liouville fractional
integral (corresponding to the exponent 1{2). As an integral transform, 𝐼𝛾 is a continuous
operator from 𝐿1pΔq into weak-𝐿2pΔq, see [9, Lemma 2.13]. Notice also that given two
different 𝛾1 and 𝛾2 such that 𝛾1, 𝛾2 P Δ, 𝛾1 ă 𝛾2, the difference

p𝐼𝛾1\qp𝑥q ´ p𝐼𝛾2\qp𝑥q “
1

?
𝜋

ż 𝛾2

𝛾1

\p𝑡q𝑑𝑡
a

|𝑥 ´ 𝑡|

is continuous in 𝑥 on Rzr𝛾1, 𝛾2s.

Proposition 3.3. Let r𝛼, 𝛽s “ Δ Ď Δp`q. The following are equivalent
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(i) ` P USzpΔq;
(ii) p𝐼𝛾 log `1qp𝑥q, 𝑥 P Δp`q, is continuous at 𝛽 and 𝛼, where 𝛾 P p𝛼, 𝛽q is any;
(iii) for any 𝜖 ą 0 there exists 𝑑𝜖 ą 0 such that

ˇ

ˇ

ˇ

ˇ

ż 𝑏𝛼

𝑎𝛼

log `1p𝑡q𝑑𝑡
?
𝑡 ´ 𝑎𝛼

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

ż 𝑏𝛽

𝑎𝛽

log `1p𝑡q𝑑𝑡
a

𝑏𝛽 ´ 𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ă 𝜖

when distp𝛼, r𝑎𝛼, 𝑏𝛼sq, distp𝛽, r𝑎𝛽 , 𝑏𝛽sq ă 𝑑𝜖 .

If \ P 𝐿 𝑝pΔq for some 𝑝 ą 2, then 𝐼𝛾\ is Hölder continuous on Δ with exponent at least
2´1{𝑝, see [20, Theorem 12]. Since `1 is an integrable function, log` `1 is in 𝐿 𝑝pΔq for any
𝑝 ą 2. Hence, 𝐼𝛾 log` `1 is necessarily Hölder continuous and therefore Proposition 3.3
could be equivalently stated with log `1 replaced by either | log `1| or log´ `1.

3.2. Main Theorem. Recall definitions (1.9)–(1.12) as well as (2.1)–(2.2). Below, we
label simply by ®𝑛 the quantities usually labeled by ®𝑐 when they are referred to with the
value of the parameter ®𝑐 being ®𝑛{|®𝑛|.

Theorem 3.4. Let t𝑃®𝑛p𝑧qu®𝑛 be the table of multiple orthogonal polynomials with respect
to an Angelesco system of measures ®̀. Fix a non-marginal ray sequence in Np®𝑐q. Assume
that `𝑖 P USzpΔ®𝑐,𝑖q, 𝑖 P 𝐼𝑑 . Then, it holds for each 𝑖 P 𝐼𝑑 that

𝑃®𝑛,𝑖p𝑧q “ p1 ` 𝑜p1qq exp
ˆ

|®𝑛|

ż

logp𝑧 ´ 𝑥q𝑑𝜔®𝑛,𝑖p𝑥q

˙

𝑆 ®𝑐,𝑖p8q

𝑆 ®𝑐,𝑖p𝑧q

locally uniformly in 𝐷Δ ®𝑐,𝑖 for all |®𝑛| large enough, where t𝑆 ®𝑐,𝑖p𝑧qu𝑖P𝐼𝑑 is the collection of
functions guaranteed by Proposition 3.1 for the collection of intervals tΔ®𝑐,𝑖u𝑖P𝐼𝑑 .

Let us point out that if Np®𝑐q is such that Δ®𝑛,𝑖 “ Δ®𝑐,𝑖 , 𝑖 P 𝐼𝑑 , for all ®𝑛 P Np®𝑐q with |®𝑛|

large enough, then we can simply require that `𝑖 P SzpΔ®𝑐,𝑖q. This holds whenever, e.g.,
Np®𝑐q “ t𝑛 ¨ ®𝑚 : 𝑛 P Nu with ®𝑐 “ ®𝑚{| ®𝑚| for some ®𝑚 P N𝑑 , or when ®𝑐 belongs to a relatively
open subset of t®𝑐 P p0, 1q𝑑 : |®𝑐| “ 1u for which Δ®𝑐,𝑖 “ Δ𝑖 , 𝑖 P 𝐼𝑑 . This set is known to be
non-empty which follows from the paragraph after Proposition 2.2.

When 𝑑 “ 2, ®𝑐 “ p1{2, 1{2q, and Np®𝑐q “ tp𝑛, 𝑛q : 𝑛 P Z`u, the result of Theorem 3.4
is contained in [2]. We also want to mention the work [23] where the strong asymptotics was
obtained for two touching intervals and the Jacobi weights. Theorem 3.4 also generalizes
the results in [42], where the measures `𝑖 were absolutely continuous and their Radon-
Nikodym derivatives with respect to the Lebesgue measure were assumed to be Fisher-
Hartwig perturbations of functions non-vanishing and analytic around the corresponding
intervals. We also mention our earlier work [5], where in the case of two absolutely
continuous measures with analytic non-vanishing derivatives the strong asymptotics was
derived along all ray sequences including the marginal cases ®𝑐 “ p0, 1q and ®𝑐 “ p1, 0q. In
the forthcoming work [43], which is a continuation of [5], the error estimates are shown to
be uniform in ®𝑛 with explicit bounds on their rate of decay.

Our approach relies on two improvements of a theorem by Totik [41, Theorem 14.4] on
the asymptotic behavior of orthogonal polynomials with varying weights. We discuss these
generalizations in Section 4.

In conclusion, we mention that finding strong asymptotics of MOPs is required in the
theory of Jacobi matrices on trees [11, 4, 5], the study of simultaneous Gaussian quadrature
[26], random matrices [8], asymptotcs of special Hankel determinants, and other areas. We
will address some of these applications in subsequent papers.
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3.3. Proofs of Propositions 3.1 and 3.2. In what follows, we switch to a vector notation.
Given ®Δ “ pΔ1,Δ2, . . . ,Δ𝑑q, a collection of closed pairwise disjoint intervals, we put

𝐿1p𝜔®Δq :“ 𝐿1p𝜔Δ1q ˆ ¨ ¨ ¨ ˆ 𝐿1p𝜔Δ𝑑
q,

and define the spaces of continuous 𝐶p®Δq and continuously differentiable 𝐶1p®Δq vector-
functions similarly. We shall use vector notation ®𝑢 to denote elements of these spaces and
write either 𝑢𝑖 or p®𝑢q𝑖 , whichever is more convenient, for the 𝑖-th component of the vector ®𝑢.

Throughout the paper we write 𝑎𝑛 À 𝑏𝑛 or 𝑓𝑛p𝑥q À 𝑔𝑛p𝑥q, 𝑥 P 𝐾 , if there exists a
constant𝐶 ą 0, independent of 𝑛 but possibly dependent on some other relevant parameters,
such that 𝑎𝑛 ď 𝐶𝑏𝑛 or 𝑓𝑛p𝑥q ď 𝐶𝑔𝑛p𝑥q, 𝑥 P 𝐾 . If we want to emphasize that 𝐶 does
depend on some quantity 𝑄, we shall write À𝑄.

Given a (real-valued) function 𝑢 in 𝐿1p𝜔Δq, we set

(3.4) p𝐻Δ𝑢qp𝑧q :“ log |ΩΔp𝑒𝑢 , 𝑧q|, 𝑧 P 𝐷Δ “ CzΔ,

where ΩΔ was introduced in (1.4). Then, 𝐻Δ𝑢 is a harmonic function in 𝐷Δ whose non-
tangential boundary values from above and below Δ exist almost everywhere and are equal
to 𝑢, see (1.5). That is, 𝐻Δ𝑢 is a solution of the Dirichlet problem in 𝐷Δ with boundary
data 𝑢. When 𝑢 P 𝐶pΔq, p𝐻Δ𝑢qp𝑧q is in fact continuous in the entire extended complex
plane, see [32, Corollary 4.1.8 and Theorem 4.2.1]. Next, let

𝐻Δ 𝑗ÑΔ𝑖
: 𝐿1p𝜔Δ 𝑗

q Ñ 𝐿1p𝜔Δ𝑖
q, 𝑢 ÞÑ p𝐻Δ 𝑗

𝑢q|Δ𝑖

for 𝑖 ‰ 𝑗 , 𝑖, 𝑗 P 𝐼𝑑 . For convenience, define 𝐻Δ𝑖ÑΔ𝑖
to be the operator that sends every

function into the zero function. Define

(3.5) H®Δ :“ ´
1
2
`

𝐻Δ 𝑗ÑΔ𝑖

˘𝑑

𝑖, 𝑗“1 : 𝐿1p𝜔®Δq Ñ 𝐿1p𝜔®Δq,

where 𝑖 is the row index and 𝑗 is the column one giving the matrix form

H®Δ “ ´
1
2

»

—

—

—

–

0 𝐻Δ2ÑΔ1 ¨ ¨ ¨ 𝐻Δ𝑛ÑΔ1

𝐻Δ1ÑΔ2 0 ¨ ¨ ¨ 𝐻Δ𝑛ÑΔ2
...

...
. . .

...

𝐻Δ1ÑΔ𝑛
𝐻Δ2ÑΔ𝑛

¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

.

Since harmonic functions are infinitely smooth, it in fact holds that H®Δp𝐿1p𝜔®Δqq Ă 𝐶1p®Δq.
We also need to introduce certain modifications of the operatorsH®Δ. These modifications

are not important for the proofs of Propositions 3.1 and 3.2, but will be indispensable in
the proof of Theorem 3.4 when we work with ray sequences exhibiting the pushing effect.
To this end, let

®Δ˚ Ď ®Δ pΔ˚
𝑖 Ď Δ𝑖 , @𝑖 P 𝐼𝑑q, ®Δ˚ “ pΔ˚

1 ,Δ
˚
2 , . . . ,Δ

˚
𝑑

q,

be a vector of closed intervals. For each pair Δ˚ Ď Δ, denote by 𝑅ΔÑΔ˚ the restriction
operator of a function on Δ to a function on Δ˚. Put

(3.6) H®Δ˚ ,®Δ :“ ´
1
2

´

𝐻Δ
˚

𝑗
ÑΔ𝑖

˝ 𝑅Δ 𝑗ÑΔ
˚

𝑗

¯𝑑

𝑖, 𝑗“1
: 𝐶p®Δq Ñ 𝐶p®Δq.

That is, H®Δ˚ ,®Δ ®𝑢 is obtained by first restricting ®𝑢 to ®Δ˚, then applying the same harmonic
extension operators as in the case of the operator H®Δ˚ , and finally restricting these exten-
sions to ®Δ (and not ®Δ˚ as in the case of H®Δ˚ ). We consider H®Δ˚ ,®Δ only as an operator on
continuous functions because a restriction of ®𝑢 P 𝐿1p𝜔®Δq to ®Δ˚ might not lie in 𝐿1p𝜔®Δ˚ q.
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Lemma 3.5. If H®Δ ®𝑢 “ ®𝑢, ®𝑢 P 𝐿1p𝜔®Δq, then ®𝑢 “ ®0, where ®0 is the zero vector-function.
The same conclusion holds in the case of H®Δ˚ ,®Δ on 𝐶p®Δq.

Proof. Set ℎ𝑖p𝑧q :“ p𝐻Δ𝑖
𝑢𝑖qp𝑧q, 𝑖 P 𝐼𝑑 . Since ®𝑢 lies in the image of H®Δ, each 𝑢𝑖 is

necessarily a continuous function on Δ𝑖 and therefore ℎ𝑖p𝑧q is not only harmonic in 𝐷Δ𝑖
,

but is also continuous in the whole extended complex plane (and is equal to 𝑢𝑖 on Δ𝑖).
Thus, H®Δ ®𝑢 “ ®𝑢 can be rewritten as

ℎ𝑖p𝑥q `
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

ℎ 𝑗p𝑥q “ 0, 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 .

This equality, conjugate-symmetry of each ℎ𝑙p𝑧q, 𝑙 P 𝐼𝑑 , and the Schwarz reflection
principle allow us to conclude that for each 𝑖 P 𝐼𝑑 the function

(3.7) R𝑖p𝑧q :“

#

ℎ𝑖p𝑧q ` 1
2
ř

𝑗P𝐼𝑑 , 𝑗‰𝑖
ℎ 𝑗p𝑧q, 𝑧 P C` :“ t𝑧 : Imp𝑧q ą 0u,

´ℎ𝑖p𝑧q ´ 1
2
ř

𝑗P𝐼𝑑 , 𝑗‰𝑖
ℎ 𝑗p𝑧q, 𝑧 P C´ :“ t𝑧 : Imp𝑧q ă 0u,

is not only harmonic in the upper and lower half-planes but is also harmonic across Δ𝑖 when
extended to Δ𝑖 by zero. Since the sum

ř

𝑗P𝐼𝑑 , 𝑗‰𝑖
ℎ 𝑗p𝑧q is harmonic in CzpY 𝑗‰𝑖Δ 𝑗q and

ℎ𝑖p𝑧q “ R𝑖p𝑧q ´
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

ℎ 𝑗p𝑧q, 𝑧 P C`,

this formula provides a harmonic continuation of ℎ𝑖p𝑧q from C` to C´ across Δ𝑖 . It readily
follows from the second equation in (3.7) that this continuations coincides in C´ with

´
ÿ

𝑗P𝐼𝑑

ℎ 𝑗p𝑧q “: ℎ0p𝑧q, 𝑧 P CzpY𝑖P𝐼𝑑Δ𝑖q.

Notice that ℎ0p𝑧q does not depend on 𝑖 in our argument. In a similar way, one can show that
ℎ𝑖p𝑧q can be harmonically extended from C´ to C` across Δ𝑖 resulting in the same ℎ0p𝑧q.

Let 𝔖 be the Riemann surface introduced before Proposition 2.2. Set ℎ to be a function
on 𝔖 that is equal to ℎ𝑘p𝑧q on 𝔖𝑘 , 𝑘 P t0, 1, . . . , 𝑑u. It follows from the arguments
above that ℎ is a global harmonic function on 𝔖 and therefore must be a constant, see [16,
Corollary 19.7]. From the definition of ℎ0p𝑧q it easily follows that this constant is zero.

Now, if H®Δ˚ ,®Δ ®𝑢 “ ®𝑢 for some ®𝑢 P 𝐶p®Δq, then H®Δ˚ ®𝑢˚ “ ®𝑢˚, where ®𝑢˚ is the restriction
of ®𝑢 to Δ˚. Hence, ®𝑢˚ is the zero vector. Since H®Δ˚ ,®Δ depends only on ®𝑢˚, H®Δ˚ ,®Δ ®𝑢 is the
zero vector as well, which finishes the proof of the lemma. �

In what follows, we set I to be the identity operator on any considered space. In the
next lemma 𝔅 stands for either 𝐿1p𝜔®Δq, 𝐶p®Δq, or 𝐶1p®Δq.

Lemma 3.6. H®Δ is a linear bounded compact operator on 𝔅 while I ´ H®Δ is invertible
on 𝔅. In particular, for any ®𝑎 P 𝔅, pI ´ H®Δq´1 ®𝑎 is the unique solution of ®𝑢 “ H®Δ ®𝑢 ` ®𝑎.
Similarly, H®Δ˚ ,®Δ is a linear bounded compact operator on 𝔅 while I ´H®Δ˚ ,®Δ is invertible
on 𝔅 (here, we only speak of continuous spaces).

Proof. Let 𝑢 P 𝐿1p𝜔Δq. Explicit expression (1.4) shows that for any closed subset 𝐾 Ă 𝐷Δ

there exists a constant 𝐶𝐾 such that
|p𝐻Δ𝑢qp𝑧q| ď 𝐶𝐾 }𝑢}, 𝑧 P 𝐾,

where we take the 𝐿1-norm of 𝑢. Since 𝐿1-norm is dominated by the uniform norm, which
is dominated by the 𝐶1-norm, the above inequality remains valid if 𝑢 belongs to 𝐶pΔq or
𝐶1pΔq with the norm coming from the corresponding space. Let 𝑈𝑖 , 𝑖 P 𝐼𝑑 , be pairwise
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disjoint open sets such that Δ𝑖 Ă 𝑈𝑖 . If ®𝑢 “ p𝑢1, 𝑢2, . . . , 𝑢𝑑q P 𝔅, then it follows from the
first observation of the lemma that

(3.8)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

p𝐻Δ 𝑗
𝑢 𝑗qp𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶𝑈𝑖

›

›®𝑢
›

›

𝔅
, 𝑧 P 𝑈𝑖 ,

for some constant 𝐶𝑈𝑖
and each 𝑖 P 𝐼𝑑 . Notice that when restricted to Δ𝑖 the expression

inside the absolute value above is equal to the 𝑖-th component of ´2pH®Δ ®𝑢q. This expression
is also a harmonic function on 𝑈𝑖 . According to [32, Theorem 1.3.10], any sequence of
harmonic functions, which is uniformly bounded above and below, has a locally uniformly
convergent subsequence. OnΔ𝑖 this convergence takes place in particular in𝐶1pΔ𝑖q. Hence,
H®Δ is a compact linear operator from 𝔅 into itself. Let now 𝔅 be either 𝐶p®Δq or 𝐶1p®Δq.
Notice that (3.8) remains true if we replace operators 𝐻Δ 𝑗

by 𝐻Δ
˚

𝑗
˝ 𝑅Δ 𝑗ÑΔ

˚

𝑗
. Hence, we

can similarly conclude that H®Δ˚ ,®Δ is a compact linear operator from 𝔅 into itself.
According to the Fredholm theory of compact operators, see [12, Section 7.11], I ´H®Δ

(resp. I ´ H®Δ˚ ,®Δ) is invertible if and only if 1 is not an eigenvalue of H®Δ (resp. H®Δ˚ ,®Δ),
which was proven in Lemma 3.5. This finishes the proof of the lemma. �

Lemma 3.7. Proposition 3.1 takes place. Moreover,

(3.9) 𝑆𝑖p𝑧q “ ΩΔ𝑖
p𝑒𝑠𝑖 , 𝑧q, 𝑖 P 𝐼𝑑 ,

where ®𝑠 “ p𝑠1, 𝑠2, . . . , 𝑠𝑑q “ pI ´ H®Δq´1 ®𝑎 for

®𝑎 “
1
2
`

log 𝑣1, log 𝑣2, . . . , log 𝑣𝑑
˘

P 𝐿1p𝜔®Δq,

and we set, for simplicity, 𝑣𝑖p𝑥q :“ 𝑣Δ𝑖
p𝑥q, 𝑖 P 𝐼𝑑 .

Proof. We get from Lemma 3.6 that ®𝑠 P 𝐿1p𝜔®Δq. Define functions 𝑆𝑖p𝑧q by (3.9). First,
we show that t𝑆𝑖u𝑖P𝐼𝑑 satisfy conditions of Proposition 3.1. From our discussion of
formulae (1.4) and (1.5), one concludes that 𝑆𝑖p𝑧q is necessarily outer, conjugate-symmetric,
𝑆𝑖p8q ą 0, and it satisfies log |𝑆𝑖˘p𝑥q| “ 𝑠𝑖p𝑥q for almost every 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 . To show
that it belongs to the Hardy space, we use

(3.10) 𝑒2𝑠𝑖p𝑥q “ 𝑣𝑖p𝑥q𝑒2pH®Δ ®𝑠q𝑖p𝑥q P 𝐿1p𝜔𝑖q, 𝑖 P 𝐼𝑑 ,

where the inclusion holds because the image of H®Δ lies in 𝐶p®Δq. Therefore, 𝑆𝑖 P 𝐻2p𝐷Δ𝑖
q.

Clearly, 𝑆𝑖p𝑥q ą 0 for 𝑥 P RzΔ𝑖 . We also see from (3.4) that

(3.11) log |𝑆𝑖p𝑧q| “ p𝐻Δ𝑖
𝑠𝑖qp𝑧q .

Hence, the equation ®𝑠 “ H®Δ®𝑠 ` ®𝑎 can now be rewritten as

log |𝑆𝑖˘p𝑥q| “
1
2

˜

log 𝑣𝑖p𝑥q ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

log 𝑆 𝑗p𝑥q

¸

for almost every 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 . Exponentiation then readily yields (3.1).
Conversely, let 𝑄𝑖p𝑧q, 𝑖 P 𝐼𝑑 , be outer conjugate-symmetric functions with 𝑄𝑖p8q ą 0

that satisfy (3.1) with 𝑆𝑖 replaced by 𝑄𝑖 . Then, by taking logarithms we get that

1
2

˜

log 𝑣𝑖p𝑥q ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

log |𝑄 𝑗p𝑥q|

¸

“ log |𝑄𝑖˘p𝑥q|

for almost every 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 . Moreover, we readily get from (1.4), (1.5), and (3.4) that
log |𝑄𝑖p𝑧q| “ p𝐻Δ𝑖

log |𝑄𝑖`|qp𝑧q and therefore the equation ®𝑢 “ H®Δ ®𝑢 ` ®𝑎 is solved by the
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vector-function plog |𝑄1`|, log |𝑄2`|, . . . , log |𝑄𝑑`|q. Hence, this vector-function must be
equal to ®𝑠 by Lemma 3.6, which means that 𝑄𝑖p𝑧q “ 𝑆𝑖p𝑧q, 𝑖 P 𝐼𝑑 , as desired. �

Lemma 3.8. Let tΔ𝑛u be a sequence of closed intervals converging to a non-degenerate
interval Δ. Further, let ` P USzpΔq and tℎ𝑛u be a sequence of continuous functions that
converges uniformly on some closed interval that contains Δ in its interior. Then

`

𝐻Δ𝑛
plog 𝑣𝑛 ` ℎ𝑛|Δ𝑛

q
˘

p𝑧q Ñ
`

𝐻Δplog 𝑣 ` ℎ|Δq
˘

p𝑧q

locally uniformly in 𝐷Δ as 𝑛 Ñ 8, where 𝑣𝑛 and 𝑣 are the Radon-Nikodym derivatives of
`|Δ𝑛

and `|Δ with respect to 𝜔Δ𝑛
and 𝜔Δ, respectively, and ℎ is the limit of ℎ𝑛.

Proof. Let 𝑙𝑛p𝑥q “ 𝑙ΔÑΔ𝑛
p𝑥q be as in (3.2). Observe that 𝑙𝑛p𝑥q converge to 𝑥 uniformly on

Δ. Set 𝑢𝑛p𝑥q :“ ℎ𝑛|Δ𝑛
p𝑥q ` log 𝑣𝑛p𝑥q and 𝑢p𝑥q :“ ℎ|Δp𝑥q ` log 𝑣p𝑥q. Then

p𝐻Δ𝑛
𝑢𝑛qp𝑧q ´ p𝐻Δ𝑢qp𝑧q “

ż

Δ

Re
ˆ

𝑤Δ𝑛
p𝑧q

𝑢𝑛p𝑙𝑛p𝑥qq

𝑧 ´ 𝑙𝑛p𝑥q
´ 𝑤Δp𝑧q

𝑢p𝑥q

𝑧 ´ 𝑥

˙

𝑑𝜔Δp𝑥q,

see (1.4) and (3.4). The function in parenthesis above can be rewritten as

p𝑤Δ𝑛
p𝑧q ´ 𝑤Δp𝑧qq

𝑢p𝑥q

𝑧 ´ 𝑥
` 𝑤Δ𝑛

p𝑧q
𝑢𝑛p𝑙𝑛p𝑥qq ´ 𝑢p𝑥q

𝑧 ´ 𝑙𝑛p𝑥q
`

𝑤Δ𝑛
p𝑧q

p𝑙𝑛p𝑥q ´ 𝑥q𝑢p𝑥q

p𝑧 ´ 𝑙𝑛p𝑥qqp𝑧 ´ 𝑥q
“: p𝐽𝑛,1 ` 𝐽𝑛,2 ` 𝐽𝑛,3qp𝑥, 𝑧q.

