NON-HERMITIAN ORTHOGONAL POLYNOMIALS ON A TREFOIL

AHMAD B. BARHOUMI AND MAXIM L. YATTSELEV

ABsTrRACT. We investigate asymptotic behavior of polynomials 9, (z) satisfying non-Hermitian or-
thogonality relations

f sk0,(s)p(s)ds =0, ke{0,...,n—1},
A

where A is a Chebotarév (minimal capacity) contour connecting three non-collinear points and p(s) is
a Jacobi-type weight including a possible power-type singularity at the Chebotarév center of A.
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1. INTRODUCTION

Let f(z) = Zkoozl frz—* be a convergent power series. The n-th diagonal Padé approximant of
f(z) is a rational function [n/n]f(z) = Pn(z)/Qn(z), where deg(P,),deg(Q,) < n and Q,(z) is
not identically zero, such that the linearized error function R, (z) satisfies

(L.1) Ra(z) = (@uf = Pa)(z) = O (27*1)

as z — 0. One can readily check that the above condition is nothing but a system of linear equations
on the coefficients of the polynomials of P, (z), 0,(z) that always has a non-trivial solution. This
system is not necessarily uniquely solvable, but it is known that the rational function [n/n]f (z) is
indeed unique. Hereafter, we shall understand that Q,,(z) in (1.1) is monic and of minimal possible
degree, which does make it unique.

Our goal is to understand convergence properties of [n/n] s (z). It was shown by Herbert Stahl
[23, 24, 25] that if f(z) can be meromorphically continued along any path @\A for a polar set A and
there exists a point in C\ A with at least two distinct continuations, then there exists a compact set A ¢
such that f(z) has a single-valued meromorphic continuation into the complement of A (which is a
branch cut for f(z)) and the diagonal Padé approximants converge to this continuation in logarithmic
capacity. The set Ay is uniquely characterized as the branch cut of smallest logarithmic capacity that
is set-theoretically minimal (if K is a branch cut with the same logarithmic capacity, then Ay < K).

The minimal capacity contour Ay can also be characterized from the point of view of quadratic
differentials. Assume for simplicity that A = {ay,...,am,}, m > 2, is a finite set. Suppose that
every element of A is a branch point of f(z). Then there exist auxiliary points b;,i € {1,...,m —2},
sometimes called Chebotarév centers!, which are not necessarily distinct nor disjoint from the
elements of A, such that the set Ay consists of the critical trajectories of a rational quadratic

differential )
H;ﬂ:l (z—bi)
HT:l (z—a)

Suppose that all the points b; are disjoint from A and that each b; appears either once or an even
number of times and in the latter case does not belong to Ay (a generic situation). Assume further
that f(z) has either logarithmic or power branching at each a; (i.e., behaves like log(z — a;) or
(z—a;)*, a; > —1). Then the strong asymptotics of the corresponding diagonal Padé approximants
was investigated by Aptekarev and the second author in [2]. Our overarching goal is to remove all
the assumptions on contours Ay corresponding to finite sets A. As will become clear later, the main
difficulty lies in the local analysis of the polynomials Q,(z) around the auxiliary points b;. The
first step in this direction was taken by the authors in [4] where we considered the case m = 4 and
by =by e Af\A. Here, we consider that case m = 4 and by = b, € A.

dz2.

In a somewhat different language, Chebotarév posed a problem of finding a connected set of minimal logarithmic capacity
containing a given finite set of points; descriptions of this set were independently given by Grotzsch [14] and Lavrentiev
[19, 20].



Ficure 1. Contour A.

Let us now change the notation slightly. Given three distinct non-collinear points a, as, as,
denote by ag their Chebotarév center. That is, there are three disjoint, except for ag, analytic arcs,
say A1, Az, Az (A; has endpoints a; and ag) such that

Z(t) — ag / 2
Z(t))" <0
G0 = (e — a0 —an - )
for any smooth parametrization z(z) of any of the arcs A;. Let A := A U Ay U A3 (in our preceding

notation A = {ao,ai,as,as}, by = by = ap, and Ay = A), see Figure 1. Examples of functions
f(z) that lead to such minimal capacity contours include

(1.3) n(z —a;)" and Eci log(z — a;),

where a; ¢ Z while Y7 ,a; € Z and ¢; # 0 while Y)}_;¢; = 0. Let us point out that if f(z)
was given by either of the expressions above, but with ay = c¢g = 0, then the asymptotics of the
diagonal Padé approximants to f(z) was obtained in [2], see also [21]. Moreover, asymptotics of
the approximants for the case g = @) = a3 = a3 = —1/2 is contained [27], see also [3, 26]. The
reader might want to consult the Appendix D to see how these functions relate to the definition below.

In this work, we shall consider the following class of functions. Orient each arc A; towards ay.
Assume that the points ay, a», a3 are labeled counter-clockwise around ay.

(1.2)

Definition. We are interested in functions f(z) of the form

(1.4) fle) = b [ Al

211 Jp s — 2

E

where there exist exponents a; > —1, i € {0, 1, 2,3}, and branches of (z — a;)* holomorphic across
A\{a;} for which the restriction p;(s) of p(s) to A} := Ai\{ao, a;} is such that p;(s)(s —ag) = (s —
a;)~ % extends to a holomorphic and non-vanishing function in some neighborhood of A;.

Notice that p(s) is not defined at ag even if ap = 0. However, in the latter case the values p;(ap)
are well-defined. It was assumed in [2] that p;(z) + p2(z) + p3(z) = 0 in some neighborhood of
ap (no branching assumption). No such supposition is made here, neither in some neighborhood
of ap nor at ag itself. The main advantage of the class of functions introduced in (1.4) is that
the denominator polynomials Q,,(z) can be equivalently characterized as non-Hermitian orthogonal
polynomials satisfying

(1.5) Jstn(s)p(s)ds:O, ke{0,...,n—1}.
A

This paper is organized as follows. The next section is devoted to the description of the main term
of the asymptotics of the polynomials Q,(z). The functions constructed in that section are known
in integrable systems literature as Baker-Akhiezer functions and in the literature on non-Hermitian
orthogonal polynomials are sometimes called Nuttall-Szegd functions. The propositions stated in the
next section are proven in Section 4. Our main results on the asymptotics of the polynomials Q,(z)
are stated in Section 3. Their proofs are given in Sections 5 and 6. As it happens, local behavior
of the polynomials Q,(z) around ag is described by certain special functions that come from a
2 x 2 matrix function solving the so-called Painvlevé XXXIV Riemann-Hilbert problem with Stokes
parameters that depend on the weight p(s) in a transcendental way. This connection is described
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in Appendices A and B. Appendix C illustrates by an example that on the rotationally symmetric
contour A asymptotics of Q,,(z) can be very different for certain classes of weights from the rest of
the cases.

2. NutTaLL-SZEGS FUNCTIONS

Similarly to orthogonal polynomials on an interval, the asymptotics of the polynomials O, (z) is
described by the term that captures the geometric rate of their growth, see (2.4), and a Szegd function
of the weight p(s), see (2.11). Both of these functions naturally live on a genus one Riemann surface
associated with the contour A, see (2.1). However, the nature of the theory of functions on a Riemann
surface leads to the introduction of the third term, in fact, a normal family of functions that depends
on n, which are essentially ratios of the Riemann theta functions, see (2.17) (the necessity of these
terms was already demonstrated by Akhiezer [1]).

as
aoQ Iy O ao
s 3A \
1 2
a a (04 >Oa
2 Adl . 2
Al A A B s
ap® 2 Oao
as

Ficure 2. Surface &.

2.1. Riemann surface. Let G be a genus one two-sheeted Riemann surface defined by
2.1 Gi={z=(zw): w = (z—ao)(z—a1)(z—a2)(z —a3)}.

We realize € as a ramified cover of C constructed in the following manner. Two copies of the
extended complex plane are cut along each arc A7. These copies are glued together along the cuts in
such a manner that the right (resp. left) side of the arc A} belonging to one copy is joined with the
left (resp. right) side of the same arc A} only belonging to the other copy. Let

aw:G—-C, n(z)—z and w(z)— w.

We call 7 the canonical projection and label the sheets G(®) and G(!) (cut copies of the extended
complex plane) so that w(z) = w behaves like z2 as z — 00(?). In our definition, the sheets are
topologically closed and their intersection is equal to A, where

A= ﬂ*I(A), A= ﬂ*I(A,-), and A := {ag,ai,a2,a3}, n(a;)=ay,

i€{l,2,3}and! € {0, 1,2,3}. Thus, A is the set of the ramification points of S and A is a union of
three simple cycles that all intersect each other at @g. We orient each A; so that (9 remains on the
left when A; is traversed in the positive direction. We write

7K = ﬂ_l(Z) Ak e 6\A,

where k € {0, 1}, and use bold lower case letters such as z, ¢, s to indicate generic points on & with
canonical projections z, ¢, s. We designate the symbol -* to stand for the conformal involution that
sends z(K) into z(!=%), k € {0, 1} (we then extend this notion to A by continuity). Since & has genus
1, we need to select a homology basis. We choose cycles @, B to be involution-symmetric, i.e., s € @
if and only if s* € @, and such that 7(@), 7(B) are smooth Jordan arcs joining ai, a, and aj, a3
respectively, while « is oriented towards @; and B away from a; in (), see Figures | and 2. In
what follows it will be sometimes convenient to set

Sy :=C\@ and G,p:=C\(aup).
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Finally, given a function F(z) defined on G\A, or on its subset, we shall set F(z) := F(z(?)) and
F*(z) := F(z1). That is, with a slight abuse of notation we use the same letter for a function on
the top sheet as well as its pull-back to the complex plane while we use the involution symbol * to
mark the pull-back to the complex plane from the bottom sheet. In particular,

(2.2) w(z) = \/(z—ao)(z—al)(z—az)(z—ag), ze C\A,

is the branch such that w(z) = z> + O(z) as z — o and w*(z) = —w(z).
As it happens, the asymptotics of the polynomials Q,,(z) as well as of the linearized error functions
R, (z), see (1.1), is described by the solution of the following boundary value problem on A.

Boundary Value Problem: BVP-Y. Given n € N and a function p(s) on A as described after (1.4),
find a function ¥ (z) that is holomorphic in G\ (A U {oo(o) }). has a pole of order n at 0@ and a
zero of order at least n — 1 at 0V, and whose traces on A are continuous away from A and satisfy

{ Wo(s) = W_(5)/(pws)(s). s €A,

2.3)
|q’(z)| =0 (|z — al\_(z‘”“)/“) as z—a;, 1€{0,1,2,3}.

The solution of this boundary value problem is given in Theorem 1 further below. It is rather
explicit and constructed as a product of three terms that are introduced in the following three
subsections.

2.2. Geometric Term. Let

2.4) D(z) := exp{J.Z G}, G(z) := m,

ao w(z)

forz € &, g, where the path of integration lies entirely in S, g and G(z) is a meromorphic differential
on & having two simple poles at co(!) and c0(®) with respective residues 1 and —1, whose period
over any cycle on & is purely imaginary (the latter claim follows from (1.2)). The function ®(z) is
holomorphic and non-vanishing on &, g except for a simple pole at (9 and a simple zero at oo(!).
Define (real) constants

1 1
2.5) w = G and T1:=—
One can readily check that @(z) possesses continuous traces on both sides of each cycle of the

canonical basis (in fact, it extends to a multiplicatively multi-valued function on the entire surface)
that satisfy

e?me  sea\{ar},
2.6 (o} =0_ .
( ) +(S) (S){ €27r1T, s Eﬂ\{al}.
Since w(z) = —w*(z), it follows from (2.4) that ®(z)®*(z) = 1. Moreover, since the constants in

(2.5) are real, it also holds that log |®(z)| is harmonic on &\{o0(®, co(1}. Furthermore, since A is
the set of critical trajectories of the quadratic differential —(z — a¢)?w~2(z)dz? and the domain C\A
contains a single critical point of this differential, namely, double pole at infinity, it follows from
Basic Structure Theorem [16, Theorem 3.5] that 6\A is a circle domain for this differential, see [16,
Definition 3.9]. In particular, it must be true that

(2.7) —log |®*(z)| = log|®(z)| > 0, zeC\A.

In particular, this means that log |®(s)| = 0, s € A, and that log |®(z)| is the Green function for C\A
with pole at infinity.
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2.3. Szegé Function. Since S has genus one, it has one (up to a constant factor) holomorphic
differential. Since & is a two-sheeted surface, it is a standard fact of the theory of Riemann surfaces
that
-1
ds dz
2.8 Q(z) := ff— _ B::jgﬁ,
29 D=Pve | @
a B
is the holomorphic differential on & normalized to have unit period on the a cycle of the homology
basis (it was shown by Riemann that the constant B has positive imaginary part). In particular, the
function

Z
(2.9) a(z) := f Q, z€Cup,

ao
where the path of integration lies entirely in S, g, extends to additively multi-valued analytic function
on the entire surface ©. Denote further by €, ,«(s) the meromorphic differential with two simple
poles at z and z* with respective residues 1 and —1 normalized to have a zero period on the a-cycle.
When z does not lie on top of the point at infinity, it can be readily verified that

(2.10) Q, ,x(s) =

w(z) ds w(z) dr
s—zw(s)_ %:W s).

(17

The third kind differential Q, ,« (s) can be thought of as a discontinuous Cauchy kernel on &, see
[28]. The following proposition elaborates this point.

Proposition 1. For a function p(s) as described after (1.4) fix a branch of log(p;w)(s) that is
continuous on AY, i € {1,2,3}. Put

1
2.11) Spl2) = exp { —— fﬁlog(pm)(S)Qz,z*(S)

A

Then S, (z) is a holomorphic and non-vanishing function in S, \A with continuous traces on (A U
a@)\A that satisfy
exp12mic,t, S€Ea\A,
(2.12) Spi(s) =S,_(s) p{2ric,} \
Uipws)(s), s €A\A,

where the constant c,, is given by

1
(2.13) Cpi= 5= Eﬁlog(per)Q.
A

It also holds that S,(z)S,(z*) = 1, z € G4 \A, and
(2.14) 1Sp(2)] ~ |z — ar| "GtV as 2>, 1€{0,1,2,3}.

We call S,(z) the Szeg8 function of the weight p(s). The Cauchy kernel Q, ,«(s) is called
discontinuous due to the presence of the jump of S,(z) across @. We prove Proposition 1 in
Section 4.1.

2.4. Adjustment Terms. Due to the presence of the jumps of both ®(z) and S, (z) across the cycles
of the homology basis, we need to introduce an adjustment term that will cancel out these jumps. To
this end, let

0(u) := Z exp {nian + 2minu}, uecC,

nez
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be the Riemann theta function associated with B. Further, let Jac(&) := C/{Z + BZ} be the Jacobi
variety of G, where B is given by (2.8). We shall represent elements of Jac(&) as equivalence classes
[s] ={s+1+Bm:Il,meZ}, where s € C. It is known that Abel’s map

Z
L9
ap

is a bijection (clearly, it holds that [a(z)] = a(z) for z € S, g, see (2.9)). Inverting Abel’s map
(2.15) is known as the Jacobi inversion problem, see [7, Section II1.6]. Since S has genus one, every
Jacobi inversion problem has a unique solution.

