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MAXIM L. YATTSELEV

Abstract. In this note we consider asymptotics of the multipoint Padé approximants to Cauchy integrals
of analytic non-vanishing densities defined on a Jordan arc connecting ´1 and 1. We allow for the
situation where the (symmetric) contour attracting the poles of the approximants does separate the plane.

1. Introduction and Main Results

Let 𝐿 be a smooth Jordan arc joining ´1 and 1 (and oriented in this way), and

𝑤𝐿p𝑧q :“
a

𝑧2 ´ 1, 𝑤𝐿p𝑧q “ 𝑧 ` Op1q, as 𝑧 Ñ 8,

be the branch holomorphic in Cz𝐿. Let 𝜌p𝑧q be a function analytic in a “sufficiently large”, see
Assumption 2 further below, neighborhood of 𝐿 and

(1) p𝜌𝐿p𝑧q :“
1

2𝜋i

ż

𝐿

𝜌p𝑠q

𝑠 ´ 𝑧

d𝑠
𝑤𝐿`p𝑠q

, 𝑧 R 𝐿,

where𝑤𝐿`p𝑠q is the trace of𝑤𝐿p𝑧q on the left-hand side of 𝐿. Further, let t𝐸𝑖u
8
𝑖“1 be an interpolation

scheme, i.e., a sequence of multi-sets in 𝐷𝐿 :“ Cz𝐿 such that each 𝐸𝑖 consists of 𝑖 not necessarily
distinct nor finite points from𝐷𝐿 . The multipoint Padé approximant to p𝜌𝐿p𝑧q of type p𝑚, 𝑛q associated
with 𝐸𝑚`𝑛 is a rational function r𝑚{𝑛; 𝐸𝑚`𝑛s

p𝜌𝐿 p𝑧q “ p𝑝𝑚,𝑛{𝑞𝑚,𝑛qp𝑧q such that degp𝑝𝑚,𝑛q ď 𝑚,
degp𝑞𝑚,𝑛q ď 𝑛, 𝑞𝑚,𝑛p𝑧q ı 0, and

(2)
𝑞𝑚,𝑛p𝑧qp𝜌𝐿p𝑧q ´ 𝑝𝑚,𝑛p𝑧q

𝑣𝑚,𝑛p𝑧q
“ O

´

𝑧´ mint𝑚,𝑛u´1
¯

as 𝑧 Ñ 8

as well as is analytic in 𝐷𝐿 , where 𝑣𝑚,𝑛p𝑧q is the monic polynomial vanishing at the finite elements
of 𝐸𝑚`𝑛 according to their multiplicity1, i.e.,

𝑣𝑚,𝑛p𝑧q :“
ź

𝑒P𝐸𝑚`𝑛 ,|𝑒|ă8

p𝑧 ´ 𝑒q.

It is well-known that linear system (2) is always solvable and that the solution corresponding to
monic 𝑞𝑚,𝑛p𝑧q of minimal degree is always unique. In what follows, we understand that 𝑞𝑚,𝑛p𝑧q and
𝑝𝑚,𝑛p𝑧q come from this unique solution. We shall call an approximant diagonal if 𝑚 “ 𝑛, in which
case we simply write 𝑝𝑛p𝑧q 𝑞𝑛p𝑧q, and 𝑣𝑛p𝑧q.

The goal of this note is to explain the numerical results shown on Figure 1. To accomplish it, let
us set

𝜑𝐿p𝑧q :“ 𝑧 ´ 𝑤𝐿p𝑧q, 𝑧 P 𝐷𝐿 ,

which is an analytic function in 𝐷𝐿 with a simple zero at infinity that satisfies 𝜑𝐿`p𝑠q𝜑𝐿´p𝑠q ” 1,
𝑠 P 𝐿. Given an interpolation scheme t𝐸𝑖u

8
𝑖“1, define

(3) 𝐵𝑖pZq :“
ź

𝑒P𝐸𝑖

Z ´ 𝜑𝐿p𝑒q

1 ´ Z𝜑𝐿p𝑒q
.

Clearly, each 𝐵𝑖pZq is a rational function with 𝑖 zeros and 𝑖 poles in C, counting multiplicities. All
the zeros of 𝐵𝑖pZq belong to the interior of a Jordan curve 𝐽´1p𝐿q, where 𝐽pZq :“ pZ ` 1{Zq{2 is
the Joukovski map (𝜑𝐿p𝑧q maps 𝐷𝐿 conformally onto this domain and 𝐽p𝜑𝐿p𝑧qq “ 𝑧 for 𝑧 P 𝐷𝐿).
Notice that if a multi-set 𝐸𝑖 is conjugate-symmetric (i.e., 𝑒 P 𝐸𝑖 if and only if 𝑒 P 𝐸𝑖), then 𝐵𝑖pZq is
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1This definition yields one additional interpolation condition at infinity.
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Figure 1. Poles of multipoint Padé approximants to 1{𝑤𝐿p𝑧q where panel (a): 𝐿 is an arc
connecting ´1 to some 𝑥˚ ą 5{4 through the upper half-plane and then 𝑥˚ to 1 through
the lower half-plane and there are 48 interpolation conditions at infinity and 10 conditions
at 5{4; panel (b): 𝐿 is a lower unit semi-circle and there are 48 interpolation conditions at
infinity and 8 conditions at ´3i{4.

a Blaschke product. Moreover, if 𝐿 “ r´1, 1s, then all the zeros of 𝐵𝑖pZq, that is, points 𝜑r´1,1sp𝑒q,
𝑒 P 𝐸𝑖 , belong to the unit disk D.