Observe that the functions𝑤Δ𝑛
p𝑧q´𝑤Δp𝑧q converge to zero uniformly in the whole extended

complex plane. Hence,

(3.12)
ż

Δ

𝐽𝑛,1p𝑥, 𝑧q𝑑𝜔Δp𝑥q Ñ 0

locally uniformly in 𝐷Δ as 𝑛 Ñ 8. Furthermore, since

𝑣𝑛p𝑥q “ 𝜋`1p𝑥q

b

p𝑥 ´ 𝛼𝑛qp𝛽𝑛 ´ 𝑥q, 𝑥 P Δ𝑛 “ r𝛼𝑛, 𝛽𝑛s,

it can be readily checked that 𝑢𝑛p𝑙𝑛p𝑥qq ´ 𝑢p𝑥q is equal to
“

ℎ𝑛p𝑙𝑛p𝑥qq ´ ℎp𝑥q
‰

`
1
2

log
𝛽𝑛 ´ 𝛼𝑛

𝛽 ´ 𝛼
`
“

log `1p𝑙𝑛p𝑥qq ´ log `1p𝑥q
‰

on Δ, where Δ “ r𝛼, 𝛽s. Due to uniform convergence of ℎ𝑛 to ℎ, uniform continuity of
ℎ on Δ, and (3.2), the functions 𝑢𝑛 ˝ 𝑙𝑛 ´ 𝑢 converge to zero in 𝐿1p𝜔Δq. As functions
|𝑤Δ𝑛

p𝑧q{p𝑧´ 𝑙𝑛p𝑥qq| are uniformly bounded for 𝑥 P r´1, 1s and 𝑧 on closed subsets of 𝐷Δ,
this necessarily yields that (3.12) holds with 𝐽𝑛,1p𝑥, 𝑧q is replaced by 𝐽𝑛,2p𝑥, 𝑧q. Uniform
convergence to zero of 𝑙𝑛p𝑥q ´ 𝑥 on Δ now guarantees that (3.12) remains valid if 𝐽𝑛,1p𝑥, 𝑧q

is replaced by 𝐽𝑛,3p𝑥, 𝑧q, which finishes the proof of the lemma. �

Lemma 3.9. Let ®Δ𝑛 “ pΔ𝑛,1,Δ𝑛,2, . . . ,Δ𝑛,𝑑q be as in Proposition 3.2 and 𝔅𝑛 be either
𝐶p®Δ𝑛q or 𝐶1p®Δ𝑛q. Then,

›

›pI ´ H®Δ𝑛
q´1›

›

𝔅𝑛
ď 𝐶

for some constant 𝐶 independent of 𝑛. Further, let ®Δ1 “ pΔ1
1,Δ

1
2, . . . ,Δ

1
𝑑

q be such that
®Δ𝑛 Ď ®Δ1 and the intervals Δ1

𝑖
, 𝑖 P 𝐼𝑑 , are pairwise disjoint. Let 𝔅1 be either 𝐶p®Δ1q or

𝐶1p®Δ1q. Then
›

›pI ´ H®Δ𝑛 ,®Δ1 q
´1›
›

𝔅1 ď 𝐶1

for some constant 𝐶1 independent of 𝑛.
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Proof. We start by proving the first claim. Using the notation of Proposition 3.2, let
𝑙𝑛,𝑖p𝑧q :“ 𝑙Δ𝑛,𝑖ÑΔ𝑖

p𝑧q be the linear function that maps Δ𝑛,𝑖 onto Δ𝑖 that has positive leading
coefficient, 𝑖 P 𝐼𝑑 , and let

L𝑛 : 𝔅 Ñ 𝔅𝑛, ®𝑢 ÞÑ p𝑢1 ˝ 𝑙𝑛,1, 𝑢2 ˝ 𝑙𝑛,2, . . . , 𝑢𝑑 ˝ 𝑙𝑛,𝑑q,

where ®𝑢 “ p𝑢1, 𝑢2, . . . , 𝑢𝑑q and 𝔅 is either 𝐶p®Δq or 𝐶1p®Δq. Then, L𝑛 is an isometry of
𝐶p®Δ𝑛q or an operator on 𝐶1p®Δq with the norm of size 1 ` 𝑜p1q as 𝑛 Ñ 8. Define

rH𝑛 :“ L´1
𝑛 ˝ H®Δ𝑛

˝ L𝑛.

It is sufficient to prove the statement of the lemma with H®Δ𝑛
replaced by rH𝑛 because

}pI ´ H®Δ𝑛
q´1}𝔅𝑛

“ p1 ` 𝑜p1qq}pI ´ rH𝑛q´1}𝔅,

where we have actual equality of norms if 𝔅𝑛 “ 𝐶p®Δ𝑛q. It trivially holds that

R𝑛pI ´ rH𝑛q´1 “ pI ´ H®Δq´1, R𝑛 :“ I ´ pI ´ H®Δq´1p rH𝑛 ´ H®Δq.

Thus, it is enough to show that the operators R𝑛 are invertible and the norms of their
inverses are uniformly bounded. To this end, it is sufficient to show that

} rH𝑛 ´ H®Δ}𝔅 Ñ 0 as 𝑛 Ñ 8.

First, let 𝔅 “ 𝐶p®Δq. The specific form (3.5) of these operators yields that the above claim
will follow if we prove that

(3.13)
›

›p𝐻Δ𝑛,𝑖
p𝑢 ˝ 𝑙𝑛,𝑖qq ˝ 𝑙´1

𝑛, 𝑗
´ 𝐻Δ𝑖

𝑢
›

›

𝐶pΔ 𝑗q
ď 𝜖𝑛}𝑢}𝐶pΔ𝑖q

for each 𝑖 ‰ 𝑗 , 𝑖, 𝑗 P 𝐼𝑑 , with 𝜖𝑛 Ñ 0 as 𝑛 Ñ 8. It follows from (1.4) and (3.4) that we
need to estimate the supremum norm of the following function in 𝑦

ż

Δ𝑛,𝑖

𝑤Δ𝑛,𝑖
p𝑙´1
𝑛, 𝑗

p𝑦qq
𝑢p𝑙𝑛,𝑖p𝑥qq

𝑙´1
𝑛, 𝑗

p𝑦q ´ 𝑥
𝑑𝜔Δ𝑛,𝑖

p𝑥q ´

ż

Δ𝑖

𝑤Δ𝑖
p𝑦q

𝑢p𝑥q

𝑦 ´ 𝑥
𝑑𝜔Δ𝑖

p𝑥q

“

ż

Δ𝑖

˜

𝑤Δ𝑛,𝑖
p𝑙´1
𝑛, 𝑗

p𝑦qq

𝑙´1
𝑛, 𝑗

p𝑦q ´ 𝑙´1
𝑛,𝑖

p𝑥q
´
𝑤Δ𝑖

p𝑦q

𝑦 ´ 𝑥

¸

𝑢p𝑥q𝑑𝜔Δ𝑖
p𝑥q

on Δ𝑛, 𝑗 , 𝑗 ‰ 𝑖 (we have removed the reference to the real part as the integrals are real for
the considered values of 𝑦). As 𝜔Δ𝑖

is a probability measure, we put

(3.14) 𝜖𝑛 :“ max
𝑖‰ 𝑗

max
𝑦PΔ 𝑗

max
𝑥PΔ𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

𝑤Δ𝑛,𝑖
p𝑙´1
𝑛, 𝑗

p𝑦qq

𝑙´1
𝑛, 𝑗

p𝑦q ´ 𝑙´1
𝑛,𝑖

p𝑥q
´
𝑤Δ𝑖

p𝑦q

𝑦 ´ 𝑥

ˇ

ˇ

ˇ

ˇ

ˇ

to get the desired bound. Since tΔ𝑙u𝑙P𝐼𝑑 are pairwise disjoint and both 𝑙𝑛,𝑖p𝑧q and 𝑙𝑛, 𝑗p𝑧q
converge to 𝑧 locally uniformly in C, it holds that 𝜖𝑛 Ñ 0 as 𝑛 Ñ 8, as claimed.

When 𝔅 “ 𝐶1p®Δq, it is sufficient to show that

(3.15)
›

›p𝐻Δ𝑛,𝑖
p𝑢 ˝ 𝑙𝑛,𝑖qq ˝ 𝑙´1

𝑛, 𝑗
´ 𝐻Δ𝑖

𝑢
›

›

𝐶1pΔ 𝑗q
ď p𝜖𝑛}𝑢}𝐶pΔ𝑖q

for each 𝑖 ‰ 𝑗 , 𝑖, 𝑗 P 𝐼𝑑 , with p𝜖𝑛 Ñ 0 as 𝑛 Ñ 8. Since we can differentiate under the
integral sign, the proof of this claim is no different from the already considered case.

The proof of the second claim is essentially the same. We have that
R1
𝑛pI ´ H®Δ𝑛 ,®Δ1 q

´1 “ pI ´ H®Δ,®Δ1 q
´1, R1

𝑛 :“ I ´ pI ´ H®Δ,®Δ1 q
´1pH®Δ𝑛 ,®Δ1 ´ H®Δ,®Δ1 q.

Clearly, 𝐶pΔ𝑖q can be replaced by 𝐶pΔ1
𝑖
q in (3.13) and (3.15) simply because Δ𝑖 Ď Δ1

𝑖
.

Moreover, the spaces 𝐶pΔ 𝑗q and 𝐶1pΔ 𝑗q in (3.13) and (3.15), respectively, can be replaced
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by𝐶pΔ1
𝑗
q and𝐶1pΔ1

𝑗
q because (3.14) only uses the fact that all the intervalsΔ𝑘 are separated

from each other, which is also true about the intervals Δ1
𝑘
. Hence,

}H®Δ𝑛 ,®Δ1 ´ H®Δ,®Δ1 }𝔅1 Ñ 0 as 𝑛 Ñ 8,

which finishes the proof of the lemma. �

Lemma 3.10. Let ®Δ𝑛 and ®Δ be as in Proposition 3.2. Further, for each 𝑖 P 𝐼𝑑 let 𝑏𝑛,𝑖p𝑥q,
𝑛 P N, be continuous functions defined on some interval containing Y𝑚PNΔ𝑚,𝑖 such that
the sequence t𝑏𝑛,𝑖u converges uniformly on this interval to a continuous function 𝑏𝑖p𝑥q as
𝑛 Ñ 8. Let ®𝑦𝑛, ®𝑦 be the unique solutions of

®𝑦𝑛 “ H®Δ𝑛
®𝑦𝑛 ` ®𝑏𝑛 and ®𝑦 “ H®Δ®𝑦 ` ®𝑏,

where p®𝑏𝑛q𝑖p𝑥q :“ 𝑏𝑛,𝑖p𝑥q, 𝑥 P Δ𝑛,𝑖 , and p®𝑏q𝑖p𝑥q :“ 𝑏𝑖p𝑥q, 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 . Then, for each
𝑖 P 𝐼𝑑 , the convergence

𝐻Δ𝑛,𝑖
p®𝑦𝑛q𝑖p𝑧q Ñ 𝐻Δ𝑖

p®𝑦q𝑖p𝑧q as 𝑛 Ñ 8

holds uniformly in 𝑧 in the extended complex plane.

Proof. Since ®𝑏𝑛 P 𝐶p®Δ𝑛q and ®𝑏 P 𝐶p®Δq, we have that ®𝑦𝑛 P 𝐶p®Δ𝑛q and ®𝑦 P 𝐶p®Δq by
Lemma 3.6. Thus, we get from Lemma 3.9 and the conditions placed on the functions
𝑏𝑛,𝑖p𝑥q, 𝑖 P 𝐼𝑑 , that

(3.16) }®𝑦𝑛}
𝐶p®Δ𝑛q

“ }pI ´ H®Δ𝑛
q´1®𝑏𝑛}

𝐶p®Δ𝑛q
À }®𝑏𝑛}

𝐶p®Δ𝑛q
À 1.

Put ℎ𝑛,𝑖p𝑧q :“ 𝐻Δ𝑛,𝑖
p®𝑦𝑛q𝑖p𝑧q, which is a continuous function in C that is harmonic in 𝐷Δ𝑛,𝑖

and is equal to p®𝑦𝑛q𝑖 on Δ𝑛,𝑖 . Set ®𝑦˚
𝑛 :“ L´1

𝑛 ®𝑦𝑛, where L𝑛 was defined in the previous
lemma. Then, it holds that

®𝑦˚
𝑛 “ H®Δ®𝑦

˚
𝑛 ` ®𝑏˚

𝑛 ,

where ®𝑏˚
𝑛 is the vector-function with coordinates

𝑏˚
𝑛,𝑖p𝑥q :“ 𝑏𝑛,𝑖p𝑙

´1
𝑛,𝑖

p𝑥qq `
1
2

ÿ

𝑗‰𝑖, 𝑗P𝐼𝑑

´

ℎ𝑛, 𝑗p𝑙
´1
𝑛, 𝑗

p𝑥qq ´ ℎ𝑛, 𝑗p𝑙
´1
𝑛,𝑖

p𝑥qq

¯

, 𝑥 P Δ𝑖 ,

and 𝑙𝑛,𝑘p𝑧q is the linear function, see (3.2), that mapsΔ𝑛,𝑘 ontoΔ𝑘 , 𝑘 P 𝐼𝑑 . Explicit integral
representation (3.4), (1.4) and the bound (3.16) yield that

|ℎ𝑛, 𝑗p𝑡1q ´ ℎ𝑛, 𝑗p𝑡2q| À max
𝑥PΔ𝑛, 𝑗

ˇ

ˇ

ˇ

ˇ

𝑤Δ𝑛, 𝑗
p𝑡1q

𝑡1 ´ 𝑥
´
𝑤Δ𝑛, 𝑗

p𝑡2q

𝑡2 ´ 𝑥

ˇ

ˇ

ˇ

ˇ

for any two points 𝑡1, 𝑡2 R Δ𝑛, 𝑗 . Since the functions 𝑙𝑛,𝑘p𝑧q converge to 𝑧 and the functions
|𝑤Δ𝑛,𝑘

p𝑧q| converge to |𝑤Δ𝑘
p𝑧q| locally uniformly in C, 𝑘 P 𝐼𝑑 , we get that

}®𝑦˚
𝑛 ´ ®𝑦}

𝐶p®Δq
ď }pI ´ H®Δq´1}}®𝑏˚

𝑛 ´ ®𝑏}
𝐶p®Δq

Ñ 0

as 𝑛 Ñ 8 by Lemma 3.6. Put ℎ𝑖p𝑧q :“ 𝐻Δ𝑖
p®𝑦q𝑖p𝑧q, which is a continuous function in C

that is harmonic in 𝐷Δ𝑖
and equal to p®𝑦q𝑖 on Δ𝑖 . It follows from the maximum principle for

harmonic functions that
ˇ

ˇℎ𝑖p𝑙𝑛,𝑖p𝑧qq ´ ℎ𝑛,𝑖p𝑧q
ˇ

ˇ ď }ℎ𝑖 ˝ 𝑙𝑛,𝑖 ´ ℎ𝑛,𝑖}𝐶pΔ𝑛,𝑖q “ }p®𝑦q𝑖 ´ p®𝑦˚
𝑛q𝑖}𝐶pΔ𝑖q Ñ 0

as 𝑛 Ñ 8 for each 𝑧 P C and 𝑖 P 𝐼𝑑 . It only remains to observe that the differences
ℎ𝑖 ˝ 𝑙𝑛,𝑖 ´ ℎ𝑖 are uniformly converging to zero in the extended complex plane by the
maximum modulus principle for harmonic functions as ℎ𝑖 is uniformly continuous on any
compact set containing Δ𝑖 and 𝑙𝑛,𝑖p𝑧q converge to 𝑧 uniformly on any such set. �
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Lemma 3.11. Proposition 3.2 takes place.

Proof. Let 𝑣𝑛,𝑖 be the Radon-Nikodym derivative of `𝑖|Δ𝑛,𝑖
with respect to 𝜔Δ𝑛,𝑖

and 𝑣𝑖 be
the Radon-Nikodym derivative of `𝑖|Δ𝑖

with respect to 𝜔Δ𝑖
, 𝑖 P 𝐼𝑑 . Set

®𝑎𝑛 :“
1
2
`

log 𝑣𝑛,1, . . . , log 𝑣𝑛,𝑑
˘

and ®𝑎 :“
1
2
`

log 𝑣1, . . . , log 𝑣𝑑
˘

.

Further, let ®𝑠𝑛 and ®𝑠 be the unique solutions of

(3.17) ®𝑠𝑛 “ H®Δ𝑛
®𝑠𝑛 ` ®𝑎𝑛 and ®𝑠 “ H®Δ®𝑠 ` ®𝑎,

respectively. Set ®𝑦𝑛 :“ H®Δ𝑛
®𝑠𝑛, ®𝑏𝑛 :“ H®Δ𝑛

®𝑎𝑛, ®𝑦 :“ H®Δ®𝑠, and ®𝑏 :“ H®Δ ®𝑎. Applying the
operators H®Δ𝑛

and H®Δ to equations in (3.17), respectively, we get that

®𝑦𝑛 “ H®Δ𝑛
®𝑦𝑛 ` ®𝑏𝑛 and ®𝑦 “ H®Δ®𝑦 ` ®𝑏.

It follows from Lemma 3.8, applied with ℎ𝑛 ” 0, that the vector-functions ®𝑏𝑛 and ®𝑏 satisfy
the conditions of Lemma 3.10. Hence, we have that

ℎ𝑛,𝑖p𝑧q :“ 𝐻Δ𝑛,𝑖
p®𝑦𝑛q𝑖p𝑧q Ñ ℎ𝑖p𝑧q :“ 𝐻Δ𝑖

p®𝑦q𝑖p𝑧q as 𝑛 Ñ 8

uniformly in C. Recall that
$

&

%

ℎ𝑛,𝑖p𝑥q “ p®𝑦𝑛q𝑖p𝑥q “
`

H®Δ𝑛
®𝑠𝑛
˘

𝑖
p𝑥q, 𝑥 P Δ𝑛,𝑖 ,

ℎ𝑖p𝑥q “ p®𝑦q𝑖p𝑥q “
`

H®Δ®𝑠
˘

𝑖
p𝑥q, 𝑥 P Δ𝑖 ,

for each 𝑖 P 𝐼𝑑 , by the very definition of ®𝑦𝑛 and ®𝑦 as well as the properties of harmonic
extensions of continuous functions. Thus, we get from the very definition of ®𝑠𝑛 and ®𝑠 that

#

p®𝑠𝑛q𝑖p𝑥q “ ℎ𝑛,𝑖p𝑥q ` 1
2 log 𝑣𝑛,𝑖p𝑥q, 𝑥 P Δ𝑛,𝑖 ,

p®𝑠q𝑖p𝑥q “ ℎ𝑖p𝑥q ` 1
2 log 𝑣𝑖p𝑥q, 𝑥 P Δ𝑖 ,

for each 𝑖 P 𝐼𝑑 . Since functions ℎ𝑛,𝑖 converge uniformly to ℎ𝑖 , we get from Lemma 3.8 that

(3.18) 𝐻Δ𝑛,𝑖
p®𝑠𝑛q𝑖p𝑧q Ñ 𝐻Δ𝑖

p®𝑠q𝑖p𝑧q as 𝑛 Ñ 8

locally uniformly in 𝐷Δ𝑖
for each 𝑖 P 𝐼𝑑 .

It only remains to show that (3.18) implies (3.3). Since 𝑆𝑖p𝑧q is a fixed non-vanishing
function, it is enough to show that the ratios 𝑆𝑛,𝑖p𝑧q{𝑆𝑖p𝑧q converge to 1 locally uniformly
in 𝐷Δ𝑖

for each 𝑖 P 𝐼𝑑 . It can be readily seen from (1.4), (3.4), (3.9) and (3.18) that this
claim is true for |𝑆𝑛,𝑖p𝑧q{𝑆𝑖p𝑧q|. Thus, the functions 𝑆𝑛,𝑖p𝑧q{𝑆𝑖p𝑧q form a normal family in
𝐷Δ𝑖

whose only limit points are unimodular constants. As these functions are positive at
infinity, the desired claim follows. �

3.4. Proof of Proposition 3.3 and an example. Set \p𝑡q :“ | log `1p𝑡q|. As men-
tioned right after the statement of Proposition 3.3, we can consider p𝐼𝛾\qp𝑥q instead of
p𝐼𝛾 log `1qp𝑥q.

Lemma 3.12. Proposition 3.3(i) implies Proposition 3.3(ii).

Proof. We shall prove continuity at 𝛽 understanding that continuity at 𝛼 can be proven
analogously. We need to show that

lim
𝑛Ñ8

p𝐼𝛾\qp𝛽𝑛q “ p𝐼𝛾\qp𝛽q
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for any sequence t𝛽𝑛u Ă Δp`q such that 𝛽𝑛 Ñ 𝛽 as 𝑛 Ñ 8. Clearly, in the limit above we
can replace 𝛾 by 𝛼. Let 𝑙𝑛p𝑡q “ 𝛼 `

𝛽𝑛´𝛼

𝛽´𝛼
p𝑡 ´ 𝛼q. Observe also that

p𝐼𝛼\qp𝛽𝑛q “

d

𝛽𝑛 ´ 𝛼

𝛽 ´ 𝛼

ż 𝛽

𝛼

\p𝑙𝑛p𝑡qq
?
𝛽 ´ 𝑡

𝑑𝑡.

The claim of the lemma now follows from (3.2) and the estimate
ˇ

ˇ

ˇ

ˇ

ż 𝛽

𝛼

\p𝑡q
?
𝛽 ´ 𝑡

𝑑𝑡 ´

ż 𝛽

𝛼

\p𝑙𝑛p𝑡qq
?
𝛽 ´ 𝑡

𝑑𝑡

ˇ

ˇ

ˇ

ˇ

ď 𝜋
a

𝛽 ´ 𝛼

ż 𝛽

𝛼

|\p𝑡q ´ \p𝑙𝑛p𝑡qq|𝑑𝜔Δp𝑡q

ď 𝜋
a

𝛽 ´ 𝛼

ż 𝛽

𝛼

| log `1p𝑡q ´ log `1p𝑙𝑛p𝑡qq|𝑑𝜔Δp𝑡q. �

Lemma 3.13. Proposition 3.3(iii) implies Proposition 3.3(i).

Proof. Let tΔ𝑛u be a sequence of closed subintervals of Δp`q that converges to Δ. Pick
𝜖 ą 0 and let 𝛿 be some positive number we will specify later. Then,
ż 𝛽

𝛼

| log `1p𝑡q ´ log `1p𝑙𝑛p𝑡qq|𝑑𝜔Δp𝑡q ď

ż 𝛽´𝛿

𝛼`𝛿

| log `1p𝑡q ´ log `1p𝑙𝑛p𝑡qq|𝑑𝜔Δp𝑡q `

ż 𝛽

𝛽´𝛿

`

\p𝑡q ` \p𝑙𝑛p𝑡qq
˘

𝑑𝜔Δp𝑡q `

ż 𝛼`𝛿

𝛼

`

\p𝑡q ` \p𝑙𝑛p𝑡qq
˘

𝑑𝜔Δp𝑡q,(3.19)

where 𝑙𝑛p𝑡q is the linear transformation with the positive leading coefficient that takes Δ

onto Δ𝑛. If 𝛼𝑛 and 𝛽𝑛 are the endpoints of Δ𝑛, i.e., Δ𝑛 “ r𝛼𝑛, 𝛽𝑛s, then
ż 𝛽

𝛽´𝛿

\p𝑙𝑛p𝑡qq𝑑𝜔Δp𝑡q “

ż 𝛽𝑛

𝛽𝑛´𝛿𝑛

\p𝑡q𝑑𝜔Δ𝑛
p𝑡q,

where 𝛿𝑛 “
𝛽𝑛´𝛼𝑛
𝛽´𝛼

𝛿, and a similar equality holds for the integral of \p𝑙𝑛p𝑡qq on r𝛼, 𝛼` 𝛿s.
Notice that lim𝑛Ñ8 𝛿𝑛 “ 𝛿. Now, it becomes clear that the assumption (iii) of the
proposition implies that exists 𝛿 ą 0 and 𝑁 P N such that

ż 𝛽

𝛽´𝛿

\p𝑡q𝑑𝜔Δp𝑡q ă
𝜖

5
,

ż 𝛼`𝛿

𝛼

\p𝑡q𝑑𝜔Δp𝑡q ă
𝜖

5
,

ż 𝛽

𝛽´𝛿

\p𝑙𝑛p𝑡qq𝑑𝜔Δp𝑡q ă
𝜖

5
,

ż 𝛼`𝛿

𝛼

\p𝑙𝑛p𝑡qq𝑑𝜔Δp𝑡q ă
𝜖

5

for all 𝑛 ě 𝑁 . To see that the first integral in (3.19) also can be made smaller than 𝜖{5 for
all large enough 𝑛, observe that 𝑑𝜔Δp𝑡q ď p𝜋𝛿q´1𝑑𝑡 on the interval of integration and that

lim
𝑛Ñ8

ż 𝛽´𝛿

𝛼`𝛿

| log `1p𝑡q ´ log `1p𝑙𝑛p𝑡qq|𝑑𝑡 “ 0 ,

which can be shown, for instance, by approximating log `1p𝑡q with continuous functions
in 𝐿1 norm (the desired estimate for continuous functions follows trivially from uniform
continuity). �

Lemma 3.14. Proposition 3.3(ii) implies Proposition 3.3(iii).

Proof. Since p𝐼𝛾\qp𝑥q is continuous at 𝛽, there exists an interval, say r𝑎, 𝑏s, that contains
𝛽 in its interior (unless 𝛽 is the right endpoint of Δp`q, in which case 𝑏 “ 𝛽), on which
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p𝐼𝛾\qp𝑥q is bounded. It is known [35, Theorem 2.1] that

(3.20) \p𝑥q “
𝑑

𝑑𝑥

ˆ

1
?
𝜋

ż 𝑥

𝛾

p𝐼𝛾\qp𝑡q
?
𝑥 ´ 𝑡

𝑑𝑡

˙

“
𝑑

𝑑𝑥
p𝐼𝛾p𝐼𝛾\qqp𝑥q, 𝑥 P p𝛾, 𝑏q.