(2.15) 7€ G a(z) €Jac(G), a(z):= [

Proposition 2. Let w, 7 and ¢, be as in (2.5) and (2.13), respectively. Set

(2.16) Xpi=nw — |nw|, y,:=nt—|nt|, and A:=(14+w)/2+B(1+71)/2,

where |-| is equal to the largest integer smaller or equal to its argument. Define

H(a(z) —Ccp—Xp — Byn + A)
0(a(z) +A)

Each function T, (z) is meromorphic in the domain of its definition with continuous traces on

(@ U B)\{a\} that satisfy

(2.17) Tu(z) := exp { — 2miy,a(z)} , z€Gyp.

exp{ —2mi(cp, +nw)}, sea\{a},

exp{ —2mint}, se B\{ai}.
In fact, T,,(z) can be holomorphically continued across each of these cycles. It has precisely one pole,
namely o), and exactly one zero, namely z,,, both simple (the function will become analytic and

non-vanishing if z,, = o)), where z,, = zn(p) € G is the unique solution of the Jacobi inversion
problem

(2.19) a(zn) = [cp + (n — 1/2)(w + B1)].

We prove Proposition 2 in Section 4.2.

(2.18) Tat(s) = Tu—(s) {

2.5. Nuttall-Szegé Functions. Now we are ready to described the solutions of BVP-V.

Theorem 1. Fixn € N. Let ¢, be given by (2.13) and z,, be the solution of (2.19). If z,, = 0 then
the boundary value problem BVP-Y does not have a solution. Otherwise, any solution of BVP-Y is
of the form ¢¥,,(z) for a non-zero constant c, where

(2.20) W, (z) := (@"S,T0)(z), z€ G\A,
and the functions ®(z), S,(z), and T,,(z) are given by (2.4), (2.11), and (2.17), respectively.

We prove Theorem 1 in Section 4.3. Notice that in addition to the zero of order n — 1 at oo,
W, (z) also has a simple zero at z,, (if z,, belongs to A\A the simplicity of the zero is understood as
the simplicity of the zero of an analytic continuation of ¥,,(z) to a neighborhood of z,,; of course, if
2, = oo1), then the zero at co(!) has order n) and the asymptotics of the behavior of ¥, (z) around
the points in A can be improved to

(2.21) ¥, (2)| ~ |z — amn@)2=@2=U8ag 7

1€{0,1,2,3}, where m,(a) = 1if z, = a and m,(a) = 0 otherwise.

Of course, the function ¥, (z) is defined even when z,, = c0(9). In this case it simply has a pole of
order n— 1 at (9 and therefore does not solve BVP-W. It readily follows from (2.19) thatif z,, = z,,
for some distinct indices n and m, then [0] = [(n — m)(w + Bt)], which means that w and 7 are
rational numbers with the denominators that divide n — m. Thus, either w and 7 are rational numbers,
in which case {z,,} is a periodic sequence, or z, = c0?) for at most one index n. Unfortunately, for
our asymptotic analysis we need to exclude not only indices for which z,, = c0(?), but also those for
which z,, is close 00(?). To this end, given & > 0 such that max,es |s| < 1/&, we let

(2.22) N9 . {n EN: z, ¢ US’)} ,
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where U is a neighborhood of co(k) with natural projection equal to {|z| > 1/&}.

Proposition 3. If w and t are rational numbers with the smallest common denominator d, then there
exists &9 > 0 such that either Ng® = N or Ng° = N\ (ng + dN) for some ny € {0,...,d — 1} and
all € < go. In the latter case it necessarily holds that c, = (p + Bgq)/d for some integers p and q.
Moreover, it holds that d = 3 and d = 3 only if A is the image under a linear map of

(2.23) Agym = {s: s> e [-1,0]}.

On the other hand, if at least one of the numbers w and 7 is irrational, then for any N € N there
exists ey > 0 such that

(2.24) n¢gN® = n+l,...,n+NeNZ?
Jorany 0 < &€ < en. Moreover, there exists § = §(g) such that

(2.25) neN® = g, ,¢U0.
Furthermore, it is always true that 7, = 0 if and only if z,_; = oo,

We prove Proposition 3 in Section 4.4.

The reason we need to go from excluding indices for which z,, is equal to 00(%) to sequences N5 is
that we need to control asymptotic behavior of ¥,,(z). More precisely, for our analysis it is important
to know that functions 7,,(z) and their reciprocals form normal families in certain subdomains of &.

Proposition 4. Let R > maxgca |s|. There exists a constant Mg > 0 such that

To(z)| < Mg,  z¢ U

(2.26) . sz

for all n € N. Furthermore, let N'S° and (&) be as in Proposition 3. Then there exists a constant
M. > 0 such that

T, (z)| < M., z€ Uio/)z
2.27) 4 1 )
T2 () < Mclz| ™, zeUgq,

re
forn e NS
We prove Proposition 4 in Section 4.5.

2.6. Local Obstruction. To prove our main results on asymptotic behavior of orthogonal polynomi-
als we utilize matrix Riemann-Hilbert analysis. As typical for such an approach, we need to construct
a local parametrix around ag that models the behavior of the polynomials and their functions of the
second kind there. In our case, this is done with the help of the matrix that solves Riemann-Hilbert
problems that characterizes solutions of Painlevé XXXIV equation with the Painlevé variable equal
to zero. It is known that such a matrix does not exist when the corresponding Painlevé function has a
pole at zero. In this case we need to modify our construction and this modification requires placing
an additional requirement on the sequence of allowable indices. More precisely, let us write

(2.28) Tu(z) := t(()") + ti”) (z—ao)"? + té") (z—ap)+ -

for z close to ag lying in the sector between A; and Aj for some fixed determination of (z — ao)l/ 2

that is analytic in this sector. Let /#; be the constant defined further below in (6.2) and (6.4) (it is the
second coeflicient of the Puiseux series at ag of a certain function that depends on the geometry via
w(z) and the weight p(s) via S, (z) and the function r(z) defined in (5.12)). Define

-1 -1
<2t§") — e 28 )>

(n) (n=1)
0 t()

We need to require that the determinants of these matrices are separated away from zero.

(2.29) T, :=
t



Proposition S. For each & > 0 small enough there exists V ¢, a neighborhood of ag that can possibly
be empty, such that if 2, ¢ V ., then either n or n + 1 belongs to N3'9, where

NSO {n e N : |det(T,)| = g}.

We prove Proposition 5 in Section 4.6. Let us note that there are no particular reasons to couple
the constants in the definition of N3¢ and N except esthetic ones. That is, we could have defined
NI, N,

Proposition 5 has the following implications. When at least one of the constants w and 7 is
irrational, given a natural number N, & can be taken small enough so that N9 contains a consecutive
block of N integers after each missing index by Proposition 3. The same arguments as in the proof
of that proposition can be employed to argue that z,, € V. for at most one index in this block. Thus,
according to Proposition 5, essentially at least half of the indices in this block will belong to Nssing. If
the constants w and 7 are rational with the smallest common denominator d > 3, then the sequence
{zn} is d-periodic and at most one index in this period can be such that the corresponding solution
of the Jacobi inversion problem (2.19) is equal to ag. Hence, it is always true that

N\(ng + dN) U (n1 + dN) U (n; + 1 + dN)) = N,
where ng, ny € {0,...,d—1} are such that z,,, = o0(?) and z,,, = ao. Thus, N3"9 is again necessarily
infinite, unless of course d = 3. As we prove in Proposition 3, in the latter case A is a linear image
of Agym. Further below in Appendix C we construct a class of examples of weights of orthogonality
sing
&£

on Agym that do require the restriction to Nz~ and for which it is indeed the case that zg = oo(o),

71 = ag, and zo = (), while N$"® = @. Therefore neither of the forthcoming asymptotic results
applies. Of course, one might surmise that this is simply due to the technical limitations of our
methods. However, we do analyze the orthogonal polynomials for this class of weights and show that
the main term of their asymptotics is actually different from ¥,,(z) constructed in Theorem 1. That
is, the polynomials considered in Appendix C do have different asymptotic behavior as compared to
the polynomials in the rest of the cases, which does indicate that the obstruction that occurs during
the construction of local parametrices is not a mere technicality.

It is also curious to observe that the condition defining N's° can be equivalently restated, see (5.5),

(5.6), and (6.7) further below, as
; (tgn) tinl))
et
(n) (n—1)
) )

3. MaIN ResuLTs

e < <8_1.

To state our main results on the asymptotics of the diagonal Padé approximants to functions of
the form (1.4), we need to separate the weights p(s) in (1.4) into two classes. To this end, let p;(s)
be the restriction to A7 of p(s) and (z — ag)® be a fixed branch whose branch cut splits the sector
between A and Az. Define

3.1 0i(s) := pi(s)/(s —ap)®, sedA;, ie{l,2,3},

which, according to our assumptions stated right after (1.4), extend to analytic non-vanishing func-
tions in some neighborhood of ag. Define constants

) eﬂid(]Qz(aO) + e—ﬂi(l()QS(aO)
bi(p) == —
o1(ao)

_ 0i-1 (ao) + 0i+1(ao)
0 g1 (ag)

)

32)
bi(p) :=

, 1€{2,3},

where subindices are understood cyclically in {1, 2,3}. The parameters «g and b;(p), i € {1,2,3},
uniquely determine a 2 x 2 sectionally analytic matrix function ®4,({;x) as a solution of the
Riemann-Hilbert problem RHP-®,, see Appendix B, where x € C is a parameter that appears in
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the description of the asymptotic behavior at infinity. As we explain in Appendix B, ®4,({;x) is
meromorphic in x.

Definition. In what follows we shall say that a weight p(s) on A belongs to the class W™ if the
matrix function ®4,(Z;0) solving Riemann-Hilbert problem RHP-®, with « = a, b; = bi(p),
i € {1,2,3}, and x = 0 exists. That is, if ®4,(L;x) does not have a pole at x = 0. Otherwise, we
shall say that the weight p(s) belongs to the class WS,

It can be readily verified that parameters (3.2) satisfy the relation
3.3) by + by + b3y — bbby = 2COS(7T(XQ).

We shall call any solution of (3.3) a set of Stokes parameters. Any set of Stokes parameters satisfying
(3.3) leads to its own matrix ®,,({;x). Some of these matrices will have a pole at x = 0 and some
will not. Essentially any such set can be obtained via (3.2) (in particular, this means that the class
Wen9 is non-empty). Indeed, given a set of Stokes parameters (3.3) for which none is equal to e @7
(in this case it is also true that none is equal to e =" and a product of no two parameters is equal to
1, hence, the third one is uniquely determined by the other two), they are realized by a weight p(s)
such that _

oila))  1—bobs and o3(ap) 1 —e®"hy

02(ag) 1 —e—a0mipy 02(ap) 1 —e~mips’
On the other hand, if one of the Stokes parameters in (3.3) is equal to e o e~ @07 then one
(whichever) of the other two must be equal to e =07 or ¢ 71 respectively, and the third one could be
absolutely arbitrary. However, this is not the case for the parameters b;(p). If one of them happens
to be e 7 or ¢~ 7 then the other two are uniquely determined.

Unfortunately, currently it is unknown how to determine solely from the Stokes parameters b;(p)
whether p € W™ or p € W9, Such a determination amounts to distinguishing Stokes parameters
that lead to finite initial conditions at x = 0 for the corresponding solution of Painlevé XXXIV
equation, see (B.3) and (B.8), further below, and those leading to solutions with a pole at x = 0.

Theorem 2. Let f(z) be a function given by (1.4) with ag € (—1,1) and p € W™S. Let Q,(z) be the
minimal degree monic denominator of the diagonal Padé approximants [n/n]s (z) and R, (z) be the
corresponding linearized error function (1.1). Further, let ¥,,(z) be given by (2.20) and N's° be as
in Proposition 3. Then it holds for all n € N9 large enough that

{Qn(z) = 7n(1 + Unl(Z))an(Z) + ynUn2(Z)an71<Z),
(WR)(2) = ¥ (1 +vni(2)) 5 (2) + ynvn2(2)¥E_, (2),

forz € @\A (in particular, deg(Q,,) = n for such indices n), where vy, := lim,_,o, "%, (z) is the
normalizing constant, w(z) is given by (2.2), and the functions vy;(s) vanish at infinity and satisfy?

(3.5) Uni(z) = 0 (n='73)

(3.4)

locally uniformly on @\A Moreover, it holds for all n € N9 large enough that
3.6)

{Qn(s) = Vn(l + Unl(s)) (Pt (s) + Pn-(5)) + van2(s) (Pn-1+(s) + ¥n-1-(5)),
(WRn)£(s) = ¥u (1 +vn1(5))Crs () + Yuvn2 ()5, (5),

Jor s € A°, where the functions v,;(s) can be analytically continued into a neighborhood of A° and
satisfy (3.5) locally uniformly on A°.

Theorem 2 is proved in Section 5. To prove it we use by now classical approach of Fokas, Its, and
Kitaev [10, 11] connecting orthogonal polynomials to matrix Riemann-Hilbert problems. The RH
problem is then analyzed via the nonlinear steepest descent method of Deift and Zhou [6].

The error estimates in (3.5) can be improved in some cases.

2The notation f (n) = O,(g(n)) means that there exists a constant C depending on & such that | f (n)| < Cz|g(n)|.
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e Itis known, see [2], that if ap = 0 and p;(z) + p2(z) + p3(z) = 0 in some neighborhood of
ao, then the error estimates improve to O, (n~!) (in this case b;(p) = 1 and ®(;0) admits
an explicit construction that uses Airy functions, so such weights do belong to W'?9).

e If p(s) = p*(s)/w(s) for some function p*(s) that has an analytic extension to some
neighborhood of A, then the error estimates are geometric, see [27] (in this case b;(p) = 0
and ®_, »({; x) is equal to the right-hand side of RHP-®,(d) with U,, = V,, = 0).

In the case of singular weights, the following theorem takes place.
Theorem 3. Let f(z) be a function given by (1.4) with ag € (—1, 1) and p € WM. Assume further
that
(3.7 o' (ao)/01(a0) = 05(a0)/02(a0) = 03(a0)/e3(av).

Let 0,(2), Ry(z), and ¥,,(z) be as in Theorem 2. Let the matrices Ty, be as in (2.29) and Nﬂng be
as in Proposition 5. Then it holds for all n € N3 large enough that asymptotic formulae (3.4) and
(3.6) remain valid but with vy (z) and vy (2) replaced by

(n—1) (n) (m)y2
2y b 2 (1)
—_— d ,
z—ap det(T,) and v (2) + 7z —ap det(T,)

respectively, where the error functions vy;(z) possess the same properties as in Theorem 2.

Unl(Z) -

Let us point out that the new term added to the error functions v,;(z) is not asymptotically small.
The presence of the condition (3.7) is connected to the local analysis around a( and seems to be
inescapable for our techniques. In particular, we needed this condition for our analysis of non-
Hermitian orthogonal polynomials on a cross in [4], see the definitions of classes ‘W, on page 2. Its
nature is not entirely transparent to us at this stage. However, as we explain in Appendix D, functions
of the form (1.3) do satisfy (3.7). Theorem 3 is proved in Section 6.

4. Proor oF PrRoPOSITIONS 1-5 AND THEOREM 1

4.1. Proof of Proposition 1. Orient (a) towards a;. Let

H(z) := w(z) J ( I d . zeC\(Aun(a)).

271 Jpay t —zw(t)

Then H(z) is an analytic function in its domain of definition (the integral itself is analytic in C\x ()
that behaves like

@1 e == L o) - Z§ﬂ+0(1)

2mi 7(@) W(S) _R W(S)
a
as z — o0. We get from Plemelj-Sokhotski formulae [12, Section 1.4.2] that
4.2) H.(s)—H_(s)=1, sen(a)\{a,as}.

It further follows from [12, Section 8.3] that H(z) is bounded around a; and a3. Set

W(Z)J log(pw)(s) _ds
A

4.3) Ae) =72 s—z  wils)

, zeC\A.

This is a holomorphic function in its domain of definition that satisfies

2 [ log(ow.)(s) 2 [ ds

4.4 Az) = —— ds+0(1) = — 4+ 0(1

.4) () = g ), g O = = s 0(1)
[04

as z — o0, see (2.13) and (2.8). It follows from Plemelj-Sokhotski formulae that

(4.5) Ai(s)+A_(s) =log(piws)(s), seA;,ie{l,2,3}.

