ON AN IDENTITY BY ERCOLANI, LEGA, AND TIPPINGS

MAXIM L. YATTSELEV

Abstract. In this note we prove that

$$
j!2^{N}\binom{N+j-1}{j}{ }_{2} F_{1}\left(\begin{array}{c}
-j,-2 j \\
-N-j+1
\end{array} ;-1\right)=\sum_{l=0}^{N}\binom{N}{l} \prod_{i=0}^{j-1} 2(2 i+1+l)
$$

where N and j are positive integers, which resolves a question posed by Ercolani, Lega, and Tippings.

In [2, Theorem 2.1], Ercolani, Lega, and Tippings have shown that the number of $2 v$-valent maps with j vertices and two legs that can be embedded in a surface of genus $g \geq 1$ is given by

$$
j!\left[2 v(v-1)\binom{2 v-1}{v-1}\right] \sum_{l=0}^{j 3 g-1} a_{l}(g, v)\binom{2 g-2+l+j}{j}{ }_{2} F_{1}\left(\begin{array}{c}
-j,-v j \\
2-2 g-l-j
\end{array} ; \frac{1}{1-v}\right)
$$

for some coefficients $a_{l}(g, v)$. Based on numerical computations, they subsequently conjectured, see [1, Conjecture 5.1], that when $v=2$ the above expression can be stated without hypergeometric functions with the help of identity (1) further below. In this note we provide a proof of this fact.

Theorem 1. Let N, j be positive integers. Then

$$
j!2^{N}\binom{N+j-1}{j}{ }_{2} F_{1}\left(\begin{array}{c}
-j,-2 j \tag{1}\\
-N-j+1
\end{array} ;-1\right)=\sum_{l=0}^{N}\binom{N}{l} \prod_{i=0}^{j-1} 2(2 i+1+l) .
$$

We use the following notation for the falling and rising factorials:

$$
(a)^{\underline{0}}=(a)^{\overline{0}}:=1, \quad(a)^{\underline{n}}:=a(a-1) \cdots(a-n+1), \quad \text { and } \quad(a)^{\bar{n}}:=a(a+1) \cdots(a+n-1)
$$

for $n \geq 1$. We prove (1) in three steps formulated as separate lemmas.
Lemma 2. The right-hand side of (1) is equal to $2^{N} R_{j}(N)$, where $R_{j}(x)=\sum_{i=0}^{j} R(i, j)(x)^{i}$ and $R(i, j)$ are numbers uniquely determined by the relations

$$
R(0, j)=2^{j}(2 j-1)!!, \quad R(j, j)=1, \quad R(i, j+1)=2(2 j+i+1) R(i, j)+R(i-1, j),
$$

with the recurrence relation holding for $i \in\{1,2, \ldots, j\}$.
Proof. Let $C_{i, j}$ be the following coefficients:

$$
\prod_{i=0}^{j-1}(2 i+1+x)=\sum_{k=0}^{j} C_{k, j} x^{k} .
$$

Since

$$
\prod_{i=0}^{j}(2 i+1+x)=(2 j+1+x) \sum_{k=0}^{j} C_{k, j} x^{k}=\sum_{k=0}^{j}(2 j+1) C_{k, j} x^{k}+\sum_{k=1}^{j+1} C_{k-1, j} x^{k},
$$

it holds that

$$
C_{0, j}=(2 j-1)!!, \quad C_{j, j}=1, \quad C_{k, j+1}=(2 j+1) C_{k, j}+C_{k-1, j}, k \in\{1,2, \ldots, j\} .
$$

Exactly as in the case of the coefficients $R(i, j)$, the coefficients $C_{k, j}$ are uniquely defined by the above relations since the knowledge of all the coefficients on the level j allows one to compute all the coefficients on the level $j+1$ with the base case $C_{0,1}=2$ and $C_{1,1}=1$. Recall [3, Equation (26.8.10)] that

$$
x^{k}=\sum_{i=1}^{k}\left\{\begin{array}{c}
k \\
i
\end{array}\right\}(x)^{\underline{i},}
$$

where $\left\{\begin{array}{l}k \\ i\end{array}\right\}$ are Stirling numbers of the second kind. Therefore,

$$
\prod_{i=0}^{j-1}(2 i+1+x)=C_{0, j}+\sum_{i=1}^{j}\left(\sum_{k=i}^{j} C_{k, j}\left\{\begin{array}{l}
k \\
i
\end{array}\right\}\right)(x)^{\underline{i}}
$$

