ON SMOOTH PERTURBATIONS OF CHEBYSHËV POLYNOMIALS AND $\bar{\partial}$-RIEMANN-HILBERT METHOD

MAXIM L. YATTSELEV

Abstract

Riemann-Hilbert method is used to study asymptotics of the polynomials $P_{n}(z)$ satisfying orthogonality relations $$
\int_{-1}^{1} x^{l} P_{n}(x) \frac{\rho(x) d x}{\sqrt{1-x^{2}}}=0, \quad l \in\{0, \ldots, n-1\}
$$ where $\rho(x)$ is a positive m times continuously differentiable function on $[-1,1], m \geqslant 3$.

1. Main Results

In this note we are interested in the asymptotic behavior of monic polynomials $P_{n, i}(x)$, $\operatorname{deg}\left(P_{n, i}\right)=n$, dependent on a parameter $i \in\{1,2,3,4\}$, satisfying orthogonality relations

$$
\begin{equation*}
\int_{-1}^{1} x^{l} P_{n, i}(x) \frac{\rho(x)\left|v_{i}(x)\right| d x}{\sqrt{1-x^{2}}}=0, \quad l \in\{0, \ldots, n-1\} \tag{1}
\end{equation*}
$$

where $\rho(x)$ is a positive and smooth function on $[-1,1]$ and

$$
v_{1}(z) \equiv 1, \quad v_{2}(z)=z^{2}-1, \quad v_{3}(z)=z+1, \quad \text { and } \quad v_{4}(z)=z-1
$$

That is, $P_{n, i}(z)$ are smooth perturbations of the Chebyshëv polynomials of the i-th kind. Besides polynomials themselves, we are also interested in the asymptotic behavior of their recurrence coefficients. That is, numbers $a_{n, i} \in[0, \infty)$ and $b_{n, i} \in(-\infty, \infty)$ such that

$$
x P_{n, i}(x)=P_{n+1, i}(x)+b_{n, i} P_{n, i}(x)+a_{n, i}^{2} P_{n-1, i}(x) .
$$

To describe the results, let $w(z):=\sqrt{z^{2}-1}$ be the branch analytic in $\mathbb{C} \backslash[-1,1]$ such that $w(z) / z \rightarrow 1$ as $z \rightarrow \infty$. The Szegő function of the weight $\rho(x)$ is defined by

$$
\begin{equation*}
S(z):=\exp \left\{\frac{w(z)}{2 \pi \mathrm{i}} \int_{-1}^{1} \frac{\log \rho(x)}{z-x} \frac{d x}{w_{+}(x)}\right\}, \quad z \in \overline{\mathbb{C}} \backslash[-1,1] \tag{2}
\end{equation*}
$$

which is an analytic and non-vanishing function in the domain of its definition satisfying

$$
\begin{equation*}
S_{+}(x) S_{-}(x)=\rho^{-1}(x), \quad x \in[-1,1] . \tag{3}
\end{equation*}
$$

Since $\rho(x)$ is positive, it holds that $S_{+}(x)=\overline{S_{-}(x)}$ for $x \in[-1,1]$, and, utilizing the full power of Plemelj-Sokhotski formulae, (3) can be strengthen to

[^0](4)
$$
\sqrt{\rho(x)} S_{ \pm}(x)=e^{ \pm \mathrm{i} \theta(x)}, \quad \theta(x):=\frac{\sqrt{1-x^{2}}}{2 \pi} f_{-1}^{1} \frac{\log \rho(t)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}
$$
where f is the integral in the sense of the principal value. Further, let
\[

$$
\begin{equation*}
\varphi(z):=z+w(z) \tag{5}
\end{equation*}
$$

\]

be the conformal map of $\overline{\mathbb{C}} \backslash[-1,1]$ onto $\mathbb{C} \backslash\{z:|z| \geqslant 1\}$ such that $\varphi(z) / z \rightarrow 2$ as $z \rightarrow \infty$. One can readily verify that

$$
\begin{equation*}
\varphi_{ \pm}(x)=x \pm \mathrm{i} \sqrt{1-x^{2}}=e^{ \pm \mathrm{i} \arccos (x)}, \quad x \in[-1,1] \tag{6}
\end{equation*}
$$

Finally, we explicitly define the Szegő functions of the weights $\left|v_{i}(x)\right|$. Namely, set

$$
\begin{cases}S_{1}(z): \equiv 1, & S_{3}(z):=(\varphi(z) /(z+1))^{1 / 2} \tag{7}\\ S_{2}(z):=\varphi(z) / w(z), & S_{4}(z):=(\varphi(z) /(z-1))^{1 / 2}\end{cases}
$$

where the square roots are principal and one needs to notice that the images of $\overline{\mathbb{C}} \backslash[-1,1]$ under $(z+1) / \varphi(z)$ and $(z-1) / \varphi(z)$ are domains symmetric with respect to conjugation whose intersections with the real line are equal to $(0,2)$ (so the square roots are indeed well defined). These functions satisfy

$$
\begin{equation*}
S_{i+}(x) S_{i-}(x)=\left|S_{i \pm}(x)\right|^{2}=1 /\left|v_{i}(x)\right|, \quad x \in(-1,1) \tag{8}
\end{equation*}
$$

Observe also that $S_{1}(\infty)=1, S_{2}(\infty)=2$, and $S_{3}(\infty)=S_{4}(\infty)=\sqrt{2}$. Moreover, one can readily deduce from (6) and (8) that

$$
\text { (9) } S_{i \pm}(x)=\frac{e^{ \pm \mathrm{i} \theta_{i}(x)}}{\sqrt{\left|v_{i}(x)\right|}}, \quad \begin{cases}\theta_{1}(x): \equiv 0, & \theta_{2}(x):=\arccos (x)-\frac{\pi}{2} \\ \theta_{3}(x):=\frac{1}{2} \arccos (x), & \theta_{4}(x):=\frac{1}{2} \arccos (x)-\frac{\pi}{2}\end{cases}
$$

Recall that the modulus of continuity of a continuous function $f(x)$ on $[-1,1]$ is given by

$$
\omega(f ; h):=\max _{|x-y| \leqslant h, x, y \in[-1,1]}|f(x)-f(y)| .
$$

Theorem 1

Assume that $\rho(x)$ is a strictly positive m times continuously differentiable function on $[-1,1]$ for some $m \geqslant 3$. Set

$$
\varepsilon_{n}:=\frac{\log n}{n^{m}} \omega\left((1 / \rho)^{(m)} ; 1 / n\right)
$$