Write A(z) = Ai(z) + Aa(z) + As(z), where A;(z) is given by (4.3) with A replaced by A;. Fix
i €{1,2,3}. Let 4/z — a; and (z — a;)® be branches whose branch cuts include A; and such that
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w(z) = vi(z)y/z — a; and p;(s) = pi(s)(s — a;)§" for some functions v;(z) and g;(z) analytic in a
vicinity of a;. Then we get from [12, Sections 1.8.3-6] that

M) = Vi(Z)mJ (@i +1/2)log (s — a;) + log(pivi)(s) ds
! i s—2 vi(s)y/s —ai
B (2)vz—a; [ (ai+1/2)log, (s —a;) ds
N 2ri f s—2z vi(S)V/s —ai, +o()
(4.6) = (ai/2+1/4)log(z —a;) + O(1)

as z — a;, where log(z — a;) has a branch cut that includes A;.

Similarly, it follows from the conditions placed on p;(s) that p;(s)/(s — ao)}’ extends to an
analytic function in a vicinity of ag, where (z — ag)®° is a branch with the cut along A;. Moreover,
to get a function analytic in a vicinity of ag out of w(z), we need to divide it by 4/z — ao with the
jump along A; and then multiply by —1 in the sector opposite to A;. Hence, it holds that

4.7 Ai(z) = vi(ao/2 + 1/4)Li(z) + O(1)

as z — ag, where L;(z) := log(z — ap) has a branch cut that includes A; and v; is equal to 1 in the
sectors adjacent to A; and is equal to —1 in the sector opposite to A;. Since

Sp(z0) = exp {(=1)**! (A(z) — 2nic,H(2))},

see (2.10) and (2.11), the claims of the proposition follow ((4.1) and (4.4) give analyticity at infinity;
(4.2) and (4.5) yield (2.12); (4.6) and (4.7) give (2.14)).

@y

4.2. Proof of Proposition 2. Before we start proving this proposition in earnest, let us make an
observation. Recall the differentials Q, ,« (s) introduced in (2.11) and the differential G(s) defined
in (2.4). One can easily check that

G(s) = Q) o (8) + 27iTQ(s),
where Q(s) is given by (2.8). It further follows from Riemann’s relations [7, Section II1.3.6] that

oD
é)gw(l)’wm) = 27Tif Q,
000

B

where the path of integration lies entirely in G, g. Therefore, we can immediately deduce from the
last two identities, (2.8), and (2.5) that

) 00
(4.8) f Q=w+Br and J Q= (-Dfw+B7)/2, ke{0,1},

oM a0
where we used symmetry Q(z*) = —Q(z) for the last conclusion.

It is well known and can be checked directly that (u) enjoys the following periodicity properties:

4.9) 0(u + 1+ Bm) = exp{ — niBm* — 2nimu}0(u), Il,meZ.

It is further known that 8(u) = 0if and only if [u] = [(B+ 1)/2]. As already mentioned, the function
a(z) from (2.9) extends to a multi-valued analytic function on &. Therefore, it has continuous traces
on (@ U B)\{a1} and these traces satisfy

(4.10) ay(s)—a_(s) =
I sep\arl,

due to normalization of (z) and the definition of B, see (2.8). Relations (4.9) and (4.10) imply that

T,,(z) does indeed extend to a multiplicatively multi-valued function on &. Furthermore, they also

yield that

{ -B, sea\{a},

Tot(s) = eXp{ —2riyn(a_(s) — B)}G(a—(s) ;(cclp_(—s)xi—Aliy;)—&- A—B)

= T,—(s)exp{2ni(—cp, —xn)}, sea\{ai},
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from which the first relation in (2.18) follows (recall that x,, and nw differ by an integer). The proof
of the second one is analogous. Moreover, since

[(1+B)/2] = [a(z) = ¢p —xn = Byn + Al = [a(z) — a(za) + (1 + B)/2]

holds only when z = z, by the unique solvability of the Jacobi inversion problem (we used (2.19)
and (2.16) for the second equality), T,,(z) does indeed vanish solely at z,,. The location of the pole
of T,,(z) can be identified similarly using (4.8).

4.3. Proof of Theorem 1. Fix n € N and let ¥,,(z) be given by (2.20). It follows from the properties
of ®(z), S,(z), and T,(z), including jump relations (2.6), (2.12), and (2.18), and local behavior
(2.14) that ¥, (z) solves BVP-¥ when z,, # 0 (when z, = 0, the pole at 00 is of order
n — 1). Let ¥(z) be any solution of BVP-Y, if it exists. Consider the function F(z) := ¥(z)/¥,(z).
Then F(z) is meromorphic in S\A with at most one pole, namely z,, which is simple if present. It
also holds that F, (s) = F_(s) for s € A\A. Since these traces are continuous on A\A (apart from a
possible simple pole at z,, when the latter lies on A\A), the analytic continuation principle yields that
F(z) is analytic in &\({z,} U A) with at most a simple pole at z,, when z,, ¢ A. Finally, it follows
from (2.3) and (2.21) that every a; is a removable singularity of F(z) unless it coincides with z,, in
which case it can be a simple pole. Altogether, F(z) is a rational function on & with at most one
pole, which is simple. Hence, F(z) is a constant. That is, ¥(z) = ¢¥,(z), which finishes the proof
of the theorem.

4.4. Proof of Proposition 3. Below we always assume that all € satisfy max |s] < 5;11.
SE

Because Jacobi inversion problems are uniquely solvable in the considered case, it follows from
(2.15) and (4.8) that if z,, = 50*), then

[cp +(n—1/2)(w+ BT)] = [(fl)k(a) + B1)/2]
and therefore Zy_(—1)k = oo1=K), again by (2.15) and (4.8), since
[cp + (n—1/2— (=1)*)(w + B7)] = [-(=1)*(w + B7)/2].

This proves the very last claim of the proposition.
If w and 7 are rational numbers with the smallest common denominator d, then

[cp+ (n+d—1/2)(w+Br)] =[cp + (n—1/2)(w + Br)]

and therefore the sequence {z,} is d-periodic. Thus, if none of zy, ...,z4—1 coincides with 00,
choose &y small enough so that z,...,zq_1 ¢ UESO), in which case N¥° = N for all £ < &.
If z,, = 0© for some ng € {0,...,d — 1}, then of course zp,+ka = 0© for all k > 0 and
Ziska # 0O forl € {0,...,d — 1}\{no}, since otherwise [ — ny would be divisible by d, which
is impossible. Hence, by periodicity, N5° = N\(ny + dN) for all & < &, where & is such that

21¢U g())) forl € {0,...,d — 1}\{no}. Moreover, in this case we get that there exist integers / and m
such that

cp = ((1 —no)w + l) + B((l —no)T + m) = (p/d) + B(q/d)

by (2.15) and (4.8), where p and g are again integers.
Now, recall the definition of the constants w and 7 in (2.5). We can equivalently write

1 — ap)d
@.11) w=hL+15 and t=—(L +Dh), I:i=—— (s = ao)ds
miJs, wa(s)

(recall that each A; is oriented towards ag). It follows from the Cauchy integral formula that

1 s —ap)ds 1 s — ap)ds
&___ ¢211+I2+13’

(412) " 2ni w(s)  mi)y wi(s)
L
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where L is any smooth Jordan curve that encircles A in the counter-clockwise direction. We also get
from (1.2) that the integrand in (4.12), i.e.,
(4.13) s=ao)ds

wi(s) i
is real and non-vanishing on each Al‘?. In particular, I; # 0, i € {1,2,3}. Moreover, it is known,
see [22, Theorem 8.1], that there exists a conformal map ¢(z) in a neighborhood of ag such that
the differential (1.2) can be locally written as ¢d¢?. If we normalize ¢(z) so that it maps A into
non-positive reals (locally around ag), then 1/¢d¢ is equal to (4.13) in the sector delimited by A, and
Az that contains A; and minus the differential in (4.13) in the other sector. This yields that /; > 0,
i € {1,2,3}. In particular, the latter claim implies that w € (0, 1), 7 € (—1,0), and for no A it can
holdthatw = —t = 1/2asw —7 =1+ 1} > 1, thatis, d > 3.

Assume that d = 3. Then I; = 1/3,i € {1,2, 3}, as these are positive rational numbers smaller
than 1 with denominator 3 by (4.11) and (4.12). It readily follows from its symmetries that this
is indeed the case for Ag,m. Let as before ®(z) stand for the pull-back of ®(z) from & onto
C\A. Denote by ®a(z) the analytic continuation of @(z) from infinity across 7() and 7 (8) to a
holomorphic function in C\A. In fact, @, (z) is again given by (2.4), where z € S(©\A and the path
of integration also belongs to 6(0)\A, except for ag, and proceeds from a( into the sector delimited
by A, and As, recall Figure 1. As was explained after (2.6), ®a(z) is a conformal map of C\A
onto {|z| > 1} that maps infinity into infinity. This map also sends d(C\A), the boundary of C\A
understood as the collection of limit points of sequences in C\A, bijectively onto the unit circle.
Clearly, 0(C\A) consists of two copies of each s € A7, say s and s_, as accessed from the + and
— sides of A;, one copy of each ay, as, a3, and three copies of ao, say ao,12, ao,23, and ap 31, where
ao,;;j is accessed from the sector delimited by A; and A;. Then

®@p(aos) = 1, ®p(ay) = e™CLHN) — 1,
D@y (ag,12) = e™i(722) = o= 27i/3, and Dp(ay) = e™i("h) = =73,
q)A(aO 31) _ eni(213) — €2ﬂi/3’ q)A(a3) — o7l — eﬂ'i/3.

Moreover, as w (s) = —w_(s), it also holds that @A (s )/Pa(a;) = Pa(s—)/Pa(a;) forany s € A?.
So, if A! and A? are two such contours, then F(z) := ((I);; o ®,1)(z) is a conformal map of C\A!
onto C\A? that maps infinity into infinity and d(C\A') continuously and bijectively onto d(C\A?).
The just described properties also yield that

F(sy)=F(s_), se(AD)°, and F(a;/(A")) = a;(A?)

1
fori € {1,2,3}and !/ € {0, 1,2, 3}. Thus, F(z) is continuous and therefore holomorphic in the entire
complex plane. Since F(z) is conformal around infinity, it has a simple pole there, which means that
it is a linear function that maps A' onto A2, as claimed.
Assume now that at least one the numbers w and 7 is irrational. As explained before the statement

of the proposition, z, can be equal to 0 forat most one index n. Fix N > 1. Letx_1,x0,X1,...,XN
be the unique points on S such that
B
a(x;) = [w+ L (w+ BT)I] , le{-1,0,...,N}.

It follows from (4.8) that x_; = oM and Xy = 00, Tt also holds that none ofxq,...,xy is equal

to 00(®) and they are all distinct (if x; = xj fori # j, then w and 7 are necessarily rational). Fix
€x > 0 small enough so that the sets

O 1= {[s]] 3 : [x] = a(®), Is — x| < e } < Jac(®)
are disjoint. Recall that the Abel’s map a(z) is a holomorphic bijection between & and Jac(&). Set
U :=a'(0), le{-1,0,...,N}.



Notice that if [s] € Oy, then [s + w + Bt] € O;4. Hence, the domains U; are disjoint and
Zn+k € Uk, kE{—l,...,N—l} = z,4 €U, lE{k-‘rl,...,N}.

Thus, to prove (2.24) it remains to choose €5 small enough so that U SB < Uy, and to prove (2.25),
given 0 < & < gy, to choose €, and §(¢) so that Uy < Ug)) and U(;()s) cU_,.

4.5. Proof of Proposition 4. Since a(z) is a branch of an additively multi-valued function on &, see

(4.10), it holds that K, the closure of a(Sq g\U i};) is a compact set. Moreover, Kg is necessarily
disjoint from any point on the lattice [—(w + B7)/2] by (4.8). Hence, there exists a constant M| g

such that
‘6727r1ynu€71(u+A>‘ <Mir, uecKkp

(recall also that y, € [0, 1)). There also exists a constant M, g such that
0w+ A)| < Mog, uce {v —x—By—c,: veEKR, x,y€ [O,l]},
by compactness of the latter set. The first inequality in (2.26) now holds with Mg = M| rM> Rr.

)

The second inequality follows from the maximum modulus principle applied in U IR

(2.27) is identical.

The proof of

4.6. Proof of Proposition 5. Given x € S, g, let x(x), y(x) be real numbers such that
a(x) = [cp +x(x) + By(x) — (0 +B)/2],  x(z0) = y(20) =0

recall (2.19), and that continuously depend on x. Observe that these functions continuously extend
to the boundary of S, g, x(x) is in fact continuous across @ and x . (x) —x_(x) = 1 forx € B while
y(x) is continuous across B and satisfies y (x) —y_(x) = —1 forx € @, see (4.10). In particular, it
follows from the chosen normalization, (2.19), and (2.16) that either x(z,,) = x, or x(z,) = x, — 1
and the same is true about y(z,) and y,. Define

6(a(z) — cp — x(x) —By(x) + A)
0(a(z) +A)

T(z;x) = exp { — 2niy(x)a(z)} . z€Gyp.

In particular, it follows from (4.9) that

T(z;2,) = Tu(2), ¥(zn) = Yns
{T(z;zn) = 2l tm B ABIT, (2), y(zn) = yn — L.
Furthermore, similarly to (2.18), it holds that
exp{ —2mi(c, +x(x))}, sea\{a},

exp{ — 2niy(x)}, s¢e B\{a1}.

It is also true that 7'(s; x) is a holomorphic non-vanishing function except for a simple zero at x and
a simple pole at co(!). Finally, with the same determination of (z — ag)'/? as in (2.28) we can write
12

(4.14)
(4.15) Ti(s;x) =T_(s;x) {

T(z;x) := to(x) + t1(x)(z — ao) '~ + t2(x)(z — ao) + - -

for z close to ag and lying in the sector between A; and As. Notice that the coefficients #;(x) are
continuous functions of x € &, (the change of x(x) by an integer does not affect T'(z;x)) that
continuously extend to both sides of .

Recall (2.9). Given x € G, let x 1 € S be the unique points such that

(4.16) a(x41) = [a(x) + (w +B7)].

Clearly, x; and x_; continuously depend on x. Notice that (x;)_; = x and that (2,)+1 = Zn+1-

Defin
o T( ) L 2t2(x)*hltl(x) 2t2(x—l)*hltl(x—l)
T tO(x) fo(x_1) ’
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where the constant A is the same as in (2.29), whatever it might be. Consider the function
d(x) :=|det(T(x))| + |det(T(x1))]| .

As we have explained, this is a continuous function of x € S, that continuously extends to both sides
of @. Our next goal is to prove that x = a is the only possible zero of d(x) (it might happen that
this function does not vanish at all).

Assume that d(x) = 0, in which case det(T(x)) = det(T(x;)) = 0. This means that rows of T'(x)
and T (x;) are linearly dependent and since these matrices share a column, there exists a constant ¢
such that

26(y) — hiti(y) +cto(y) =0, ye{x_1,x,x1}.