Let us write p𝐼2𝛾\qp𝑥q for p𝐼𝛾p𝐼𝛾\qqp𝑥q, which is an absolutely continuous function on r𝛾, 𝑏s

that vanishes at 𝛾, see again [35, Theorem 2.1]. Fix some 𝛿 P p0, p𝑏 ´ 𝑎q{2q. Notice that

𝑑

𝑑𝑥

˜

ż 𝑥´𝛿

𝛾

p𝐼2𝛾\qp𝑡q
?
𝑥 ´ 𝑡

𝑑𝑡

¸

“
𝑑

𝑑𝑥

˜

ż 𝑥´𝛾

𝛿

p𝐼2𝛾\qp𝑥 ´ 𝑠q
?
𝑠

𝑑𝑠

¸

“

lim
ℎÑ0

ż 𝑥´𝛾

𝛿

p𝐼2𝛾\qp𝑥 ` ℎ ´ 𝑠q ´ p𝐼2𝛾\qp𝑥 ´ 𝑠q

ℎ

𝑑𝑠
?
𝑠

` lim
ℎÑ0

1
ℎ

ż 𝛾`ℎ

𝛾

p𝐼2𝛾\qp𝑡q
?
𝑥 ` ℎ ´ 𝑡

𝑑𝑡.

The second limit is equal to zero due to continuity of the integrand and vanishing of p𝐼2𝛾\qp𝑡q

at 𝛾. It is known, see [34, Theorem 6.9], that absolute continuity of a function is equivalent
to uniform integrability of its divided differences. As p𝐼2𝛾\qp𝑥q is absolutely continuous
and 1{

?
𝑠 is continuous on r𝛿, 𝑏´ 𝛾s, we get from Vitali’s convergence theorem and (3.20)

that the first limit is equal to
ż 𝑥´𝛾

𝛿

\p𝑥 ´ 𝑠q
?
𝑠

𝑑𝑠

and hence

(3.21)
𝑑

𝑑𝑥

˜

ż 𝑥´𝛿

𝛾

p𝐼2𝛾\qp𝑡q
?
𝑥 ´ 𝑡

𝑑𝑡

¸

“

ż 𝑥´𝛾

𝛿

\p𝑥 ´ 𝑠q
?
𝑠

𝑑𝑠 “

ż 𝑥´𝛿

𝛾

\p𝑡q
?
𝑥 ´ 𝑡

𝑑𝑡.

Writing the outer 𝐼𝛾 transform explicitly and changing the order of integration gives us

(3.22)
ż 𝑥´𝛿

𝛾

p𝐼2𝛾\qp𝑡q
?
𝑥 ´ 𝑡

𝑑𝑡 “
1

?
𝜋

ż 𝑥´𝛿

𝛾

˜

ż 𝑥´𝛿

𝑠

𝑑𝑡
a

p𝑡 ´ 𝑠qp𝑥 ´ 𝑡q

¸

p𝐼𝛾\qp𝑠q𝑑𝑠 “

ż 𝑥´𝛿

𝛾

𝐹

ˆ

1 ´
𝛿

𝑥 ´ 𝑠

˙

p𝐼𝛾\qp𝑠q𝑑𝑠, 𝐹p𝑠q :“
1

?
𝜋

ż 𝑠

0

𝑑𝑡
a

𝑡p1 ´ 𝑡q
.

Again, we need to justify changing the order of differentiation and integration. To this end,
assume now that 𝑥 P p𝑎 ` 2𝛿, 𝑏q. By the mean-value theorem and its very definition, the
derivative of the last integral in (3.22) is equal to the limit as ℎ Ñ 0 of the following sum
of three terms

(3.23) 𝛿

ż 𝑎

𝛾

𝐹1

ˆ

1 ´
𝛿

𝑥 ` bℎ ´ 𝑠

˙

p𝐼𝛾\qp𝑠q

p𝑥 ´ 𝑠q2 𝑑𝑠`

1
ℎ

ż 𝑥´𝛿

𝑎

ˆ

𝐹

ˆ

1 ´
𝛿

𝑥 ` ℎ ´ 𝑠

˙

´ 𝐹

ˆ

1 ´
𝛿

𝑥 ´ 𝑠

˙˙

p𝐼𝛾\qp𝑠q𝑑𝑠`

1
ℎ

ż 𝑥`ℎ´𝛿

𝑥´𝛿

𝐹

ˆ

1 ´
𝛿

𝑥 ` ℎ ´ 𝑠

˙

p𝐼𝛾\qp𝑠q𝑑𝑠,

where bℎ “ bℎp𝑥, 𝑠q is such that |bℎ| ď |ℎ|. The first term in the sum above converges to
c

𝛿

𝜋

ż 𝑎

𝛾

p𝐼𝛾\qp𝑠q𝑑𝑠

p𝑥 ´ 𝑠q
?
𝑥 ´ 𝛿 ´ 𝑠

,
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when ℎ Ñ 0. This follows from the dominated convergence theorem because p𝐼𝛾\qp𝑠q is a
fixed integrable function and the other factor in the integrand is a function continuous in 𝑠
that converges uniformly when ℎ Ñ 0. The second term in (3.23) has the following limit

𝛿

ż 𝑥´𝛿

𝑎

𝐹1

ˆ

1 ´
𝛿

𝑥 ´ 𝑠

˙

p𝐼𝛾\qp𝑠q

p𝑥 ´ 𝑠q2 𝑑𝑠 “

c

𝛿

𝜋

ż 𝑥´𝛿

𝑎

p𝐼𝛾\qp𝑠q𝑑𝑠

p𝑥 ´ 𝑠q
?
𝑥 ´ 𝛿 ´ 𝑠

as ℎ Ñ 0 according to Vitali’s convergence theorem. Indeed, p𝐼𝛾\qp𝑠q is bounded on the
interval of integration by assumptions of Proposition 3.3(ii) and the divided differences of
𝐹p1 ´ 𝛿p𝑥 ´ 𝑠q´1q are uniformly integrable. The last term in (3.23) can be rewritten as

𝛿

ℎ

ż ℎ{pℎ`𝛿q

0
p𝐼𝛾\q

ˆ

𝑥 ` ℎ ´
𝛿

1 ´ 𝑡

˙

𝐹p𝑡q

p1 ´ 𝑡q2 𝑑𝑡.

Its limit as ℎ Ñ 0 is equal to 0 due to the boundedness of p𝐼𝛾\qp𝑥q on p𝑎, 𝑏q as well as
the continuity of the function 𝐹p𝑡q{p1 ´ 𝑡q2 around the origin and its vanishing at 𝑡 “ 0.
Altogether, we get from (3.21), (3.22), and the reasoning above that
ż 𝑥´𝛿

𝛾

\p𝑡q𝑑𝑡
?
𝑥 ´ 𝑡

“

c

𝛿

𝜋

ż 𝑥´𝛿

𝛾

p𝐼𝛾\qp𝑠q𝑑𝑠

p𝑥 ´ 𝑠q
?
𝑥 ´ 𝛿 ´ 𝑠

“
2

?
𝜋

ż 𝐿𝑥,𝛿

0
p𝐼𝛾\q

`

𝑥 ´ 𝛿 ´ 𝛿𝑡2
˘ 𝑑𝑡

1 ` 𝑡2
,

where 𝐿𝑥, 𝛿 “
a

p𝑥 ´ 𝛿 ´ 𝛾q{𝛿. We can use the identity
ş8

0 p𝑡2 ` 1q´1𝑑𝑡 “ 𝜋{2 to rewrite

1
?
𝜋

ż 𝑥

𝑥´𝛿

\p𝑡q𝑑𝑡
?
𝑥 ´ 𝑡

“ p𝐼𝛾\qp𝑥q ´
1

?
𝜋

ż 𝑥´𝛿

𝛾

\p𝑡q𝑑𝑡
?
𝑥 ´ 𝑡

“
2
𝜋

ˆ
ż 8

ℓ𝛿{
?
𝛿

p𝐼𝛾\qp𝑥q𝑑𝑡

1 ` 𝑡2

´

ż 𝐿𝑥,𝛿

ℓ𝛿{
?
𝛿

p𝐼𝛾\qp𝑥 ´ 𝛿 ´ 𝛿𝑡2q𝑑𝑡

1 ` 𝑡2
`

ż ℓ𝛿{
?
𝛿

0

p𝐼𝛾\qp𝑥q ´ p𝐼𝛾\qp𝑥 ´ 𝛿 ´ 𝛿𝑡2q

1 ` 𝑡2
𝑑𝑡

¸

for any positive ℓ𝛿 . If we choose ℓ𝛿 “ 𝛿
1
8 , we get that

ˇ

ˇ

ˇ

ˇ

ż 8

ℓ𝛿{
?
𝛿

p𝐼𝛾\qp𝑥q𝑑𝑡

1 ` 𝑡2

ˇ

ˇ

ˇ

ˇ

ď |p𝐼𝛾\qp𝑥q|

?
𝛿

ℓ𝛿
“ |p𝐼𝛾\qp𝑥q|𝛿

3
8 .

Similarly,
ˇ

ˇ

ˇ

ˇ

ˇ

ż 𝐿𝑥,𝛿

ℓ𝛿{
?
𝛿

p𝐼𝛾\qp𝑥 ´ 𝛿 ´ 𝛿𝑡2q𝑑𝑡

1 ` 𝑡2

ˇ

ˇ

ˇ

ˇ

ˇ

ď

?
𝛿

ℓ2
𝛿

ż 𝑥´𝛿´ℓ2
𝛿

𝛾

|p𝐼𝛾\qp𝑠q|𝑑𝑠
?
𝑥 ´ 𝛿 ´ 𝑠

ď

?
𝛿

ℓ3
𝛿

ż 𝑏

𝛾

|p𝐼𝛾\qp𝑠q|𝑑𝑠 “ 𝛿
1
8

ż 𝑏

𝛾

|p𝐼𝛾\qp𝑠q|𝑑𝑠 À 𝛿
1
8 .

Next, we have that
ˇ

ˇ

ˇ

ˇ

ˇ

ż ℓ𝛿{
?
𝛿

0

p𝐼𝛾\qp𝑥q ´ p𝐼𝛾\qp𝑥 ´ 𝛿 ´ 𝛿𝑡2q

1 ` 𝑡2
𝑑𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ď
𝜋

2
max

𝑠Pr𝑥´𝛿´𝛿
1
4 ,𝑥´𝛿s

ˇ

ˇp𝐼𝛾\qp𝑥q ´ p𝐼𝛾\qp𝑠q
ˇ

ˇ.

Now, using continuity of p𝐼𝛾\qp𝑥q at 𝛽, the above estimates show that given 𝜖 ą 0, we can
always find 𝑑𝜖 so that |𝑥 ´ 𝛽| ă 𝑑𝜖 and |𝑥 ´ 𝛿 ´ 𝛽| ă 𝑑𝜖 imply

ż 𝑥

𝑥´𝛿

\p𝑡q𝑑𝑡
?
𝑥 ´ 𝑡

ă 𝜖 .

This is precisely the statement of the second part in Proposition 3.3(iii). The first one is
proved similarly. �
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An example. The uniform Szegő condition is subtle and it depends on the direction in
which the point is approached as shown by the following example. Given 𝜖 P r0, 1s, let `𝜖
be an absolutely continuous measure on r´1, 1s such that log `1

𝜖 p𝑥q “ ´\ 𝜖 p𝑥q, where

\ 𝜖 p𝑥q :“

#

0, 𝑥 P r´1, 0s,

𝑥´1{2p1 ´ log 𝑥q´𝜖 , 𝑥 P p0, 1s.

When 𝜖 “ 0, it holds that `0 P Szpr´1, 𝑎sq for any 𝑎 P p´1, 1s. Indeed, the claim is
obvious when 𝑎 ď 0. When 𝑎 ą 0, it holds that

1
𝜋

ż 𝑎

´1

\0p𝑥q𝑑𝑥
a

p𝑥 ` 1qp𝑎 ´ 𝑥q
“

1
𝜋

ż 𝑎

0

𝑑𝑥
a

p𝑥 ` 1q𝑥p𝑎 ´ 𝑥q
ď

1
𝜋

ż 𝑎

0

𝑑𝑥
a

𝑥p𝑎 ´ 𝑥q
“ 1.

This computation also shows that

1
𝜋

ż 𝛿

´1

\0p𝑥q𝑑𝑥
?
𝛿 ´ 𝑥

“

#

0, 𝛿 ď 0,
1, 𝛿 ą 0,

and therefore ` R USzpr´1, 0sq as follows from Proposition 3.3(ii). On the other hand,
when 𝜖 ą 0, it holds that

0 ď
1
𝜋

ż 𝛿

´1

\ 𝜖 p𝑥q𝑑𝑥
?
𝛿 ´ 𝑥

ď
1

p1 ´ log 𝛿q𝜖
Ñ 0 as 𝛿 Ñ 0`,

and therefore ` P USzpr´1, 0sq again by Proposition 3.3(ii) (in fact, ` P USzpr´1, 𝑎sq for
any 𝑎 P p´1, 1s in this cases). However, when 𝜖 ď 1, we have that `𝜖 R Szpr0, 1sq since

1
𝜋

ż 1

0

\ 𝜖 p𝑥q𝑑𝑥
a

𝑥p1 ´ 𝑥q
ě

1
𝜋

ż 1

0

𝑑𝑥

𝑥p1 ´ log 𝑥q𝜖
“

1
𝜋

ż 8

1

𝑑𝑢

𝑢𝜖
“ 8.

3.5. Proof of Theorem 3.4. For convenience, we keep ®𝑐 as a symbol standing for an
arbitrary vector in p0, 1q𝑑 that satisfies |®𝑐| “ 1 while fixing ®𝜍 P p0, 1q𝑑 , | ®𝜍| “ 1, and a ray
sequence of multi-indices Np ®𝜍q satisfying

®𝑛{|®𝑛| Ñ ®𝜍 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q.

As agreed earlier, we use subindex ®𝑐 to indicate that a quantity depends on the parameter ®𝑐
while for rational values of ®𝑐, i.e., when ®𝑐 is equal to ®𝑛{|®𝑛| for some ®𝑛 P N𝑑 , we replace the
subindex ®𝑐 by ®𝑛. For the purposes of this subsection, we also let Δ𝑖 :“ Δp`𝑖q and assume
`𝑖 P USzpΔ ®𝜍 ,𝑖q, 𝑖 P 𝐼𝑑 .

Theorem 4.2 further below is central to our approach. It has three conditions appearing
in it. The first one will be trivial to check. The other two require more work and we do it in
two separate lemmas. Our goal is to show that these conditions are satisfied with ` “ `𝑖
and Δ𝑛 “ Δ®𝑛,𝑖 , ®𝑛 P Np ®𝜍q, for each 𝑖 P 𝐼𝑑 . Notice that the intervals Δ®𝑛,𝑖 converge to Δ ®𝜍 ,𝑖
for each 𝑖 P 𝐼𝑑 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q, as shown in [42, Proposition 2.1].

Lemma 3.15. Let 𝑁p ®𝜍q be as above and p𝜔®𝑛,1, 𝜔®𝑛,2, . . . , 𝜔®𝑛,𝑑q, ®𝑛 P Np ®𝜍q, be the vector-
equilibrium measures (2.1)–(2.2). For each 𝑖 P 𝐼𝑑 , the sequence tp|®𝑛|{𝑛𝑖q𝜔®𝑛,𝑖u®𝑛PNp ®𝜍q

satisfies condition (3) of Theorem 4.2 with ` “ `𝑖 and Δ𝑛 “ Δ®𝑛,𝑖 .

Proof. From now on 𝑙 P 𝐼𝑑 is fixed. By its very definition, p|®𝑛|{𝑛𝑙q𝜔®𝑛,𝑙 is a probability
measure supported on Δ®𝑛,𝑙 for each ®𝑛 P Np ®𝜍q. It follows from (2.5) that each of these
measures is absolutely continuous with respect to the Lebesgue measure. Since |®𝑛|{𝑛𝑙 Ñ

1{p ®𝜍q𝑙 ‰ 0 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q, we shall omit the factors |®𝑛|{𝑛𝑙 in the forthcoming
analysis.
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Recall functions h®𝑐,𝑘p𝑧q, 𝑘 P t0, 1, . . . , 𝑑u, defined in (2.3). Put

(3.24) 𝑊®𝑐,𝑙p𝑧q :“ 𝑤Δ ®𝑐,𝑙 p𝑧q
`

h®𝑐,0p𝑧q ´ h®𝑐,𝑙p𝑧q
˘

,

which is holomorphic in Cz Y𝑖P𝐼𝑑 Δ®𝑐,𝑖 . Since h®𝑐,0p𝑧q and h®𝑐,𝑙p𝑧q are branches of a rational
function on a Riemann surface, it holds that h®𝑐,0˘p𝑥q “ h®𝑐,𝑙¯p𝑥q for 𝑥 P Δ®𝑐,𝑙 . One can
also readily see that 𝑤Δ ®𝑐,𝑙`p𝑥q “ ´𝑤Δ ®𝑐,𝑙´p𝑥q for 𝑥 P Δ®𝑐,𝑙 and so𝑊®𝑐,𝑙`p𝑥q “ 𝑊®𝑐,𝑙´p𝑥q for
𝑥 P Δ®𝑐,𝑙 . Hence,𝑊®𝑐,𝑙p𝑧q is in fact analytic across p𝛼®𝑐,𝑙 , 𝛽®𝑐,𝑙q. Since

(3.25) h®𝑐,0`p𝑥q ´ h®𝑐,𝑙`p𝑥q “ h®𝑐,𝑙´p𝑥q ´ h®𝑐,𝑙`p𝑥q “ ´2𝜋i𝜔1

®𝑐,𝑙p𝑥q, 𝑥 P Δ®𝑐,𝑙 ,

by (2.5), we get from the second claim of Proposition 2.3 that the differenceh®𝑐,0p𝑧q´h®𝑐,𝑙p𝑧q
can have at most square root singularities at 𝛼®𝑐,𝑙 , 𝛽®𝑐,𝑙 , which means that 𝑊®𝑐,𝑙p𝑧q is in fact
analytic in some neighborhood of Δ®𝑐,𝑙 .

Let now ®𝜍 and Np ®𝜍q be as in the statement of the lemma. It follows from the last claim
of Proposition 2.2 and (2.3) that there exists an open neighborhood of Δ ®𝜍 ,𝑙 such that

(3.26) 𝑊®𝑛,𝑙p𝑧q Ñ 𝑊 ®𝜍 ,𝑙p𝑧q as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q,

uniformly on its closure.
Assume that𝜔 ®𝜍 ,𝑙p𝑥q blows up like a square root at both 𝛼 ®𝜍 ,𝑙 and 𝛽 ®𝜍 ,𝑙 . Then, we get from

(3.25) and Proposition 2.3 that𝑊 ®𝜍 ,𝑙p𝑥q ‰ 0 for 𝑥 P Δ ®𝜍 ,𝑙 . Thus, the neighborhood in (3.26)
can be chosen so that all the functions are non-vanishing on its closure and respectively the
moduli |𝑊®𝑛,𝑙p𝑧q| are uniformly bounded above and away from zero there for all |®𝑛| large
enough, ®𝑛 P Np ®𝜍q. Then (3.24) and (3.25) yield that

|𝑤Δ ®𝑛,𝑙 p𝑥q|´1 À 𝜔1

®𝑛,𝑙p𝑥q À |𝑤Δ ®𝑛,𝑙 p𝑥q|´1, 𝑥 P Δ®𝑛,𝑙 ,

for all |®𝑛| large enough, ®𝑛 P Np ®𝜍q, where the constants of proportionality are independent
of ®𝑛. Thus, (4.2) holds with 𝜘𝐿 “ 𝜘𝑈 “ ´1.

Next, assume that 𝜔 ®𝜍 ,𝑙p𝑥q blows up like a square root at 𝛽 ®𝜍 ,𝑙 and vanishes like a
square root at 𝛼 ®𝜍 ,𝑙 . Then, we get from (3.25) and Proposition 2.3 that 𝑊 ®𝜍 ,𝑙p𝑥q ‰ 0 for
𝑥 P p𝛼 ®𝜍 ,𝑙 , 𝛽 ®𝜍 ,𝑙s and 𝑊 ®𝜍 ,𝑙p𝑧q has a simple zero at 𝛼 ®𝜍 ,𝑙 . Therefore, the neighborhood in
(3.26) can be chosen so that all the functions have exactly one zero, necessarily simple,
in its closure. Each 𝑊®𝑛,𝑙p𝑧q is conjugate-symmetric and does not vanish on p𝛼®𝑛,𝑙 , 𝛽®𝑛,𝑙q
by (3.25) and Proposition 2.3. Hence, for each ®𝑛 there exists 𝛾®𝑛,𝑙 such that 𝛾®𝑛,𝑙 ď 𝛼®𝑛,𝑙 ,
𝑊®𝑛,𝑙p𝛾®𝑛,𝑙q “ 0, and 𝛾®𝑛,𝑙 Ñ 𝛼 ®𝜍 ,𝑙 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q. Then, (3.26) yields that

(3.27)
𝑊®𝑛,𝑙p𝑧q

𝑧 ´ 𝛾®𝑛,𝑙
Ñ

𝑊 ®𝜍 ,𝑙p𝑧q

𝑧 ´ 𝛼 ®𝜍 ,𝑙
as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q,

uniformly on the closure of some neighborhood of Δ ®𝜍 ,𝑙 , and all the functions are non-
vanishing on this closure. As in the first case, we can conclude that

(3.28)
𝑥 ´ 𝛾®𝑛,𝑙

|𝑤Δ ®𝑛,𝑙 p𝑥q|
À 𝜔1

®𝑛,𝑙p𝑥q À
𝑥 ´ 𝛾®𝑛,𝑙

|𝑤Δ ®𝑛,𝑙 p𝑥q|
, 𝑥 P Δ®𝑛,𝑙 ,

for all |®𝑛| large enough, ®𝑛 P Np ®𝜍q. Trivially, 𝑥´𝛼®𝑛,𝑙 ď 𝑥´𝛾®𝑛,𝑙 ă 2p𝛽 ®𝜍 ,𝑙´𝛼 ®𝜍 ,𝑙q, 𝑥 P Δ®𝑛,𝑙 ,
where the upper bound holds for all |®𝑛| large enough. Necessarily,

|𝑤Δ ®𝑛,𝑙 p𝑥q| À 𝜔1

®𝑛,𝑙p𝑥q À |𝑤Δ ®𝑛,𝑙 p𝑥q|´1, 𝑥 P Δ®𝑛,𝑙 ,

for all |®𝑛| large enough, ®𝑛 P Np ®𝜍q. Thus, (4.2) holds with ´𝜘𝐿 “ 𝜘𝑈 “ ´1.
The cases where 𝜔 ®𝜍 ,𝑙p𝑥q blows up like a square root at 𝛼 ®𝜍 ,𝑙 and vanishes like a square

root at 𝛽 ®𝜍 ,𝑙 and where 𝜔 ®𝜍 ,𝑙p𝑥q vanishes like a square root at both 𝛼 ®𝜍 ,𝑙 and 𝛽 ®𝜍 ,𝑙 can be
examined similarly. This finishes the proof of (4.2).
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Let us now verify (4.3). If 𝛼®𝑛,𝑙 ą 𝛼p`𝑙q, then we get from (2.2) and Proposition 2.2
that z®𝑛,𝑙´1 “ α®𝑛,𝑙 . This, according to Proposition 2.3, implies that 𝜔®𝑛,𝑙p𝑥q vanishes like a
square root at 𝛼®𝑛,𝑙 . That is, 𝛾®𝑛,𝑙 “ 𝛼®𝑛,𝑙 in (3.28) by (3.24) and (3.25). Hence, the upper
bound in (3.28) can be rewritten as

𝜔1

®𝑛,𝑙p𝑥q À

d

𝑥 ´ 𝛼®𝑛,𝑙
𝛽®𝑛,𝑙 ´ 𝑥

, 𝑥 P Δ®𝑛,𝑙 ,

which yields (4.3) with p𝜘𝑈 “ 1{2. When 𝛽®𝑛,𝑙 ă 𝛽p`𝑙q, the analysis around 𝛽®𝑛,𝑙 is identical.
Finally, since (3.26) is a claim about uniform convergence of analytic functions, we

easily get from Cauchy integral formula as well as (3.24) and (3.25) that t𝜔2

®𝑛,𝑙p𝑥qu converges
uniformly to𝜔2

®𝜍 ,𝑙p𝑥q on compact subsets of p𝛼 ®𝜍 ,𝑙 , 𝛽 ®𝜍 ,𝑙q. This, in turn, yields equicontinuity
of the densities 𝜔1

®𝑛,𝑙p𝑥q on compact subsets of p𝛼 ®𝜍 ,𝑙 , 𝛽 ®𝜍 ,𝑙q. �

Functions ^𝑛p𝑥q that appear in Theorem 4.2 will be drawn from the following family:
for each ®𝑐 P p0, 1q𝑑 , |®𝑐| “ 1 and 𝑖 P 𝐼𝑑 , set

(3.29) ^ ®𝑐,𝑖p𝑥q :“
1
𝑐𝑖

˜

´𝑉𝜔 ®𝑐,𝑖 p𝑥q `
ℓ®𝑐,𝑖
2

´
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

𝑉𝜔 ®𝑐, 𝑗 p𝑥q

¸

, 𝑥 P Δ𝑖 .