Then it holds for any $i \in\{1,2,3,4\}$ that

$$
P_{n, i}(z)=\left(1+O\left(\varepsilon_{n}\right)\right) \frac{\left(S_{i} S\right)(z)}{\left(S_{i} S\right)(\infty)}\left(\frac{\varphi(z)}{2}\right)^{n}
$$

uniformly on closed subsets of $\overline{\mathbb{C}} \backslash[-1,1]$ and

$$
P_{n, i}(x)=\frac{\cos \left(n \arccos (x)+\theta(x)+\theta_{i}(x)\right)+O\left(\varepsilon_{n}\right)}{2^{n-1}\left(S_{i} S\right)(\infty) \sqrt{\rho(x)\left|v_{i}(x)\right|}}
$$

uniformly on $[-1,1]$. Moreover, it also holds for any $i \in\{1,2,3,4\}$ that

$$
a_{n, i}=1 / 2+O\left(\varepsilon_{n}\right) \quad \text { and } \quad b_{n, i}=O\left(\varepsilon_{n}\right)
$$

The above results are not entirely new. It is well known [18, Theorem 11.5] that perturbed first and second kind Chebyshëv polynomials can be expressed via orthogonal polynomials on the unit circle with respect to the weight $\rho\left(\frac{1}{2}(\tau+1 / \tau)\right)$. Then using [17, Corollary 5.2.3], that in itself is an extension of ideas from [5], and Geronimus relations, see [17, Theorem 13.1.7], one can show that

$$
\sum(n+1)^{\gamma}\left(\left|a_{n, 1}-1 / 2\right|+\left|b_{n, 1}\right|\right)<\infty
$$

for any $\gamma \in(0, m-1)$ and $m \geqslant 2$, which is consistent with Theorem 1. What is novel in this note is the method of proof. While the Baxter-Simon argument relies on the machinery of Banach algebras, we follow the approach of Fokas, Its, and Kitaev [11, 12] connecting orthogonal polynomials to matrix Riemann-Hilbert problems and then utilizing the non-linear steepest descent method of Deift and Zhou [9]. The main advantages of this approach are the ability to get full asymptotic expansions for analytic weights of orthogonality $[8,15]$ and its indifference to positivity of such weights [1, 6, 2]. However, here we deal with non-analytic densities by elaborating on the idea of extensions with controlled $\bar{\partial}$-derivative introduced by Miller and McLaughlin [16] and adapted to the setting of Jacobi-type polynomials by Baratchart and the author [4].

2. Weight Extension

Given $r>1$, let $E_{r}:=\{z:|\varphi(z)|<r\}$. The boundary ∂E_{r} is an ellipse with foci ± 1.

Proposition 1

Let $\rho(x)$ and ε_{n} be as in Theorem 1. For each $r>1$ and $n>2 m$ there exists a continuous function $\ell_{n, r}(z)=l_{n}(z)+L_{n, r}(z), z \in \mathbb{C}$, such that

$$
\ell_{n, r}(x)=\rho^{-1}(x), \quad x \in[-1,1]
$$

where $l_{n}(z)$ is a polynomial of degree at most n satisfying

$$
\operatorname{supp}_{x \in[-1,1]}\left|l_{n}(x)\right| \leqslant C_{\rho}^{\prime}
$$

for some constant C_{ρ}^{\prime} independent of n, while $L_{n, r}(z)$ and $\bar{\partial} L_{n, r}(z)$ are continuous functions in \mathbb{C} supported by \bar{E}_{r} (in particular, $L_{n, r}(z)=0$ for $z \notin E_{r}$) and

$$
\frac{\left|\bar{\partial} L_{n, r}(z)\right|}{\sqrt{\left|1-z^{2}\right|}} \leqslant C_{\rho}^{\prime \prime} \frac{n \varepsilon_{n}}{\log n}, \quad z \in \bar{E}_{r},
$$

for some constant $C_{\rho}^{\prime \prime}$ independent of n and r, where $\bar{\partial}:=\left(\partial_{x}+\mathrm{i} \partial_{y}\right) / 2, z=x+\mathrm{i} y$.
Proof. It follows from [14, Theorem 9] that for each $n>2 m$ there exists a polynomial $l_{n}(z)$ of degree at most n such that

$$
\left|\left(\rho^{-1}(x)\right)^{(k)}-l_{n}^{(k)}(x)\right| \leqslant C_{m, k}\left(1-x^{2}\right)^{\frac{m-k}{2}} n^{k-m} E_{n-m}\left(\left(\rho^{-1}\right)^{(m)}\right)
$$

for all $x \in[-1,1]$ and each $k \in\{0, \ldots, m\}$, where $C_{m, k}$ is a constant that depends only m and k and $E_{j}(f)$ is the error of best uniform approximation on the interval $[-1,1]$ of
a continuous function $f(x)$ by algebraic polynomials of degree at most j. Furthermore, it was shown by Timan, see [14, Equation (3)], that

$$
\begin{aligned}
E_{n-m}(f) & \leqslant C_{1} \omega\left(f ; \frac{\sqrt{1-x^{2}}}{n-m}+\frac{1}{(n-m)^{2}}\right) \leqslant C_{1} \omega\left(f ; \frac{2}{n-m}\right) \\
& \leqslant C_{1} \omega\left(f ; \frac{4}{n}\right) \leqslant 4 C_{1} \omega\left(f ; \frac{1}{n}\right)
\end{aligned}
$$

for some absolute constant C_{1}, where we used that $n>2 m$ and $\omega(f ; 2 h) \leqslant 2 \omega(f ; h)$ (in what follows, we understand that all constants C_{j} might depend on $\rho(x)$, but are independent of n). Set

$$
\lambda_{n}(x):=\frac{\rho^{-1}(x)-l_{n}(x)}{\sqrt{1-x^{2}}}, \quad x \in[-1,1] .
$$