Hence, the matrix [#;(y)] has zero determinant, where / is the column index and y € {x_;,x,x}
is the row one. By taking linear combinations of rows rather than columns, we get that there exist
constants c_1, ¢, c1, not all equal to zero, such that

“4.17) coqti(x 1) + coty(x) + city(x1) =0, [1€{0,1,2}.
In another connection, since the integrand in (2.4) behaves like 1/z — ag around ay, it holds that
(4.18) ®(z) = 1+0 ((z - ao)3/2)
as z — ag. Consider the function
T(z;x_1) ®(z)T(z;x1)
F(z = .\~ tcot+tCc1—F—————
() "®(2)T(z:x) 0Tl T(z;x)
e T(zx 1) + co®(2)T(z:x) + 1D (2)T(2: X))
D(2)T (z;x) '

It follows from (2.6), (4.15), and (4.16) that this is a rational function on the entire surface .
Moreover, the first representation readily yields that F(z) has exactly three poles, all simple, at x,
00 and ooV, while the second formula together with (4.17) and (4.18) clearly shows that it has at
least a triple zero at @ (unless x = ao, in which case it is at least a double zero). Since F(z) must
have equal number of poles and zeros, its zero/pole divisor is equal to

3ag — x — 0@ — o),

However, this means that the function F(z)/(z — ao) has a zero/pole divisor ag — x. Since there are
no rational functions with at most one pole besides constants, F(z) = C(z — ao) for some constant
C and it must hold that @y = x as claimed.

Now, it follows from (2.29) and (4.14) that

1, in) = Yn»
’ Yn:{ y(zn) =y

dtTn :Yn—YndtT n
|det(T)| 1¥n|det(T (z,)) ™M=+ T)B=26p) (7 ) =y, — 1.

Since Im(B) > 0, 7 € (—1,0), and y,, € [0, 1), we have that ¥,, > Y := ¢~ "M2%+B) for all n € N,
Let V. := d~'([0,2Y2¢)). Then for all & small enough this set is either empty (when d(x) does
not vanish) or it is a neighborhood of a( by continuity of d(x). Then if z,, ¢ V ., it holds that

|det(T,)| + |det(Tyy1)| = Y?d(z,) = 2,

which yields that |det(T,,)| = |det(T (z,,))| = € foreitherm = norm =n + 1.

5. ProoF oF THEOREM 2

5.1. Initial Riemann-Hilbert Problem. Recall the definition of R, (z) in (1.1) as well as the defi-
nition of f(z) in (1.4). It follows from the known behavior of Cauchy integrals around the endpoints
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of arcs of integration [12, Sections 8.2-4] (we can consider f(z) as a sum of three Cauchy integrals
over the arcs Ay, Ay, A3) that

1, a>0,

[f @R (2)] = OWay(z = ar)), Yalz):=4 loglz, a=0,

|lz|*, @ <0,

for [ € {0, 1,2, 3} (it was pointed out in [2] that these functions are bounded around ag when a¢ = 0
and p1(0) + p2(0) +p3(0) = 0, where, as before, p; (s) is the restriction of p(s) to A? = A;\{ao, a;}).
Assume now that

(5.1) deg(Qn) =n and R,_1(z) =k, 'z7"+0(z"7"),
where the second relation must hold as z — oo for some finite non-zero constant k,,. Let

_ Qn(Z) Rn(Z)
Y@= (kn—lQn—l(Z) kn—IR”—](Z)> .

Then Y (z) solves the following Riemann-Hilbert problem (RHP-Y):

5.2)

(a) Y(z)is analytic in C\A and lin;C Y(z)z7 "% = I, where 03 := (1) 01) and I = <(1) (1)),
— -

(b) Y(z) has continuous traces on each A7, i € {1,2, 3}, that satisfy
1 ils °
Y. (s) = Y_(s) (o P f )> . sEAY:

_ 1 'vl’dl(z_al)
(c)Y(Z)—O<1 lpm(z_aﬁ)asA§§Z—>al,le{0,1,2,3}.

It is by now standard to show, see for example [2, 27], that if a solution of RHP-Y exists then it has
the form (5.2) and (5.1) holds. Notice that det(Y (z)) is holomorphic in C\A, equal to 1 at infinity, is
continuous across A° and can have at most removable singularity at each a;. Hence, det(Y(z)) = 1.

5.2. Opening of Lenses. Now, we construct a system of arcs, the lens, around A as on Figure 3. Fix

Ficure 3. Contour I'. The dotted circle represents 0Uy.

6 > 0 such that A n Uy is a smaller trefoil, where Up := {z : |z — ao| < 6}, see the dotted circle
on Figure 3. We are assuming that & is small enough so that Ug n (r(a) U 7(8)) = @. Denote by
S; the sector of Up\A for which 0S; n A; = {ao} (i.e., the sector opposite to A;). Further, let UOi
be the connected components of Up\(A; U A‘l*) that border Af—r (UJr intersects Az and Uy intersects
Az), where A} is an open analytic arc that splits the sector S; into two halves (its endpoints are ag
and some point on 0S;\A) and has the same tangent vector at ag as A; (we shall completely fix A*
later in Section 5.4, see (5.9)), see Figure 3. We orient each A} towards ag. Further, let FlfF and

I';” be open smooth arcs that connect a; to A7 | and A7, respectively, where the subindices are
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understood cyclically within {1, 2,3}, a convention we abide by throughout the rest of the paper. We
assume that all these arcs do not intersect except for the common endpoints and let

Ci=AlJ(uan) | (u (o).

We let Qli to denote bounded components of the complement of I" that contain I” li as a part of their
boundary and I'° be the subset of those points in I" that possess a well defined tangent.

Recall our assumption made after (1.4) that p;(s)(s — ag) (s — a;)~ % extends to an analytic
function in some neighborhood of A;. We shall suppose that this neighborhood contains the closure
of Qf U Q; and that the branch of (z —a;)? is analytic throughout this closure, except, of course, at
a;. Recall also that we fixed a branch of (z — ag)®® whose branch cut lies, in part, in S and we shall
further assume that this cut contains A}. Finally, recall (3.1) and suppose that Uy is small enough so
that every p;(z) is analytic in its closure.

Define

b Z '7’
(5.3) X(z):=Y(2) Fl/pi(z) 1 '
I, otherwise.

Clearly, if Y(z) is a solution of RHP-Y, then X(z) is a solution of the following Riemann-Hilbert
problem (RHP-X):

(a) X(z) is analytic in C\A and lim,_,o, X (2)z "% = I,
(b) X(z) has continuous traces on I'° that satisfy

1 0
_ _ , sEAT,
(pi+ll+(s) +pi7117(5) 1) !

where taking traces is important only on AJ;
(c) foreach! € {0,1,2,3} it holds that

1 |z—a*™ log |z —a;| logl|z — a
X = X =
(2) 0(1 Z—al|“‘> and X(2) O<10g|2—al| log |z — ai

asI" 3 z — a; when @; < 0 and @; = 0, respectively, and

B 1 1 B |z —a)|=® 1
X(z)=0 (1 1) and  X(2) =0 (|z —am 1
asI' 3 z — ay, from within the unbounded and bounded components of the complement of
I, respectively, when a; > 0.

Conversely, assume that X (z) is a solution of RHP-X and Y (z) is defined by inverting (5.3). It is
quite easy to see that thus defined Y (z) satisfies RHP-Y (a,b). Furthermore, since the second columns
of X(z) and Y (z) coincide, the second column of Y (z) satisfies RHP-Y(c) as well. In fact, the same
holds for the first column of Y(z) if @; < 0. In other cases, we see from RHP-Y(b) that the first
column of ¥ (z) can have at most an isolated singularity at a;. However, if @; = 0, then blowing up
at a; is at most logarithmic and therefore singularity must be removable. Similarly, when a; > 0 and
1 € {1,2,3}, the first column of ¥ (z) remains bounded as z — a; from outside the lens and therefore
the singularity at a; cannot be polar. Furthermore, in this case |z — a;|*Y(z) is bounded around
a; and therefore the singularity cannot be essential. Thus, it is again removable. Finally, since ag
cannot be approached from outside the lens, we rule out polar (and essential) singularity at ag due to
the requirement ap < 1.



5.3. Parametrices. Below we assume that the index 7 is such that z,, # 509, see (2.19).

The global parametrix is obtained from RHP-X by ignoring local behavior around a; and dis-
carding the jumps on A} and F;—r. Namely, let ¥,,(z) be given by (2.20). Recall our convention that
¥, (z) and ¥# (z) stand for the pull-backs of ¥, (z) from &© and S(1), respectively. Define

L Yn¥n (Z) Yu'Py (Z)/W(Z)
M) = (y::_lwn_mz) y:_llvz_1<z>/w<z>>

for z ¢ A, where the constants y,,, ¥ | are chosen so thatlim, .., N(z)z~"?* = I. By the restriction
placed on the indices n, these constants are finite and non-zero, see the last claim of Proposition 3.
Then N(z) is a solution of the following Riemann-Hilbert problem (RHP-N):

(a) N(z)is analytic in C\A and lim,_,o, N(z)z7"3 = I,
(b) N(z) has continuous traces on each A?, i € {1, 2,3}, that satisfy

Ve =80 (L0 ) sean

|Z _ al|7(2m+1)/4 |Z _ al|(2a171)/4

©) N(z) =0 ( ~Qar+1)/4 (2(1/1—1)/4> asz—ap, 1 €{0,1,2,3}.

|z — ai |z — al

The properties of N(z) described above follow easily from the requirements of BVP-V.
In fact, it will be more convenient for us later to work with separate factors of N(z) rather than
N(z) itself. To this end we write N(z) := CM™9(z)®"73(z), where

o ("n 0 re L Tn(Z) T,:k(z)/w(z) o3
oo (B ) ma ar - <<Tn_1q>*)(z> <T:_1<I>><z>/w<z>>s" o

where we used the facts that @(z)®*(z) = 1 and S,,(z)S};(z) = 1, see Proposition 1. As in the case
of Y(z), it is straightforward to argue that det(N(z)) = 1 in C. Hence, it holds that

det(M™%(z)) = 1/det(C) = 1/(yavi_,).
Let N%9 be as in (2.22). Then it follows from the above identity, (5.4), and (2.20) that
Ty (2)®(2)

—1
(55) (ryn’)/:f]) = Tn(OO) zli»rlgc W(Z)
It is well known (and is not very important for us here) that lim,_,, |®(z)/z| = 1/cap(A) is the

reciprocal of the logarithmic capacity of A (in any case, it is a non-zero and finite constant). Hence,
it follows from (2.26)—(2.27) that

(5.6) cap(A)RMI;2 < lywy¥ || < cap(A)MZ, neNg,
for any given R > maxgep |s|. We further get from (2.26)—(2.27) and the above inequalities that

{MreQ(Z) =OK’S(I)diag(l’I/W(Z))Sg3(z)

(5'7) re —1 —03 :
M™9(z) =8, 7 (z)diag(1/w(z), 1)Ok, (1)

on any compact set K as Ng% 3 n — o0,

Assume now that § > 0 is small enough so that U; := {z : |z — a;| < 6}, i € {1,2,3}, intersects
only A;,ie., U; nA; = @ for j # i, and that p;(s)(s — a;)~* extends analytically to its closure,
which is disjoint from the closure of Uy. Local parametrix around a; is obtained by solving RHP-X
in U;. That is, we need to solve the following Riemann-Hilbert problem (RHP-P;):

(a) P;(z) is analytic in U;\T;
(b,c) P;(z) satisfies RHP-X(b,c) within U;;
(d) it holds that P;(s) = (I + O(1/n))M"™9(s)®"73(s) uniformly on JoU;.
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The solution of RHP-P; is well known and was first derived in [18] in the context of orthogonal
polynomials on a segment with the help of the modified Bessel and Hankel functions. Since then it
appeared in countless papers and was adopted to the context of non-Hermitian orthogonal polynomials
on symmetric contours in [2]. Therefore, we shall skip the explicit construction.

Around ag, we look only for an approximate parametrix. More precisely, we would like to solve
the following Riemann-Hilbert problem (RHP-Py):

(a) Py(z) is analytic in Up\I';
(b) Py(z) satisfies RHP-X(b) within Uy except the 21-entries of the jump matrices on A,
i € {1,2,3}, are replaced by
Ki,ifl(s>pi7+11+<s) + Ki,i+1(S)Pf_11_(S),
where «;,j(z) := (0i(2)0;(a0))/(0i(ao)e;(z)) (recall (3.1));
(c) Py(z) satisfies RHP-X(c) within Up;
(d) it holds that Py(s) = (I + O (n~'/3)) M™9(s)®"*(s) uniformly on Uj.

We solve RHP-Pj in the next subsection. The presence of the functions «; ;(z) is precisely what
makes this parametrix approximate. Of course, it would be preferable to solve RHP-X locally around
ag exactly, that is, with the jumps appearing in RHP- X (b). However, currently, we do not know how
to achieve this. Notice also that if o;(s) = c;o(s) for some function o(z) analytic around a( and
possibly different constants c¢;, which is exactly the case when the approximated function has the
form (1.3), see Appendix D, then «; ;(z) = 1 and the parametrix is exact.

5.4. Approximate Local Parametrix around a(. Solution of RHP-Py is based on the solution of
RHP-®, from Appendix B. The knowledge of the statement of that Riemann-Hilbert problem is
sufficient for understanding the construction further below.

Recall the definition of X;, ¥3 in Appendix B. Define

3 (% (s—ag) . \*
(5.8) () = (—f = Vds) ., ze(S1USUS3) N U.
(2) 2 Joy w(s) ( )
Since w. (s) = —w_(s) for s € A, £3(z) extends to a holomorphic function in Uy, which, upon

easy verification, has a triple zero at ag (we already used this observation in (4.18)). Furthermore, it
readily follows from (1.2) that ¢ 3(s) is negative for s € A n Uy (except for ag, of course). Hence, we
can select a branch {(z) which is holomorphic in Uy and such that {(s) < 0 when s € A; n Up. Since
£(z) has a simple zero at ag, we can decrease the radius of Uy if necessary so that {(z) is univalent
in Up. Moreover, as we had some freedom in choosing the arcs A}, we now fix them so that

(5.9) {(AT) © (0,0) and ({(A]) X, ie{2,3}
In what follows, all the roots of {(z) are principal, that is, they remain positive on A} and have a
branch cut along A;. In particular,

(5.10) (A s) =i s), searnU.

Recall the definition of ®(z) in (2.4) and that |®(z)| > 1 for z € Up\A, see (2.7). Thus, it also holds
that

5.11) e~ AR _ { ®*(2). €810,

CD(z), ZE (52 U S3) N U().

Let o;(s) be given by (3.1), where for definiteness we fix a branch of (z — a)®° that is analytic
in Uo\A_f. Define
eiﬂ'iafo/l’ z€ Sl A Ui’
E, (z):= .
0 (2) eFrmiao/2 ;¢ (S U83) N Ua—r.
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Further, let 7;(z), i € {1, 2,3}, be a function holomorphic in S; given by

. /2 0i—1(2)0i+1(2) 12
(5.12) ri(z) == gii(z = a0) ™ Eay(2) | ——x— | >
0i(z)
where ¢ = ¢» = —¢3 = 1 and we use the same square root branches of 0;(z) in all r;(z). Since
E ot (S)Eqy—(s) = 1 for s € A? n Up, it holds that
(5.13) ric1—($)riz14(s) = sipi(s), s A; n Up.

We further set r(z) := r;(z) forz € S;.

Recall that p € W™9. Let ®,,(Z;0) be the solution of RHP-®, with @ = ¢ and the Stokes
parameters given by (3.2), see Appendix B (it exists by the very definition of the class W'9). Then a
solution of RHP-Py) is given by

(5.14) Po(2) == Eg°(2)®q, (n2/3§(z); 0)J(z)r="(z),

where E Beg(z) is a holomorphic matrix function in Uy that we shall specify further below in (5.16)

and
0 —1
(5.15) J(z) = <1 0)’ z€Sin o,

I, ze (SzUS?,)ﬂUO.