Observe that

$$
\begin{aligned}
\sum_{l=0}^{N}\binom{N}{l}(l)^{\underline{i}} & =\sum_{l=0}^{N} \frac{L!}{l!(N-l)!}(l)(l-1) \cdots(l-i+1) \\
& =\sum_{l=i}^{N} \frac{N!}{(l-i)!(N-l)!}=\sum_{l=0}^{N-i} \frac{N!}{l!(N-i-l)!}=2^{N-i}(N)^{\underline{i}}
\end{aligned}
$$

Therefore, the right-hand side of (1) is equal to

$$
2^{j} \sum_{l=0}^{N}\binom{N}{l}\left(C_{0, j}+\sum_{i=1}^{j}\left(\sum_{k=i}^{j} C_{k, j}\left\{\begin{array}{l}
k \\
i
\end{array}\right\}\right)(l)^{\underline{i}}\right)=2^{N} R_{j}(N),
$$

where $R_{j}(x):=\sum_{i=0}^{j} R(i, j)(x)^{\underline{i}}$ with

$$
R(0, j):=2^{j}(2 j-1)!!\quad \text { and } \quad R(i, j):=2^{j-i} \sum_{k=i}^{j} C_{k, j}\left\{\begin{array}{l}
k \\
i
\end{array}\right\}, i \in\{1,2, \ldots, j\}
$$

Since $\left\{\begin{array}{l}j \\ j\end{array}\right\}=1$, see [3, Equation (26.8.4)], it indeed holds that $R(j, j)=1$. Thus, we only need to establish the recurrence relation. The recurrence relation for $C_{k, j}$ yields that

$$
\begin{aligned}
R(i, j+1) & =2^{j+1-i} \sum_{k=i}^{j+1} C_{k, j+1}\left\{\begin{array}{c}
k \\
i
\end{array}\right\}=2^{j+1-i} \sum_{k=i}^{j} C_{k, j+1}\left\{\begin{array}{c}
k \\
i
\end{array}\right\}+2^{j+1-i}\left\{\begin{array}{c}
j+1 \\
i
\end{array}\right\} \\
& =2(2 j+1) R(i, j)+2^{j+1-i} \sum_{k=i}^{j+1} C_{k-1, j}\left\{\begin{array}{c}
k \\
i
\end{array}\right\}
\end{aligned}
$$

for any $i \in\{1,2, \ldots, j\}$, where we also used the fact that $C_{j, j}=1$. Furthermore, we get from [3, Equation (26.8.22)] that

$$
\begin{aligned}
2^{j+1-i} \sum_{k=i}^{j+1} C_{k-1, j}\left\{\begin{array}{c}
k \\
i
\end{array}\right\} & =2^{j+1-i} \sum_{k=i-1}^{j} C_{k, j}\left\{\begin{array}{c}
k+1 \\
i
\end{array}\right\}=2^{j+1-i} \sum_{k=i-1}^{j} C_{k, j}\left(i\left\{\begin{array}{l}
k \\
i
\end{array}\right\}+\left\{\begin{array}{c}
k \\
i-1
\end{array}\right\}\right) \\
& =2 i R(i, j)+R(i-1, j),
\end{aligned}
$$

where, by convention, $\left\{\begin{array}{c}i-1 \\ i\end{array}\right\}=0$. This finishes the proof of the lemma.
Lemma 3. The left-hand side of (1) is equal to $2^{N} L_{j}(N)$, where $L_{j}(x)=\sum_{i=0}^{j} L(i, j)(x)^{\underline{i}}$ with

$$
L(0, j)=\frac{(2 j)!}{j!} \quad \text { and } \quad L(i, j)=\frac{j!}{i!} \sum_{k=i}^{j}\binom{2 j}{j+k}\binom{k-1}{i-1}, \quad i \in\{1,2, \ldots, j\}
$$