It then holds that $\lambda_{n}(x)$ is a continuous function on $[-1,1]$ that satisfies $\left\|\lambda_{n}\right\| \leqslant C_{3} \varepsilon_{n} / \log n$, where $\|\cdot\|$ is the uniform norm on $[-1,1]$. Since $m \geqslant 3$, it also holds that

$$
\lambda_{n}^{\prime}(x)=\frac{\left(\rho^{-1}(x)\right)^{\prime}-l_{n}^{\prime}(x)}{\sqrt{1-x^{2}}}+x \frac{\rho^{-1}(x)-l_{n}(x)}{\sqrt{\left(1-x^{2}\right)^{3}}}
$$

is a continuous function on $[-1,1]$ that satisfies $\left\|\lambda_{n}^{\prime}\right\| \leqslant C_{4} n \varepsilon_{n} / \log n$ (this is exactly the place where condition $m \geqslant 3$ is used). Extend $\lambda_{n}(x)$ by zero to the whole real line. As the numerator of $\lambda_{n}(x)$ together with its first and second derivatives vanishes at $\pm 1, \lambda_{n}^{\prime}(x)$ also extends continuously by zero to the whole real line. The following construction is standard, see [10, Proof of Theorem 3.67]. Define

$$
\Lambda_{n}(z):=\frac{1}{|y|} \int_{0}^{|y|} \lambda_{n}(x+t) d t, \quad z=x+\mathrm{i} y
$$

which, due to continuity of $\lambda_{n}(x)$, is a continuous function in \mathbb{C} satisfying $\Lambda_{n}(x)=\lambda_{n}(x)$ on the real line and $\left|\Lambda_{n}(z)\right| \leqslant\left\|\lambda_{n}\right\|$ in the complex plane. Similarly,

$$
\left|\partial_{x} \Lambda_{n}(z)\right|=\left|\frac{1}{|y|} \int_{0}^{|y|} \lambda_{n}^{\prime}(x+t) d t\right| \leqslant\left\|\lambda_{n}^{\prime}\right\|
$$

and the function $\partial_{x} \Lambda_{n}(z)$, which is given by the integral within the absolute value in the above equation, is also continuous in \mathbb{C}. Furthermore, we have that

$$
\begin{aligned}
\left|\partial_{y} \Lambda_{n}(z)\right| & =\left|\frac{1}{y^{2}} \int_{0}^{|y|}\left(\lambda_{n}(x+t)-\lambda_{n}(x+|y|)\right) d t\right| \\
& \leqslant\left\|\lambda_{n}^{\prime}\right\| \int_{0}^{|y|} \frac{|y|-t}{y^{2}} d t=\frac{\left\|\lambda_{n}^{\prime}\right\|}{2}
\end{aligned}
$$

and is also a continuous function in \mathbb{C}. Altogether, since $\bar{\partial}=\left(\partial_{x}+\mathrm{i} \partial_{y}\right) / 2$, it holds that $\bar{\partial} \Lambda_{n}(z)$ is a continuous function in \mathbb{C} that satisfies $\left|\bar{\partial} \Lambda_{n}(z)\right| \leqslant\left\|\lambda_{n}^{\prime}\right\|$ in the complex plane. Let $\psi_{r}(z)$ be any real-valued continuous function with continuous partial derivatives that is equal to one on $[-1,1]$ and is equal to zero in the complement of E_{r}. Define

$$
L_{n, r}(z):=\mathrm{i} w(z) \Lambda_{n}(z) \psi_{r}(z) \begin{cases}-1, & \operatorname{Im}(z) \geqslant 0 \\ 1, & \operatorname{Im}(z)<0\end{cases}
$$

Since $w_{ \pm}(x)= \pm \mathrm{i} \sqrt{1-x^{2}}$ for $x \in[-1,1]$ and $\Lambda_{n}(x)=0$ for $x \notin(-1,1)$, it holds that $L_{n, r}(z)$ is a continuous function in \mathbb{C} that is supported by \bar{E}_{r} and is equal to $\rho^{-1}(x)-l_{n}(x)$
for $x \in[-1,1]$. Furthermore, since $\bar{\partial}\left(\Lambda_{n}(z) \psi_{n}(z)\right)$ is continuous in \mathbb{C} and vanishes for $z=x \notin(-1,1)$ while $w_{+}(x)=-w_{-}(x)$ for $x \in(-1,1), \bar{\partial} L_{n, r}(z)$ is also continuous in \mathbb{C}. Moreover, it holds that

$$
\begin{aligned}
\left|\bar{\partial} L_{n, r}(z)\right| & =\sqrt{\left|1-z^{2}\right|}\left|\bar{\partial}\left(\Lambda_{n}(z) \psi_{r}(z)\right)\right| \\
& \leqslant C_{5} \sqrt{\left|1-z^{2}\right|}\left(\left|\Lambda_{n}(z)\right|+\left|\bar{\partial} \Lambda_{n}(z)\right|\right) \\
& \leqslant C_{6} \sqrt{\left|1-z^{2}\right|} \frac{n \varepsilon_{n}}{\log n}, \quad z \in \bar{E}_{r}
\end{aligned}
$$

Finally, observe that polynomials $l_{n}(x)$ approximate $\rho^{-1}(x)$ on $[-1,1]$ and therefore have uniformly bounded above uniform norms. The claim of the proposition now follows by setting $\ell_{n, r}(z):=l_{n}(z)+L_{n, r}(z)$ for $l_{n}(z)$ and $L_{n, r}(z)$ as above.

3. Proof of Theorem 1

3.1. Initial Riemann-Hilbert Problem. Notice that the functions $v_{i}(x)$ and $\left|v_{i}(x)\right|$ are either equal to each other or differ by a sign when $x \in[-1,1]$. So, we can equally use $v_{i}(x)$ in (1) without changing the polynomials $P_{n, i}(x)$.

Denote by $R_{n, i}(z)$ the function of the second kind associated with $P_{n, i}(z)$. That is,

$$
\begin{equation*}
R_{n, i}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{-1}^{1} \frac{P_{n, i}(x)}{x-z} \frac{\rho(x) v_{i}(x) d x}{w_{+}(x)} \tag{10}
\end{equation*}
$$

which is a holomorphic function in $\overline{\mathbb{C}} \backslash[-1,1]$. It follows from Plemelj-Sokhotski formulae, [13, Chapter I.4.2], that

$$
R_{n, i+}(x)-R_{n, i-}(x)=P_{n, i}(x) \frac{\rho(x) v_{i}(x)}{w_{+}(x)}, \quad x \in(-1,1),
$$

and, see [13, Chapter I.8.4], that

$$
R_{n, i}(z)=O\left(|z-a|^{\alpha_{a, i}}\right) \quad \text { as } \quad \mathbb{C} \backslash[-1,1] \ni z \rightarrow a \in\{-1,1\}
$$

where $\alpha_{a, i}=0$ if $v_{i}(a)=0$ and $\alpha_{a, i}=-1 / 2$ otherwise. Moreover, we get from (1) that

$$
R_{n, i}(z)=\frac{1}{m_{n, i} z^{n}}+O\left(\frac{1}{z^{n+1}}\right) \quad \text { as } \quad z \rightarrow \infty
$$

for some finite constant $m_{n, i}$. Consider the following Riemann-Hilbert problem for 2×2 matrix functions (RHP-Y):
(a) $\boldsymbol{Y}(z)$ is analytic in $\mathbb{C} \backslash[-1,1]$ and $\lim _{z \rightarrow \infty} \boldsymbol{Y}(z) z^{-n \sigma_{3}}=\boldsymbol{I}$;
(b) $\boldsymbol{Y}(z)$ has continuous traces on $(-1,1)$ that satisfy

$$
\boldsymbol{Y}_{+}(x)=\boldsymbol{Y}_{-}(x)\left(\begin{array}{cc}
1 & \frac{\rho(x) v_{i}(x)}{w_{+}(x)} \\
0 & 1
\end{array}\right)
$$