Lemma 3.16. For each 𝑖 P 𝐼𝑑 , the sequence t^ ®𝑛,𝑖u®𝑛PNp ®𝜍q satisfies condition (1) of Theo-
rem 4.2 with ` “ `𝑖 and Δ𝑛 “ Δ®𝑛,𝑖 , ®𝑛 P Np ®𝜍q.

Proof. Fix 𝑙 P 𝐼𝑑 . It follows from (2.2), that each ^ ®𝑐,𝑙p𝑥q “ 0 on Δ®𝑐,𝑙 and ^ ®𝑐,𝑙p𝑥q ă 0 on
Δ𝑙zΔ®𝑐,𝑙 . Hence, the functions ^ ®𝑛,𝑙p𝑥q satisfy the first part of assumption (1) of Theorem 4.2.
To verify the rest, let us concentrate on the estimates around 𝛼®𝑛,𝑙 as estimates around 𝛽®𝑛,𝑙
are similar. Naturally, we only have something to prove when 𝛼®𝑛,𝑙 ą 𝛼p`𝑙q. It follows
from (2.4) that

´2p|®𝑛|{𝑛𝑙q^ ®𝑛,𝑙p𝑥q “

ż 𝑥

𝛼®𝑛,𝑙

`

h®𝑛,𝑙p𝑡q ´ h®𝑛,0p𝑡q
˘

𝑑𝑡, 𝑥 P r𝛼p`𝑙q, 𝛼®𝑛,𝑙s.

As we have explained in the next to last paragraph of the previous lemma, 𝛼®𝑛,𝑙 ą 𝛼p`𝑙q

implies that 𝛾®𝑛,𝑙 “ 𝛼®𝑛,𝑙 in (3.27). In particular, we have that

p𝛼®𝑛,𝑙 ´ 𝑥q1{2 À h®𝑛,0p𝑥q ´ h®𝑛,𝑙p𝑥q À p𝛼®𝑛,𝑙 ´ 𝑥q1{2, 𝑥 P r𝛼 ®𝜍 ,𝑙 ´ 𝜖, 𝛼®𝑛,𝑙s

for some 𝜖 ą 0 by (3.24). Since 𝑛𝑖{|®𝑛| Ñ p ®𝜍q𝑖 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q, we then get that

p𝛼®𝑛,𝑙 ´ 𝑥q3{2 À ´^ ®𝑛,𝑙p𝑥q À p𝛼®𝑛,𝑙 ´ 𝑥q3{2, 𝑥 P r𝛼 ®𝜍 ,𝑙 ´ 𝜖, 𝛼®𝑛,𝑙s.

If 𝛼p`𝑙q ă 𝛼 ®𝜍 ,𝑙 ´ 𝜖 , the above estimate can be readily extended to r𝛼p`𝑙q, 𝛼 ®𝜍 ,𝑙 ´ 𝜖s

by noticing that the functions ^ ®𝑛,𝑙p𝑥q converge uniformly there to ^ ®𝜍 ,𝑙p𝑥q as |®𝑛| Ñ 8,
®𝑛 P Np ®𝜍q (one can use (3.29) and the weak˚ convergence of measures to see this). This
finishes the proof of the lemma. �

Recall definition (3.5) of the operators H®Δ ®𝑐
from the previous subsection. Let

(3.30) ®𝑠 ®𝑐 :“ pI ´ H®Δ ®𝑐
q´1 ®𝑎 ®𝑐 , ®𝑎 ®𝑐 :“

1
2
`

log 𝑣 ®𝑐,1, log 𝑣 ®𝑐,2, . . . , log 𝑣 ®𝑐,𝑑
˘

,

where 𝑣 ®𝑐,𝑖p𝑥q is the Radon-Nikodym derivative of `𝑖|Δ ®𝑐,𝑖 with respect to the arcsine distri-
bution of Δ®𝑐,𝑖 , 𝑖 P 𝐼𝑑 , see (1.7). As follows from Lemma 3.7 and (3.4), we have

log
ˇ

ˇ𝑆 ®𝑐,𝑖p𝑧q
ˇ

ˇ “ 𝐻Δ ®𝑐,𝑖 p𝑠 ®𝑐,𝑖 , 𝑧q,
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where we write ®𝑠 ®𝑐 “ p𝑠 ®𝑐,1, 𝑠 ®𝑐,2, . . . , 𝑠 ®𝑐,𝑑q. Since the intervals Δ®𝑛,𝑖 converge to Δ ®𝜍 ,𝑖 for
each 𝑖 P 𝐼𝑑 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q, we get from Proposition 3.2 that

(3.31) 𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 , 𝑧q Ñ 𝐻Δ ®𝜍,𝑖 p𝑠 ®𝜍 ,𝑖 , 𝑧q

locally uniformly in 𝐷Δ ®𝜍,𝑖 as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q, for each 𝑖 P 𝐼𝑑 .
The following lemma is an application of Theorem 4.2. In what follows, we denote by

𝑇𝑛p 𝑓 `q the 𝑛-th monic orthogonal polynomial with respect to the measure 𝑓 `, where 𝑓 is
a non-vanishing continuous function and ` is a Borel measure.

Lemma 3.17. Let 𝑈 be a compact set in 𝐶p®Δq. Assume that `𝑖 P USzpΔ ®𝜍 ,𝑖q for every
𝑖 P 𝐼𝑑 . For each ®𝑛 P Np ®𝜍q, choose ®𝑢 ®𝑛 P 𝑈 and write ®𝑢 ®𝑛 “ p𝑢 ®𝑛,1, 𝑢 ®𝑛,2, . . . , 𝑢 ®𝑛,𝑑q. Then, it
holds for every 𝑖 P 𝐼𝑑 that

log
ˇ

ˇ

ˇ
𝑇𝑛𝑖

´

𝑒
2𝑢 ®𝑛,𝑖´

ř

𝑗‰𝑖p𝐻Δ ®𝑛, 𝑗 𝑠®𝑛, 𝑗`|®𝑛|𝑉
𝜔 ®𝑛, 𝑗 q

`𝑖

¯

p𝑧q

ˇ

ˇ

ˇ
“ 𝑜𝑈 p1q ´ |®𝑛|𝑉𝜔 ®𝑛,𝑖 p𝑧q

` 𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 ` 𝑢 ®𝑛,𝑖qp8q ´ 𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 ` 𝑢 ®𝑛,𝑖qp𝑧q,

where 𝑜𝑈 p1q is such that for every 𝜖 ą 0 and every closed 𝐾𝑖 Ă 𝐷Δ ®𝜍,𝑖 , there exists 𝑁𝜖 such
that }𝑜𝑈 p1q}𝐶1p𝐾𝑖q

ď 𝜖 , |®𝑛| ě 𝑁𝜖 , ®𝑛 P Np ®𝜍q, independently of the choice of t®𝑢 ®𝑛u Ď 𝑈.

Proof. For each 𝑖 P 𝐼𝑑 , we apply Theorem 4.2 with

Δp`𝑖q, Δ𝑛 “ Δ®𝑛,𝑖 , Δ “ Δ ®𝜍 ,𝑖 , 𝜔𝑛 “ p|®𝑛𝑖|{𝑛𝑖q𝜔®𝑛,𝑖 , ^𝑛p𝑥q “ ^ ®𝑛,𝑖p𝑥q, ®𝑛 P Np ®𝜍q,

where ^ ®𝑐,𝑖p𝑥q were defined in (3.29), and

(3.32) ℎ®𝑛,𝑖p𝑥q :“ 2𝑢 ®𝑛,𝑖p𝑥q ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

p𝐻Δ ®𝑛, 𝑗 𝑠®𝑛, 𝑗qp𝑥q, 𝑥 P Δ𝑖 , ®𝑛 P Np ®𝜍q.

The sequence t^ ®𝑛,𝑖u satisfies assumption (1) of Theorem 4.2 by Lemma 3.16. It readily
follows from (3.31) that

#

2𝑢𝑖 ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

𝐻Δ ®𝑛, 𝑗 𝑠®𝑛, 𝑗 : ®𝑢 P 𝑈 and ®𝑛 P Np ®𝜍q

+

is a precompact subset of 𝐶pΔ𝑖q. Clearly, its closure, say K𝑖 , is compact and ℎ®𝑛,𝑖 P K𝑖
for each ®𝑛 P Np ®𝜍q. That is, the sequence tℎ®𝑛,𝑖u satisfies assumption (2) of Theorem 4.2.
The measures tp|®𝑛|{𝑛𝑖q𝜔®𝑛,𝑖u satisfy assumption (3) of Theorem 4.2 by Lemma 3.15. All
assumptions of Theorem 4.2 have now been checked. Set

\ ®𝑛,𝑖p𝑥q :“ 2𝑛𝑖
`

p|®𝑛|{𝑛𝑖q𝑉
𝜔 ®𝑛,𝑖 p𝑥q ` ^ ®𝑛,𝑖p𝑥q

˘

` ℎ®𝑛,𝑖p𝑥q, 𝑥 P Δ𝑖 .

It readily follows from (3.29), (3.32), and the definition above that

𝑇𝑛𝑖

´

𝑒
2𝑢 ®𝑛,𝑖´

ř

𝑗‰𝑖p𝐻Δ ®𝑛, 𝑗 𝑠®𝑛, 𝑗`|®𝑛|𝑉
𝜔 ®𝑛, 𝑗 q

`𝑖

¯

p𝑧q “ 𝑇𝑛𝑖 p𝑒
\ ®𝑛,𝑖´|®𝑛|ℓ®𝑛,𝑖 `𝑖qp𝑧q “ 𝑇𝑛𝑖 p𝑒

\ ®𝑛,𝑖 `𝑖qp𝑧q,

where the last equality holds because monic orthogonal polynomials do not depend on the
normalization of the measure of orthogonality. Then, an application of Theorem 4.2 gives

log |𝑇𝑛𝑖 p𝑒
\ ®𝑛,𝑖 `𝑖qp𝑧q| “ 𝑜𝑈 p1q ´ |®𝑛|𝑉𝜔 ®𝑛,𝑖 p𝑧q`

log
ˇ

ˇ

ˇ
ΩΔ ®𝑛,𝑖

´

𝑒ℎ ®𝑛,𝑖{2?
𝑣 ®𝑛,𝑖 ,8

¯
ˇ

ˇ

ˇ
´ log

ˇ

ˇ

ˇ
ΩΔ ®𝑛,𝑖

´

𝑒ℎ ®𝑛,𝑖{2?
𝑣 ®𝑛,𝑖 , 𝑧

¯
ˇ

ˇ

ˇ
,

where we used (1.8). Here, 𝑜𝑈 p1q is such that for every 𝜖 ą 0 and every closed 𝐾𝑖 Ă 𝐷Δ ®𝜍,𝑖 ,
there exists 𝑁𝜖 such that }𝑜𝑈 p1q}𝐶p𝐾𝑖q ď 𝜖 , |®𝑛| ě 𝑁𝜖 , ®𝑛 P Np ®𝜍q, independently of
the choice of t®𝑢 ®𝑛u Ď 𝑈. Now, notice that the error terms 𝑜𝑈 p1q represent functions
harmonic on 𝐾𝑖 . Hence, it follows from properties of harmonic functions, e.g., their
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integral representations, that for every 𝜖 ą 0, there is p𝑁𝜖 such that }𝑜𝑈 p1q}𝐶1p𝐾𝑖q
ď 𝜖 ,

|®𝑛| ě p𝑁𝜖 , ®𝑛 P Np ®𝜍q, independently of the choice of t®𝑢 ®𝑛u Ď 𝑈.
Finally, we apply (3.30) to the vector ®𝑠®𝑛 to write

(3.33) ?
𝑣 ®𝑛,𝑖p𝑥q𝑒

pH®Δ ®𝑛
®𝑠®𝑛q𝑖p𝑥q

“
?
𝑣 ®𝑛,𝑖p𝑥q𝑒𝑠®𝑛,𝑖p𝑥q´p ®𝑎 ®𝑛q𝑖p𝑥q “ 𝑒𝑠®𝑛,𝑖p𝑥q

for almost every 𝑥 P Δ®𝑛,𝑖 , 𝑖 P 𝐼𝑑 . Notice that ℎ®𝑛,𝑖{2 “ 𝑢 ®𝑛,𝑖 ` pH®𝑛®𝑠®𝑛q𝑖 on Δ®𝑛,𝑖 by the very
definition of H®Δ ®𝑛

in (3.5). Hence, (3.4) yields that

log
ˇ

ˇ

ˇ
ΩΔ ®𝑛,𝑖

`

𝑒ℎ ®𝑛,𝑖{2?
𝑣 ®𝑛,𝑖 , 𝑧

˘

ˇ

ˇ

ˇ
“ 𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 ` 𝑢 ®𝑛,𝑖qp𝑧q,

which finishes the proof of the lemma. �

Operators H®Δ ®𝑐
were designed to construct vectors of Szegő functions based on the

boundary value problem satisfied by them. As the statement of Theorem 3.4 implies,
(normalized) Szegő functions also appear as the deviation of the multiple orthogonal
polynomials from their expected geometric behavior. This motivates introduction of the
following nonlinear operators. For 𝑗 ‰ 𝑖, 𝑗 , 𝑖 P 𝐼𝑑 , define

𝐷 ®𝑛,Δ 𝑗ÑΔ𝑖
: 𝐶pΔ 𝑗q Ñ 𝐶pΔ𝑖q,

𝑢 ÞÑ

´

log
ˇ

ˇ

ˇ
𝑇𝑛 𝑗

´

𝑒2𝑢´|®𝑛|
ř

𝑘‰ 𝑗 𝑉
𝜔 ®𝑛,𝑘

` 𝑗

¯
ˇ

ˇ

ˇ
` |®𝑛|𝑉𝜔 ®𝑛, 𝑗

¯

|Δ𝑖

.

It readily follows from (2.2) that in the case when Δ®𝑛, 𝑗 “ Δ 𝑗 we can replace the sum
ř

𝑘‰ 𝑗 𝑉
𝜔 ®𝑛,𝑘 by ´2𝑉𝜔 ®𝑛, 𝑗 in this definition as monic orthogonal polynomials do not depend

on the normalization of the measure of orthogonality. Further, let 𝐷 ®𝑛,Δ𝑖ÑΔ𝑖
be the operator

whose image is the zero function, 𝑖 P 𝐼𝑑 . Put

D®𝑛 :“
1
2
`

𝐷 ®𝑛,Δ 𝑗ÑΔ𝑖

˘𝑑

𝑖, 𝑗“1 : 𝐶p®Δq Ñ 𝐶p®Δq,

where 𝑖 is the row index, 𝑗 is the column one, and ®Δ “ pΔ1,Δ2, . . . ,Δ𝑑). In the matrix
form, this gives

D®𝑛 “
1
2

»

—

—

—

–

0 𝐷 ®𝑛,Δ2ÑΔ1 ¨ ¨ ¨ 𝐷 ®𝑛,Δ𝑑ÑΔ1
𝐷 ®𝑛,Δ1ÑΔ2 0 ¨ ¨ ¨ 𝐷 ®𝑛,Δ𝑑ÑΔ2

...
...

. . .
...

𝐷 ®𝑛,Δ1ÑΔ𝑑
𝐷 ®𝑛,Δ2ÑΔ𝑑

¨ ¨ ¨ 0

fi

ffi

ffi

ffi

fl

.

As each component of D®𝑛 ®𝑢 is a restriction of a harmonic function, D®𝑛p𝐶p®Δqq Ă 𝐶1p®Δq.

Lemma 3.18. Let 𝑃®𝑛,𝑖p𝑥q, 𝑖 P 𝐼𝑑 , be as in (1.9) and (1.11). Set

𝑞 ®𝑛,𝑖p𝑥q :“
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

`

log |𝑃®𝑛, 𝑗p𝑥q| ` |®𝑛|𝑉𝜔 ®𝑛, 𝑗 p𝑥q
˘

, 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 .

Then, ®𝑞 ®𝑛 “ p𝑞 ®𝑛,1, 𝑞 ®𝑛,2, . . . , 𝑞 ®𝑛,𝑑q is the unique solution of ®𝑢 “ D®𝑛 ®𝑢 in 𝐶p®Δq.

Proof. Since each 𝑞 ®𝑛,𝑖p𝑥q is a restriction of a harmonic function, ®𝑞 ®𝑛 P 𝐶p®Δ®𝑛q. Moreover,
for each 𝑖 P 𝐼𝑑 , we have

𝑇𝑛𝑖

´

𝑒2𝑞®𝑛,𝑖´|®𝑛|
ř

𝑗‰𝑖 𝑉
𝜔 ®𝑛, 𝑗

`𝑖

¯

p𝑧q “ 𝑇𝑛𝑖
`

|𝑃®𝑛{𝑃®𝑛,𝑖|`𝑖
˘

p𝑧q “ 𝑃®𝑛,𝑖p𝑧q,

by the definition of 𝑃®𝑛p𝑥q because 𝑃®𝑛p𝑥q{𝑃®𝑛,𝑖p𝑥q does not change sign on Δ𝑖 . Hence,
`

D®𝑛 ®𝑞 ®𝑛
˘

𝑖
p𝑥q “

1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

`

log |𝑃®𝑛, 𝑗p𝑥q| ` |®𝑛|𝑉𝜔 ®𝑛, 𝑗 p𝑥q
˘

“ 𝑞 ®𝑛,𝑖p𝑥q, 𝑥 P Δ𝑖 ,
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i.e., ®𝑞 ®𝑛p𝑥q is a fixed point of D®𝑛.
Conversely, let D®𝑛 ®𝑢 “ ®𝑢 for some ®𝑢 “ p𝑢1, 𝑢2, . . . , 𝑢𝑑q P 𝐶p®Δq. Set

𝑇®𝑛p𝑥q “
ź

𝑖P𝐼𝑑

𝑇®𝑛,𝑖p𝑥q, 𝑇®𝑛,𝑖 “ 𝑇𝑛𝑖

´

𝑒2𝑢𝑖´|®𝑛|
ř

𝑗‰𝑖 𝑉
𝜔 ®𝑛, 𝑗

`𝑖

¯

, 𝑖 P 𝐼𝑑 .

Then, the equality D®𝑛 ®𝑢 “ ®𝑢 yields that

2𝑢𝑖p𝑥q “
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

`

log |𝑇®𝑛, 𝑗p𝑥q| ` |®𝑛|𝑉𝜔 ®𝑛, 𝑗 p𝑥q
˘

, 𝑥 P Δ𝑖 , 𝑖 P 𝐼𝑑 .

The last two displayed formulae imply that 𝑇®𝑛,𝑖 “ 𝑇𝑛𝑖 p|𝑇®𝑛{𝑇®𝑛,𝑖|`𝑖q, 𝑖 P 𝐼𝑑 . That is, the
polynomial 𝑇®𝑛 satisfies orthogonality conditions (1.9) with respect to the measures `𝑖 ,
𝑖 P 𝐼𝑑 . It follows from the uniqueness of the type II multiple orthogonal polynomials for
Angelesco systems that 𝑇®𝑛 “ 𝑃®𝑛 and the proof is completed. �

Let now H®𝑛 :“ H®Δ ®𝑛 ,®Δ
, see (3.6), and recall that ®𝑠 ®𝑐 was defined in (3.30). In what

follows, we shall slightly abuse the notation and write H®𝑛®𝑠®𝑛 without specifying the exact
extension of ®𝑠®𝑛 to a vector-function on ®Δ as the images under H®𝑛 of all such extensions are
identical.

For each ®𝑢 “ p𝑢1, 𝑢2, . . . , 𝑢𝑑q in 𝐿1p𝜔®Δ ®𝑐
q, we introduce the following notation

(3.34) ®𝑢 ®𝑐,8 :“
`

p𝐻Δ ®𝑐,1𝑢1qp8q, p𝐻Δ ®𝑐,2𝑢2qp8q, . . . , p𝐻Δ ®𝑐,𝑑𝑢𝑑qp8q
˘

.

We also abbreviate p®𝑠®𝑛q®𝑛,8 into ®𝑠®𝑛,8. Observe that

(3.35) 2pH®𝑛 ®𝑘q𝑖p𝑥q “ ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

p𝐻Δ ®𝑛 , 𝑗 𝑘 𝑗qp𝑥q “ ´
ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

𝑘 𝑗

for any vector of constants ®𝑘 “ p𝑘1, 𝑘2, . . . , 𝑘𝑑q.
To obtain the asymptotics of 𝑃®𝑛,𝑖 , we will first find the asymptotics of 𝑞 ®𝑛,𝑖 . The expected

behavior of the polynomials 𝑃®𝑛,𝑖p𝑧q suggests that

𝑒2𝑞®𝑛,𝑖p𝑥q “
ź

𝑗P𝐼𝑑 , 𝑗‰𝑖

ˇ

ˇ𝑃®𝑛, 𝑗p𝑥q
ˇ

ˇ 𝑒|®𝑛|𝑉
𝜔 ®𝑛, 𝑗 p𝑥q

“ „ ”
ź

𝑗P𝐼𝑑 , 𝑗‰𝑖

ˇ

ˇ

ˇ

ˇ

𝑆 ®𝑛, 𝑗p8q

𝑆 ®𝑛, 𝑗p𝑥q

ˇ

ˇ

ˇ

ˇ

(3.11)`(3.5)
“ 𝑒2pH ®𝑛 ®𝑠®𝑛q𝑖p𝑥q´2pH ®𝑛p®𝑠®𝑛,8q𝑖p𝑥q .

Hence, we expect that

(3.36) ®𝑞 ®𝑛 “ „ ”H®𝑛
`

®𝑠®𝑛 ´ ®𝑠®𝑛,8
˘

“: ®𝑦 ®𝑛.

Since ®𝑞 ®𝑛 is the fixed point of D®𝑛, these heuristics suggest to study D®𝑛 in the vicinity of the
vector-function ®𝑦 ®𝑛, which we do now in the sequence of lemmas.

Lemma 3.19. For any 𝜖 ą 0 and any compact𝑈 Ă 𝐶p®Δq there exists 𝑁𝑈 p𝜖q such that
›

›Υ®𝑛 ®𝑢
›

›

𝐶1p®Δq
ď 𝜖

for all ®𝑢 P 𝑈 and |®𝑛| ě 𝑁𝑈 p𝜖q, where

Υ®𝑛 : 𝐶p®Δq Ñ 𝐶p®Δq,

®𝑢 ÞÑ D®𝑛p®𝑦 ®𝑛 ` ®𝑢q ´ H®𝑛
`

®𝑢 ´ ®𝑢 ®𝑛,8
˘

´ ®𝑦 ®𝑛.
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Proof. Since monic orthogonal polynomials do not depend on the normalization of the
measure of orthogonality, we get from Lemma 3.17 and the definition of the operators D®𝑛
that
`

D®𝑛p®𝑦 ®𝑛 ` ®𝑢q
˘

𝑖
p𝑥q “

`

D®𝑛 pH®𝑛®𝑠®𝑛 ` ®𝑢q
˘

𝑖
p𝑥q

“
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

´

log
ˇ

ˇ

ˇ
𝑇𝑛 𝑗

´

𝑒
2𝑢𝑖´

ř

𝑘‰ 𝑗p𝐻Δ ®𝑛,𝑘 𝑠®𝑛,𝑘`|®𝑛|𝑉
𝜔 ®𝑛,𝑘 q

` 𝑗

¯

p𝑥q

ˇ

ˇ

ˇ
` |®𝑛|𝑉𝜔 ®𝑛, 𝑗 p𝑥q

¯

“ 𝑜𝑈 p1q `
1
2

ÿ

𝑗P𝐼𝑑 , 𝑗‰𝑖

`

𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 ` 𝑢𝑖qp8q ´ 𝐻Δ ®𝑛,𝑖 p𝑠®𝑛,𝑖 ` 𝑢𝑖qp𝑥q
˘

,

where, as usual, ®𝑢 “ p𝑢1, 𝑢2, . . . , 𝑢𝑑q, and for any 𝜖 ą 0 there exists 𝑁𝑈 p𝜖q such that
}𝑜𝑈 p1q}

𝐶1p®Δq
ď 𝜖 for all |®𝑛| ě 𝑁𝑈 p𝜖q, ®𝑛 P Np ®𝜍q, regardless the choice of ®𝑢 P 𝑈. Now, it

only remains to observe that

D®𝑛p®𝑦 ®𝑛 ` ®𝑢q “ 𝑜𝑈 p1q ` H®𝑛
`

®𝑢 ´ ®𝑢 ®𝑛,8
˘

` ®𝑦 ®𝑛.
by (3.6), (3.34), (3.36) as well as identity (3.35). �

In the view of the definition of the operator Υ®𝑛, the fact that ®𝑞 ®𝑛 is the fixed point of D®𝑛
can now be rewritten as

(3.37) p®𝑞 ®𝑛 ´ ®𝑦 ®𝑛q ´ K®𝑛p®𝑞 ®𝑛 ´ ®𝑦 ®𝑛q “ pI ´ H®𝑛q´1Υ®𝑛p®𝑞 ®𝑛 ´ ®𝑦 ®𝑛q,

where K®𝑛 is a bounded linear operator given by

K®𝑛 : 𝐶p®Δq Ñ 𝐶p®Δq,

®𝑢 ÞÑ ´pI ´ H®𝑛q´1H®𝑛 ®𝑢 ®𝑛,8 “ pI ´ pI ´ H®𝑛q´1q ®𝑢 ®𝑛,8.
The formula (3.34) shows that K®𝑛 has rank at most 𝑑 and hence it is a compact operator.