Indeed, it follows from (5.9) that Py(z) is a holomorphic matrix function in Up\T, i.e., RHP-P(a) is
satisfied. We further get from RHP-® ,(b) and (5.13) that

Py (5)Pos (s) = 17 (5) (01 })) ry 7 (s) = (1 Ion(s) ’”és))
for s € AT N Uy,
PP ) =P 00 = (L 7))

for s € Ag N Up, and

Pyl (5)Pos(s) = 32 ()T 4 (s)r 7 (s) = (—1/23(S) 93(53))

for s € A5 N Up. Moreover, using (3.2) we get that

pa+(s) * p3—(s)

_ 1 0
Pyl 9P 5) = 0070 o ”;(p>)1<s>r1“—*<s>=<m + st 1)

for s € A n Uy (notice that the orientations of £(A}) and X are opposite to each other), and

PP () =) (L ) = (s s
0— + 1 S bl(p) 1 1 1,1—1 + 1,1+1 1

pr+1(s) p1-1(s)

fors e Ay nUp, I € {2,3}. Hence, Py(z), defined in (5.14), fulfills RHP-P((b). Next, it follows
from RHP-® ,(c), (5.14), and (5.12) that

_ qare O(M(Z)‘i‘%vz)’ ap # 0 — a2
PO(Z)_E(’Q(Z){ 0 (log¢())). a0 =0 }O<'Z_a°' )

Since multiplication by E (r)eg (z) on the left does not mix the entries from different columns of the
product of the other two factors above, Py(z) does indeed satisfy RHP-Py(c).
Finally, let

1 —i) (n2P¢(2)) =
L)

(5.16) E§(z) i= M™(2)r™(2)J 7' (2) (i 2
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We get from RHP-®,(d), (5.7), (5.11), and (5.15) that
Po(s) = Mreg(s)rm () (I + O(nfl/S)) F (5) @M (s)
(517) = (I + 0(7’1_1/3)) MI’EQ(S)q)n0'3 (S),

which is exactly what was required in RHP-Py(d). Thus, it only remains to prove that E;°(z) is
analytic in Uy. To this end, this matrix is clearly analytic in Up\A. It also holds that

e wezo - oo S0 (G ) (7 e

/63 () (61 0> VA (/6 _

i) o+

for s € A} n Uy, where we used RHP-N(b), (5.13), (5.15), and (5.10). Similarly, we have for

s € A} Uy, [ € {2,3}, that (E°)~!(s)E§? (s) = I, because it holds there that

J—(s) ((_10)11 (_01)l> J'(s) =1

Hence, E,,°(z) is analytic in Up\{ao}. Furthermore, we get from RHP-N(c) and (5.12) that

i o3/4
L PRI U LR

Therefore, a cannot be a polar singularity of E{%(z) and must be a point of analyticity.
5.5. Small-Norm Riemann-Hilbert Problem. Let C and M"™¢(z) be matrices defined in (5.4) and

Pi(z), I € {0,1,2,3}, be the matrix functions solving RHP-P, and RHP-P;, i € {1,2,3}. Further,
let U := Uy u Uy u U, U Us, whose boundary we orient clockwise. We are looking for the solution

oLy

Ficure 4. Contour X and the circles 0U;.

of RHP-X in the form
Mreg(z)q)naj’ z ¢ (F U U) ,
Pl(z), ZEU[\F, le {0,1,2,3}.

(5.18) X(z) = CZ(2)

Let X := oU u (I'\(A° U U; U U, U Us)), see Figure 4. Combining the above equation with
RHP-X, we see that Z(z) should solve the following Riemann-Hilbert problem (RHP-Z):

(a) Z(z) is analytic in C\X and lim,_,, Z(z) = I;
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(b) Z(z) has continuous traces on X° that satisfy
Pi(s)N;'(s), seadU,
L0y v T
N.(s) “i(5) 1 Ny (s), sel;\U,

Pi

where N (z) := C~'N™9(z) = M™9(z)®"3(z) and we understand that P (s) is used when
s € oU, 1 € {0, 1,2, 3}, in the first jump relation, and

Z(s)=2(s)

1 0\ .
Z.(s)=Z_(s)Po—(s) (pi_+l1+(s) +pi_—11—(5) 1> Py (s), seA].
Note that if the jump relations RHP-P((b) on A} are exactly the same as the ones in RHP-X(b),
then the jump relations on AY N Uy in RHP-Z(b) above are absent.
As usual in this line of arguments, we shall show that all the jump matrices in RHP-Z(b) are
uniformly close to I along any sequence N'59. Indeed, it follows from RHP-P,(d) and RHP-P;(d),
i € {1,2,3}, that the jump of Z(z) on 0U can be estimated as

(5.19) I+0,(n'3) on oU,

where the constants in O .(+) are independent of n but do depend on &. Furthermore, we get from
(5.7) as well as (2.7) that the jump of Z(z) on F?\U satisfies

0 0

(5.20) I+ p; ()@~ (s)M™9(s) (1 0

) (M)~ (s) =T+ Og(e*”’)
for some constant ¢ > 0, where we also used the fact that the arcs I" :—r lie fixed distance away from A
(again, the constant in O .(+) is independent of n but depends on &).

Now, if it holds that «; j(z) = 1, then Py(z) is an exact parametrix and Z(z) does not have
jumps on A?. Below, we assume that all of these functions are not identically 1, the case where
only some of them are can be considered analogously. Let p be the largest integer such that
|1 — ki j(s)] = O(|s — ao|”) as s — aq for all the pairs 7, j. It necessarily holds that p > 1. It
follows from RHP-P(b) that the jump of Z(z) on AF can be written as

I—kii—1(s) 1T —kiit1(s) 0 0\,
(521) I+ ( e T ) ) Po.(s) (1 0> Py (s)
0 0

=T+ O0(|s —aol”)Ey°(s)®q, (n2/3§(s);0) J <1 O) J o, (n2/3§'(s);0) EJ%(s)",

where we used estimates |p; (s)| ~ [s — ao|® ~ |r(s)|?, see (5.12) and RHP-P(b), as well as (5.14)
(notice also that we do not need to take boundary values as the relevant entries of @, are analytic
across the considered arcs). Let Z = n?3¢ (s). We shall estimate the expression in (5.21) separately
in two regimes: when |Z| > 1 and when |Z| < 1. Uniformity of the asymptotics in RHP-®,(d) and
(5.15) yield that

0 0

(5.22) @, (2;0)J (1 0

) J7'o, ) (2:0)=0 (\Z|1/2e_(4/3)‘z|3/2) =0(|z|™7)

uniformly for |Z| > 1, where one needs to observe that Z*? > 0 for s € A} and Z¥? < 0 for
s € A} U A, see (5.9) (recall also that det(® 4, (Z;0)) = 1), and notice that |Z|P+!/2e~ (/3121 i
a bounded above positive function of |Z| on [1, o0). On the other hand, we get from RHP-® ,(c) that

00

(5.23) c1>(,0(z;0)1<1 0

) (20 -
@ #0, {0 (1Z|71l),  ao # 0,

o)z 20(1) 2= 7o), _ _ o(z7)
1), @ =0, O (log*|Z]), a0 =0,

0(1)0(log|Z])0(1)0(log | Z])O(
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uniformly for |Z| < 1 because |Z|P~!®l and |Z|P log? |Z| are bounded positive functions of |Z| on
[0, 1] since p > 1and |ao| < 1. Recall that |z —ag|/|{(z)| is bounded in Up and E §®(z) is an analytic
matrix function with the same determinant as M"9(z). Definition (5.16), estimates (5.7), and the

maximum modulus principle yield that E;°(z) = O,(1)n?%/% and E;%(z)~! = O(1)n=73/5. Tt

now follows from (5.21)—(5.23) that the jump of Z(z) on UA; can be estimated as
(5.24) 1+0, (n” max |5 - aol”lzlp> =1+0.(n~ =D,
SEUAT

where Z = n?/3(s). As p = 1, the error rate in (5.24) is not worse than O . (n~'/3).

Finally, by arguing as in [5, Theorem 7.103 and Corollary 7.108], see also [9, Theorem 8.1], we
obtain from (5.19), (5.20), and (5.24) that the matrix Z(z) exists for all n € NS¢ large enough and
that

|1Zs 1|25 = 0s(n" 7).
Since the jumps of Z(z) on X are restrictions of holomorphic matrix functions, the standard defor-
mation of the contour technique and the above estimate yield that
(5.25) Z=1+0s:(n""?) uniformlyin C\{ao}.

5.6. Proof of Theorem 2. Let Z(z) be a solution of RHP-Z, in which case (5.18) holds. Given a

closed set K — @\A, the contour X can always be adjusted so that K lies in the exterior domain of X.
Then it follows from (5.3) that ¥ (z) = X (z) on K. Formulae (3.4) and (3.5) now follow immediately
from (5.2), (5.4) and (5.25) since

w2 [(ZN4) ()] = (1 + a1 (2))¥a (277D) + via(2) Wi (2071)

for z € K, where 1 + vy, (z), un2(z) are the first row entries of Z(z). Similarly, if K is a compact

subset of A°, the lens X can be arranged so that K does not intersect U. As before, we get from (5.2),
(5.3), and (5.18) that

(5.26) ¥ 10n(z) = ((1 + 01 (2)) ¥ (2) + V2 (2) o (z)) +

(o) (@) (1 + v (2) W5 (2) + w2 (¥, (2))

forz e Qii\ﬁ. The top formula in (3.6) now follows by taking the trace of the right-hand side of the
above equality on K and using the top relation in (2.3) (which yields that ¥}: , (s) = ¥, (s)(pw)(s)

for s € A°). Since R,(z) = [X]12(z) for z € Q;+\U, the bottom relation in (3.6) is even simpler to
derive.

6. ProoF oF THEOREM 3

The main difference between proofs of Theorem 2 and 3 is that we no longer can use the matrix
®,,(£;0) and shall substitute it by ®5,°(¢;0), which has slightly different behavior at infinity. This
change necessitates modifications in matrices M™(z) and E(°(z).

6.1. On Matrices E;°(z). To be able to introduce necessary modifications of M™9(z) and E{%(z),
we need to discuss in more detail the behavior of E Beg (z) at ag. To this end, let us write

Ej®(z) = (E""(Z) E”’2(2)> noe.
En,3 (Z) En,4(Z)
It follows readily from (5.16) and (5.4) that

Eni(z) = (i¢"2(2)) 7'G(2)(Tul(z) — (1) (HT)(2)),

(6.1) » N .
Enina(d) = (i)' 762 (Taoi(0) — (1) (HTE)(2))

Z€ S8y,
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fori € {1,2}, where we set T,,,(z) := (T;n/®)(z), and

1/4S )z 1

(6.2) G(z):= M, H(z) = —————

V2 i ((Spr)?w) ()

Notice that the functions G(z) and H(z) remain bounded as S, 3 z — ag by (2.14) and the very
definitions of r(z) in (5.12) and of £(z) in (5.8). We are interested in the quantity

(6.3) Dy := En3(a0)E,, (ao) — En1(a0)E, 3(ao).

Since E, ;(z) are analytic at a¢ and the functions T}, (z) are analytic at a, the lifts of G(z) and H(z) to
71(82) n & admit analytic continuations to some neighborhood of ag. Thus, the quantities G (o)
and H(ao) are well-defined. In fact, since E, 2(ao) and E, 4(ao) are finite while T,,(ag) = T,¥(ao)
and YN"n(ao) = f,:" (ap), it must follow from (6.1) that

6.4 H(z) =1+ hi(z—ao)"? + ha(z — ag) + - - -

(from now on all the stated expansions are assumed to hold for z € S, N Uy), where we use the same
determination of (z — ao)l/ 2 as in (2.28). It also clearly follows from (2.28) and (4.18) that

s ZES2.

7NWn(Z) = t(()n) + l‘in) (Z — Cl())]/z + Ién)(z — ao) +ee,

(that is, the first three coefficients in the Puiseux series of T, (z) and of 7, (z) are the same). Observe
also that

TF(z) = t(()") - tf”)(z —ap)'? + té") (z—ag) +---

Let us write G(z) = go + g1(z — ao)"/? + g2(z — ap) + - - -. Notice that gy # 0 by (2.14). Then a
straightforward computation shows that

(65) Enzicsr(z) = 20015 + (282 + g1 + goha)i"™ '+
+ go (2:&"_]‘) - hltgn_k))) (z—ag) + -

for k € {0, 1} (in particular, it must hold that 2g1 + goh1 = 0). Hence, we get from the definitions
of the numbers D,, in (6.3) and the sequence N3 in (2.29) that

(6.6) ID,| = 2|go|*|det(T,)| = 2|go|*e >0, neNI.

Let us also justify the remark made after Proposition 5. Analysis similar to the one above yields
that

1/2
. - - i t—a
En,2k+2(a()) = —igo{1 (Ztl(n k) h]t(()n k)) , = (Zlggo g(z)o) s

for k € {0, 1}. It further follows from (5.16) and the display after (5.4) that
(Vn)’:,l)_l =det (Ej%(z)) = (En1En4 — En2En3)(2),

which is true for any z € Uy. Therefore, taking z = a in the above equality gives that

(6.7) (ynyj_l)*l = —4if18} (té")tf"’l) - té"’l)ti")) )

The desired claim now follows from (5.5)—(5.6).

6.2. Global and Local Parametrices. Recall the definition of M™9(z) in (5.4). The new global
parametrix is now defined as N(z) = CM®"(z)®"73(z), where

(6.3) M9 (z) := (I + (z—ap) 'L) M"™9(z)
and the matrix L is given by

| [~ (EniEn3)(a0)  E; (ao)
(6.9) L= o ( n,1 .

—E} y(a0)  (Eni1En;3)(a0)
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Notice that M™9(o0) = M®"(c0) = C~! and, since L has zero trace and determinant, det(M™9(z)) =
det(M®S"(z)). Observe also that the just defined matrix N(z) satisfies RHP-N(a,b) and RHP-N(c)
around a1, a», az. However, its behavior at a( is obviously different. Most importantly for us, it is
still true that

(6.10) (M) E! (2)| = Ok (1)

for z € K as Nijng 3 n — o0, where K is any compact set that avoids ag, a1, as, a3. Indeed, since
NS < N9, estimates (5.7) still hold. It was computed in the previous subsection that

(6.11) |Enk+1(a0)| = 2|g0t(()n7k)| < 2[go| MR

for all n € N, where the last conclusion is a consequence of (2.26). Thus, (6.10) follows from (6.6).
Local parametrix Py(z) is now constructed similarly to (5.14) as

(6.12) Py(z) = EJ™(2)®@5° (n**¢(2);0) J (2)r~ 73 (2),
where (I)figg({ ; x) is the solution of RHP—(I)flng from Appendix B and E Sing (z) is given by
(6.13) EJ™(z) := (I +(z— ao)_lL)EE)eg(z)(n2/3{(z))703.

It follows from (5.16), (B.12), and (6.8) that (5.17) holds with M™9(z) replaced by M*"9(z). Hence,
provided E{"(z) is analytic in Uy, the just constructed matrix Py(z) solves RHP-P; with M™(z)
replaced by M*"9(z) in RHP-P(d) (again, entries of L are bounded by (6.6) and (6.11) along N‘an).
To show analyticity of EJ"®(z) in Up, observe that

(i En)(a0) E; 1(ao) En1(2) -
ES(z) = S D @—a0)Dn T (a0 (0l
0 N E2 (ap) (EniEn3)(ao) | \ Ens(2) _ Z—ap
—pr 1+ et J\Fre (2 a0

by (6.9). Recall that £(z) has a simple zero at ag and therefore the last matrix above is analytic at
ap. Thus, we only need to investigate analyticity of the first column of the product of the first two
matrices above. The (1, 1)-entry of this product is equal to

E,3(a0)En,(z) — En,l(ao)En,3(Z))
(Z - aO)Dn '

1
Z—4ap

(E,,,l (z) — Ena(ao)

which is indeed analytic at ag by the very choice of D,, in (6.3). The fact that (2, 1)-entry of the
product is analytic at ag can be checked analogously.