(c) $\boldsymbol{Y}(z)$ behaves like

$$
\boldsymbol{Y}(z)=O\left(\begin{array}{ll}
1 & |z-a|^{\alpha_{a, i}} \\
1 & |z-a|^{\alpha_{a, i}}
\end{array}\right) \quad \text { as } \quad \mathbb{C} \backslash[-1,1] \ni z \rightarrow a \in\{-1,1\} .
$$

The following lemma is well known [15, Theorem 2.4].

Lemma 1

RHP- Y is uniquely solvable by
(11)

$$
\boldsymbol{Y}(z)=\left(\begin{array}{cc}
P_{n, i}(z) & R_{n, i}(z) \\
m_{n-1, i} P_{n-1, i}(z) & m_{n-1, i} R_{n-1, i}(z)
\end{array}\right)
$$

3.2. Opening of the Lens. Fix $1<r<R$ and orient ∂E_{R} clockwise. Set

$$
\boldsymbol{X}(z):= \begin{cases}\boldsymbol{Y}(z)\left(\begin{array}{cc}
1 & 0 \\
-\frac{w(z) \ell_{n, r}(z)}{v_{i}(z)} & 1
\end{array}\right), & \text { in } \tag{12}\\
E_{R} \backslash[-1,1], \\
\boldsymbol{Y}(z), & \text { in } \mathbb{C} \backslash \bar{E}_{R},\end{cases}
$$

where $\ell_{n, r}(z)$ is the extension of $\rho^{-1}(x)$ constructed in Proposition 1. Observe that

$$
\ell_{n, r}(s)=l_{n}(s), \quad s \in \partial E_{R}, \quad \text { and } \quad \bar{\partial} \ell_{n, r}(z)=\bar{\partial} L_{n, r}(z), \quad z \in \bar{E}_{r}
$$

since $L_{n, r}(z)$ is supported by \bar{E}_{r} and $l_{n}(z)$ is analytic (in fact, is a polynomial). It is trivial to verify that $\boldsymbol{X}(z)$ solves the following $\bar{\partial}$-Riemann-Hilbert problem ($\bar{\partial}$ RHP- \boldsymbol{X}):
(a) $\boldsymbol{X}(z)$ is continuous in $\mathbb{C} \backslash\left([-1,1] \cup \partial E_{R}\right)$ and $\lim _{z \rightarrow \infty} \boldsymbol{X}(z) z^{-n \sigma_{3}}=\boldsymbol{I}$;
(b) $\boldsymbol{X}(z)$ has continuous traces on $(-1,1) \cup \partial E_{R}$ that satisfy

$$
\boldsymbol{X}_{+}(s)=\boldsymbol{X}_{-}(s)\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & \frac{\rho(s) v_{i}(s)}{w_{+}(s)} \\
-\frac{w_{+}(s)}{\rho(s) v_{i}(s)} & 0
\end{array}\right) & \text { on } \quad s \in(-1,1), \\
\left(\begin{array}{cc}
1 & 0 \\
\frac{w(s) l_{n}(s)}{v_{i}(s)} & 1
\end{array}\right) & \text { on } \quad s \in \partial E_{R}
\end{array}\right.
$$

(c) $\boldsymbol{X}(z)$ has the same behavior near ± 1 as $\boldsymbol{Y}(z)$, see RHP- $\boldsymbol{Y}(\mathrm{c})$;
(d) $\boldsymbol{X}(z)$ deviates from an analytic matrix function according to

$$
\bar{\partial} \boldsymbol{X}(z)=\boldsymbol{X}(z)\left(\begin{array}{cc}
0 & 0 \\
-\frac{w(z) \bar{\partial} L_{n, r}(z)}{v_{i}(z)} & 0
\end{array}\right) .
$$

One can readily verified that the following lemma holds, see [4, Lemma 6.4].

Lemma 2

$\bar{\partial}$ RHP- \boldsymbol{X} and RHP- \boldsymbol{Y} are simultaneously solvable and the solutions are connected by (12).
3.3. Model Riemann-Hilbert Problem. In this subsection we present the solution of the following Riemann-Hilbert problem (RHP- N):
(a) $\boldsymbol{N}(z)$ is analytic in $\mathbb{C} \backslash[-1,1]$ and $\lim _{z \rightarrow \infty} \boldsymbol{N}(z) z^{-n \sigma_{3}}=\boldsymbol{I}$;
(b) $N(z)$ has continuous traces on $(-1,1)$ that satisfy

$$
\boldsymbol{N}_{+}(x)=\boldsymbol{N}_{-}(s)\left(\begin{array}{cc}
0 & \frac{\rho(x) v_{i}(x)}{w_{+}(x)} \\
-\frac{w_{+}(x)}{\rho(x) v_{i}(x)} & 0
\end{array}\right)
$$

(c) $\boldsymbol{N}(z)$ has the same behavior near ± 1 as $\boldsymbol{Y}(z)$, see RHP- $\boldsymbol{Y}(\mathrm{c})$.

Recall the definition of the functions $S_{i}(z)$ in (7). Define $S_{*}(z):=S_{i}(z)$ when $i \in\{1,3\}$ and $S_{*}(z):=\mathrm{i} S_{i}(z)$ when $i \in\{2,4\}$. Then it follows from (8) that

$$
S_{*+}(x) S_{*-}(x)=1 / v_{i}(x), \quad x \in(-1,1)
$$

Let $S(z)$ and $\varphi(z)$ be given by (2) and (5), respectively. It follows from (3) and (6) that

$$
\left(S_{*} S \varphi^{n}\right)_{-}^{\sigma_{3}}(x)\left(\begin{array}{cc}
0 & \frac{\rho(x) v_{i}(x)}{w_{+}(x)} \\
-\frac{w_{+}(x)}{\rho(x) v_{i}(x)} & 0
\end{array}\right)\left(S_{*} S \varphi^{n}\right)_{+}^{-\sigma_{3}}(x)=\left(\begin{array}{cc}
0 & 1 / w_{+}(x) \\
-w_{+}(x) & 0
\end{array}\right)
$$