Lemma 3.20. Let 𝔅 be either 𝐶p®Δq or 𝐶1p®Δq. I ´ K®𝑛 is an invertible linear operator
from 𝔅 into itself. Moreover, there exists a constant 𝐶 such that

}pI ´ K®𝑛q´1}𝔅 ď 𝐶, ®𝑛 P Np ®𝜍q.

Proof. Since H®𝑛 ®𝑢 ®𝑛,8 is a vector of constants and ®𝑘 ®𝑛,8 “ ®𝑘 for every vector of constants
®𝑘 , we get from the very definition of K®𝑛 that

(3.38) pI ´ K®𝑛qp®𝑢 ´ H®𝑛 ®𝑢 ®𝑛,8q “ ®𝑢 ´ ®𝑢 ®𝑛,8 ` pI ´ H®𝑛q´1p®𝑢 ®𝑛,8 ´ H®𝑛 ®𝑢 ®𝑛,8q “ ®𝑢
for every ®𝑢 P 𝔅. It follows from the linearity of H®𝑛 that

®𝑢 ´ H®𝑛 ®𝑢 ®𝑛,8 “ ®𝑣 ´ H®𝑛 ®𝑣 ®𝑛,8 ô p®𝑢 ´ ®𝑣q “ H®𝑛p®𝑢 ´ ®𝑣q®𝑛,8.

Thus, for the above equalities to be true, ®𝑢 ´ ®𝑣 must be a vector of constants and therefore
is a fixed point of H®𝑛. Hence, ®𝑢 “ ®𝑣 by Lemma 3.5. Therefore, I ´ K®𝑛 is indeed an
invertible linear operator. Acting on both sides of (3.38) with pI ´ K®𝑛q´1 gives

pI ´ K®𝑛q´1 ®𝑢 “ ®𝑢 ´ H®𝑛 ®𝑢 ®𝑛,8.
It holds that }®𝑢 ®𝑛,8}𝔅 ď }®𝑢}𝔅 by the maximum principle for harmonic functions, see (3.34).
Hence,

}pI ´ K®𝑛q´1}𝔅 ď 1 ` }H®𝑛}𝔅.

The first estimate of Lemma 3.6 can be easily quantified to show that }H®𝑛}𝔅 is bounded
above by a number that depends only on the size of the convex hull of Y𝑖P𝐼𝑑Δ𝑖 and the
shortest distance between Δ𝑖 and Δ 𝑗 , 𝑖 ‰ 𝑗 , 𝑖, 𝑗 P 𝐼𝑑 . This yields the desired claim. �
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Lemmas 3.18 and 3.20 as well as (3.37) allow us to make the crucial observation that
®𝑞 ®𝑛 ´ ®𝑦 ®𝑛 is the unique fixed point of the operator pI ´ K®𝑛q´1p𝐼 ´ H®𝑛q´1Υ®𝑛. We now
use the Schauder-Tychonoff fixed-point theorem and Lemma 3.19 to show that these fixed
points must lie arbitrarily close to zero for all |®𝑛| large enough.

Lemma 3.21. Given 𝛿 ą 0, there exists 𝑁 ®𝜍 p𝛿q such that

®𝑞 ®𝑛 ´ ®𝑦 ®𝑛 P 𝐵𝛿 :“
 

®𝑢 : }®𝑢}
𝐶1p®Δq

ď 𝛿
(

for all |®𝑛| ě 𝑁 ®𝜍 p𝛿q, ®𝑛 P Np ®𝜍q.

Proof. Observe that 𝐵𝛿 is a compact convex subset of a locally convex space 𝐶p®Δq. It
follows from Lemma 3.9 and Lemma 3.20 that

›

›pI ´ K®𝑛q´1p𝐼 ´ H®𝑛q´1Υ®𝑛 ®𝑢
›

›

𝐶1p®Δq
ď 𝐶 ®𝜍

›

›Υ®𝑛 ®𝑢
›

›

𝐶1p®Δq

for some constant 𝐶 ®𝜍 independent of ®𝑛 P Np ®𝜍q. We further get from Lemma 3.19 that
there exists 𝑁 ®𝜍 p𝛿q such that

𝐶 ®𝜍
›

›Υ®𝑛 ®𝑢
›

›

𝐶1p®Δq
ď 𝛿

for all |®𝑛| ě 𝑁 ®𝜍 p𝛿q, 𝑛 P Np ®𝜍q. Therefore, it holds that
`

pI ´ K®𝑛q´1p𝐼 ´ H®𝑛q´1Υ®𝑛
˘

p𝐵𝛿q Ď 𝐵𝛿

for all |®𝑛| ě 𝑁 ®𝜍 p𝛿q, ®𝑛 P Np ®𝜍q. As pI ´ K®𝑛q´1p𝐼 ´ H®𝑛q´1Υ®𝑛 is a continuous operator
from 𝐶p®Δq into itself, it must have a fixed point in 𝐵𝛿 according to Schauder-Tychonoff
fixed-point theorem [12, Theorem V.10.5]. Since ®𝑞 ®𝑛 ´ ®𝑦 ®𝑛 is its unique fixed point, the
desired claim follows. �

Lemma 3.22. Under the conditions of Theorem 3.4 (with ®𝑐 replaced by ®𝜍) it holds that

𝑃®𝑛,𝑖p𝑧q “ p1 ` 𝑜p1qq exp
ˆ

|®𝑛|

ż

logp𝑧 ´ 𝑥q𝑑𝜔®𝑛,𝑖p𝑥q

˙

𝑆 ®𝜍 ,𝑖p8q

𝑆 ®𝜍 ,𝑖p𝑧q

locally uniformly in 𝐷Δ ®𝜍,𝑖 for all |®𝑛| large enough, ®𝑛 P Np ®𝜍q, and each 𝑖 P 𝐼𝑑 .

Proof. Recall the definition of the functions ^ ®𝑛,𝑖p𝑥q in (3.29). Since monic orthogonal
polynomials do not depend on the normalization of the measure of orthogonality, it readily
follows from the definition of the vector-functions ®𝑞 ®𝑛 in Lemma 3.18 that

𝑃®𝑛,𝑖p𝑧q “ 𝑇𝑛𝑖

´

𝑒2𝑞®𝑛,𝑖`2𝑛𝑖pp|®𝑛|{𝑛𝑖q𝑉
𝜔 ®𝑛,𝑖 `^ ®𝑛,𝑖q`𝑖

¯

p𝑧q.

It has been shown in Lemma 3.21 that ®𝑞 ®𝑛 “ ®𝑦 ®𝑛 ` ®𝑢 ®𝑛, where }®𝑢 ®𝑛}
𝐶1p®Δq

Ñ 0 as |®𝑛| Ñ 8,
®𝑛 P Np ®𝜍q. It clearly follows from (3.31) and their definition in (3.36) that the vector-
functions 𝑦 ®𝑛 form a uniformly convergent sequence whose limit, when restricted to ®Δ ®𝜍 , is
equal to H®Δ ®𝜍

`

®𝑠 ®𝜍 ´ ®𝑠 ®𝜍 ,8
˘

. As the sequence t®𝑞 ®𝑛u is convergent, it represents a precompact
set. Hence, we conclude that Theorem 4.2 is applicable with ℎ𝑛 “ 2𝑞 ®𝑛,𝑖 and we have

𝑃®𝑛,𝑖p𝑧q “ p1 ` 𝑜p1qq exp
ˆ

|®𝑛|

ż

logp𝑧 ´ 𝑥q𝑑𝜔®𝑛,𝑖p𝑥q

˙

ˆ

𝐺expp2H®Δ ®𝜍
p®𝑠 ®𝜍´®𝑠 ®𝜍,8q𝑖q

p8q

𝐺expp2H®Δ ®𝜍
p®𝑠 ®𝜍´®𝑠 ®𝜍,8q𝑖q

p𝑧q

𝐺`𝑖 |Δ ®𝜍,𝑖
p8q

𝐺`𝑖 |Δ ®𝜍,𝑖
p𝑧q
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as |®𝑛| Ñ 8, ®𝑛 P Np ®𝜍q. Every component of function H®Δ ®𝜍
®𝑠 ®𝜍 ,8 is a constant function and

it will cancel out in the fraction. We recall definitions (1.4) and (1.8) to conclude that

(3.39) 𝐺expp2H®Δ ®𝜍
p®𝑠 ®𝜍 q𝑖q

p𝑧q𝐺`𝑖 |Δ ®𝜍,𝑖
p𝑧q “ ΩΔ ®𝜍,𝑖

`

exppH®Δ ®𝜍
p®𝑠 ®𝜍 q𝑖 , 𝑧

˘

ΩΔ ®𝜍,𝑖 p
a

aΔ ®𝜍,𝑖 , 𝑧q.

Formula (3.10) yields

expp®𝑠 ®𝜍 ,𝑖q “
a

aΔ ®𝜍,𝑖 exp
´

pHΔ ®𝜍 ®𝑠 ®𝜍 q𝑖

¯

and formula (3.9) gives 𝑆 ®𝜍 ,𝑖p𝑧q “ ΩΔ ®𝜍,𝑖 pexpp®𝑠 ®𝜍 ,𝑖q, 𝑧q. Substitution into (3.39) provides
the required asymptotics. �

4. Strong Asymptotics of OPs with Varying Weights

In this section, we obtain two results that were crucial for proving Theorem 3.4. They
improve and generalize [41, Theorem 14.4] by Totik.

4.1. Main Theorems. We recall the following notation: given a non-negative Borel mea-
sure ` on an interval Δ and a continuous non-negative function 𝑓 on Δ, we denote by
𝑇𝑛p 𝑓 `q the 𝑛-th monic orthogonal polynomial with respect to the measure 𝑓 `, where, with
a slight abuse of notation, we write 𝑓 ` for the measure 𝑓 𝑑`.

Theorem 4.1. Let Δ “ r𝛼, 𝛽s and tp`𝑛, ℎ𝑛, 𝜔𝑛qu be a sequence of triples, where `𝑛, 𝜔𝑛
are measures on Δ and ℎ𝑛 is a continuous function on Δ. Assume further that

p𝐴q there exists a finite measure ` onΔ such that for any non-negative function 𝑓 P 𝐶pΔq

it holds that
lim sup
𝑛Ñ8

ż

𝑓 𝑑`𝑛 ď

ż

𝑓 𝑑`;

p𝐵q if 𝑣𝑛 and 𝑣 denote the Radon-Nikodym derivatives of `𝑛 and ` with respect to the
arcsine distribution 𝜔Δ, see (1.7), then } log 𝑣𝑛 ´ log 𝑣}𝐿1p𝜔Δq Ñ 0 as 𝑛 Ñ 8;

p𝐶q the functions ℎ𝑛p𝑥q belong to K, a fixed compact subset of 𝐶pΔq;
p𝐷q 𝑑𝜔𝑛p𝑥q “ 𝜔1

𝑛p𝑥q𝑑𝑥 are probability measures such that the functions 𝜔1
𝑛p𝑥q form

a uniformly equicontinuous family on each compact subset of p𝛼, 𝛽q and there is
𝜏 ą 0 such that

𝜔1
𝑛p𝑥q Á |𝑤Δp𝑥q|𝜘𝐿 , 𝑥 P r𝛼 ` 𝑛´𝜏 , 𝛽 ´ 𝑛´𝜏s,

𝜔1
𝑛p𝑥q À |𝑤Δp𝑥q|𝜘𝑈 , 𝑥 P p𝛼, 𝛽q,

for some 𝜘𝐿 , 𝜘𝑈 ą ´2, see (1.3).
Write \𝑛p𝑥q “ 2𝑛𝑉𝜔𝑛p𝑥q ` ℎ𝑛p𝑥q. Then, it holds locally uniformly in 𝐷Δ “ CzΔ that

(4.1) 𝑇𝑛
`

𝑒\𝑛`𝑛
˘

p𝑧q “ p1 ` 𝑜Kp1qq exp
ˆ

𝑛

ż

logp𝑧 ´ 𝑥q𝑑𝜔𝑛p𝑥q

˙

𝐺p𝑒ℎ𝑛`𝑛,8q

𝐺p𝑒ℎ𝑛`𝑛, 𝑧q
.

Moreover,
ż

Δ

𝑇2
𝑛

`

𝑒\𝑛`𝑛
˘

p𝑥q𝑒\𝑛p𝑥q𝑑`𝑛p𝑥q “ 2
`

1 ` 𝑜Kp1q
˘

𝐺2`𝑒ℎ𝑛`𝑛,8
˘

.

Theorem 4.1 generalizes [41, Theorem 14.4] in the following ways: it replaces a single
absolutely continuous measure ` with a sequence of not necessarily absolutely continuous
measures 𝑒ℎ𝑛`𝑛. In [41], the analog of Theorem 4.1 is deduced from [41, Theorem 10.2]
combined with the work in [10]. We follow the same approach but replace the relevant
results in [10] by Theorem 5.8 proven further below in Section 5. Besides Theorem 4.1, we
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also need the following generalization which is used when the “pushing effect” is present
in the vector-potential problem (2.1)–(2.2) for Angelesco systems.

Theorem 4.2. Let ` be a compactly supported positive Borel measure and r𝛼𝑛, 𝛽𝑛s “

Δ𝑛 Ď Δp`q “ r𝛼p`q, 𝛽p`qs be intervals that converge to some interval Δ “ r𝛼, 𝛽s. Assume
that ` P USzpΔq. Further, let tp^𝑛, ℎ𝑛, 𝜔𝑛qu be a sequence of triples, where ^𝑛, ℎ𝑛 are
continuous functions on Δp`q and 𝜔𝑛 are measures on Δp`q such that

p1q the functions ^𝑛p𝑥q are such that ^𝑛p𝑥q ď 0 on Δp`q, ^𝑛p𝑥q ” 0 on Δ𝑛, and it
holds on Δp`qzΔ𝑛 that |𝑤Δ𝑛

p𝑥q|𝜘 À |^𝑛p𝑥q| À |𝑤Δ𝑛
p𝑥q|𝜘 for some 𝜘 ą 0;

p2q the functions ℎ𝑛p𝑥q belong to K, a fixed compact subset of 𝐶pΔp`qq;
p3q 𝑑𝜔𝑛p𝑥q “ 𝜔1

𝑛p𝑥q𝑑𝑥 are probability measures such that supp𝜔𝑛 “ Δ𝑛, the densities
t𝜔1

𝑛p𝑥qu form a uniformly equicontinuous family on any compact subset of p𝛼, 𝛽q,
and

(4.2) |𝑤Δ𝑛
p𝑥q|𝜘𝐿 À 𝜔1

𝑛p𝑥q À |𝑤Δ𝑛
p𝑥q|𝜘𝑈 , 𝑥 P p𝛼𝑛, 𝛽𝑛q,

for some 𝜘𝐿 , 𝜘𝑈 ą ´2; in addition, for all 𝑛 such that 𝛼𝑛 ą 𝛼p`q, we assume that
there exists p𝜘𝑈 ą 0 for which

(4.3) 𝜔1
𝑛p𝑥q À |𝑥 ´ 𝛼𝑛|

p𝜘𝑈 , 𝑥 P p𝛼𝑛, 𝛼𝑛 ` 𝛿q,

for some 𝛿 ą 0, and a similar assumption is made for all 𝑛 for which 𝛽𝑛 ă 𝛽p`q.
Set \𝑛p𝑥q :“ 2𝑛p𝑉𝜔𝑛p𝑥q ` ^𝑛p𝑥qq ` ℎ𝑛p𝑥q. Then, it holds locally uniformly in 𝐷Δ that

𝑇𝑛
`

𝑒\𝑛`
˘

p𝑧q “ p1 ` 𝑜Kp1qq exp
ˆ

𝑛

ż

logp𝑧 ´ 𝑥q𝑑𝜔𝑛p𝑥q

˙

𝐺p𝑒ℎ𝑛`|Δ,8q

𝐺p𝑒ℎ𝑛`|Δ, 𝑧q
.

Moreover,
ż

Δp`q

𝑇2
𝑛

`

𝑒\𝑛`
˘

p𝑥q𝑒\𝑛p𝑥q𝑑`p𝑥q “ 2
`

1 ` 𝑜Kp1q
˘

𝐺2`𝑒ℎ𝑛`|Δ,8
˘

.

In the above two formulae, the functions 𝐺p𝑒ℎ𝑛`|Δ, 𝑧q can be replaced by 𝐺p𝑒ℎ𝑛`|Δ𝑛
, 𝑧q.

4.2. Proof of Theorem 4.1. We prove Theorem 4.1 in three steps that we organize as
separate lemmas.

Lemma 4.3. It is enough to prove Theorem 4.1 for Δ “ r´1, 1s only.

Proof. Let 𝑙p𝑧q “ 𝑎𝑧 ` 𝑏 be any linear transformation with 𝑎 ą 0 and 𝑏 real. Set
Δp𝑙q :“ 𝑙´1pΔq and, given a measure ` on Δ, let `p𝑙q denote a Borel measure on Δp𝑙q

such that `p𝑙qp𝐵q “ `p𝑙p𝐵qq for any Borel set 𝐵 Ď Δp𝑙q. Notice that 𝜔p𝑙q

Δ
“ 𝜔Δp𝑙q and

that the Radon-Nikodym derivative of `p𝑙q with respect to the Lebesgue measure (resp.
𝜔Δp𝑙q ) is equal to 𝑎`1p𝑙p𝑥qq (resp. 𝑣p𝑙p𝑥q), where `1p𝑥q (resp. 𝑣p𝑥q) is the Radon-Nikodym
derivative of ` with respect to the Lebesgue measure (resp. 𝜔Δ). Observe also that

𝑉𝜔p𝑙p𝑥qq “ ´

ż

log |𝑙p𝑥q ´ 𝑙p𝑦q|𝑑𝜔p𝑙qp𝑦q “ ´ log 𝑎 `𝑉𝜔
p𝑙q

p𝑥q

for any Borel measure 𝜔. Hence, it holds that

𝑇𝑛
`

𝑒2𝑛𝑉 𝜔𝑛`ℎ𝑛`𝑛
˘

p𝑙p𝑧qq “ 𝑎𝑛𝑇𝑛

ˆ

𝑒2𝑛𝑉 𝜔
p𝑙q
𝑛 `ℎ

p𝑙q
𝑛 `

p𝑙q
𝑛

˙

p𝑧q,
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where ℎp𝑙q
𝑛 “ ℎ ˝ 𝑙. Since 𝑤Δp𝑙p𝑧qq “ 𝑎𝑤Δp𝑙q p𝑧q, the above considerations also show

that triples p`
p𝑙q
𝑛 , ℎ

p𝑙q
𝑛 , 𝜔

p𝑙q
𝑛 q satisfy conditions p𝐴q ´ p𝐷q on Δp𝑙q if the triples p`𝑛, ℎ𝑛, 𝜔𝑛q

satisfy p𝐴q ´ p𝐷q on Δ. Finally, we get from (1.4) and (1.8) that

𝑒𝑛
ş

logp𝑙p𝑧q´𝑥q𝑑𝜔𝑛p𝑥q 𝐺p𝑒ℎ𝑛`𝑛,8q

𝐺p𝑒ℎ𝑛`𝑛, 𝑙p𝑧qq
“ 𝑎𝑛𝑒𝑛

ş

logp𝑧´𝑥q𝑑𝜔
p𝑙q
𝑛 p𝑥q𝐺p𝑒ℎ

p𝑙q
𝑛 `

p𝑙q
𝑛 ,8q

𝐺p𝑒ℎ
p𝑙q
𝑛 `

p𝑙q
𝑛 , 𝑧q

,

which finishes the proof of the lemma. �

Condition p𝐷q, placed on the measures 𝜔𝑛 in Theorem 4.1, comes from [41, Theo-
rem 10.2]. Under this assumption it was shown there that there exist polynomials 𝐻𝑛p𝑥q,
deg𝐻𝑛 ď 𝑛, that do not vanish on r´1, 1s and such that the functions

]𝑛p𝑥q :“ 𝑒2𝑛𝑉 𝜔𝑛 p𝑥q|𝐻𝑛p𝑥q|2, 𝑥 P r´1, 1s,

satisfy

(4.4)

#

0 ă ]𝑛p𝑥q ď 1, 𝑥 P r´1, 1s,

lim𝑛Ñ8

ş

log ]𝑛𝑑𝜔 “ 0, 𝜔 “ 𝜔r´1,1s.

We remark that [41, Theorem 10.2] was formulated on r0, 1s, but its results can be easily
brought to r´1, 1s by a linear transformation. In that theorem, we put 𝛾 “ 1{2 and 𝑢 ” 1,
and the degree satisfies deg𝐻𝑛 “ 𝑛 ´ 𝑖𝑛, where 𝑖𝑛 Ñ 8. The non-vanishing of 𝐻𝑛 was
claimed only on p´1, 1q, but it is clear from the construction, see [41, pages 58 and 75],
that these polynomials also do not vanish at the endpoints. Set

(4.5) 𝜏𝑛p𝑧q :“
𝐻𝑛p𝑧q𝐻𝑛p𝑧q

|𝐻𝑛p0q|2
.

The polynomial 𝜏𝑛p𝑧q has even degree, deg 𝜏𝑛 ď 2𝑛, and 𝜏𝑛 satisfies the following proper-
ties:

1. 𝜏𝑛p𝑧q has real coefficients,
2. 𝜏𝑛p0q “ 1,
3. 𝜏𝑛 does not vanish on r´1, 1s,
4. if we denote the zeros of 𝜏𝑛p𝑧q by t𝑎𝑛, 𝑗u, 𝑗 P t1, 2, . . . , deg 𝜏𝑛u, then at least

a half of them, see [41, page 94], are located in t|Re 𝑧| ă 0.9, |Im 𝑧| ą 𝐿𝑛{𝑛u

with lim𝑛Ñ8 𝐿𝑛 “ `8. This guarantees that condition p𝐷r´1,1sq of Theorem 5.8
further below is satisfied by 𝜏𝑛p𝑧q.

Lemma 4.4. Under the conditions of Theorem 4.1 with Δ “ r´1, 1s, it holds that

(4.6) 𝑇2
𝑛

`

𝑒\𝑛`𝑛
˘

p𝑧q “
`

1 ` 𝑜Kp1q
˘𝐺2p𝑒ℎ𝑛 ]𝑛`𝑛,8q

𝐺2p𝑒ℎ𝑛 ]𝑛`𝑛, 𝑧q
ˆ

1
22𝑛

deg 𝜏𝑛
ź

𝑗“1
p2𝑎𝑛, 𝑗𝜙p𝑎𝑛, 𝑗qq

𝜏𝑛p𝑧q

𝜙2𝑛´deg 𝜏𝑛p𝑧q

deg 𝜏𝑛
ź

𝑗“1

1 ´ 𝜙p𝑎𝑛, 𝑗q𝜙p𝑧q

𝜙p𝑧q ´ 𝜙p𝑎𝑛, 𝑗q

locally uniformly in Czr´1, 1s, where 𝜙p𝑧q :“ 𝜙r´1,1sp𝑧q, see (1.3). Moreover,

ż 1

´1
𝑇2
𝑛

`

𝑒\𝑛`𝑛
˘

p𝑥q𝑒\𝑛p𝑥q𝑑`𝑛p𝑥q “
`

1 ` 𝑜Kp1q
˘𝐺2p𝑒ℎ𝑛 ]𝑛`𝑛,8q

22𝑛´1

deg 𝜏𝑛
ź

𝑗“1
p2𝜙p𝑎𝑛, 𝑗qq.
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Proof. Since monic orthogonal polynomials do not depend on the normalization of the
measure of orthogonality, we have that

𝑇𝑛
`

𝑒\𝑛`𝑛
˘

p𝑧q “ 𝑇𝑛
`

𝑒ℎ𝑛𝜏´1
𝑛 ˜̀𝑛

˘

p𝑧q, ˜̀𝑛 :“ ]𝑛`𝑛.