6.3. A Discussion. In this subsection we briefly digress from the proof of Theorem 3 and provide a
broader view of the construction of global and local paramatrices presented in this and the previous
sections. _

In this section we are forced to use matrix function ®%°(£;0) instead of @, (¢;0) as the latter
does not exist in the considered case due to polar singularities at x = 0 of the functions Uy (x) from

(B.1). However, one can clearly see from (B.10) that (I)flgg({ ;x) is actually well-defined around

zero as long as U (0) # 0. A natural question arises whether one could use (Digg(f ;0) instead of
®,,(£;0) in all cases leading to U;(0) # 0. Let us explain that this is indeed possible.

If we want to use <I>Z‘Qg (£;0) as model local parametrix, we do need to introduce modified global
parametrix M*"9(z) via (6.8) with L given by (6.9), but differently defined constants D,,. Indeed, if

U,(0) # 0, then (B.12) no longer holds and needs to be replaced by

1 0 O\ qsing, 5. gy _ £ (1 i 2 3
(’Z(zwivl‘(m 0))“’”“’““7@ 1) (1+0(c ))exp{gf "3}



27

(in fact, the above formula extends (B.12) since U _1(0) = 0 for weights in WS"9). This change
necessitates the following modification in the definition of E{"°(z):

sin L re o -3y~ (0) 0 0
O e e )
- (I = ) )Rl +n'PA®z) (En,z(Z) O) <nl/2§(z)>cr3 ,

)
Z—ag Ens@ (7 g0)Epa(2) E,4(z) O z—ag
2

zZ—ap
where A(z) := —27'3U;1(0)(¢(2)/(z — ao))". Therefore, E;"%(z) is analytic at ag if
L Eni1(z) 1 E,i(z) n'PA(Z)L [Ena(z)
(Z - a()) En,S(Z) Z—ao \E,3 (Z) Z—aop En’4(z)
is analytic at ag. To achieve the latter, one needs to take L as in (6.9) with

Dy =n"PA(0)(En3En2 — En1En4)(ao) + (En3E,, — EniEl 3)(ao).

Observe that when U '(0) = 0, A(0) = 0 and we recover the original definition of D,, in (6.3).
Hence, when U N 1(0) # 0, it follows from (6.7) and the display before that D,, is non-zero for

all n € N'2° large enough and the above construction goes through. It also holds in this case that
L = O(n~'/3) and therefore matrices M™(z) and M"9(z) are asymptotically the same.

6.4. Proof of Theorem 3. Consider now RHP-Z with N, (z) = MS"9(z)®"3(z) and Py(z) given
by (6.12). Again, let us estimate the size of the jump matrices in RHP-Z(b). It follows from (6.10)
that estimates (5.19)—(5.20) remain valid in the present case. Using (B.12) instead of RHP-® ,(d)
gives the same estimate as in (5.22), one only needs to use boundedness of |Z|P*3/2¢~(*4/ Iz,
Since RHP-®%"(c) is the same as RHP-®,(c), the estimate (5.23) remain unchanged. It follows
from the definition of E S'"g( ) in (6.13), its holomorphy in Uy, the maximum modulus principle,
and (6.10) that EJ"(z) = O, (1)n~ /2 and E"(z)~! = O,(1)n"*/2. Therefore, (5.24) now is
replaced by
I+O0.(nmax|s—ao|’|Z|7P) =1+ O, (n" (2p— 3)/3)

Recall that p is the largest integer such that |1 — «; ;(s)| = O(|s —ag|P) as s — ag. It can be readily
checked that condition (3.7) implies that p > 2 and therefore (2p — 3)/3 > 1/3. Thus, the jump
matrices in RHP-Z(b) still satisfy the estimate I + O.(n~'/3). Hence, we again can conclude that
Z(z) exists for all n € N3 large enough and satisfies (5.25).

As in the proof of Theorem 2, given a closed set K — @\A, the contour X can always be adjusted
so that K lies in the exterior domain of X. Then we get from (5.3) and (5.18) that

Y(z) = X(z) = CM®™(2)®"73(z), zeK.
Therefore, we get from (5.2) that

10,(z) = (1 + vzi?g(z)) ((1 + Z[L];10> P, (z) + Z[L]ilz()anl(Z))

+ Ut (z) ((1 LT e ) ¥, 1(z) + [L]ax ‘I‘n(z)>, zeK,

Z—Aao Z—Aao

where 1 + vs'ng(z) U5|;g(z) are the first row entries of Z(z). Fori € {1, 2}, let
. L)ii _ [L]5_s
._ . sing [ il sing 3—ii

(6.14) Uni(z) == v, (2) (1 + = a0> + v, (2) a0

It follows from (6.9), (6.11), and (6.6) that v,;(z) satisfy bounds as in (3.5). Moreover, we have that

Vi Qa(2) = (1 p oy vnl(z)> W, (2) + (_[L]12

+un(z) | Waoi1(z), z€K.
L L 2()) ()
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We further get from (6.9), (6.5), and (6.6) that

—1 2
(L] = — EniEns)la0) /AU (L] = Fmal@) 21"’

" D, det(T,) 2 D, det(T,)

This finishes the proof of the asymptotic formula for Q,,(z) while the formula for (wR,,)(z) can be

shown absolutely analogously. Similarly, we get from (5.2), (5.3), and (5.18) with M"™9(z) replaced

by M*"9(z) that

1 0(2) = (<1 4 1 +un1<z>> ¥, (2) +un2(z>wn_1<z>>

z—4aop
+ (piw) ™! & * *
+(piw) () [ [ 1+ T a +vUn1(2) | Y5 (2) + vn2(2)¥)_(2)
for z € Qli\ﬁ with v,;(z) as in (6.14). After that the proof of the analog of the first relation in
(3.6) proceeds exactly as after (5.26). The proof of the second relation in (3.6) can be obtained
analogously.

APPENDIX A. RIEMANN-HILBERT PROBLEM FOR PAINLEVE II

A.l. Lax Pair and the Corresponding Riemann-Hilbert Problem. The material of this section
originates in [8]. However, we essentially follow the presentation in [9, Section 5.0], see also [9,
Section 1.0] for the relevant facts of the general theory of differential equations. Let ¢(s) be a solution
of Painlevé II equation

(A.1) q"(s) = sq(s) +2¢°(s) —v, v>—1)2.

It is known that ¢(s) is a meromorphic function in the entire complex plane. For each s, which is not
a pole of ¢, consider the following system of differential equations:

(A.2) 0¥ (r:5) = AN (1;5)¥(1: 5),
where
(A3) AFN(T; 5 = < —i(472 + s +24%(s)) 47jq(s3 + 2iq’(s)2+ v/‘r)
drq(s) —2ig'(s) + v/t i(41° + 5+ 29°(s))
and
(A4) OsW(t;5) = UFN (1:5)¥(1y5), UMN(1:5) := (q_(l;) 611(:)> .
In general, such a system would be overdetermined, but the compatibility condition
(A.5) aSAFN<T;S) - (3TUFN(T;S) + [AFN (T;S),UFN (73 s)] =0
of (A.2)—(A.4) exactly reduces to the fact that ¢(s) solves (A.1). The general theory of differential
equations implies that equation (A.2)—(A.3) has a set of canonical solutions ¥ (7; s), k € {1, ..., 6},

that are uniquely determined by the conditions det(W, (t;s)) = 1 and

(A6) Yi(ms)=(I+0 (7)) P C L L RPAE el arg(7) € (u k—”) .

3 ’ 3
Given any solution ¥(7; s) of (A.2)—(A.3) one can readily check by using (A.5) that
0s¥(1;s) — UFN(T;s)‘I’(T;s)

must also satisfy (A.2)—(A.3). Hence, this difference is equal to W(7;5)S(s), where S(s) is a matrix
that does not depend on 7 and can be expressed as

(A7) S(s) = ‘Pfl(T;S)as‘I'(T?S) - 'I'fl(T; UTN (7:5)¥ (13 ).

A further straightforward computation leads to the fact that the whole system (A.2)—(A.4) is solved
by

(A8) ¥(1:5)0(s), 050(s) = —(SQ)(s).
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By explicitly computing the term next to 7! in (A.6) (see (A.17) and (A.18) further below and note
that the asymptotic expansion of W (7;s) holds in the whole Stokes sector ((k — 2)x/3, kn/3)),
plugging this asymptotic formula into (A.7), and using the fact that (A.7) must be independent of
7, one can deduce that S(s) corresponding to any W, (7;s) is identically zero, i.e., we can take
0O(s) = I in (A.8), and therefore W (7;s) satisfies (A.4) as well (see the paragraph containing [9,
Equation (5.0.7)]).

Define the rays Zf ™ and sectors Sf V' by

=N = {T carg(t) = 2k — 1)77/6} and SfN = {z : arg(z) € (
where the rays are oriented away from the origin. Further, put
(A9) WIN (7;5) = Wi(rss), TeSEN.

Since the matrices W (7; s) solve the same differential equation, they are related to each other through
the right multiplication by a constant matrix. By studying their behavior at infinity, one can conclude

that
( ! 0), .
s2-1 1 J=

1 o5 FN
(o 1>’ TR

for some constants s, . . ., s¢ (Stokes parameters). Since o AXN (—7;5)0; = —AFN (7;5) and due
to the uniqueness of the solution of (A.2)—(A.3) satisfying (A.6) in a given sector, it holds that

(A.11) YEN(1,5) = g WEN (—115)0y, oy 1= ((1) é) , 0p:= ((1) 61> .

(2k - I (2% - 1)n) }

(A.10) Y (1is) = W[ (139)

This implies that there are only three independent Stokes parameters and 51 = s4, $2 = 55, §3 = S¢.
On the other hand, since the residue of A¥N (t;5) at T = 0 is equal to

o6 )6 )G )

where all matrices have unit determinants, it holds that the canonical solution of (A.2)—(A.3) at the
origin that has unit determinant? is of the form

‘I’(O)(T;S) = \% G _11> (I + 2 ‘l’o,k(s)Tk> V3 ((1) X0 (I(s) +1K(s>10g T)> )

k=1
where y, = 0inthenon-resonantcases v+1/2 ¢ Nand y, = 1intheresonantcasesv+1/2 € N. The
matrices Wo x (s) and the number «(s) are uniquely determined by (A.2)—(A.3) under the condition
that we set (1, 2)-entry of ¥y, (s) to be zero in the resonant cases, while I1(s) is a free parameter
for each fixed s (equivalently, we could set II(s) = 0 and say that (1,2)-entry of Wy, (s) is a
free parameter, whose choice necessarily affects the values of the second column of every Wo « (),
k > 2v). Let us put n(7;s) := x, (II(s) + x(s) log 7). Then we get that

- 1 — Vo vor (1 0 0
() las‘I'(O)_<o 177>T ot 3(0 717>+<0 017).

Similarly, we obtain from (A.4) that

(0)\—177F N gs(0) _ 0 2q77 1 -1 —vo3 Vo3 1 n
(rO) UV qos + (O o) tlg | )T 700 0o 1)
Plugging the above expressions into (A.7) gives

= 0 dsm—2qn 01 —nt®03 —*1203+ 70| —n04 + 7270,
S(s) = —qo3 + (O 0 +7 20, 04+ 7201 ’

30f course, —p© (73 ) also solves (A.2)—(A.3) and has unit determinant.
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where Oj(t;s) are some analytic functions of 7 coming from the terms v—¥?30(7)7”* in the
preceeding two relations. Since the above expression must be independent of T we see immediately
that 01 = O3 = 04 = 0 and Oy (13 5) = O(s)72¥~! for some suitable function O(s), in which case

$(8) = —a(s)os + (8 (K(5) = 2a)(s)log T + T(5) = 2aM)s) + o<s>> |

Let Q(s) be the exponential of some fixed antiderivative of g(s). The independence from 7 yields
that k(s) = k,, Q% (s) for some constant ,.. Further, let Q. (s) be a function (particular solution) such
that Q% (s) = (Q+q)(s) — (0Q~1)(s). Then the differential equation in (A.8) for S(s) as above is
solved by
0(s) - (Q(S) hQ(s) =TI(s)0 ™ (s) + Q*(S))
0 Q~'(s) ’

where & is an arbitrary constant (we look for solutions of determinant one and therefore use exponential
of the same antiderivative of ¢(s) in the diagonal entries). Therefore, the solution of the whole system
(A.2)—(A.4) around the origin assumes the form

Lo I—im vos (1 xv((kylogT + h)Q*(s) + (Q+0)(5)) /o
(A.12) Wo(t;5) = 5 (I+0(7))r (0 " Q73(s).

Since the matrices Wo(7;s) and W1 (7; s) solve the same system of differential equations, namely,
(A.2)—(A.4), they are connected via the right multiplication by a constant matrix. Thus, we can write

(A.13) Yi(r;s) = Yo(r;:9)E
in some disk around the origin. Notice that Wo(7; s) must also obey the symmetry in (A.11). Hence,

o1Wo(—7; )0 is connected to Wo(r;s) through the right multiplication by a constant matrix as
well. In fact, it is not hard to compute that

a1 ¥Wo(—1;5)01 = Wo(rs5)e™ 3 (ﬂiklv (l)) :

This relation together with (A.10) and (A.13) yields that

_rives (Tiky 1 1 0\ /1 s 1 0
E=e (—1 0) nE <s1 )l 1) s 1)
see [9, Equation (5.0.14)]. Solving the above system of relations gives that

L xvP\ o3 4FN
(A.14) E = (0 1 ) d7? A}
where d # 0, p are some constants and the matrix AIF N is explicitly known and involves expressions
depending on sy, 52, 53 and v, see [9, Equations (5.0.17)—(5.0.18)] excluding the exceptional resonant
cases v+ 1/2 € Nand s; = 5o = 53 = i(—1)”""/2 in which it is a lower-triangular matrix with
one’s on the main diagonal (notice that we renamed /—J from [9, Equations (5.0.18)] as d here).
Moreover, this computation also yields that

(A.15) $1 + 8§23 + 53 + 515253 = —2isin(vn),

and that k,, = (—1)”*1/2/x in the non-exceptional resonant cases and ,, = 0 otherwise. Combining
(A.12) with (A.13) then gives that in the neighborhood of 7 = 0 the function WYX (7;s) admits a
representation

(A.16) WEN (115) = HEN (135)07 <(1) K 1;"% T) AFN r e §FN,
where HYN (7, 5) is a holomorphic matrix function of 7 around the origin while the matrices Af N
are connected to each other via the jump relations (A.10) with AIF N asin (A.14).
Altogether, we see that ‘I’f N (1;5) solves the following Riemann-Hilbert problem (RHP-¥,):
(a) ¥, (;5) is holomorphic in C\ ({0} U £FN), £FN .= (0 _ =FN;
(b) ¥, (1;s) has continuous traces on XFV that satisfy (A.10);
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(c) ¥, (1;s) satisfies (A.16) as T — 0;
(d) W, (1;5) satisfies W, (755) = (I + O (7)) e~iG3T )03 ypiformly in {|r| > 1)\ZFN.