for $x \in(-1,1)$. It also can be readily verified with the help of (6) that

$$
\left(\begin{array}{cc}
1 & \frac{1}{w_{+}(x)} \\
\frac{1}{2 \varphi_{+}(x)} & \frac{\varphi_{+}(x)}{2 w_{+}(x)}
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{1}{w_{-}(x)} \\
\frac{1}{2 \varphi_{-}(x)} & \frac{\varphi_{-}(x)}{2 w_{-}(x)}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 / w_{+}(x) \\
-w_{+}(x) & 0
\end{array}\right)
$$

for $x \in(-1,1)$. Therefore, RHP- N is solved by $\boldsymbol{N}(z)=\boldsymbol{C M}(z)$, where

$$
\boldsymbol{C}:=\left(2^{n} S_{*} S\right)^{-\sigma_{3}}(\infty) \quad \text { and } \quad \boldsymbol{M}(z):=\left(\begin{array}{cc}
1 & \frac{1}{w(z)} \tag{13}\\
\frac{1}{2 \varphi(z)} & \frac{\varphi(z)}{2 w(z)}
\end{array}\right)\left(S_{*} S \varphi^{n}\right)^{\sigma_{3}}(z)
$$

3.4. Analytic Approximation. To solve $\bar{\partial}$ RHP- \boldsymbol{X}, we first solve its analytic version. That is, consider the following Riemann-Hilbert problem (RHP- \boldsymbol{A}):
(a) $\boldsymbol{A}(z)$ is analytic in $\mathbb{C} \backslash\left([-1,1] \cup \partial E_{R}\right)$ and $\lim _{z \rightarrow \infty} \boldsymbol{A}(z) z^{-n \sigma_{3}}=\boldsymbol{I}$;
(b,c) $\boldsymbol{A}(z)$ satisfies $\bar{\partial} \mathrm{RHP}-\boldsymbol{X}(\mathrm{b}, \mathrm{c})$.

Lemma 3

For all n large enough there exists a matrix $\boldsymbol{Z}(z)$, analytic in $\overline{\mathbb{C}} \backslash \partial E_{R}$ and satisfying

$$
\boldsymbol{Z}(z)=\boldsymbol{I}+\boldsymbol{O}\left(R_{*}^{-n}\right)
$$

uniformly in $\overline{\mathbb{C}}$ for any $r<R_{*}<R$, such that $\boldsymbol{A}(z)=\boldsymbol{C Z}(z) \boldsymbol{M}(z)$ solves RHP- \boldsymbol{A}.

Proof. Assume that there exists a matrix $\boldsymbol{Z}(z)$ that is analytic in $\overline{\mathbb{C}} \backslash \partial E_{R}$, is equal to \boldsymbol{I} at infinity, and satisfies

$$
\boldsymbol{Z}_{+}(s)=\boldsymbol{Z}_{-}(s) \boldsymbol{M}(s)\left(\begin{array}{cc}
1 & 0 \\
\frac{w(s) l_{n}(s)}{v_{i}(s)} & 1
\end{array}\right) \boldsymbol{M}^{-1}(s), \quad s \in \partial E_{R}
$$

It can be readily verified that $\boldsymbol{A}(z)=\boldsymbol{C Z}(z) \boldsymbol{M}(z)$ solves RHP- \boldsymbol{A}. To show that such $\boldsymbol{Z}(z)$ does indeed exist, observe that

$$
\operatorname{det} \boldsymbol{M}(z)=\frac{\varphi(z)}{2 w(z)}-\frac{1}{2 \varphi(z) w(z)} \equiv 1
$$

in the entire complex plane and that

$$
v_{i}(z) S_{*}^{2}(z)=(-1)^{i-1} \varphi^{k_{i}}(z), \quad z \notin[-1,1],
$$

straight by the definition of $S_{i}(z)$ in (7), where $k_{1}=0, k_{2}=2$, and $k_{3}=k_{4}=1$. Thus,

$$
\boldsymbol{M}(s)\left(\begin{array}{cc}
1 & 0 \tag{14}\\
\frac{w(s) l_{n}(s)}{v_{i}(s)} & 1
\end{array}\right) \boldsymbol{M}^{-1}(s)=\boldsymbol{I}+\frac{(-1)^{i-1} l_{n}(s)}{w(s) S^{2}(s) \varphi^{2 n+k_{i}}(s)}\left(\begin{array}{cc}
\frac{1}{2} \varphi(s) & -1 \\
\frac{1}{4} \varphi^{2}(s) & -\frac{1}{2} \varphi(s)
\end{array}\right)
$$

for $s \in \partial E_{R}$. It follows from the very definition of E_{R} that $|\varphi(s)|=R$ for $s \in \partial E_{R}$. Moreover, since $\operatorname{deg}\left(l_{n}\right) \leqslant n$ and the uniform norms on $[-1,1]$ of these polynomials are bounded by C_{ρ}^{\prime}, see Proposition 1, it holds that

$$
\left|l_{n}(s)\right| \leqslant C_{\rho}^{\prime}|\varphi(s)|^{n}=C_{\rho}^{\prime} R^{n}, \quad s \in \partial E_{R}
$$

by the Bernstein-Walsh inequality. Hence, we can conclude that the jump of $\boldsymbol{Z}(z)$ on ∂E_{R} can be estimated as $\boldsymbol{I}+\boldsymbol{O}\left(R^{-n}\right)$. It now follows from [7, Theorem 7.18 and Corollary 7.108] that such $\boldsymbol{Z}(z)$ does exist, is unique, and has continuous traces on ∂E_{R} whose L^{2}-norms with respect to the arclength measure are of size $O\left(R^{-n}\right)$. This yields the desired pointwise estimate of $\boldsymbol{Z}(z)$ locally uniformly in $\overline{\mathbb{C}} \backslash \partial E_{R}$. Next, observe that the jump of $\boldsymbol{Z}(s)$ is analytic around ∂E_{R} and therefore we can vary the value of R. Since the solutions corresponding to different values of R are necessarily analytic continuations of each other, the desired uniform estimate follows from the locally uniform ones for any fixed $R_{*}<R$ and $R^{\prime}>R$.
3.5. An Auxiliary Estimate. Denote by $d A$ the area measure and by \mathcal{K} the Cauchy area operator acting on integrable functions on \mathbb{C}, i.e.,

$$
\begin{equation*}
\mathcal{K} f(z)=\frac{1}{\pi} \iint \frac{f(s)}{z-s} d A \tag{15}
\end{equation*}
$$

Lemma 4

Let $u(z)$ be a bounded function supported on \bar{E}_{r}. Then

$$
\left\|\mathcal{K}\left(u|\varphi|^{-2 n}\right)\right\| \leqslant C_{r} \frac{\log n}{n}\|u\|,
$$

where $\|\cdot\|$ is the essential supremum norm and the constant C_{r} is independent of n.