Let us show that conditions p𝐴r´1,1sq´p𝐷r´1,1sq of Theorem 5.8 are satisfied by the triples
p ˜̀𝑛, ℎ𝑛, 𝜏𝑛q. We have already mentioned that the polynomials 𝜏𝑛p𝑧q fulfill p𝐷r´1,1sq.
Moreover, condition p𝐶q of Theorem 4.1 is identical to condition p𝐶r´1,1sq of Theorem 5.8.
Since the Radon-Nikodym derivative of ˜̀𝑛 with respect to 𝜔 “ 𝜔r´1,1s is p]𝑛𝑣𝑛qp𝑥q, the
functions ]𝑛p𝑥q obey the first line of (4.4), and

ˇ

ˇ logp]𝑛𝑣𝑛qp𝑥q ´ log 𝑣p𝑥q
ˇ

ˇ ď
ˇ

ˇ log 𝑣𝑛p𝑥q ´ log 𝑣p𝑥q| ´ log ]𝑛p𝑥q,

condition p𝐵r´1,1sq of Theorem 5.8 follows from condition p𝐵q of Theorem 4.1 and the
second line of (4.4). Finally, condition p𝐴q of Theorem 4.1 implies condition p𝐴r´1,1sq

of Theorem 5.8 for the same measure ` due to the upper bound in the first line of (4.4).
If 𝑝𝑛p𝜎qp𝑧q “ 𝛾𝑛𝑧

𝑛 ` ¨ ¨ ¨ denotes the 𝑛-th orthonormal polynomial with respect to the
measure 𝜎, then we can write

𝑇𝑛p𝜎qp𝑧q “ 𝛾´1
𝑛 𝑝𝑛p𝜎qp𝑧q and 𝛾´2

𝑛 “

ż

𝑇2
𝑛 p𝜎q𝑑𝜎.

So, the first claim of the lemma is deduced from Theorem 5.8. To get the second one, we
first observe that (4.5) implies |𝐻𝑛p0q|2 “

ś

𝑗 𝑎𝑛, 𝑗 . Then,
ż 1

´1
𝑇2
𝑛

`

𝑒\𝑛`𝑛
˘

p𝑥q𝑒\𝑛p𝑥q𝑑`𝑛p𝑥q “
1

|𝐻𝑛p0q|2

ż 1

´1
𝑇2
𝑛

`

𝑒ℎ𝑛𝜏´1
𝑛 ˜̀𝑛

˘

p𝑥q𝑒ℎ𝑛p𝑥q 𝑑 ˜̀𝑛p𝑥q

𝜏𝑛p𝑥q

and we only need to apply (5.19) to the last integral. �

Lemma 4.5. Theorem 4.1 holds on Δ “ r´1, 1s.

Proof. We will show that the right-hand side of (4.6) can be written in a form consistent
with (4.1). We readily get from (1.8) and (1.4) that

𝐺2p𝑒ℎ𝑛 ]𝑛`𝑛, 𝑧q{𝐺2p𝑒ℎ𝑛`𝑛, 𝑧q “ Ωp]𝑛, 𝑧q “ Ω
`

𝑒2𝑛𝑉 𝜔𝑛
, 𝑧
˘

Ω
`

|𝐻𝑛|2, 𝑧
˘

,

where Ω is used as a shorthand for Ωr´1,1s. Let us show that
$

’

’

’

’

&

’

’

’

’

%

Ω
`

|𝐻𝑛|2, 𝑧
˘

“ 𝜏𝑛p𝑧q𝜙deg 𝜏𝑛p𝑧q

˜deg 𝜏𝑛
ź

𝑗“1
𝑎𝑛, 𝑗

¸ deg 𝜏𝑛
ź

𝑗“1

1 ´ 𝜙p𝑎𝑛, 𝑗q𝜙p𝑧q

𝜙p𝑧q ´ 𝜙p𝑎𝑛, 𝑗q
,

Ω
`

𝑒𝑉
𝜔𝑛
, 𝑧
˘

“ 𝜙´1p𝑧q exp
"
ż

logp𝑧 ´ 𝑥q𝑑𝜔𝑛p𝑥q

*

.

Both equalities follow from the same general principle: if 𝑓 p𝑥q is a continuous function on
r´1, 1s and Ωp𝑧q is a holomorphic non-vanishing function in Czr´1, 1s such that |Ωp𝑧q|

is continuous in the entire extended complex plane and |Ωp𝑥q| “ 𝑓 p𝑥q on r´1, 1s, then
Ωp𝑧q “ Ωp 𝑓 , 𝑧q. Continuity of |𝐻𝑛p𝑥q|2 is obvious while continuity of 𝑉𝜔𝑛p𝑥q follows
from condition p𝐷q and properties of logarithmic potentials. Recall that deg 𝜏𝑛 is an even
integer and that 2𝑧𝜙p𝑧q Ñ 1 as 𝑧 Ñ 8. Now, to prove the lemma it only remains to notice
that the explicit representations given above yield

Ω
`

|𝐻𝑛|2,8
˘

“

deg 𝜏𝑛
ź

𝑗“1
p2𝜙p𝑎𝑛, 𝑗qq´1 and Ω

`

𝑒𝑉
𝜔𝑛
,8

˘

“ 2. �
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4.3. Proof of Theorem 4.2. Similarly to Theorem 4.1, we prove Theorem 4.2 in four steps
organized as separate lemmas.

Write Δp`q “ r𝛼p`q, 𝛽p`qs, Δ “ r𝛼, 𝛽s, and Δ𝑛 “ r𝛼𝑛, 𝛽𝑛s. Recall condition (1) of
Theorem 4.2. Let t𝛿𝑛u be a sequence of positive numbers such that

(4.7) 𝛿𝑛 “ pb𝑛{𝑛q2{p𝜘`1q,

where b𝑛 Ñ 0 as 𝑛 Ñ 8 and it will be specified later in the proof of Lemma 4.8, see (4.21).
Set Δ˚

𝑛 :“ r𝛼˚
𝑛 , 𝛽

˚
𝑛 s, where 𝛼˚

𝑛 :“ max
 

𝛼𝑛 ´ 𝛿𝑛, 𝛼p`q
(

and 𝛽˚
𝑛 :“ min

 

𝛽𝑛 ` 𝛿𝑛, 𝛽p`q
(

.
Our strategy will consist in applying Theorem 4.1 to obtain the asymptotics of orthogonal
polynomials 𝑃˚

𝑛 for measures reduced to Δ˚
𝑛 . Then, we show that asymptotics of the

polynomials 𝑇𝑛 from Theorem 4.2 coincides with that of 𝑃˚
𝑛 .

Lemma 4.6. Recall that \𝑛p𝑥q “ 2𝑛p𝑉𝜔𝑛p𝑥q ` ^𝑛p𝑥qq ` ℎ𝑛p𝑥q, 𝑥 P Δp`q. It holds that

𝑃˚
𝑛 p𝑧q :“ 𝑇𝑛

´

𝑒\𝑛`|Δ
˚
𝑛

¯

p𝑧q “ p1 ` 𝑜Kp1qq𝐹˚
𝑛 p𝑧q

locally uniformly in 𝐷Δ, where

(4.8) 𝐹˚
𝑛 p𝑧q :“ exp

ˆ

𝑛

ż

logp𝑧 ´ 𝑥q𝑑𝜔𝑛p𝑥q

˙

𝐺p𝑒ℎ𝑛`|Δ
˚
𝑛
,8q

𝐺p𝑒ℎ𝑛`|Δ
˚
𝑛
, 𝑧q

.

Proof. To apply Theorem 4.1, we need to rescale the intervals Δ˚
𝑛 to their limit Δ. To this

end, let 𝑙𝑛p𝑥q “ 𝑎𝑛𝑥 ` 𝑏𝑛, 𝑎𝑛 ą 0, be the linear function that maps Δ onto Δ˚
𝑛 . Clearly,

𝑎𝑛 Ñ 1 and 𝑏𝑛 Ñ 0 as 𝑛 Ñ 8. In the notation of Lemma 4.3, set �̃�𝑛 :“ 𝜔
p𝑙𝑛q
𝑛 . Then, it

holds that

supp �̃�𝑛 “ 𝑙´1
𝑛 pΔ𝑛q Ď Δ and 𝑑�̃�𝑛p𝑥q “ �̃�1

𝑛p𝑥q𝑑𝑥 “ 𝑎𝑛𝜔
1
𝑛p𝑙𝑛p𝑥qq𝑑𝑥.

Write 𝑙´1
𝑛 pΔ𝑛q “ r𝛼

p𝑙q
𝑛 , 𝛽

p𝑙q
𝑛 s. Since 𝑎𝑛 Ñ 1 as 𝑛 Ñ 8, we get from the upper bound in

assumption (3) of Theorem 4.2 that

�̃�1
𝑛p𝑥q À

`

𝑥 ´ 𝛼
p𝑙q
𝑛

˘𝜘𝑈 {2`
𝛽

p𝑙q
𝑛 ´ 𝑥

˘𝜘𝑈 {2
, 𝑥 P

`

𝛼
p𝑙q
𝑛 , 𝛽

p𝑙q
𝑛

˘

.

If 𝛼p𝑙q
𝑛 ą 𝛼 for some index 𝑛, then 𝛼𝑛 ą 𝛼˚

𝑛 ě 𝛼p`q and p𝑥 ´ 𝛼
p𝑙q
𝑛 q𝜘𝑈 {2 can be replaced

by p𝑥´𝛼
p𝑙q
𝑛 qp𝜘𝑈 in the above estimate as required by assumption (3) of Theorem 4.2, where

p𝜘𝑈 ą 0. Similarly, if 𝛽p𝑙q
𝑛 ă 𝛽 for some 𝑛, then p𝛽

p𝑙q
𝑛 ´ 𝑥q𝜘𝑈 {2 can again be replaced by

p𝛽
p𝑙q
𝑛 ´ 𝑥qp𝜘𝑈 . Either way, the upper bound in assumption p𝐷q of Theorem 4.1 is fulfilled.

Similarly to the upper bound, we have that

�̃�1
𝑛p𝑥q Á |𝑤

𝑙
´1
𝑛 pΔ𝑛q

p𝑥q|𝜘𝐿 , 𝑥 P
`

𝛼
p𝑙q
𝑛 , 𝛽

p𝑙q
𝑛

˘

,

by the lower bound in assumption (3) of Theorem 4.2. If 𝑙´1
𝑛 pΔ𝑛q “ Δ for all 𝑛, the above

inequality gives the desired lower bound in assumption p𝐷q of Theorem 4.1. If at least one
of the intervals 𝑙´1

𝑛 pΔ𝑛q is a proper subinterval of Δ, then the corresponding upper bound
requires that 𝜘𝐿 ą 0. It can be readily checked that

|𝑤
𝑙

´1
𝑛 pΔ𝑛q

p𝑥q| Á |𝑤Δp𝑥q|, 𝑥 P
`

𝛼 ` 2
`

𝛼
p𝑙q
𝑛 ´ 𝛼

˘

, 𝛽 ´ 2p𝛽 ´ 𝛽
p𝑙q
𝑛

˘˘

.

Notice that 𝑎𝑛p𝛼
p𝑙q
𝑛 ´ 𝛼q “ 𝛼𝑛 ´ 𝛼˚

𝑛 ď 𝛿𝑛 and similarly that 𝑎𝑛p𝛽 ´ 𝛽
p𝑙q
𝑛 q ď 𝛿𝑛. It now

follows from (4.7) that there exists 𝜏 ą 0 such that

�̃�1
𝑛p𝑥q Á |𝑤Δp𝑥q|𝜘𝐿 , 𝑥 P p𝛼 ` 𝑛´𝜏 , 𝛽 ´ 𝑛´𝜏q.
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Finally, equicontinuity of the functions �̃�1
𝑛p𝑥q on compact subsets of p𝛼, 𝛽q follows from

the analogous conditions placed on the densities 𝜔1
𝑛p𝑥q. Altogether, all the requirements

of assumption p𝐷q of Theorem 4.1 are satisfied.
Next, let ℎ̃𝑛 “ ℎ𝑛 ˝ 𝑙𝑛. It follows from the locally uniform convergence to the identity

of the functions 𝑙𝑛 that assumption p𝐶q of Theorem 4.1 follows from assumption (2) of
Theorem 4.2 with the compact subset of 𝐶pΔq being the closure of Y𝑛tℎ ˝ 𝑙𝑛 : ℎ P Ku.
Finally, let

𝑑 ˜̀𝑛p𝑥q “ 𝑒2𝑛 ˜̂𝑛p𝑥q𝑑p`|Δ
˚
𝑛

qp𝑙𝑛qp𝑥q, ˜̂𝑛 “ ^𝑛 ˝ 𝑙𝑛.

Given a continuous function 𝑓 on Δ, it holds that
ż

Δ

𝑓 𝑑p`𝑙𝑛 ´ `q “

ż

ΔXΔ
˚
𝑛

p 𝑓 ˝ 𝑙´1
𝑛 ´ 𝑓 q𝑑` `

ż

Δ
˚
𝑛 zΔ

𝑓 ˝ 𝑙´1
𝑛 𝑑` ´

ż

ΔzΔ
˚
𝑛

𝑓 𝑑`.

The first integral on the right-hand side above converges to zero due to uniform continuity
of 𝑓 . The second one converges to zero because 𝑓 is bounded and X𝑛Δ

˚
𝑛zΔ “ H so

`pΔ˚
𝑛zΔq Ñ 0 as 𝑛 Ñ 8. The third integral is always non-negative. Hence, as ˜̂𝑛p𝑥q ď 0,

assumption p𝐴q of Theorem 4.1 is clearly fulfilled. To verify assumption p𝐵q, observe that

log �̃�𝑛p𝑥q “ 2𝑛 ˜̂𝑛p𝑥q ` log 𝑣Δ˚
𝑛

p𝑙𝑛p𝑥qq,

where �̃�𝑛 is the Radon-Nikodym derivative of ˜̀𝑛 with respect to 𝜔Δ, see (1.7). We readily
have that

| log 𝑣Δp𝑥q ´ log 𝑣Δ˚
𝑛

p𝑙𝑛p𝑥qq| “ | log `1p𝑥q ´ log `1p𝑙𝑛p𝑥qq ´ log 𝑎𝑛|.

Since 𝑎𝑛 Ñ 1, it follows from (3.2) that } log 𝑣Δ ´ log 𝑣Δ˚
𝑛

p𝑙𝑛q}𝐿1p𝜔Δq Ñ 0 as 𝑛 Ñ 8.
Furthermore, we have that

ż

Δ

| ˜̂𝑛p𝑥q|𝑑𝜔Δp𝑥q “

ż

Δ
˚
𝑛

|^𝑛p𝑥q|𝑑𝜔Δ
˚
𝑛

p𝑥q À

ż

Δ
˚
𝑛 zΔ𝑛

|𝑤Δ𝑛
p𝑥q|𝜘𝑑𝜔Δ

˚
𝑛

p𝑥q,

where we used assumption (1) of Theorem 4.2. Hence, it readily follows from the definition
of Δ˚

𝑛 that

(4.9) 2𝑛
ż

Δ

| ˜̂𝑛p𝑥q|𝑑𝜔Δp𝑥q ÀΔ 𝑛

ż 𝛿𝑛

0
𝑥p𝜘`1q{2𝑑𝜔r0, 𝛿𝑛sp𝑥q ÀΔ 𝑛𝛿

p𝜘`1q{2
𝑛 “ b𝑛.

Since lim𝑛Ñ8 b𝑛 “ 0 by our assumptions, we get }2𝑛 ˜̂𝑛}𝐿1p𝜔Δq Ñ 0 as 𝑛 Ñ 8, which
shows that condition p𝐵q of Theorem 4.1 is also satisfied. Altogether, we have that the
triples p ˜̀𝑛, ℎ̃𝑛, �̃�𝑛q satisfy all the conditions of Theorem 4.1 and therefore

𝑇𝑛

´

𝑒2𝑛𝑉 �̃�𝑛`ℎ̃𝑛 ˜̀𝑛
¯

p𝑧q “ p1 ` 𝑜Kp1qq exp
ˆ

𝑛

ż

logp𝑧 ´ 𝑥q𝑑�̃�𝑛p𝑥q

˙

𝐺p𝑒ℎ̃𝑛 ˜̀𝑛,8q

𝐺p𝑒ℎ̃𝑛 ˜̀𝑛, 𝑧q
holds locally uniformly in 𝐷Δ. Computations in Lemma 4.3 now show that the above
formula is equivalent to the statement of the lemma. �

The next lemma provides a simple uniform estimate on the boundary behavior for the
sequence of outer functions. Recall the definition of function 𝐺 given in (1.8) and (1.4).

Lemma 4.7. There exists a non-decreasing function 𝜖`p𝑡q such that lim𝑡Ó0 𝜖`p𝑡q “ 0 and

log𝐺´2`𝑒ℎ𝑛`|Δ𝑛
, 𝛽𝑛 ` 𝑡

˘

ď
𝜖`p𝑡q
?
𝑡

for every 𝑡 P r0, 𝛽p`q ´ 𝛽𝑛s and every 𝑛. Moreover, an analogous estimate holds with
𝛽𝑛 ` 𝑡 replaced by 𝛼𝑛 ´ 𝑡 for 𝑡 P r0, 𝛼𝑛 ´ 𝛼p`qs.
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Proof. By (1.4) and (1.8) that

log𝐺´2`𝑒ℎ𝑛`|Δ𝑛
, 𝛽𝑛 ` 𝑡

˘

ď
𝑤Δ𝑛

p𝛽𝑛 ` 𝑡q

2

ż

Δ𝑛

|ℎ𝑛p𝑥q| ` | log 𝑣Δ𝑛
p𝑥q|

𝛽𝑛 ` 𝑡 ´ 𝑥
𝑑𝜔Δ𝑛

p𝑥q.

It follows from the Cauchy integral formula that

1
𝑤Δ𝑛

p𝑧q
“

1
𝜋i

ż

Δ𝑛

1
𝑥 ´ 𝑧

𝑑𝑥

𝑤Δ𝑛`p𝑥q
“

ż

Δ𝑛

𝑑𝜔Δ𝑛
p𝑥q

𝑧 ´ 𝑥
,

where we used the fact that 𝑤Δ𝑛`p𝑥q “ i|𝑤Δ𝑛
p𝑥q| for 𝑥 P Δ𝑛. Since K is a compact, the

functions |ℎ𝑛p𝑥q| are uniformly bounded. Therefore, we get that

𝑤Δ𝑛
p𝛽𝑛 ` 𝑡q

ż

Δ𝑛

|ℎ𝑛p𝑥q|

𝛽𝑛 ` 𝑡 ´ 𝑥
𝑑𝜔Δ𝑛

p𝑥q ÀK 1.

Recall further that 𝑣Δ𝑛
p𝑥q “ 𝜋`1p𝑥q|𝑤Δ𝑛

p𝑥q|. We have that

𝑤Δ𝑛
p𝛽𝑛 ` 𝑡q

ż

Δ𝑛

| log |𝑤Δ𝑛
p𝑥q||

𝛽𝑛 ` 𝑡 ´ 𝑥
𝑑𝜔Δ𝑛

p𝑥q ÀΔ

?
𝑡 `

?
𝑡

ż 𝛽𝑛

𝛽𝑛´1

´ logp𝛽𝑛 ´ 𝑥q

𝛽𝑛 ` 𝑡 ´ 𝑥

𝑑𝑥
?
𝛽𝑛 ´ 𝑥

ÀΔ

?
𝑡 ` | log 𝑡|.

Moreover,
ż

Δ𝑛

| log `1p𝑥q|

𝛽𝑛 ` 𝑡 ´ 𝑥
𝑑𝜔Δ𝑛

p𝑥q ÀΔ

1
?
𝑡

ż 𝛽𝑛´
?
𝑡

𝛼𝑛

| log `1p𝑥q|
?
𝛽𝑛 ´ 𝑥

𝑑𝑥 `
1
𝑡

ż 𝛽𝑛

𝛽𝑛´
?
𝑡

| log `1p𝑥q|
?
𝛽𝑛 ´ 𝑥

𝑑𝑥

À
} log `1}𝐿1p𝜔Δq

?
𝑡

`
1
𝑡

ż 𝛽𝑛

𝛽𝑛´
?
𝑡

| log `1p𝑥q|
?
𝛽𝑛 ´ 𝑥

𝑑𝑥,

where we used (3.2) for the last estimate. Set

𝜖p𝑡q :“ sup
𝑛ą𝑁0

ż 𝛽𝑛

𝛽𝑛´
?
𝑡

| log `1p𝑥q|
?
𝛽𝑛 ´ 𝑥

𝑑𝑥,

where 𝑁0 is sufficiently large to make sure that integrals converge. Clearly, this is a non-
decreasing function of 𝑡. We claim that lim𝑡Ó0 𝜖p𝑡q “ 0. Indeed, assume to the contrary
that there exist 𝜖0 ą 0, a sequence t𝑡𝑚u decreasing to 0, and a set t𝑚𝑛u such that

(4.10)
ż 𝛽𝑛𝑚

𝛽𝑛𝑚´
?
𝑡𝑚

| log `1p𝑥q|
a

𝛽𝑛𝑚 ´ 𝑥
𝑑𝑥 ě 𝜖0.

If t𝑚𝑛u is bounded, it contains a constant sequence. However, (4.10) cannot hold along
this sequence as the integrals of a fixed integrable function over sets of decreasing measure
must vanish. On the other hand, if t𝑛𝑚u contains a strictly increasing sequence, (4.10)
contradicts Proposition 3.3(iii) since ` P USzpΔq. Hence, altogether,

𝑤Δ𝑛
p𝛽𝑛 ` 𝑡q

ż

Δ𝑛

| log `1p𝑥q|

𝛽𝑛 ` 𝑡 ´ 𝑥
𝑑𝜔Δ𝑛

p𝑥q À`,Δ 1 `
𝜖p𝑡q
?
𝑡
.

Collecting all the previous estimates gives us

log𝐺´2`𝑒ℎ𝑛`|Δ𝑛
, 𝛽𝑛 ` 𝑡

˘

ÀΔ,`,K
𝑡 `

?
𝑡 `

?
𝑡| log 𝑡| ` 𝜖p𝑡q
?
𝑡

.

Since the numerator above can be easily estimated by a non-decreasing function that has
zero limit at zero, the claim of the lemma follows. �
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Before stating the next lemma, we deduce the following estimate. If 𝑓 is a function in
the Hardy space 𝐻2pDq, then the Cauchy integral formula and Cauchy-Schwarz inequality
give

| 𝑓 p𝑧q| ď

ż

T

| 𝑓 p[q|

|𝑧 ´ [|

|𝑑[|

2𝜋
ď

} 𝑓 }𝐿2pTq
a

1 ´ |𝑧|
.

Thus, if 𝐹 is a function in the Hardy space 𝐻2pCzΔq, then 𝐹 ˝ 𝜙Δ is a function in 𝐻2pDq,
see (1.3), and therefore

(4.11) |𝐹p𝛽 ` 𝛿q| ď
}𝐹}𝐿2p𝜔Δq

a

1 ´ 𝜙Δp𝛽 ` 𝛿q
ÀΔ

}𝐹}𝐿2p𝜔Δq

4
?
𝛿

.

Lemma 4.8. The sequence tb𝑛u in the definition of 𝛿𝑛 in (4.7) can be chosen so that
ż

Δp`qzΔ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q Ñ 0 as 𝑛 Ñ 8.

Proof. Let 𝑙𝑛p𝑥q “ 𝑎𝑛𝑥 ` 𝑏𝑛, 𝑎𝑛 ą 0, be the linear function that maps of Δ onto Δ˚
𝑛 ,

as in the proof of Lemma 4.6. Due to the compactness of K, it holds that the sequence
ℎ𝑛 ´ ℎ𝑛 ˝ 𝑙𝑛 converges to zero uniformly on Δ. The uniform Szegő condition implies

𝐺
`

𝑒ℎ𝑛`|Δ
˚
𝑛
, 𝑧
˘

“
`

1 ` 𝑜Kp1q
˘

𝐺
`

𝑒ℎ𝑛`|Δ, 𝑧
˘

,(4.12)

𝐺
`

𝑒ℎ𝑛`|Δ𝑛
, 𝑧
˘

“
`

1 ` 𝑜Kp1q
˘

𝐺
`

𝑒ℎ𝑛`|Δ, 𝑧
˘

,

locally uniformly in 𝐷Δ. Hence, the last asymptotic formula of Theorem 4.1 pulled back
to the intervals Δ˚

𝑛 as in Lemma 4.6 shows that

(4.13) 𝐺´2p𝑒ℎ𝑛`|Δ𝑛
,8q

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q “ 2 ` 𝑜Kp1q.

Using the fact that ^𝑛p𝑥q ” 0 on Δ𝑛, we get that

|𝐹𝑛˘p𝑥q|´2 “ 𝐺´2p𝑒ℎ𝑛`|Δ𝑛
,8q𝑒\𝑛p𝑥q𝑣Δ𝑛

p𝑥q

almost everywhere on Δ𝑛 by (1.5), (1.7) and (1.8), where

𝐹𝑛p𝑧q “ exp
ˆ

𝑛

ż

logp𝑧 ´ 𝑥q𝑑𝜔𝑛p𝑥q

˙

𝐺p𝑒ℎ𝑛`|Δ𝑛
,8q

𝐺p𝑒ℎ𝑛`|Δ𝑛
, 𝑧q

(here we again restricted ` to Δ𝑛 and not Δ˚
𝑛 as in Lemma 4.6). Therefore, it holds that

2 ` 𝑜Kp1q ě

ż

Δ𝑛

ˇ

ˇ𝑃˚
𝑛 p𝑥q{𝐹𝑛˘p𝑥q

ˇ

ˇ

2
𝑑𝜔Δ𝑛

p𝑥q,

where we first reduce the interval of integration from Δ˚
𝑛 to Δ𝑛 in (4.13) and then drop

the singular part of `. Since the potentials 𝑉𝜔𝑛 are continuous in C, each function 𝑃˚
𝑛{𝐹𝑛

is a product of a Szegő function and a bounded analytic function. As such, it belongs to
𝐻2p𝐷Δ𝑛

q. Hence, it follows from (4.11) that
ˇ

ˇp𝑃˚
𝑛{𝐹𝑛qp𝑥q

ˇ

ˇ

2
ÀΔ,K 1{

a

𝑥 ´ 𝛽𝑛, 𝑥 P r𝛽𝑛, 𝛽p`qs.