Conversely, it follows from [9, Theorem 5.1] that given v > —1/2, parameters sy, 52, 53 satisfying
(A.15), and, in the exceptional resonant cases, the value of the free parameter of the matrix Af N
from (A.14), a solution of RHP-¥,, uniquely exists as a meromorphic function of s and

g(s)=2i lim 7 [‘I’V(T;s)ei(§73+sr)<r3]

Rat—00 12

solves (A.1), where [-]1» is the (1,2)-entry of the corresponding matrix. In particular, Stokes
parameters s, 52, s3 uniquely parametrize solutions of (A.1) excluding the exceptional resonant
cases each of which corresponds to a family of solutions parametrized by the free parameter of Af N,

A.2. Asymptotic Expansion. Later we shall need the first four terms of the full asymptotic expansion
of W'V (7; ) atinfinity (the first is the identity matrix, so, we need to find the other three). Following
classical ideas, see [9, Proposition 1.1], one can write the expansion of ‘I’f N (1;5) as aseries in 1/7
with off-diagonal coefficients times the exponential of a series with diagonal coefficients. Symmetry
(A.11) yields that

0 —n

WfN(T;S) = (I + Z T_nGDn(S)En) exp{ Z Tn
n=1

n=-3,n#0

An($)An } ,

where X, = o and Xy, = 103, while Ay, = I and Ay, 11 = 03. Plugging the above expansion
into (A.2)—(A.3) gives

0 a0 0
- 2(" - 1)7-7nlﬁrl—lzrl—l - (I + Z THWnZn> 2 Tﬁn/ln—lAn—l =

n=2 n=1 n=-2,n#1

0]
(—4i720'3 + 4qgtoy — i(s + 2q2)0'3 —2q'0y + V‘rflo'l) (I + Z T"t//nEn> .

n=1

From the coefficients next to 72 and 7 we get that

/1,3(5‘) = 4i,
Yi(s) = —ig(s)/2,
/l,Q(S) = 0.

1

By comparing the constant terms on both sides as well as the terms next to 7", we get

A_1(s) = s,
Ya(s) = 4'(s)/4,
wa(s) = i(g*(s) + sq(s) —v)/8.

2 we obtain

By equating the terms next to 7~
i(q*(s) + 547(s) — 2vq(s) — (¢'(5))?) /2.

{ A1(s)
Wa(s) — (5q'(s) + ¢*(s)d'(s) + q(s)) /16.
Lastly, the coefficients next 7= and 7= give us

A(s) = ¢*(s)/4,
Ws(s) —i (2q’(s) +q(s)H(s) + (qz(s) + s) (q3(s) +sq(s) — v)) /32,
3(s) = —i(q'(s)q(s) — sH(s) +v*) /8,
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where we denote by H(s) := (q’(s))2 — 5q°(s) — q*(s) + 2vq(s) the Hamiltonian of Painlevé II
equation. Now, we would like to rewrite the expansion of WV (7; 5) at infinity as
(A.17)

o ( ] 5 (ot <—ﬁ'5(§i<s>)> oo f-i(574om)

for some functions A, ) (s) n € N, where the form of the coefficients follows from (A.11).
Since

exp{ i T_n/ln(s)An} _ <I N /115s) - Aa(s) + /l%(s)l .

n=-3,n#0 n

225(s) + 3(/1617/_132)@) + 4?(5)03 ) (%)) X exp {—i (;—173 + sr) 03} ,

we get that
iA1(s)os — Bi(s)on = A1(s)o3 + iy ()02,
—Ay(s)I = Ba(s)oy = (L +3) ()I/2+ (Y2 — ¢1d1)(s)oy,
—iA3(s)o3 + B3(s)on = (243 + 30241 + A3) (5)073/6+
(203 — 20241 + 1 (A2 + A7) (5)02/2.
Then it holds that
—2Bi(s) = ql(s), —4By(s) = 4q'(s) +q(s)H(s),
19 I B e S 1
and, by recalling (A.1), that
{ —16B3(s) = 2¢"(s) —3¢°(s) +24'(s ) (s) +q(s)H?(s),
48A3(S) =

2 (s)q(s) + (3¢7(s) — 25) H(s) — H(s) + 202,
One also can verify either directly or by using (A.4) that A/ (s) = (—1)"q(s)B,(s).

Our primary interest is the behavior of A,(s), B, (s) around a pole of g(s). It can be readily
checked that if ¢(s) has a pole at sy, then

_ 1
(A.19) q(s) = L= (s—s0), gie{-1,1}, and H(s) = +0(1)
S — 80 S — 80
as s — so. We shall need more precise behavior of ¢(s) and H(s) around 5o = 0 when g_; = —1.
It is known, see [13, Equation (17.1)], or can be obtained directly from (A.1), that
1 +1
q(s) = —— 42 sz+933—|—0(s5),
s 4 5
(A.20)
H(s) L oqr X2y 29 P+0(s%),
s) = - s
s a 4 15°
where q is a free parameter and we used the identity H'(s) = —¢g>(s) to find the expansion of H(s)
with the constant term found through its original definition. Hence, in this case it is also true that
q v+1 >
B = — - o ,
2(s) 5.~ g st o(s)
2
qg 9 v+l 2
A = 42,3, 0
2(s) STyt sto(s),
and
e o

(A21) Bi(s) = 5= +O(s) and As(s) = — = +O(1).

APPENDIX B. RIEMANN-HILBERT PROBLEM FOR PAINLEVE XXXIV

The primary source for the material of this appendix is [15].
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B.1. Riemann-Hilbert Problem. We retain the notation of the previous appendix. In what follows,
we always assume that

r=27132 and 5= -2,

where arg(¢) € (—n, 7r) and the square root is principal (that is, {j_r/z = +i|¢|V? for ¢ € (—0,0)).
Set

(B.1) { Un(x) := An(s) + (=1)"Bn(s),

Va(x) := An(s) — (—1)"Bp(s).
Given @ > —1, let g be a solution of (A.1) with v = @ + 1/2 and x such that ¢(s) is finite.

Let ‘I’Z f 1 /2(7’; s) be given by (A.9) and s1, 52, s3 be the corresponding Stokes parameters satisfying
(A.15). Set

(B.2) ®,((;x) = 1 0 ﬂ 1 i i3/ F N (3 S)e—nio-g/ét
. a\b> . _2]/3ivl (x) 1 \/E i1 a+12\ 0 .
Then @, ({; x) solves the following Riemann-Hilbert problem (RHP-®,,):

(a) ®4(¢;x) is holomorphic in C\ (£, U £3 U (—0, ©0)), where
Ty = {e2<k*1>"i/3x xe (o,oo)}, ke (2,3,

are oriented towards the origin (the real line and its subsets are oriented from left to right as
standard);
(b) ®,(¢;x) has continuous traces on (—o0,0) U (0,00) U Z, U X5 that satisfy

(_01 (1)) 7€ (—0,0),

@, (r:x) = By (7:%) <(1) bll) 7€ (0,),

1 0
(bk 1), T €, ke{2,3},

where b := isy, by = is3, and b3 = isy (b1 + by + b3 — b1bybs = 2 cos(an));
(c) as £ — 0 it holds that

1 i 1
@, (£1x) = H(Gx) 0 (0 a1 °g5) Aj, (€0

where Q is the connected component of C\ (£ U3 U (—a0, ©0)) contained in or containing
the j-th quadrant, H({;x) is holomorphic around { = 0, and A; = e”i"3/4AfNe’”i‘T3/4;
(d) ®,(¢;x) has the following asymptotic expansion near co:

o o 2P Unn (x) 273U,y (x)
(Da(é,,x) = (I + Z o (21/3i(V2n+1 — U2nV1)(x) (Vzn — V1U2n—l)(x))>

n=1
—03/4 .
y Kﬁ C i) exp{_§ (43/2 +x§1/2) 03}’

which holds uniformly in {|¢| = 1}\(Z2 U 3 U (—0, 0)).

The only claim that is not contained in [15] is the explicit form of the series in RHP-® ,(d). The
latter follows easily from (A.17) since

0 ) (o copa) 55 (G 7)
1 <.(1+(—1)")Un(x

"2 (1= (=1)")Valx

~— —
—~
—
Jr
—~
|
—
~—
S
~—
=
—~
=
~
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and for n = 2m it holds that
(x)

gm 0 Vim gm 0 Vam(x)
while for n = 2m — 1 it holds that
570_3/42(2m71)/3 0 7iU2m_1(X) 40-3/4 _
é’V"—l/z iVmel(x) 0
22(m71)/3 0 0 22m/3 0 —i2_1/3U2m_] (x)
[ — + [
gm-1 <i21/3V2(m—1)+1(X) 0) o <0 0 )

(notice that the identity matrix plus the first matrix on the right-hand side of the last equality for
m = 1 is exactly the inverse of the first matrix in (B.2)).

B.2. Lax Pair. Define
U(x) := 2727 (H — q)(s),
{ u(x) := U (x) —x/2 =273 (q'(s) + ¢*(s) + 5/2) .
Then it can be verified that u(x) is a solution of Painlevé XXXIV equation with parameter a’%:
(u'(x))* — o
2u(x)

(B.3)

(B.4) u”(x) = 4u(x) + 2xu(x) +

It has been shown in [15, Lemma 3.3] that @, (; x) satisfies
0rPa(45x) = A(LX)@a (45 %),

{ 0x®a(L;x) = UL x)®a({3x),

(B.5)

in each sector Q j, where

(B.6) A(S:x) = < e i ) +
—i({ +ulx) +x—U*(x)) —Ux)
: u'(x)/2 — (ul)(x) —iu(x)
¢\ ((‘leu)(x) — (U )(x) + %) (WU)(x) — u'(x)/2
and
B.7) U(¢;x) = ( s i ) .
(= ¢+ U - U W) —UE)

Expressions (B.6) and (B.7) are not explicitly stated in [15, Lemma 3.3]. What follows from the
lemma is that A({;x) is equal to

1 0 —2'7q(s) + @/(20) i(1—u(x)/2) I 0
—21B3ivi(x) 1 —i(¢ —u(x) +223¢'(s)) 2Y3q(s) — /(20) 21831V (x) 1

and that U({; x) is equal to

0 0 1 0\ [—2"3g(s) i 1 0
—2183iv{(x) 0 " 213 (x) 1 —i 2134(s) 2183 (x) 1)

which yield (B.6) and (B.7) (identity @ — u’(x) = 2*3u(x)q(s) is useful in deriving (B.6); recall
also that —2V;(x) = ¢q(s) + H(s) by (A.18) and (B.1)).

As mentioned in the previous subsection, it follows from the general theory of Riemann-Hilbert
problems that the solution of RHP-®, is a meromorphic function of x. In fact, if s = —2'/3x is not
a pole of g, then the solution of RHP-®, exists and is given by (B.2). Moreover, if s¢ is a pole of g
with the residue 1, that is, g_; = 1 in (A.19), then (A.19) yields that the functions U (x) and u(x)
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are, in fact, analytic at xo = —2~'/3s¢. In this case, the matrices A(¢;x) and U(Z; x) are analytic at
xo as well (notice that the fraction in (2, 1)-entry of A(Z;x) is equal to u” (x)/2 — 2u?(x) — xu(x) by
(B.4)).Then we get from the second relation in (B.5) that ®,(Z;x) also must be analytic at xo. On
the other hand, if g_; = —1, then xy is a simple pole of U (x) and a double pole of u(x). Moreover,
the Riemann-Hilbert problem RHP-®, cannot be solvable since it follows from RHP-® , (d) that
(B.8)

2 s o3/4
{12204 [d)a(g;x) exp{g <§3/2 +le/2) 0'3} <_11 11) %]12 = 281U, (x) = iU (x)

(analyticity of ®,(¢;x) at xo implies analyticity of U (x) at x).
B.3. Modified Riemann-Hilbert Problem. Assume now that @ and Stokes parameters by, b;, b3

from RHP-® ,(b) are such that xo = 0 is a pole of ®,(Z;x) (hence, so = 0 is a pole of g(s) with
residue —1). Note that in this case

Uilx) = 273 1—q+ O(xS),
Us(x) = —27"3qx '+ ¢?2+ 0(x?),
Us(x) = 27%3¢>x ' +0(1),
as evident by (A.20)—(A.21) and (B.1). Recall that U/ (x) = —2'/3U(x) and set
S(x) = 223(Ur + UsU; ") (),
{ W) = (U*-U —8)(x).
One can readily verify that
Ux) = —x1+23q+0(x),
(B.9) Sx) = 2B ' +22Pq>+S:x+0 (xz) ,
W) = —2Bg ! —S.x+0(x?),

as x — 0 for some constant S, that we can avoid computing. To get rid of the pole of ®,({;x) at
xo = 0, let us define

(=S —iUx)

—Ux) 0 > Pal&s).

(8.10) OI(L:x) = (

Denote the prefactor above by S(£;x) (the way it can be found will become clear at the end of this
subsection). Trivially,

(B.11) 0@ (L:x) = USM(2;x) @33 x), US™ = 0,88~ + SUS™'.

Since the matrix S(¢;x) has determinant identically equal to 1, it is a lengthy but straightforward
computation to find that

U9 (i) = i W+ WU (x) CHL(W-=8)x)+ (W +UW-US')(x)

;x) =1 .
U2 (x) —i({ + W)U (x)
It readily follo_ws from (B.9) that Us"‘g({ ;x) is in fact analytic at xo = 0. Hence, it follows from
(B.11) that ®3,"%(Z; x) is analytic at xg = 0 as well. It further follows from RHP-®,, the definition
of ®5"%(£;x) in (B.10), the above proven analyticity in the parameter x in some neighborhood of
0, and the explanation further below that ®(Z; x) solves the following Riemann-Hilbert problem
(RHP-®%"):
(a,b,c) (I)ﬂng(é' ; x) satisfies RHP-®,(a,b,c);
(d) ®%"9(Z;x) has the following behavior near oo:

o) = (1+0(c7)) 43;;4 (} i) xp {—§ (&7 +x2'2) 0’3}
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uniformly in C\ (2, U 23 U (—0, ).

Indeed, since S(£;x) is an analytic (in fact, linear) in ¢, RHP- (Ds'ng(a,b,c) are obvious. It also
holds that

<g 8> <I+ i 22;/3 (: 21/3ii]2n_1(x)>> _
( ) 1( —21/31U1 )) +%<; —2ilé3(x)> N (0(%—2) 0(%—z)> _
<§ (8 21/3(1)U1(x)> N <(1) —2ilé3()C)) N (0(%1) 0(%1)» o

Furthermore, since —U, (x) = (V5 — VU )(x), which can be verified using (A.18) and (B.1), it holds
that

223Uy + UsUT ) (x) 271U (x) o 2P (e =27 By, (x)
< 2—1531Uf 31(x]) 01 ) <I+,§14_" <* (VZ"““UZZ" 1)("))

< N 2153iU, (x)> N | <* 21U, (x) (Uz + U3U]_l + Vo = ViUy)( > < >
2 *

“1Biu ! (x) 0 ’ 1

< . <8 2 (x)) . (8 in13<x>> . (21 - ) +0 <§2>) o

(these are exactly the relations that define S (§ x)). RHP- q)s'”g (d) now follows from RHP-® ,(d) and
the definition of $(£;x) in (B.10). Since U, 1(0) = 0, the last two computations also show that

: % % 303/4 .
i oo (15 2o )) S5 (1 on|-Se0m)
3o03/4 . )
(1) (rro(e ) e { S

uniformly in {|¢] > 1}\ (22 U Z3 U (=00, @0)).

AppENDIX C. AN ExampLE OF WEIGHTS IN W9
In this appendix we discuss a group of examples of weights in WM for which N2 — 3 and
therefore our results do not apply. As follows from Proposition 5, this can happen only on Agym.