Proof. Observe that the integrand is a bounded compactly supported function and therefore its Cauchy area integral is Hölder continuous in \mathbb{C} with any index $\alpha<1$, see [3, Theorem 4.3.13]. Moreover, since the integral is analytic in $\overline{\mathbb{C}} \backslash \bar{E}_{r}$, the maximum of its modulus is achieved on \bar{E}_{r}. Notice also that it is enough to prove the claim of the lemma only for $u(z)=\chi_{E_{r}}(z)$, the indicator function of E_{r}.

Let $z \in \bar{E}_{r}$. Observe that $\varphi(s)=\tau$ when $s=\frac{1}{2}(\tau+1 / \tau)$. Write $z=\frac{1}{2}(\xi+1 / \xi)$. Then

$$
\begin{aligned}
\left|\mathcal{K}\left(\frac{\chi_{E_{r}}}{|\varphi|^{2 n}}\right)(z)\right| & \leqslant \frac{1}{\pi} \iint_{E_{r}} \frac{1}{|z-s|} \frac{d A}{|\varphi(s)|^{2 n}} \\
& =\frac{1}{\pi} \iint_{1<|\tau|<r} \frac{\left|\tau^{2}-1\right|^{2}}{|(\xi-\tau)(1-1 /(\tau \xi))|} \frac{d A}{|\tau|^{2 n+4}} .
\end{aligned}
$$

Partial fraction decomposition now yields

$$
\begin{aligned}
\left|\mathcal{K}\left(\frac{\chi_{E_{r}}}{|\varphi|^{2 n}}\right)(z)\right| & \leqslant \frac{1}{\pi} \iint_{1<|\tau|<r}\left|\frac{\xi}{\tau-\xi}+\frac{\tau}{\tau-1 / \xi}\right| \frac{\left|\tau^{2}-1\right|}{|\tau|^{2 n+4}} d A \\
& \leqslant \frac{2 r^{3}}{\pi} \iint_{1<|\tau|<r}\left(\frac{1}{|\tau-\xi|}+\frac{1}{|\tau-1 / \xi|}\right) \frac{d A}{|\tau|^{2 n+4}} .
\end{aligned}
$$

Write $\tau=\varrho e^{\mathrm{i} \theta}$ and $\xi=\varrho_{*} e^{\mathrm{i} \theta_{*}}$. Then

$$
\begin{aligned}
|\tau-\xi| & =\sqrt{\left(\varrho-\varrho_{*}\right)^{2}+4 \varrho \varrho_{*} \sin ^{2}\left(\frac{\theta-\theta_{*}}{2}\right)} \\
& \geqslant \frac{1}{\sqrt{2}}\left(\left|\varrho-\varrho_{*}\right|+\sqrt{\varrho \varrho_{*}}\left|2 \sin \left(\frac{\theta-\theta_{*}}{2}\right)\right|\right) \\
& \geqslant C\left(\left|\varrho-\varrho_{*}\right|+\left|\theta-\theta_{*}\right|\right)
\end{aligned}
$$

for some constant $C<1 / \sqrt{2}$, where on the last step we used inequalities $\varrho \varrho_{*} \geqslant 1$ and $\min _{[-\pi / 2, \pi / 2]}|\sin x / x|>0$. Since $\varrho / \varrho_{*} \geqslant 1 / r$, the constant C can be adjusted so that

$$
|\tau-1 / \xi| \geqslant C\left(\left|\varrho-1 / \varrho_{*}\right|+\left|\theta+\theta_{*}\right|\right) \geqslant C\left(\left|\varrho-\varrho_{*}\right|+\left|\theta+\theta_{*}\right|\right)
$$

is true as well. By going to polar coordinates and applying the above estimates we get that

$$
\begin{aligned}
\left|\mathcal{K}\left(\frac{\chi_{E_{r}}}{|\varphi|^{2 n}}\right)(z)\right| & \leqslant \frac{4 r^{3}}{\pi C} \int_{1}^{r}\left(\int_{0}^{\pi} \frac{d \theta}{\left|\varrho-\varrho_{*}\right|+\theta}\right) \frac{d \varrho}{\varrho^{2 n+3}} \\
& =\frac{4 r^{3}}{\pi C}\left(\int_{I_{1}}+\int_{I_{2}}\right) \log \left(1+\frac{\pi}{\left|\varrho-\varrho_{*}\right|}\right) \frac{d \varrho}{\varrho^{2 n+3}}=: S_{1}+S_{2},
\end{aligned}
$$

where $I_{1}=(1, r) \cap\left\{\varrho:\left|\varrho-\varrho_{*}\right|<\pi / n\right\}$ and $I_{2}=(1, r) \backslash I_{1}$. Then

$$
\begin{aligned}
S_{1} & \leqslant \frac{8 r^{3}}{\pi C} \int_{0}^{\pi / n} \log \left(1+\frac{\pi}{\varrho}\right) d \varrho=\frac{8 r^{3}}{C} \int_{n+1}^{\infty} \frac{\log t d t}{(t-1)^{2}} \\
& =\frac{8 r^{3}}{C}\left(\frac{\log (n+1)}{n}+\int_{n+1}^{\infty} \frac{d t}{t(t-1)}\right) \leqslant \frac{8 r^{3}}{C} \frac{\log (n+1)+1}{n}
\end{aligned}
$$

Finally, it holds that

$$
S_{2} \leqslant \frac{8 r^{3} \log (n+1)}{\pi C} \int_{1}^{\infty} \frac{d \varrho}{\varrho^{2 n+3}}=\frac{4 r^{3}}{\pi C} \frac{\log (n+1)}{n+1}
$$

which finishes the proof of the lemma.
3.6. $\bar{\partial}$-Problem. Consider the following $\bar{\partial}$-problem ($\bar{\partial} \mathrm{P}-\boldsymbol{D})$:
(a) $\boldsymbol{D}(z)$ is a continuous matrix function on $\overline{\mathbb{C}}$ and $\boldsymbol{D}(\infty)=\boldsymbol{I}$;
(b) $\boldsymbol{D}(z)$ satisfies $\bar{\partial} \boldsymbol{D}(z)=\boldsymbol{D}(z) \boldsymbol{W}(z)$, where

$$
\boldsymbol{W}(z):=\boldsymbol{Z}(z) \boldsymbol{M}(z)\left(\begin{array}{cc}
0 & 0 \\
-w(z) \bar{\partial} L_{n, r}(z) / v_{i}(z) & 0
\end{array}\right) \boldsymbol{M}^{-1}(z) \boldsymbol{Z}^{-1}(z)
$$

Notice that $\boldsymbol{W}(z)$ is supported by \bar{E}_{r} and therefore $\boldsymbol{D}(z)$ is necessarily analytic in the complement of \bar{E}_{r}.