The compactness of K as well as (4.12) imply that 𝐺p𝑒ℎ𝑛`|Δ𝑛
,8q À`,K 1.

Now, we are ready to estimate the integrals in the statement of the lemma. We only carry
out the estimates on r𝛽˚

𝑛 , 𝛽p`qs as the estimate on r𝛼p`q, 𝛼˚
𝑛 s can be done analogously.
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Assume that 𝛽˚
𝑛 ă 𝛽p`q (otherwise we have nothing to prove). In this case 𝛽˚

𝑛 “ 𝛽𝑛 ` 𝛿𝑛.
Using the bounds we just obtained, Lemma 4.7 and condition (1) in Theorem 4.2 give

ż 𝛽p`q

𝛽
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q “

ż 𝛽p`q

𝛽
˚
𝑛

ˇ

ˇ

ˇ

ˇ

𝑃˚
𝑛 p𝑥q

𝐹𝑛p𝑥q

ˇ

ˇ

ˇ

ˇ

2 𝐺2p𝑒ℎ𝑛`|Δ𝑛
,8q

𝐺2p𝑒ℎ𝑛`|Δ𝑛
, 𝑥q

𝑒2𝑛^𝑛p𝑥q`ℎ𝑛p𝑥q𝑑`p𝑥q

ÀΔ,`,K

ż 𝛽p`q

𝛽
˚
𝑛

exp
ˆ

´𝐶Δ𝑛p𝑥 ´ 𝛽𝑛q𝜘{2 `
𝜖`p𝑥 ´ 𝛽𝑛q
?
𝑥 ´ 𝛽𝑛

˙

𝑑`p𝑥q
?
𝑥 ´ 𝛽𝑛

.

We further get that
ż 𝛽p`q

𝛽
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ÀΔ,`,K

ż 𝛽p`q´𝛽𝑛

𝛿𝑛

exp
ˆ

𝐶

ˆ

´𝑛𝑡𝜘{2 `
𝜖`p𝑡q
?
𝑡

˙˙

𝑑`p𝑡 ` 𝛽𝑛q

ÀΔ,`,K max
𝛿𝑛ď𝑡ď𝑇

exp
ˆ

𝐶

ˆ

´𝑛𝑡𝜘{2 `
𝜖`p𝑡q
?
𝑡

˙˙

,(4.14)

where 𝑇 :“ sup𝑛p𝛽p`q ´ 𝛽𝑛q and 𝑇 ą 0. Let

(4.15) 𝑇𝑛 :“ p2𝜖`p𝑇q{𝑛q2{p𝜘`1q.

When

(4.16) 𝑇𝑛 ď 𝑡 ď 𝑇

we get 𝜖`p𝑡q ď 𝜖`p𝑇q since 𝜖`p𝑡q is non-decreasing. Also, for such 𝑡, we have 𝜖`p𝑇q ď

p𝑛{2q𝑡p𝜘`1q{2 by the choice of 𝑇𝑛 and combining these bounds gives

(4.17) 𝜖`p𝑡q ď p𝑛{2q𝑡p𝜘`1q{2 .

Respectively, we get for these 𝑡 that

´𝑛𝑡𝜘{2 ` 𝜖`p𝑡q{
?
𝑡

(4.17)
ď ´p𝑛{2q𝑡𝜘{2 (4.16)

ď ´p𝑛{2q𝑇
𝜘{2
𝑛

(4.15)
“ ´

`

𝑛𝜖𝜘`p𝑇q{2
˘1{p𝜘`1q

,

and the right-hand side converges to ´8 as 𝑛 Ñ 8. Since 𝜖`p𝑇𝑛q Ñ 0, we can choose b𝑛
in (4.7) so that

(4.18) 2𝜖`p𝑇𝑛q ď b𝑛.

Respectively, for

(4.19) 𝛿𝑛 ď 𝑡 ď 𝑇𝑛

we have that 𝜖`p𝑡q ď 𝜖`p𝑇𝑛q by monotonicity and 𝜖`p𝑇𝑛q ď p𝑛{2q𝑡p𝜘`1q{2 by 𝑡 ą 𝛿𝑛, (4.18)
and formula (4.7). Thus, combining these bounds gives

(4.20) 𝜖`p𝑡q ď p𝑛{2q𝑡p𝜘`1q{2 .

Hence, we get for such 𝑡 that

´𝑛𝑡𝜘{2 ` 𝜖`p𝑡q{
?
𝑡

(4.20)
ď ´p𝑛{2q𝑡𝜘{2 (4.19)

ď ´p𝑛{2q𝛿
𝜘{2
𝑛

(4.7)
“ ´p1{2qp𝑛b𝜘𝑛q1{p𝜘`1q.

Now, we choose positive sequence tb𝑛u so that

(4.21) lim
𝑛Ñ8

b𝑛 “ 0, lim
𝑛Ñ8

𝑛b𝜘𝑛 “ `8, and 2𝜖`p𝑇𝑛q
(4.18)
ď b𝑛.

This finishes the proof of the lemma because the right-hand side of (4.14) converges to zero
when 𝑛 Ñ 8. �

Lemma 4.9. Theorem 4.2 takes place.



STRONG ASYMPTOTICS OF ANGELESCO MOPS: NON-MARGINAL DIRECTIONS 37

Proof. Let 𝐹˚
𝑛 p𝑧q be as in (4.8) and

Ω^𝑛p𝑧q :“ ΩΔ
˚
𝑛

`

𝑒´𝑛^𝑛 ; 𝑧q,

which is an outer function in 𝐻2p𝐷Δ
˚
𝑛

q whose traces satisfy |Ω^𝑛˘p𝑥q|2 “ 𝑒´2𝑛^𝑛p𝑥q almost
everywhere on Δ˚

𝑛 , see (1.5). Thus, it holds that

|pΩ^𝑛𝐹
˚
𝑛 q˘p𝑥q|´2 “ 𝐺´2

𝑛 𝑒\𝑛p𝑥q𝑣Δ˚
𝑛

p𝑥q

almost everywhere on Δ˚
𝑛 due to (1.5), (1.7) and (1.8), where 𝐺𝑛 :“ 𝐺p𝑒ℎ𝑛`|Δ

˚
𝑛
,8q. For

brevity, put 𝑃𝑛 “ 𝑇𝑛p𝑒\𝑛`q. Then, it follows from the Cauchy integral formula that

𝑃𝑛p𝑧q ´ 𝑃˚
𝑛 p𝑧q

pΩ^𝑛𝐹
˚
𝑛 qp𝑧q𝑤Δ

˚
𝑛

p𝑧q
“

1
2𝜋i

¿

Γ𝑛

𝑃𝑛p𝑠q ´ 𝑃˚
𝑛 p𝑠q

𝑧 ´ 𝑠

1
pΩ^𝑛𝐹

˚
𝑛 qp𝑠q

𝑑𝑠

𝑤Δ
˚
𝑛

p𝑠q

“

ż

Δ
˚
𝑛

𝑃𝑛p𝑥q ´ 𝑃˚
𝑛 p𝑥q

𝑧 ´ 𝑥
Re

ˆ

1
pΩ^𝑛𝐹

˚
𝑛 q`p𝑥q

˙

𝑑𝜔Δ
˚
𝑛

p𝑥q,

where Γ𝑛 is any counter-clockwise oriented Jordan curve that separates Δ˚
𝑛 and 𝑧 and we

used the following facts

𝐹˚
𝑛´p𝑥q “ 𝐹˚

𝑛`p𝑥q and 𝑤Δ
˚
𝑛 `p𝑥q “ ´𝑤Δ

˚
𝑛 ´p𝑥q “ i|𝑤Δ

˚
𝑛

p𝑥q|, 𝑥 P Δ˚
𝑛 ,

as well as (1.2). Since the absolute value of the real part does not exceed the absolute value
of a complex number, we get from the Cauchy-Schwarz inequality that

ˇ

ˇ

ˇ

ˇ

𝑃𝑛p𝑧q ´ 𝑃˚
𝑛 p𝑧q

pΩ^𝑛𝐹
˚
𝑛 qp𝑧q

ˇ

ˇ

ˇ

ˇ

2
ď 𝐺´2

𝑛

|𝑤Δ
˚
𝑛

p𝑧q|2

distp𝑧,Δ˚
𝑛q2

ż

Δ
˚
𝑛

`

𝑃𝑛p𝑥q ´ 𝑃˚
𝑛 p𝑥q

˘2
𝑒\𝑛p𝑥q𝑣Δ˚

𝑛
p𝑥q𝑑𝜔Δ

˚
𝑛

p𝑥q

ď 𝐺´2
𝑛

|𝑤Δ
˚
𝑛

p𝑧q|2

distp𝑧,Δ˚
𝑛q2

ż

Δ
˚
𝑛

`

𝑃𝑛p𝑥q ´ 𝑃˚
𝑛 p𝑥q

˘2
𝑒\𝑛p𝑥q𝑑`p𝑥q.(4.22)

It follows from the compactness of K and (4.12) that the constants 𝐺´2
𝑛 are uniformly

bounded above. Because 𝑃˚
𝑛 is the 𝑛-th monic orthogonal polynomials with respect to

𝑒\𝑛`|Δ
˚
𝑛

and 𝑃𝑛 is a monic polynomials of degree 𝑛, we have that

ż

Δ
˚
𝑛

𝑃𝑛p𝑥q𝑃˚
𝑛 p𝑥q𝑒\𝑛p𝑥q𝑑`p𝑥q “

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q,

from which we easily deduce that
(4.23)
ż

Δ
˚
𝑛

`

𝑃𝑛p𝑥q ´ 𝑃˚
𝑛 p𝑥q

˘2
𝑒\𝑛p𝑥q𝑑`p𝑥q “

ż

Δ
˚
𝑛

𝑃𝑛p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ´

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q.

Recall that for the 𝑛-th monic orthogonal polynomial 𝑃𝑛 it holds that

(4.24)
ż

Δp`q

𝑃2
𝑛p𝑥q𝑒\𝑛p𝑥q𝑑`p𝑥q ď

ż

Δp`q

𝑃2p𝑥q𝑒\𝑛p𝑥q𝑑`p𝑥q
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for any monic polynomial 𝑃 of degree 𝑛, and 𝑃˚
𝑛 in particular. Therefore, we obtain from

(4.23), simple majorization, and (4.24) that
ż

Δ
˚
𝑛

`

𝑃𝑛p𝑥q ´ 𝑃˚
𝑛 p𝑥q

˘2
𝑒\𝑛p𝑥q𝑑`p𝑥q ď

ż

Δp`q

𝑃𝑛p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ´

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q

ď

ż

Δp`q

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ´

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q

“

ż

Δp`qzΔ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q Ñ 0

as 𝑛 Ñ 8, where the last conclusion was shown in Lemma 4.8. Since the intervals Δ˚
𝑛

converge to Δ, we get from (4.22), the above estimates, and Lemma 4.6 that

𝑃𝑛p𝑧q “ 𝑃˚
𝑛 p𝑧q ` 𝑜Kp1qpΩ^𝑛𝐹

˚
𝑛 qp𝑧q “

`

1 ` 𝑜Kp1q
˘

𝐹˚
𝑛 p𝑧q

locally uniformly in 𝐷Δ, where the last equality also used the fact that Ω^𝑛p𝑧q “ 1 ` 𝑜p1q

locally uniformly in the complement of Δ as is clear from (1.4), (4.7), and (4.9). The first
claim of Theorem 4.2 now follows from (4.12). The second claim of the theorem is a
consequence of (4.12) for Δ𝑛 and of (4.13) if we observe that

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ď

ż

Δ
˚
𝑛

𝑃𝑛p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ď

ż

Δp`q

𝑃𝑛p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q

ď

ż

Δp`q

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q “

ż

Δ
˚
𝑛

𝑃˚
𝑛 p𝑥q2𝑒\𝑛p𝑥q𝑑`p𝑥q ` 𝑜p1q,

where we used Lemma 4.8 for the last equality. As we just mentioned, the last claim of the
theorem follows from the second line of (4.12). �

5. Strong Asymptotics of OPs with Reciprocal Polynomial Weights

In this section, we describe strong asymptotics of polynomials orthogonal with respect to
a sequence of measures that are ratios of certain bounded perturbations of a Szegő measure
and polynomials of growing degrees. Below, we mostly follow [38] and generalize some
results obtained in the pioneering work [10]. Theorem 5.8 further below was used in a
crucial way in Lemma 4.4 on the way to proving Theorem 4.1. Theorem 5.8 itself is a
straightforward consequence of Theorem 5.1 that we state in the next subsection.

5.1. Orthogonality on T. Let tp𝜎𝑛, 𝑔𝑛,𝑊𝑛qu be triples of a finite positive Borel measure
on T, a continuous real-valued function on T, and a monic polynomial of degree 𝑛 with all
its zeros inside the unit disk. For each 𝑛 we then define an inner product on the unit circle
by

x 𝑓 , 𝑘yT,𝑛 “

ż

𝑓 pbq𝑘pbq
𝑒𝑔𝑛pbq𝑑𝜎𝑛pbq

|𝑊𝑛pbq|2
.

We are interested in orthonormal polynomials 𝜙𝑛p𝑧q, deg 𝜙𝑛 “ 𝑛, satisfying

(5.1)

#

x𝜙𝑛, b
𝑚yT,𝑛 “ 0, 𝑚 P t0, 1, . . . , 𝑛 ´ 1u,

x𝜙𝑛, 𝜙𝑛yT,𝑛 “ 1,

and normalized to have a positive leading coefficient, i.e., 𝜙𝑛p𝑧q “ 𝛼𝑛𝑧
𝑛 ` . . ., 𝛼𝑛 ą 0

(when 𝑔𝑛 “ 0 and 𝜎𝑛 “ 𝜎, this is exactly the setting considered in [38]).
In this section, we let the symbol ˚ denote the transformation

𝑝˚p𝑧q “ 𝑧𝑛𝑝p1{𝑧q
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defined on the set of polynomials of degree at most 𝑛. In particular, if we denote the zeros
of𝑊𝑛p𝑧q by 𝑏𝑛, 𝑗 , 𝑗 P t1, 2, . . . , 𝑛u, which all belong to the unit disk, then

𝑊𝑛p𝑧q “

𝑛
ź

𝑗“1
p𝑧 ´ 𝑏𝑛, 𝑗q and 𝑊˚

𝑛 p𝑧q “

𝑛
ź

𝑗“1
p1 ´ 𝑏𝑛, 𝑗 𝑧q.

Write 𝑑𝜎𝑛 “ 𝜐𝑛𝑑𝑚 ` 𝑑𝜎𝑠𝑛 , where the measures 𝑑𝜎𝑠𝑛 are singular to 𝑑𝑚pbq “ p2𝜋q´1|𝑑b|,
the normalized Lebesgue measure on T. In this section, we shall assume the following:

p𝐴Tq there exists a finite measure 𝑑𝜎 “ 𝜐𝑑𝑚` 𝑑𝜎𝑠 , where 𝑑𝜎𝑠 is singular to 𝑑𝑚, such
that for any non-negative continuous function 𝑓 on T it holds that

lim sup
𝑛Ñ8

ż

𝑓 𝑑𝜎𝑛 ď

ż

𝑓 𝑑𝜎;

p𝐵Tq the densities 𝜐𝑛 and 𝜐 have logarithms integrable with respect to 𝑑𝑚 and } log 𝜐𝑛´

log 𝜐}𝐿1pTq Ñ 0 as 𝑛 Ñ 8;
p𝐶Tq the functions 𝑔𝑛 belong to E, a fixed compact subset of 𝐶pTq;
p𝐷Tq the zeros t𝑏𝑛, 𝑗u satisfy

ř𝑛
𝑗“1p1 ´ |𝑏𝑛, 𝑗 |q Ñ 8 as 𝑛 Ñ 8.

It is known, see [17, Section II.2], that the condition p𝐷Tq is equivalent to

(5.2)
𝑊𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

“ 𝑜p1q

locally uniformly in D. To describe the results, let us introduce the Szegő function of a
measure 𝑑𝜎 “ 𝜐𝑑𝑚 ` 𝑑𝜎𝑠 , which is given by

𝐷p𝜎, 𝑧q :“ exp
ˆ

1
2

ż

b ` 𝑧

b ´ 𝑧
log 𝜐pbq𝑑𝑚pbq

˙

and is independent of the singular part 𝜎𝑠 . When log 𝜐 is integrable with respect to 𝑑𝑚,
the function 𝐷p𝜎, 𝑧q is analytic in CzT, in fact, it is an outer function in both D and CzD,
its values inside and outside of the unit disk are related via the identity

𝐷´1p𝜎, 𝑧q “ 𝐷p𝜎, 1{𝑧q, 𝑧 R T,

and it has a non-tangential limit on T (taken within D) that satisfies |𝐷p𝜎, bq|2 “ 𝜐pbq for
almost every b on T.

Theorem 5.1. With the above definitions, assume that the orthogonality measures in (5.1)
satisfy conditions p𝐴Tq ´ p𝐷Tq. Then,

(5.3)
𝜙˚
𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

𝐷𝑛p𝑧q “ 1 ` 𝑜Ep1q and
𝜙𝑛p𝑧q

𝜙˚
𝑛p𝑧q

“ 𝑜Ep1q

locally uniformly in D as 𝑛 Ñ 8, where 𝐷𝑛p𝑧q “ 𝐷p𝑒𝑔𝑛𝜎𝑛, 𝑧q. In particular, we have that

(5.4) 𝛼𝑛𝐷𝑛p0q “ 1 ` 𝑜Ep1q as 𝑛 Ñ 8.

5.2. Proof of Theorem 5.1. As in the previous sections, we shall prove Theorem 5.1 in
a sequence of steps that we organize as separate lemmas. For the first step we define the
Caratheodory function of a measure 𝜎 by

𝐹p𝜎, 𝑧q :“
ż

b ` 𝑧

b ´ 𝑧
𝑑𝜎pbq.

Further, for each orthonormal polynomial 𝜙𝑛p𝑧q we define its companion polynomial as a
polynomial 𝜓𝑛p𝑧q of degree at most 𝑛 such that 𝜓˚

𝑛 p𝑧q interpolates 𝜙˚
𝑛p𝑧q𝐹p𝑒𝑔𝑛𝜎𝑛, 𝑧q at the

zeros of 𝑧𝑊𝑛p𝑧q, see [38, Equation (3.6)].
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Lemma 5.2. Under the conditions of Theorem 5.1, we have

𝐹p𝑒𝑔𝑛𝜎𝑛, 𝑧q ´
𝜓˚
𝑛 p𝑧q

𝜙˚
𝑛p𝑧q

“ 𝑜Ep1q as 𝑛 Ñ 8

locally uniformly in D. Moreover,

(5.5) 𝐹p𝑒𝑔𝑛𝜎𝑛, 0q “
𝜓˚
𝑛 p0q

𝜙˚
𝑛p0q

.

Proof. Combining formulas (3.23), (3.24), and (3.26) from [38], we get
ˇ

ˇ

ˇ

ˇ

𝐹p𝑒𝑔𝑛𝜎𝑛, 𝑧q ´
𝜓˚
𝑛 p𝑧q

𝜙˚
𝑛p𝑧q

ˇ

ˇ

ˇ

ˇ

ď 2
?

2
ˇ

ˇ

ˇ

ˇ

𝑧
𝑊𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

ˇ

ˇ

ˇ

ˇ

|𝑒𝑔𝑛𝜎𝑛|

p1 ´ |𝑧|q3{2

for 𝑧 P D, where |`| denotes the total mass of the measure `. Taking 𝑓 “ 1 in p𝐴Tq, we get

(5.6) lim sup
𝑛Ñ8

|𝜎𝑛| ď |𝜎| and lim sup
𝑛Ñ8

|𝑒𝑔𝑛𝜎𝑛| ÀE |𝜎|,

where the last bound follows from p𝐶Tq. Applying (5.2) finishes the proof of the lemma. �

Notice that Jensen’s inequality and p𝐶Tq yield that

(5.7) lim inf
𝑛Ñ8

|𝜎𝑛| ě lim inf
𝑛Ñ8

exp
ˆ
ż

log 𝜐𝑛𝑑𝑚
˙

“ exp
ˆ
ż

log 𝜐𝑑𝑚
˙

ą ´8

and p𝐵T) gives a lower bound

(5.8) lim inf
𝑛Ñ8

|𝑒𝑔𝑛𝜎𝑛| ÁE exp
ˆ
ż

log 𝜐𝑑𝑚
˙

.

Put

(5.9) _𝑛p𝑧q “ Re
ˆ

𝜓˚
𝑛 p𝑧q

𝜙˚
𝑛p𝑧q

˙

, |𝑧| ď 1,

which is a harmonic function in some neighborhood of D. It has been shown in [38,
Equation (3.9)] that

(5.10)
𝜓˚
𝑛 p𝑧q

𝜙˚
𝑛p𝑧q

“

ż

b ` 𝑧

b ´ 𝑧

ˇ

ˇ

ˇ

ˇ

𝑊𝑛pbq

𝜙𝑛pbq

ˇ

ˇ

ˇ

ˇ

2
𝑑𝑚pbq.

Hence, _𝑛p𝑧q is a real part of the Caratheodory function of an absolutely continuous measure
with strictly positive density and therefore is a strictly positive harmonic function in D. It
readily follows from the second claim of Lemma 5.2 that

(5.11) |_𝑛𝑚| “ _𝑛p0q “ 𝐹p𝑒𝑔𝑛𝜎𝑛, 0q “ |𝑒𝑔𝑛𝜎𝑛|.

Lemma 5.3. Let Z be a compact set in 𝐶pTq. Under the conditions of Theorem 5.1, it
holds that for any 𝜖 ą 0 there exists 𝑁E,Zp𝜖q such that

ˇ

ˇ

ˇ

ˇ

ż

ℎ𝑒𝑔𝑛𝑑𝜎𝑛 ´

ż

ℎ_𝑛𝑑𝑚

ˇ

ˇ

ˇ

ˇ

ď 𝜖

for all 𝑛 ě 𝑁E,Zp𝜖q and each ℎ P Z.

Proof. We use a standard approximation argument. Comparing the Taylor coefficients of
functions 𝐹p𝑒𝑔𝑛𝜎𝑛, 𝑧q and 𝜓˚

𝑛 p𝑧q{𝜙˚
𝑛p𝑧q at 𝑧 “ 0 and applying Lemma 5.2 gives

ż

ℎpbq
`

𝑒𝑔𝑛𝑑𝜎𝑛 ´ _𝑛𝑑𝑚
˘

“ 𝑜E,ℎp1q
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as 𝑛 Ñ 8, where ℎpbq “ b 𝑗 , 𝑗 P Z. Hence, this claim remains true for each trigono-
metric polynomial ℎ. Now, given 𝜖 ą 0, we can use compactness and denseness of
trigonometric polynomials in 𝐶pTq to find a finite collection of trigonometric polynomials
tℎ1, ℎ2, . . . , ℎ𝐾 p𝜖 qu such that for each ℎ P Z there is 𝑘 P t1, 2, . . . , 𝐾p𝜖qu for which

}ℎ ´ ℎ𝑘}8 ă
𝜖

3𝑀E
,

where }𝑒𝑔𝑛𝜎𝑛} ď 𝑀E . Then,
ˇ

ˇ

ˇ

ˇ

ż

pℎ ´ ℎ𝑘q𝑒𝑔𝑛𝑑𝜎𝑛

ˇ

ˇ

ˇ

ˇ

ď
𝜖

3
and

ˇ

ˇ

ˇ

ˇ

ż

pℎ ´ ℎ𝑘q_𝑛𝑑𝑚

ˇ

ˇ

ˇ

ˇ

ď
𝜖

3

by (5.11). As just observed, for each ℎ𝑘 one can find a natural number 𝑁E,ℎ𝑘 p𝜖q such that
ˇ

ˇ

ˇ

ˇ

ż

ℎ𝑘
`

𝑒𝑔𝑛𝑑𝜎𝑛 ´ _𝑛𝑑𝑚
˘

ˇ

ˇ

ˇ

ˇ

ď
𝜖

3

for 𝑛 ě 𝑁E,ℎ𝑘 p𝜖q. Taking 𝑁E,Zp𝜖q “ max1ď𝑘ď𝐾 p𝜖 q 𝑁E,ℎ𝑘 p𝜖q yields the desired claim. �

For the next step, we shall need the mutual entropy of two measures. Let ` and a be two
measures on T such that ` is absolutely continuous with respect to a. The entropy 𝑆p`|aq

is defined as

𝑆p`|aq “ ´

ż

log
ˆ

𝑑`

𝑑a

˙

𝑑`.