Proof. It follows from [3, Equation (15.2.1)] that the left-hand side of (1) is equal to $2^{N} L_{j}(N)$, where

$$
L_{j}(x)=(x)^{\bar{j}} \sum_{k=0}^{j} \frac{(-j)^{\bar{k}}(-2 j)^{\bar{k}}}{(-x-j+1)^{\bar{k}}} \frac{(-1)^{k}}{k!}
$$

Since

$$
(-a)^{\bar{k}}=(-1)^{k}(a)^{\underline{k}} \quad \text { and } \quad \frac{(a)^{\bar{j}}}{(a+j-1)^{\underline{k}}}=(a)^{\overline{j-k}}
$$

we have that

$$
\begin{aligned}
L_{j}(x) & =\sum_{k=0}^{j}(j)^{\underline{k}}(2 j)^{\underline{k}} \frac{(x)^{\overline{j-k}}}{k!}=\sum_{k=0}^{j} \frac{j!}{(j-k)!} \frac{(2 j)!}{(2 j-k)!} \frac{(x)^{\overline{j-k}}}{k!} \\
& =\sum_{k=0}^{j}\binom{j}{k} \frac{(2 j)!}{(2 j-k)!}(x)^{\overline{j-k}}=\sum_{k=0}^{j}\binom{j}{k} \frac{(2 j)!}{(j+k)!}(x)^{\bar{k}} .
\end{aligned}
$$

It is known [4] that

$$
(x)^{\bar{k}}=\sum_{i=1}^{k}\binom{k-1}{i-1} \frac{k!}{i!}(x)^{\underline{i}}, \quad k \geq 1 .
$$

Hence,

$$
\begin{aligned}
L_{j}(x) & =\frac{(2 j)!}{j!}+\sum_{k=1}^{j}\binom{j}{k} \frac{(2 j)!}{(j+k)!} \sum_{i=1}^{k}\binom{k-1}{i-1} \frac{k!}{i!}(x)^{\underline{i}} \\
& =\frac{(2 j)!}{j!}+\sum_{i=1}^{j}\left(\sum_{k=i}^{j}\binom{j}{k} \frac{(2 j)!}{(j+k)!}\binom{k-1}{i-1} \frac{k!}{i!}\right)(x)^{\underline{i}},
\end{aligned}
$$

which finishes the proof of the lemma.
Lemma 4. It holds that $L(i, j)=R(i, j)$ for all $i \in\{0,1, \ldots, j\}$ and $j \geq 1$. In particular, (1) is true.
Proof. Clearly, $L(0, j)=R(0, j)$ and $L(j, j)=R(j, j)=1$. Thus, we only need to show that

$$
L(i, j+1)=2(2 j+i+1) L(i, j)+L(i-1, j), \quad i \in\{1,2, \ldots, j\}
$$

since this recurrence relation and the marginals $L(0, j), L(j, j)$ uniquely determine the whole table $L(i, j)$. In what follows, we agree that binomial coefficients with out-of-range indices are set to zero. In what follows we repeatedly use the elementary identity

$$
\binom{n+1}{l}=\binom{n}{l}+\binom{n}{l-1}
$$

Using this identity twice and our convention concerning binomial coefficients with out-of-range indices, we get that

$$
\begin{aligned}
L(i, j+1) & =2(j+1) L(i, j)+\frac{(j+1)!}{i!} \sum_{k=i}^{j+1}\left[\binom{2 j}{j+k+1}+\binom{2 j}{j+k-1}\right]\binom{k-1}{i-1} \\
& =2(j+1) L(i, j)+\frac{(j+1)!}{i!}\left[\sum_{k=i+1}^{j}\binom{2 j}{j+k}\binom{k-2}{i-1}+\sum_{k=i-1}^{j}\binom{2 j}{j+k}\binom{k}{i-1}\right],
\end{aligned}
$$

where the second row is obtained simply by a change of summation indices. Therefore, when $i=1$, we get that