Lemma 5

The solution of $\bar{\partial} \mathrm{P}-D$ exists for all n large enough and it holds uniformly in $\overline{\mathbb{C}}$ that

$$
\boldsymbol{D}(z)=\boldsymbol{I}+\boldsymbol{O}\left(\varepsilon_{n}\right)
$$

Proof. As explained in [4, Lemma 8.1], solving $\bar{\partial} \mathrm{P}-D$ is equivalent to solving an integral equation

$$
\boldsymbol{I}=\left(\boldsymbol{I}-\mathcal{K}_{\boldsymbol{W}}\right) \boldsymbol{D}(z)
$$

in the space of bounded matrix functions on \mathbb{C}, where \mathcal{I} is the identity operator and $\mathcal{K}_{\boldsymbol{W}}$ is the Cauchy area operator (15) acting component-wise on the product $\boldsymbol{m}(s) \boldsymbol{W}(s)$ for a bounded matrix function $\boldsymbol{m}(z)$. If $\left\|\mathcal{K}_{\boldsymbol{W}}\right\|$, the operator norm of $\mathcal{K}_{\boldsymbol{W}}$, is less than $1-\epsilon$, $\epsilon \in(0,1)$, then $\left(\mathcal{I}-\mathcal{K}_{\boldsymbol{W}}\right)^{-1}$ exists as a Neumann series and

$$
\boldsymbol{D}(z)=\left(\boldsymbol{I}-\mathcal{K}_{\boldsymbol{W}}\right)^{-1} \boldsymbol{I}=\boldsymbol{I}+\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\left\|\mathcal{K}_{\boldsymbol{W}}\right\|\right)
$$

uniformly in $\overline{\mathbb{C}}$ (it also holds that $\boldsymbol{D}(z)$ is Hölder continuous in \mathbb{C}). It follows from Lemma 4 that to estimate $\left\|\mathcal{K}_{\boldsymbol{W}}\right\|$, we need to estimate L^{∞}-norms of the entries of $\boldsymbol{W}(z)$. To this end, similarly to (14), we get that

$$
\boldsymbol{W}(z)=\frac{(-1)^{i} \bar{\partial} L_{n, r}(z)}{w(z) S^{2}(z) \varphi^{2 n+k_{i}}(z)} \boldsymbol{Z}(z)\left(\begin{array}{cc}
\frac{1}{2} \varphi(z) & -1 \\
\frac{1}{4} \varphi^{2}(z) & -\frac{1}{2} \varphi(z)
\end{array}\right) \boldsymbol{Z}^{-1}(z), \quad z \in \bar{E}_{r}
$$

Using Proposition 1 and Lemma 3 we can conclude that entries of $\boldsymbol{W}(z)$ are continuous functions on \mathbb{C} supported by \bar{E}_{r} with absolute values bounded above by $C_{\rho}|\varphi(z)|^{-2 n} n \varepsilon_{n} / \log n$ for some constant C_{ρ} independent of n. Hence, $\left\|\mathcal{K}_{W}\right\| \|=O\left(\varepsilon_{n}\right)$ as claimed.
3.7. Asymptotic Formulae. It readily follows from RHP- \boldsymbol{A} and $\bar{\partial} \mathrm{P}-\boldsymbol{D}$ as well as Lemmas 3 and 5 that $\bar{\partial}$ RHP- X is solved by

$$
\boldsymbol{X}(z)=\boldsymbol{C D}(z) \boldsymbol{Z}(z) \boldsymbol{M}(z)
$$

Given a closed set $B \subset \overline{\mathbb{C}} \backslash[-1,1]$, we can choose r amd R so that $\bar{E}_{R} \cap B=\varnothing$. Then it holds that $\boldsymbol{Y}(z)=\boldsymbol{X}(z)$ for $z \in B$ by (12). Write

$$
\boldsymbol{D}(z) \boldsymbol{Z}(z)=\boldsymbol{I}+\left(\begin{array}{ll}
v_{n 1}(z) & v_{n 2}(z) \\
v_{n 3}(z) & v_{n 4}(z)
\end{array}\right)
$$

It follows from Lemmas 3 and 5 that $\left|v_{n j}(z)\right|=O\left(\varepsilon_{n}\right)$ uniformly in $\overline{\mathbb{C}}$ and that $v_{n j}(\infty)=0$. Then we get from (11) and (13) that

$$
P_{n}(z)=\left(1+v_{n 1}(z)+\frac{v_{n 2}(z)}{2 \varphi(z)}\right) \frac{\left(S_{*} S\right)(z)}{\left(S_{*} S\right)(\infty)}\left(\frac{\varphi(z)}{2}\right)^{n}, \quad z \in B .
$$

Since $S_{*}(z) / S_{*}(\infty)=S_{i}(z) / S_{i}(\infty)$, the first claim of the theorem follows. Next, notice that the first column of $\boldsymbol{Y}(z)$ is entire and is equal to the first column of

$$
\boldsymbol{X}_{+}(x)\left(\begin{array}{cc}
1 & 0 \\
w_{+}(x) /\left(\rho(x) v_{i}(x)\right) & 1
\end{array}\right)
$$

for $x \in[-1,1]$ by (12) and Proposition 1. Since the functions $v_{n i}(z)$ are continuous across $[-1,1]$ and $S_{* \pm}(x) / S_{*}(\infty)=S_{i \pm}(x) / S_{i}(\infty)$, we deuce from (3), (6), (8), and (13) that

$$
\begin{aligned}
& P_{n}(x)=\left(1+v_{n 1}(x)\right) \frac{\left(S_{i} S \varphi^{n}\right)_{+}(x)+\left(S_{i} S \varphi^{n}\right)_{-}(x)}{2^{n}\left(S_{i} S\right)(\infty)}+ \\
& \quad v_{n 2}(x) \frac{\left(S_{i} S \varphi^{n-1}\right)_{+}(x)+\left(S_{i} S \varphi^{n-1}\right)_{-}(x)}{2^{n+1}\left(S_{i} S\right)(\infty)}
\end{aligned}
$$

for any $x \in[-1,1]$. It now follows from (4), (6), and (8) that

$$
\left(S_{i} S \varphi^{k}\right)_{+}(x)+\left(S_{i} S \varphi^{k}\right)_{-}(x)=\frac{2 \cos \left(k \arccos (x)+\theta(x)+\theta_{i}(x)\right)}{\sqrt{\rho(x)\left|v_{i}(x)\right|}}, \quad x \in[-1,1]
$$