It is known that 𝑆p`|aq ď log |a| and the following representation holds, see [36, Lemma 2.3.3,
p.137]:

(5.12) 𝑆p`|aq “ inf
𝑓

ˆ
ż

𝑓 𝑑a ´

ż

p1 ` log 𝑓 q𝑑`
˙

,

where the infimum is taken over all positive continuous functions on T. Moreover, see [36,
Example 2.3.2], if ` “ 𝑚 and 𝑑a “ a1𝑑𝑚 ` 𝑑a𝑠 , then

(5.13) 𝑆p𝑚|aq “ ´

ż

log
ˆ

𝑑𝑚

𝑑a

˙

𝑑𝑚 “

ż

log a1𝑑𝑚.

Lemma 5.4. Under the conditions of Theorem 5.1, it holds that for any 𝜖 ą 0 there exists
𝑁Ep𝜖q, that depends on E but not a particular choice of t𝑔𝑛u Ă E, such that

ż

log_𝑛𝑑𝑚 ď

ż

`

𝑔𝑛 ` log 𝜐𝑛
˘

𝑑𝑚 ` 𝜖, 𝑛 ě 𝑁Ep𝜖q.

Proof. It follows from (5.12) and (5.13), applied with ` “ 𝑚 and a “ 𝜎, as well as the
condition p𝐵Tq that there exists a positive continuous function 𝑓𝜖 and a natural number
𝑁1p𝜖q such that

ż

𝑓𝜖 𝑑𝜎 ´

ż

p1 ` log 𝑓𝜖 q𝑑𝑚 ď

ż

log 𝜐𝑑𝑚 `
𝜖

4
ď

ż

log 𝜐𝑛𝑑𝑚 `
𝜖

2
for all 𝑛 ě 𝑁1p𝜖q. Hence, we get again from (5.12) and (5.13), applied this time with
` “ 𝑚 and 𝑑a “ _𝑛𝑑𝑚, that

ż

log_𝑛𝑑𝑚 ď

ż

p𝑒´𝑔𝑛 𝑓𝜖 q_𝑛𝑑𝑚 ´

ż

`

1 ` logp𝑒´𝑔𝑛 𝑓𝜖 q
˘

𝑑𝑚

ď

ż

`

𝑔𝑛 ` log 𝜐𝑛
˘

𝑑𝑚 `

ż

p𝑒´𝑔𝑛 𝑓𝜖 q_𝑛𝑑𝑚 ´

ż

𝑓𝜖 𝑑𝜎 `
𝜖

2
(5.14)
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for all 𝑛 ě 𝑁1p𝜖q. Furthermore, it follows from the condition p𝐴Tq that there exists a
natural number 𝑁2p𝜖q such that

ż

𝑓𝜖 𝑑𝜎𝑛 ď

ż

𝑓𝜖 𝑑𝜎 `
𝜖

4

for all 𝑛 ě 𝑁2p𝜖q. Thus, we get from Lemma 5.3, applied with Z “ t𝑒´𝑔 𝑓𝜖 : 𝑔 P Eu, that
there exists 𝑁Ep𝜖q ě maxt𝑁1p𝜖q, 𝑁2p𝜖qu such that

(5.15)
ż

p𝑒´𝑔𝑛 𝑓𝜖 q_𝑛𝑑𝑚 ď

ż

p𝑒´𝑔𝑛 𝑓𝜖 q𝑒𝑔𝑛𝑑𝜎𝑛 `
𝜖

4
ď

ż

𝑓𝜖 𝑑𝜎 `
𝜖

2

for all 𝑛 ě 𝑁Ep𝜖q. Clearly, inequalities (5.14) and (5.15) yield the desired claim. �

Lemma 5.5. Under the conditions of Theorem 5.1, (5.4) takes place.

Proof. It follows directly from (5.9) and (5.10), see also [38, Equation (3.8)], that
ˇ

ˇ

ˇ

ˇ

𝑊˚
𝑛 pbq

𝜙˚
𝑛pbq

ˇ

ˇ

ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

𝑊𝑛pbq

𝜙𝑛pbq

ˇ

ˇ

ˇ

ˇ

2
“ _𝑛pbq, |b| “ 1.

As 𝑊˚
𝑛 p𝑧q{𝜙˚

𝑛p𝑧q is an analytic and non-vanishing function in the closed unit disk, the
logarithm of its absolute value is harmonic there. Thus, we get from the mean-value
property that

log𝛼𝑛 “ ´ log
ˇ

ˇ

ˇ

ˇ

𝑊˚
𝑛 p0q

𝜙˚
𝑛p0q

ˇ

ˇ

ˇ

ˇ

“ ´
1
2

ż

log_𝑛𝑑𝑚,

where one also needs to recall that 𝜙˚
𝑛p0q “ 𝛼𝑛 ą 0 and 𝑊˚

𝑛 p0q “ 1. Hence, it follows
from Lemma 5.4 and the very definition of 𝐷𝑛p𝑧q that

log𝛼𝑛 ě ´
1
2

ż

`

𝑔𝑛 ` log 𝜐𝑛
˘

𝑑𝑚 ` 𝑜Ep1q “ ´ log𝐷𝑛p0q ` 𝑜Ep1q.

On the other hand, we get from (5.1) that

0 “ log
ż

ˇ

ˇ

ˇ

ˇ

𝜙𝑛

𝑊𝑛

ˇ

ˇ

ˇ

ˇ

2
𝑒𝑔𝑛𝑑𝜎𝑛 ě log

ż

ˇ

ˇ

ˇ

ˇ

𝜙𝑛

𝑊𝑛

ˇ

ˇ

ˇ

ˇ

2
𝑒𝑔𝑛𝜐𝑛𝑑𝑚.

Therefore, Jensen’s inequality gives

0 ě

ż

log
𝑒𝑔𝑛𝜐𝑛

_𝑛
𝑑𝑚 “ 2 log

`

𝛼𝑛𝐷𝑛p0q
˘

,

which finishes the proof of the lemma. �

Lemma 5.6. Under the conditions of Theorem 5.1, it holds that
ż

ˇ

ˇ

ˇ

ˇ

𝜙˚
𝑛

𝑊˚
𝑛

𝐷𝑛 ´ 1
ˇ

ˇ

ˇ

ˇ

2
𝑑𝑚 “ 𝑜Ep1q

as 𝑛 Ñ 8, where 𝐷𝑛pbq denotes above the non-tangential boundary values of 𝐷𝑛p𝑧q on T
taken from within D. In particular, the first asymptotic formula in (5.3) takes place.

Proof. Denote the integral in the statement of the lemma by 𝐼. Then, we have that

𝐼 “

ż

ˇ

ˇ

ˇ

ˇ

𝜙˚
𝑛

𝑊˚
𝑛

𝐷𝑛

ˇ

ˇ

ˇ

ˇ

2
𝑑𝑚 ` 1 ´ 2

ż

Re
ˆ

𝜙˚
𝑛

𝑊˚
𝑛

𝐷𝑛

˙

𝑑𝑚.
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Since |𝐷𝑛pbq|2 “ 𝑒𝑔𝑛pbq𝜐𝑛pbq for almost every |b| “ 1, the mean-value property for
harmonic functions yields that

𝐼 “

ż

ˇ

ˇ

ˇ

ˇ

𝜙𝑛

𝑊𝑛

ˇ

ˇ

ˇ

ˇ

2
𝑒𝑔𝑛𝜐𝑛𝑑𝑚 ` 1 ´ 2Re

ˆ

𝜙˚
𝑛p0q

𝑊˚
𝑛 p0q

𝐷𝑛p0q

˙

ď 2 ´ 2𝛼𝑛𝐷𝑛p0q.

The first claim of the lemma now follows from (5.4). In particular, we have shown that
the functions 1 ´ 𝜙˚

𝑛𝐷𝑛{𝑊˚
𝑛 belong to the Hardy space 𝐻2pDq. Thus, the second claim

of the lemma now follows from the first and the Cauchy integral formula for functions in
𝐻2pDq. �

Lemma 5.7. Under the conditions of Theorem 5.1, the second asymptotic formula in (5.3)
takes place.

Proof. It follows from the first asymptotic formula in (5.3) that

𝜙𝑛p𝑧q

𝜙˚
𝑛p𝑧q

“
𝑊˚
𝑛 p𝑧q

𝜙˚
𝑛p𝑧q

𝜙𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

“ p1 ` 𝑜Eq
𝜙𝑛p𝑧q𝐷𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

.

Thus, it is sufficient for us to study the behavior of 𝜙𝑛𝐷𝑛{𝑊˚
𝑛 in the unit disk. Since these

functions have integrable traces on T and 𝑑𝑚pbq “ 𝑑b{p2𝜋ibq, it follows from the Cauchy
integral formula that

𝜙𝑛p𝑧q𝐷𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

“

ż

𝜙𝑛pbq𝐷𝑛pbq

𝑊˚
𝑛 pbq

𝑑𝑚pbq

1 ´ 𝑧b
“

ż

𝐵𝑛pbq𝑈𝑛pbq
𝜙𝑛pbq𝐷𝑛pbq

𝑊𝑛pbq

𝑑𝑚pbq

1 ´ 𝑧b
,

where 𝐵𝑛p𝑧q “ 𝑊𝑛p𝑧q{𝑊˚
𝑛 p𝑧q and 𝑈𝑛pbq “ 𝐷𝑛pbq{𝐷𝑛pbq. Since |𝐵𝑛pbq𝑈𝑛pbq| “ 1 for

|b| “ 1, it follows from the Cauchy-Schwarz inequality that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

˜

𝜙𝑛pbq𝐷𝑛pbq

𝑊𝑛pbq
´ 1

¸

𝐵𝑛pbq𝑈𝑛pbq
𝑑𝑚pbq

1 ´ 𝑧b

ˇ

ˇ

ˇ

ˇ

ˇ

ď
}𝜙𝑛𝐷𝑛{𝑊𝑛 ´ 1}𝐿2pTq

a

1 ´ |𝑧|2
.

Thus, we deduce from the first claim of Lemma 5.6 that

𝜙𝑛p𝑧q𝐷𝑛p𝑧q

𝑊˚
𝑛 p𝑧q

“ 𝑜Ep1q `

ż

𝐵𝑛pbq𝑈𝑛pbq
𝑑𝑚pbq

1 ´ 𝑧b
,

where 𝑜Ep1q holds locally uniformly in the unit disk.1 Let t𝑏𝑛,𝑘u be the Fourier coefficients
of 𝐵𝑛pbq and t𝑢𝑛,𝑘p𝑧qu be the Fourier coefficients of𝑈𝑛pbq{p1 ´ 𝑧bq. Then,

ż

𝐵𝑛pbq𝑈𝑛pbq
𝑑𝑚pbq

1 ´ 𝑧b
“

8
ÿ

𝑘“0
𝑏𝑛,𝑘𝑢𝑛,´𝑘p𝑧q.

Since both 𝐵𝑛pbq and𝑈𝑛pbq are unimodular functions,
ÿ

𝑘PZ

|𝑏𝑛,𝑘 |2 “ 1,
ÿ

𝑘PZ

|𝑢𝑛,𝑘 |2 “

ż

𝑑𝑚pbq

|1 ´ 𝑧b̄|2
“

1
1 ´ |𝑧|2

.

1When𝑈𝑛pbq “𝑈pbq, the last integral above can be understood as pT𝑈𝐵𝑛qp𝑧q, where T𝑈 is a Toeplitz operator
with symbol𝑈 . Since T˚

𝑈
“ T

𝑈
and the Blaschke products 𝐵𝑛p𝑧q converge weakly to zero in 𝐻 2pDq by (5.2),

the functions pT𝑈𝐵𝑛qp𝑧q also converge weakly to zero in 𝐻 2pDq, which finishes the proof of the lemma in this
case. This observation somewhat simplifies the arguments given in [38, pages 182-188].
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The Cauchy-Schwarz inequality gives
ˇ

ˇ

ˇ

ˇ

ˇ

ż

𝐵𝑛pbq𝑈𝑛pbq
𝑑𝑚pbq

1 ´ 𝑧b

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

𝐾
ÿ

𝑘“0
𝑏𝑛,𝑘𝑢𝑛,´𝑘p𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

𝑘“𝐾`1
𝑏𝑛,𝑘𝑢𝑛,´𝑘p𝑧q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e

𝐾
ÿ

𝑘“0

|𝑏𝑛,𝑘 |2

1 ´ |𝑧|2
`

g

f

f

e

8
ÿ

𝑘“𝐾`1
|𝑢𝑛,´𝑘p𝑧q|2

for any natural number 𝐾 . Asymptotic formula (5.2) yields that for any 𝜖 ą 0 and any
𝐾 , there exists 𝑁𝐾 p𝜖q such that the first sum above is bounded by 𝜖{p1 ´ |𝑧|2q1{2 for
all 𝑛 ě 𝑁𝐾 p𝜖q. Thus, to prove the lemma we are only left to argue that there exists
𝐾 “ 𝐾E,𝑧p𝜖q, which is locally uniformly bounded with respect to 𝑧, such that the second
sum is bounded by 𝜖 . To prove this claim, it is enough to show that the functions (as
functions in variable b)

1
1 ´ 𝑧b

𝐷p𝑒𝑔, bq

𝐷p𝑒𝑔, bq

𝐷p𝜐𝑛, bq

𝐷p𝜐𝑛, bq

form a precompact set in 𝐿2pTq for 𝑔 P E, 𝑛 P N, and 𝑧 in any fixed compact subset of D.
Let H be the Hilbert transform. The functions above can be written as

`

1 ´ 𝑧b
˘´1

𝑒2ipH𝑔qpbq𝑒2ipH log 𝜐𝑛qpbq.

Consider the following subsets of 𝐿2pTq:
$

’

’

&

’

’

%

𝑆1 “
 `

1 ´ 𝑧b
˘´1 : 𝑧 P compact in D

(

,

𝑆2 “
 

𝑒2ipH𝑔qpbq : 𝑔 P E
(

,

𝑆3 “
 

𝑒2ipH log 𝜐𝑛qpbq : 𝑛 P N
(

.

The compactness of 𝑆1 in 𝐿2pTq is trivial. Since E is compact in 𝐶pTq it is also compact
in 𝐿2pTq. The operator H is a bounded on 𝐿2pTq. Hence, HE is a compact subset of
real-valued functions in 𝐿2pTq. Given two real numbers 𝑓 and 𝑔, we have

(5.16) |𝑒i 𝑓 ´ 𝑒iℎ|2 “ 4 sin2pp 𝑓 ´ ℎq{2q ď 4| 𝑓 ´ ℎ|𝑝 , 𝑝 P p0, 2s.

Therefore, 𝑆2 is compact in 𝐿2pTq. Finally, since log 𝜐𝑛 Ñ log 𝜐 in 𝐿1pTq due to our con-
dition p𝐵Tq, it holds that H log 𝜐𝑛 Ñ H log 𝜐 in 𝐿 𝑝pTq for any 𝑝 P p0, 1q by Kolmogorov’s
theorem. Using (5.16) with any such 𝑝 yields that the functions expp2iH log 𝜐𝑛q converge
to expp2iH log 𝜐q in 𝐿2pTq, which shows that 𝑆3 is precompact in 𝐿2pTq. Since 𝑆1, 𝑆2, and
𝑆3 are bounded in 𝐿8pTq, the product set 𝑆1𝑆2𝑆3 is precompact in 𝐿2pTq as claimed. That
finishes the proof of the lemma. �

5.3. Orthogonality on r´1, 1s. We will now translate the results of Theorem 5.1 to the case
of polynomials orthonormal on the interval r´1, 1s. Here, we look at triples p ˜̀𝑛, ℎ𝑛, 𝜏𝑛q,
where ˜̀𝑛 is a finite positive Borel measure, ℎ𝑛 is a continuous function, and 𝜏𝑛 is a
polynomial of degree at most 2𝑛 with real coefficients that does not vanish on r´1, 1s and
is normalized to have value 1 at 0. For each 𝑛 we define an inner product on r´1, 1s by

x 𝑓 , 𝑔yr´1,1s,𝑛 “

ż

𝑓 p𝑥q𝑔p𝑥q
𝑒ℎ𝑛p𝑥q𝑑 ˜̀𝑛p𝑥q

𝜏𝑛p𝑥q
.
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We are interested in the orthonormal polynomials with the above varying weights. That is,
we study polynomials 𝑝𝑛p𝑧q, deg 𝑝𝑛 “ 𝑛, satisfying orthogonality relations

(5.17)

#

x𝑝𝑛, 𝑥
𝑚yr´1,1s,𝑛 “ 0, 𝑚 P t0, 1, . . . , 𝑛 ´ 1u,

x𝑝𝑛, 𝑝𝑛yr´1,1s,𝑛 “ 1,

which are normalized to have positive leading coefficient that we denote by 𝛾𝑛, i.e., 𝑝𝑛p𝑧q “

𝛾𝑛𝑧
𝑛 ` lower degree terms, 𝛾𝑛 ą 0.

The assumptions we made about the polynomials 𝜏𝑛 can be equivalently stated in the
following way. Let t𝑎𝑛,1, 𝑎𝑛,2, . . . , 𝑎𝑛,2𝑛u be a conjugate-symmetric multi-set (points 𝑎𝑛, 𝑗
can coincide and be either real or come in complex-conjugate pairs) such that 𝑎𝑛, 𝑗 R r´1, 1s

(these points can be equal to 8). Then,

𝜏𝑛p𝑥q “

2𝑛
ź

𝑗“1

ˆ

1 ´
𝑥

𝑎𝑛, 𝑗

˙

,

where we understand 𝑥{𝑎𝑛, 𝑗 as 0 when 𝑎𝑛, 𝑗 “ 8. Below, we assume the following:
p𝐴r´1,1sq there exists a finite measure ` on r´1, 1s such that for any non-negative continuous

function 𝑓 on r´1, 1s it holds that

lim sup
𝑛Ñ8

ż

𝑓 𝑑 ˜̀𝑛 ď

ż

𝑓 𝑑`;

p𝐵r´1,1sq the Radon-Nikodym derivatives of ˜̀𝑛 and ` with respect to 𝜔 “ 𝜔r´1,1s, say �̃�𝑛
and 𝑣, see (1.2) and (1.7), satisfy } log �̃�𝑛 ´ log 𝑣}𝐿1p𝜔q Ñ 0 as 𝑛 Ñ 8;

p𝐶r´1,1sq the functions ℎ𝑛 belong to K, a fixed compact subset of 𝐶r´1, 1s;

p𝐷r´1,1sq the zeros t𝑎𝑛, 𝑗u of the polynomials 𝜏𝑛 satisfy
ř2𝑛
𝑗“1p1´|𝜙p𝑎𝑛, 𝑗q|q Ñ 8 as 𝑛 Ñ 8,

where 𝜙p𝑧q “ 𝜙r´1,1sp𝑧q, see (1.3).
The next result is proven exactly as [38, Theorem 1]. Nevertheless, we provide most of

the details for the reader’s convenience.

Theorem 5.8. With the above definitions, assume that the triples p ˜̀𝑛, ℎ𝑛, 𝜏𝑛q satisfy con-
ditions p𝐴r´1,1sq ´ p𝐷r´1,1sq. Let 𝑝𝑛p𝑧q be as in (5.17). Then,

(5.18) 2 r𝐺2
𝑛p𝑧q

𝑝2
𝑛p𝑧q

𝜏𝑛p𝑧q

2𝑛
ź

𝑗“1

𝜙p𝑧q ´ 𝜙p𝑎𝑛, 𝑗q

1 ´ 𝜙p𝑎𝑛, 𝑗q𝜙p𝑧q
“ 1 ` 𝑜Kp1q

locally uniformly in Czr´1, 1s as 𝑛 Ñ 8, where r𝐺𝑛p𝑧q “ 𝐺p𝑒ℎ𝑛 ˜̀𝑛, 𝑧q and the meaning
of 𝑜Kp1q is the same as in Theorem 4.1. In particular, we have that

(5.19) r𝐺2
𝑛p8q

𝛾2
𝑛

22𝑛´1

ź

𝑗:𝑎𝑛, 𝑗‰8

`

2𝑎𝑛, 𝑗𝜙p𝑎𝑛, 𝑗q
˘

“ 1 ` 𝑜Kp1q as 𝑛 Ñ 8.

Proof. The results of this theorem follow from Theorem 5.1 after we connect orthogonality
on r´1, 1s to the orthogonality on the circle by the Joukovski map

𝐽p𝑧q “
`

𝑧 ` 𝑧´1˘{2.

To translate conditions p𝐴r´1,1sq ´ p𝐷r´1,1sq into conditions p𝐴Tq ´ p𝐷Tq, set 𝑏2𝑛, 𝑗 “

𝜙p𝑎𝑛, 𝑗q, 𝑗 P t1, 2, . . . , 2𝑛u. That is, 𝐽p𝑏2𝑛, 𝑗q “ 𝑎𝑛, 𝑗 . Then

𝜏𝑛p𝑧q “
ź

𝑎𝑛, 𝑗‰8

pZ ´ 𝑏2𝑛, 𝑗qp1 ´ Z𝑏2𝑛, 𝑗q

2𝑎𝑛, 𝑗𝑏2𝑛, 𝑗 Z
“
𝑊2𝑛pZq𝑊˚

2𝑛pZq

𝑐𝑛Z
2𝑛 ,
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𝑧 “ 𝐽pZq, where 𝑐𝑛 “
ś

𝑎𝑛, 𝑗‰8 2𝑎𝑛, 𝑗𝑏2𝑛, 𝑗 , 𝑊2𝑛pZq “
ś2𝑛

𝑗“1pZ ´ 𝑏2𝑛, 𝑗q, and we used
the conjugate symmetry of the multi-set t𝑏2𝑛,1, 𝑏2𝑛,2, . . . , 𝑏2𝑛,2𝑛u. Clearly, conditions
p𝐷r´1,1sq and p𝐷Tq are equivalent to each other. Define E “ tℎ ˝ 𝐽 : ℎ P Ku and let
𝑔2𝑛 “ ℎ𝑛 ˝ 𝐽. It trivially holds that condition p𝐶r´1,1sq implies condition p𝐶Tq. Every
measure ` defined on r´1, 1s can be mapped to a measure 𝜎 on T by the formula

2𝜎p𝐴q “ `p𝐽p𝐴`qq ` `p𝐽p𝐴´qq,

where 𝐴 is any Borel subset in T, 𝐴` “ 𝐴 X t𝑒i𝑡 : 𝑡 P r0, 𝜋qu, and 𝐴´ “ 𝐴z𝐴`. For
example, the mapping of the arcsine law 𝜔 results in the normalized Lebesgue measure 𝑚
on the circle. More generally, if one has a function 𝑣 that is integrable with respect to 𝜔,
the measure 𝑣𝑑𝜔 is mapped to 𝜐𝑑𝑚, where 𝜐 “ 𝑣 ˝ 𝐽. We use this map to define measures
𝜎2𝑛 on T that correspond to the measures ˜̀𝑛 on r´1, 1s. This gives 𝑑𝜎2𝑛 “ 𝜐2𝑛𝑑𝑚` 𝑑𝜎𝑠2𝑛
and 𝑑𝜎 “ 𝜐𝑑𝑚 ` 𝑑𝜎𝑠 , where 𝜐2𝑛 “ �̃�𝑛 ˝ 𝐽 and 𝜐 “ 𝑣 ˝ 𝐽. Notice that condition p𝐵r´1,1sq

implies p𝐵Tq. Similarly, condition p𝐴r´1,1sq implies condition p𝐴Tq.
Let now 𝜙2𝑛 be the polynomials satisfying orthogonality relations (5.1) with the above

defined p𝜎2𝑛, 𝑔2𝑛,𝑊2𝑛q. It is well-known, see [40, Theorem 11.5] or [38, Lemma 4.13],
that

𝑝2
𝑛p𝑧q “

𝜙˚
2𝑛pZq2

2𝑐𝑛Z2𝑛

p1 ` 𝜙2𝑛pZq{𝜙˚
2𝑛pZqq2

1 ` 𝜙2𝑛p0q{𝜙˚
2𝑛p0q

and 𝛾2
𝑛 “ 22𝑛´1𝛼

2
2𝑛
𝑐𝑛

ˆ

1 `
𝜙2𝑛p0q

𝜙˚
2𝑛p0q

˙

,

where 𝑧 “ 𝐽pZq. It can be readily verified that r𝐺𝑛p𝑧q “ 𝐷2𝑛pZq, see [38, Lemma 4.3].
Thus, asymptotic formulae (5.18) and (5.19) follow from (5.3) and (5.4), where one needs
to use the identity

r𝐺2
𝑛p𝑧q

𝜏𝑛p𝑧q
¨

2𝑛
ź

𝑗“1

𝜙p𝑧q ´ 𝜙p𝑎𝑛, 𝑗q

1 ´ 𝜙p𝑎𝑛, 𝑗q𝜙p𝑧q
“ 𝑐𝑛

ˆ

Z𝑛𝐷2𝑛pZq

𝑊˚
2𝑛pZq

˙2
. �
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