C.1. Orthogonal Polynomials on a Segment. Let p(z) be an analytic and non-vanishing function
in some neighborhood of [—1, 0] and Q,(z) be the non-identically zero monic polynomial of smallest
degree, which is necessarily at most n, such that

0
(C.1) J x*0,(x)p(x)dx =0, ke{0,...,n—1}
—1

(we could also introduce Jacobi-type singularities at —1 and 0 into the weight p(x), but choose not
to for simplicity of the exposition). Such polynomials were studied in [18] using Riemann-Hilbert
approach under an additional assumption of positivity on [—1, 0] (this assumption is really not needed
for the approach to work). To describe the asymptotics of these polynomials, let

D7) := 27+ 1420(z), w(z) :=+/z(z+ 1),

where the branch of the square root is chosen so that w(z) is analytic in C\[—1, 0] and w(z) = z+0(1)
as z — oo, while ®(z) is nothing but the conformal map of C\[—1,0] onto {|z| > 1} such that
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®(0) = o0 and @' (0) > 0. Further, let

w(z) fo logp(x) dx
2 J_y z—x wi(x)

}, 2 ¢ [-1,0],

which is simply the Szegd function of p(x) (one must choose a continuous determination of log p(x)
on [—1,0]; Szegd functions for different continuous determinations will either coincide or differ
by a sign), i.e., it is a non-vanishing and holomorphic function in the domain of its definition with
continuous traces on [—1, 0] that satisty D, (x)Ds_(x) = 1/p(x). Lastly, let

D(z) := (&)(z)/mz))l/ ’

be the branch holomorphic in C\[—1, 0] that is positive for z > 0 (this is the Szegd function of
W4 (x), that is, D(z) is analytic and non-vanishing in C\[—1,0] and D (x)D_(x) = 1/w, (x) for
x € (—1,0)). Then it holds that

(C.3) 0n(z) = (1+0(1/n))7.®"(2)(DD;) ()

locally uniformly in C\[—1,0], where ¥,,' = 4"(DDj)(o0) is the normalizing constant that makes
the right-hand side of (C.3) behave like z"* + O(z"~!) around infinity. The reader should see clear
parallels between (C.3) and (2.20), (3.4) (the product (DDy)(z) also can be defined via an integral
representation (C.2) with p(x) replaced by (pw, )(x)).

(C2) Dj5(z) 1= exp {

C.2. Rotationally Symmetric Weights. Let Agy, be given by (2.23). In this case we let a; := —1,
a, = —n, and a3 = —n?, where i := ¢>"/3. Define a weight function p(s) on Agym by setting
p(s) := p(s?),s € Agym. Let 0, (s) be the minimal degree non-identically zero polynomial satisfying
(1.5) with the just defined weight p(s). Then

034(2) = Q3n+1(2) = Q3n42(2) = On ().

Indeed, as all the legs of Asym are oriented towards the origin, it holds for k < 3n + 1 that

0
J s*0, (%) p(s)ds = J (1 + k4 nz(k’Ll)) x*0, (x?)p(x?)dx.
Asym —1
The above expression is equal to 0 when k # 3m + 2 due to the sum 1 + p**+! + 2K+ When
k = 3m + 2 we get that

0 0
f S3m+2é\n (s3)p(s)ds _ 3J x3m+2én (xS)ﬁ(x3)dX — J xmén(x)ﬁ(x)dx =0,
Asym - -

where the last conclusion holds by (C.1) and one needs to observe that 3m +2 = k < 3n + 1 implies
that m < n — 1. Thus, it follows from (C.3) that

(C4) Q3u(2) = (1 + 0(1))@" (%) (DDp) (2*)

locally uniformly in C\Agym. Let & be the Riemann surface of w(z) = 4/z(z% + 1) as defined in
Section 2.1 and A be the lift of Agym to this surface, where w(z) is the branch from (2.2). As before,
A is the boundary of the sheets G(®) and (1. Set

¥o) - (3() (D) () L zesa

Then ¥(z) is a sectionally meromorphic function on G\A that has a pole of order 3n at 0, a
zero of order 3n at co(1), and otherwise is non-vanishing and finite. These are exactly the properties

~

exhibited by ¥,,(z) from Theorem 1. However, it holds that

P (s) = (5)/(p) (7) = F_(s)/ (s(ow)(5))

for s € A. That is the jump relations satisfied by W(s) are different from the ones in (2.3). Hence,
formula (C.4) is distinct from (3.4). In what follows we find N™ (as we explained in Proposition 3
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in this case the sequence is 3-periodic and therefore is independent of &), show that the above weight
o(s) belongs to W9, and that NS"¢ = @. Thus, formulae (3.4) are indeed not applicable.

C.3. Sequence N'®9. As before, we shall write Agym = A; U Ay U Az, where A; has endpoints

a; = —n'~ " and 0. It can be readily checked that
ST xe

(C.5) wi(x) = |w)|{ e 70, xeAy, =:|w(x)e™).
e”i/ﬁ, X € A3,

One can also check that Aj, A, and Az are homologous to @ + B, —f, and —a, respectively, see
Figure 2. Therefore,

0
jgﬂ:,zf L:fze*ﬂi/ﬁf izzeﬂi/ﬁj dx i
w(s) s W (9) a; [w(s)] 1 [wlx)|

a

where we used (C.5) for the second equality. Similarly, it holds that

§ ds _ —Zf ds _ zeﬂ.i/6J ds _ zesﬂi/é JO dx )
) w(s) n W (5) as [W(s)] —1 [w(x)]

That is, we have that B = €27/, see (2.8). Moreover, we get from (4.11) and the fact that /; = 1/3
for Asym that w = —7 = 2/3. In particular, ®3(z) must be a rational function on the whole surface
S, see (2.6). In fact, it is not hard to see that

N . 1k
@ (z0) = D" () =22 +1+ ZZW(Z))( D7
Define 1/w(z) to be the branch holomorphic in C\Agyn, satisfying /w(z) = z + O(1) as z — 0.
It holds that
eB3ITA s e A,
Vwa(s) = /lw(s)[{ e ™PFm s e,
eni/3¥7ri/4’ s € A;.

Therefore, we have that —iy/w  (s)y/w_(s) = w(s), s € Agym, see (C.5). Recall (2.9). Let

(C.6) S(z0) = exp {—27ri(7' +2)a(z) } @(z®)) (e,,,w \/mz))*(*l)k ’

for z € C\(Agym U m(a@) U n(B)), k € {0,1}. This function is holomorphic and non-vanishing
in the domain of its definition. Notice that it extends holomorphically to c0(®) and o0(!) and has
non-zero values there. We also get from (2.6) and (4.10) that S(z) is holomorphic and non-vanishing
G\ (A U @) and satisfies

S e,

I/wi(s), seA\A.

One should observe as well that S(z)S(z*) = 1 for z € &. Thus, if we can show that c,, defined in
(2.13),isequal to w + Bt + 2B = Zi/\/g, then we will get that

(C.7) Sp(z(k)) = S(z(k))Dé_l)k (%), ze C\A.

Indeed, it is straightforward to see that this function is holomorphic and non-vanishing in G\ (A U @)
and S,(z)S,(z*) = 1 there. Moreover, whenz — s € A;\A and ¢t — s € A_\A, it holds that

2= s€Ag, andt — s € Ag . Therefore, with a slight abuse of notation, we can write

Spe () = S (5)Dps (%) = S_(5)/ (w+ (5)D 5 (s°)B(5)) = Sp(s)/(pw) (s)

for s € A\A. Since the jumps of S,(s) and of S(z) across @\A coincide, the desired claim follows
from the uniqueness part of Proposition 1. Thus, to see that functions defined via (2.11) and (C.7)
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coincide, we only need to show that ¢, = 2i/ v/3. Of course, this claim relies on the choice of the
branch of log(pw . )(s). We shall assume that (2.11) uses the following determination:

log(pw)(s) = log p(s®) + log|w(s)| + aw(s), seA°,

for some continuous determination of log p(s), where a,, (s) was defined in (C.5). Then

€ 1og<pW+><s>% - l.L e ()~

2mi wi wy(s)
—37i/2 4 ,77i/6 —7xi/6 0
e +e +e ~/ 3 dx
1 b
i f—l og (p(x )|w+(x)|) |W(X)‘

where one can readily check that the constant in front of the last integral is equal to zero. Hence,

L log(pw+)(s) ds §J’ ds _ZJ ds +1J ds
2ri ) TR ws) 2 ) wi(s) 6 Ja, wi(s) 6 Ja, wils)
:JO <§e—3m/2_zellni/6+le7m/6> dx :4_’7 0 dx )

1\2 6 6 w3 ) [wx)]

Thus, we get from (2.13) and the first computation after (C.5) that indeed ¢, = 2i/ V3.
The Jacobi inversion problem (2.19) now reads

a(zn) = [(n+1/2)(w + B7)] = [(2n + 1)(1 — B)/3].

From this we can conclude that zy = 0, z; = @y = 0, and z, = o). Indeed, the middle
claim follows immediately from (2.15) and the unique solvability of (2.19). The other two equalities
follows from the fact that

a(00) <[22 < [Ja-m)| ana () = [-22E] 20|,
which was shown in (4.8). Thus, N = N\ (3N).

C.4. Sequence N9, It readily follows from (3.2) that b;(p) = —2. It was shown in [17] that in
this case RHP-®,, with @ = 0 is not solvable for x = 0, that is, p € W9, More precisely, in [17,
Equations (18) and (19)] it was shown that the Stokes parameters* s; = s, = s3 = 2i in RHP-¥,,
with v = 1/2 correspond to the solution g(s) of (A.1) with a pole at the origin of residue —1. The
desired conclusion then follows from the explanation given before (B.8).

Due to the periodicity of z,, we only need to compute det(T) and det(T,). Since z; = ay, it

holds that t(()l) = 0 and therefore
det(T) = 1) (2:5” - hlz](”) and  det(T5) = 1 (2r§‘) - hltf‘)) .

0),(2)

Since 7,1, # 0, to show that N®"9 = &, we need to prove that 2t§]) =M tfl). To this end, set

A(z) == exp{ — 27i(7 + 2)a(z)}

and, as usual, we shall write A(z) for the pull-back of A(z) from & It now follows from (6.2),
(5.12), (C.6), and (C.7) that

H™'(2) = i(Spr)*(2)w(2) = (A®)*(2) (pD3) (2°).

Let U, be two copies of {|z| < r}\[-r,0], r < I, glued crosswise across the cuts (double cyclic
neighborhood of 0). It is quite easy to see that the function (ﬁDé) (z) lifted to one of the copies

4A slightly different Lax pair than the one presented in (A.2)—(A.4) is used in [17] so that the Stokes parameters appearing
there are equal to —isy, is, —is3.
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of {|z] < r}\[—r.,0] extends analytically to U, by lifting its reciprocal to the other copy. Hence,
(pD ) (z*) possesses a Puiseux series at zero and satisfies there

A0 (3 32
(pDﬁ)(z)=1+0(z/) as z—0.

Recall that the same is true about ®(z), see (4.18). Thus, we can deduce from (6.4) that if we develop
A(z) into a Puiseux series in the sector S, then

A(z) =1—(/2)z'* +0(z) as z—0.

On the other hand, it follows from (2.6), (2.18), (4.10), and the fact that ¢, = w + Bt + 2B that
K(z) := (AT1®?)(z) is a rational function on & with the zero/pole divisor ag + o0() —200(%). The
Puiseux series of K(z) in the sector S5 is equal to

(C.3) K(z) = til)zl/z + (tgl) — hltfl)/Z) z+0 (z3/2> as z—0.

It follows from the symmetries of Agym that K (nz) and K (77z), n = €>”V/3, are rational functions on
S as well. Moreover, they have the same zero/pole divisors as K(z). Thus, they must be constant

multiples of K(z). By looking at their Puiseux series in S, we then can conclude that the coefficient
next z in (C.8) must be equal to 0, which is exactly the desired claim.

APPENDIX D. EXAMPLES OF APPROXIMATED FUNCTIONS

In this appendix we show how to write functions (1.3) in the form (1.4). We also compute their
Stokes parameters (3.2) and show that Theorem 3 is always applicable to these functions.

Logarithmic functions in (1.3) are the easiest example. Let ¢y, ¢, c3 be arbitrary non-zero
complex numbers. Set ¢g := —c| — ¢z — ¢3 and define p;(s) = PAS (s) = 2micy, i € {1,2,3} (unless
c1 = ¢3 = ¢3, p(s) is not well defined at ag). Then it holds that

3
f(z) = L pls)ds —EC,Ingfs

2mi s—z
i=1

ao

3
Z cx log(z — ax),

where the branches of the logarithms are chosen so that the right-hand side above is analytic in 6\A.

Since each function p;(s) is constant on A;, condition (3.7) is satisfied automatically. In fact, it

holds that «; j(z) = 1 and therefore RHP-P is not an approximate but an exact parametrix for these

functions. In particular, estimate (5.21) and an analogous estimate in the proof of Theorem 3 are not

needed. This class of functions does include weights in both W™9 and Weind_ Tndeed, it holds that
by(p) = ————, and b3(p) = -

bi(p) = ———, . ,
C1 Cc2 c3

Therefore, if —co = ¢1 + c2 + ¢3 = 0, then b;(p) = 1 and p € W™ (f(z) has no logarithmic
singularity at ag and such functions are also covered by the results of [2]). On the other hand, if
c1 = ¢ = c3, then b;(p) = —2 and, as mentioned at the beginning of Section C.4, p € W9,

Let oy > —1, k € {0, 1,2, 3}, be such that their sum is an integer necessarily bigger or equal to
—2. Recall our notation from Section 5.2, where we denoted by Sy, S», S3 the connected components
of Up\A labeled in such a way that S; does not border A?. Let L be any curve extending to infinity
from a that partially lies within ;. We take branches (z — ;)% that are analytic off A; U L,
i€{1,2,3}, and (z — ap)* that is analytic off L. Define

3
2) = ]Gz—an)™ - p(2),
k=0

cy) +¢3 c1+c3 [ &)

where p(z) is the polynomial part of the product at infinity. That is, f(z) is analytic in C\A and
vanishes at infinity. Let p(s) = f4(s) — f-(s), which is a smooth function on A\{ao, ai, az, as}.
Let C,(z) be the right-hand side of (1.4). Then it follows from Plemelj-Sokhotski formulae that

Cot(5) = £+(5) = Co(s) + pls) — f(5) = Cp(s) = f-(s), s € A\{ap,ar,az.as}.
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Since C,(z) — f(z) has smooth traces on each A, this function is analytic across each A7 by Morera’s
theorem. As this difference vanishes at infinity and cannot have polar or essential singularities at
{ap, a1, as, as} (this follows from the known behavior of the Cauchy integrals around the endpoints
of the contours of integration), it must holds that f(z) = C,(z). Let

3

o2) = [ [(z —a)“

i=1

3 o
1, Z€ Sy, @ )€ rilmtar) -z e Sy,
[ [(z—ar)

—2mia Q(Z) = eZﬂ'iag z€e S13

e Z€S3,

i=1
where S ; is the connected component of S1\L that borders A;. It can be readily seen that o(z) is in
fact analytic in Uy. Recall (3.1). Then it follows from the first set of definitions above that

o1(s) = ﬂr(is)_—a(j;gs) =p(s)(1 - eZ”i“‘), seA].

Similarly, we get that

02(s) = 0(s)e*™1 (1 =271 and  03(s) = o(s) (e 27 — 1),
Hence, the weights o; (s) are constant multiples of the same function analytic in Uy and the condition
(3.7) is satisfied (in fact, all the functions «; ; (z) = 1 and RHP-P) is an exact parametrix). Moreover,
by plugging the above expressions into (3.2) we get that

bi(p) =

for each i € {1,2,3}. Hence, if g = 0, then b;(p) = 1 and p € W™ (f(z) has no singularity at ag
and such functions are also covered by the results of [2]). On the other hand, for any other @y # 0
fixed, every real solution of (3.3) can be expressed in the above form with an appropriate choice
of a1,a7,a3 € (—1,0). It is an interesting questions whether the class of real Stokes parameters
contains some that lead to the matrices ¥, that have a pole at x = 0.

sin(ag + ;)7 .
———F— = COS o7 + SIn @y« cot ;1
sin ;1w
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