$$
\begin{aligned}
L(1, j+1) & =4(j+1) L(1, j)+(j+1)!\left[\binom{2 j}{j}-\binom{2 j}{j+1}\right] \\
& =4(j+1) L(1, j)+L(0, j)[j+1-j]
\end{aligned}
$$

which establishes the desired recurrence relation for $i=1$. On the other hand, when $i>1$, the above sum in square brackets can further be rewritten with the help of the elementary identity as

$$
\begin{aligned}
& \sum_{k=i+1}^{j}\binom{2 j}{j+k}\left[\binom{k-1}{i-1}-\binom{k-2}{i-2}\right]+\sum_{k=i-1}^{j}\binom{2 j}{j+l}\left[\binom{k-1}{i-1}+\binom{k-1}{i-2}\right]= \\
& 2 \sum_{k=i}^{j}\binom{2 j}{j+k}\binom{k-1}{i-1}+\sum_{k=i-1}^{j}\binom{2 j}{j+k}\left[\binom{k-1}{i-2}-\binom{k-2}{i-2}\right]
\end{aligned}
$$

Thus, using the elementary identity once more, we get that

$$
L(i, j+1)=4(j+1) L(i, j)+\frac{(j+1)!}{i!} \sum_{k=i-1}^{j}\binom{2 j}{j+k}\binom{k-2}{i-3}
$$

where we understand that $\binom{i-3}{i-3}=1$ even if $i=2$. That is, to prove the lemma we need to show that

$$
2(i-1) L(i, j)+L(i-1, j)=\frac{(j+1)!}{i!} \sum_{k=i-1}^{j}\binom{2 j}{j+k}\binom{k-2}{i-3}
$$

or equivalently that

$$
\sum_{k=i-1}^{j}\binom{2 j}{j+k}\left[2(i-1)\binom{k-1}{i-1}+i\binom{k-1}{i-2}-(j+1)\binom{k-2}{i-3}\right]=0
$$

When $i=2$, the left-hand side above becomes

$$
\sum_{k=2}^{j} 2 k\binom{2 j}{j+k}-(j-1)\binom{2 j}{j+1}=\sum_{k=2}^{j}(j+k)\binom{2 j}{j+k}-\sum_{k=1}^{j-1}(j-k)\binom{2 j}{j+k}
$$

Similarly, when $i>2$, the left-hand side in question is equal to

$$
\begin{aligned}
& \sum_{k=i-1}^{j}\binom{2 j}{j+k} \frac{(k-2)!}{(k-i+1)!(i-2)!}[2(k-1)(k-i)+1+i(k-1)-(j+1)(i-2)]= \\
& \sum_{k=i-1}^{j}\binom{2 j}{j+k} \frac{(k-2)!}{(k-i+1)!(i-2)!}[(k-i+1)(j+k)-(j-k)(k-1)]
\end{aligned}
$$

which is the same as

$$
\sum_{k=i}^{j}(j+k)\binom{2 j}{j+k}\binom{k-2}{i-2}-\sum_{k=i-1}^{j-1}(j-k)\binom{2 j}{j+k}\binom{k-1}{i-2}
$$

(as shown just before, this formula is valid for $i=2$ as well). This difference is indeed equal to zero as the second sum above can be rewritten as

$$
\sum_{k=i-1}^{j-1}(j+k+1)\binom{2 j}{j+k+1}\binom{k-1}{i-2}=\sum_{l=i}^{j}(j+l)\binom{2 j}{j+l}\binom{l-2}{i-2}
$$

References

[1] Nicholas Ercolani, Joceline Lega, and Brandon Tippings. Map enumeration from a dynamical perspective. https://arxiv . org/abs/2308.06369. 1
[2] Nicholas Ercolani, Joceline Lega, and Brandon Tippings. Non-recursive counts of graphs on surfaces. Enumer. Comb. Appl., 3(3):Paper No. S2R20, 24, 2023. 1
[3] F.W.J Olver et al. editors. NIST digital library of mathematical functions. http://dlmf.nist.gov. 1, 2
[4] I. Lah. Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik. Mitteilungsbl. Math. Statist., 7:203-212, 1955. 3

Department of Mathematical Sciences, Indiana University Indianapolis Email address: maxyatts@iu.edu