The last two formulae now yield the second claim of the theorem. Finally, it is known, see [15, Equations (9.6) and (9.7)], that

$$
\left\{\begin{aligned}
a_{n, i}^{2} & =\lim _{z \rightarrow \infty} z^{2}[\boldsymbol{Y}(z)]_{12}[\boldsymbol{Y}(z)]_{21} \\
b_{n, i} & =\lim _{z \rightarrow \infty}\left(z-P_{n+1, i}(z)[\boldsymbol{Y}(z)]_{22}\right)
\end{aligned}\right.
$$

where $\boldsymbol{Y}(z)$ corresponds to the index n. As in the first part of the proof, we get that

$$
[\boldsymbol{Y}(z)]_{12}=[\boldsymbol{X}(z)]_{12}=\frac{1}{w(z)} \frac{1+v_{n 1}(z)+v_{n 2}(z) \varphi(z) / 2}{2^{n}\left(S_{*} S\right)(\infty)\left(S_{*} S\right)(z) \varphi^{n}(z)}
$$

and

$$
[\boldsymbol{Y}(z)]_{21}=[\boldsymbol{X}(z)]_{21}=\left(v_{n 3}(z)+\frac{1+v_{n 4}(z)}{2 \varphi(z)}\right) 2^{n}\left(S_{*} S\right)(\infty)\left(S_{*} S\right)(z) \varphi^{n}(z)
$$

for all z large. Since $v_{n j}(\infty)=0$, it holds that

$$
a_{n, i}^{2}=\frac{1}{4}+\lim _{z \rightarrow \infty} z v_{n 3}(z)\left(1+z v_{n 2}(z)\right)=\frac{1}{4}+O\left(\varepsilon_{n}\right)
$$

by the maximum modulus principle for holomorphic functions. Similarly, we have that

$$
[\boldsymbol{Y}(z)]_{22}=[\boldsymbol{X}(z)]_{22}=\left(v_{n 3}(z)+\frac{1}{2}\left(1+v_{n 4}(z)\right) \varphi(z)\right) \frac{1}{w(z)} \frac{2^{n}\left(S_{*} S\right)(\infty)}{\left(S_{*} S\right)(z) \varphi^{n}(z)}
$$

for all z large. Hence,

$$
P_{n+1, i}(z)[\boldsymbol{Y}(z)]_{22}=\frac{\varphi^{2}(z)}{4 w(z)}\left(1+v_{n+11}(z)+\frac{v_{n+12}(z)}{2 \varphi(z)}\right)\left(1+v_{n 4}(z)+2 \frac{v_{n 3}(z)}{\varphi(z)}\right)
$$

in this case. It can be readily verified that

$$
\frac{\varphi^{2}(z)}{4 w(z)}=z+\frac{z}{2 w(z)(z+w(z))}-\frac{1}{4 w(z)}=z+O\left(\frac{1}{z}\right)
$$

as $z \rightarrow \infty$. Therefore,

$$
b_{n, i}=-\lim _{z \rightarrow \infty} z\left(v_{n+11}(z)+v_{n 4}(z)\right)=O\left(\varepsilon_{n}\right)
$$

again, by the maximum modulus principle for holomorphic functions. This finishes the proof of the theorem.

References

[1] A.I. Aptekarev. Sharp constant for rational approximation of analytic functions. Mat. Sb., 193(1):1-72, 2002. English transl. in Math. Sb. 193(1-2):1-72, 2002.3
[2] A.I. Aptekarev and M. Yattselev. Padé approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials. Acta Math., 215(2):217-280, 2015. http://dx.doi.org/10.1007/ s11511-016-0133-5. 3
[3] K. Astala, T. Iwaniec, and G. Martin. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, volume 48 of Princeton Mathematical Series. Princeton Univ. Press, 2009. 8
[4] L. Baratchart and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math. Res. Not., 2010(22):4211-4275, 2010. https://doi . org/10.1093/imrn/ rnq026. 3, 6, 9
[5] G. Baxter. A convergence equivalence related to polynomials orthogonal on the unit circle. Trans, Amer. Math. Soc., 79:471-487, 1961. 3
[6] M. Bertola and M.Y. Mo. Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math., 220:154-218, 2009. 3
[7] P. Deift. Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, volume 3 of Courant Lectures in Mathematics. Amer. Math. Soc., Providence, RI, 2000. 8
[8] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou. Strong asymptotics of polynomials orthogonal with respect to exponential weights. Comm. Pure Appl. Math., 52(12):1491-1552, 1999. 3
[9] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation. Ann. of Math., 137:295-370, 1993. 3
[10] F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, 2012. 4
[11] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Panlevé equations and their appearance in quantum gravity. Comm. Math. Phys., 142(2):313-344, 1991.3
[12] A.S. Fokas, A.R. Its, and A.V. Kitaev. The isomonodromy approach to matrix models in 2D quantum gravitation. Comm. Math. Phys., 147(2):395-430, 1992.3
[13] F.D. Gakhov. Boundary Value Problems. Dover Publications, Inc., New York, 1990. 5
[14] T. Kilgore. On the simultaneous approximation of functions and their derivatives. In Applied mathematics reviews, volume 1, pages 69-118, River Edge, NJ, 2000. World Sci. Publ. 3, 4
[15] A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, and M. Vanlessen. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1, 1]. Adv. Math., 188(2):337-398, 2004. 3, 5, 11
[16] K.T.-R. McLaughlin and P.D. Miller. The $\bar{\partial}$ steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Not. IMRN, 2008, 2008. 3
[17] B. Simon. Orthogonal Polynomials on the Unit Circle, Vol. I, II, volume 54 of Colloquium Publications. Amer. Math. Soc., Providence, RI, 2005. 3
[18] G. Szegő. Orthogonal Polynomials, volume 23 of Colloquium Publications. Amer. Math. Soc., Providence, RI, 1999. 3

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow, 125047 Russian Federation

Email address: maxyatts@iupui.edu

[^0]: 2020 Mathematics Subject Classification. 42C05.
 Key words and phrases. Orthogonal polynomials, strong asymptotics, matrix Riemann-Hilbert approach. The research was supported in part by a grant from the Simons Foundation, CGM-706591.