We shall consider only those interpolation schemes for which the level-lines t|𝐵𝑖p𝜏q| “ 1u have
a definite asymptotic behavior. That is, we assume the following.

Assumption 1

Arc 𝐿 and interpolation scheme t𝐸𝑖u
8
𝑖“1 in 𝐷𝐿 are such that

(i) there exist 𝑀 ą 0 and an integer 𝑙˚ ě 0 such that the functions 𝐵𝑖pZq from (3)
satisfy

|𝐵𝑖p𝜏q| ď 𝑀, 𝜏 P Γ :“ Y
𝑙˚
𝑙“´𝑙˚

Γ𝑙 , 𝑖 P N,

where Γ𝑙 are pairwise disjoint smooth Jordan curves, Γ0 contains ˘1, Γ𝑙 , 𝑙 ą 0,
belong to the interior of Γ0, and Γ´𝑙 “ t𝜏 : 𝜏´1 P Γ𝑙u, 0 ď 𝑙 ď 𝑙˚;

(ii) in each connected component of the complement of Γ it holds locally uniformly that
either |𝐵𝑖pZq| Ñ 0 as 𝑖 Ñ 8 or |𝐵𝑖pZq| Ñ 8 as 𝑖 Ñ 8.

It follows from (3) that 𝐵𝑖p1{Zq “ 1{𝐵𝑖pZq and therefore |𝐵𝑖p𝜏q| “ 1 if and only if |𝐵𝑖p1{𝜏q| “ 1.
This explains why ˘1 P Γ and why each connected component of Γ must be either invariant under
the map 𝜏 ÞÑ 1{𝜏 (there is only one such component by the assumption, namely, Γ0), or is mapped
into another connected component by this map. This symmetry also shows that |𝐵𝑖p𝜏q| ě 𝑀´1 ą 0,
𝜏 P Γ, 𝑖 P N, and of course 𝑀 ě 1.

Let Δ :“ 𝐽pΓq. We shall say that Δ is a symmetric contour corresponding to the interpolation
scheme t𝐸𝑖u

8
𝑖“1. We write Δ “ Y

𝑙˚
𝑙“0Δ𝑙 , where Δ𝑙 :“ 𝐽pΓ𝑙q. Notice that Δ0 is a Jordan arc

connecting ´1 and 1, and each Δ𝑙 , 𝑙 ą 0, is a Jordan curve that contains Δ0 in its exterior.
One way to think about the symmetric contours defined above is through the level lines of functions

𝐵𝑖pZq from (3). Given a contour 𝐿, fix 𝐸𝑁 :“ t𝑒1, . . . , 𝑒𝑁 u, a collection of not necessarily distinct
points in 𝐷𝐿 . Define 𝐸0 :“ ∅, 𝐸𝑖 :“ t𝑒1, . . . , 𝑒𝑖u for 𝑖 ă 𝑁 , and 𝐸𝑘𝑁`𝑖 “ p𝑘𝐸𝑁 q Y 𝐸𝑖 , 𝑘 ě 1,
0 ď 𝑖 ă 𝑁 , where 𝑘𝐸𝑁 is the multi-set consisting of 𝑘 copies of 𝐸𝑁 . Clearly, it holds that

𝐵𝑘𝑁`𝑖pZq “ 𝐵𝑘𝑁 pZq𝐵𝑖pZq

for any 𝑘 ě 0 and 0 ď 𝑖 ă 𝑁 . Let Γ :“ t𝜏 : |𝐵𝑁 p𝜏q| “ 1u be the 1-level line of 𝐵𝑁 pZq. As
mentioned before, it follows immediately from (3) that Γ is invariant under the map 𝜏 ÞÑ 1{𝜏. It also
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Figure 2. Darker filled circles represent interpolation points (bigger circle represents
more interpolation conditions at the point), dashed lines represent 𝐿, solid lines represent
Δ, and lightly shaded regions represent 𝐷8

Δ
. Panel (a): interpolation points create an

external field that pushes 𝐿 up to Δ. Panel (b): interpolation points below 𝐿 push it up,
interpolation points above 𝐿 push it down, but create weaker external field resulting in 𝐿

going through them while simultaneously forming a barrier Δ1.
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Figure 3. This is a continuation of Figure 2. Panel (a): top and bottom groups of
interpolation points create an external field that pushes 𝐿 up while the middle group pushes
𝐿 down, due to different strength of the components of the external field generated by these
groups, two barriers are created. Panel (b): interpolation points below 𝐿 create an external
field that pushes 𝐿 up all the way through 8 to the displayed position of Δ0, interpolation
points above 𝐿 create a weaker external field that results in a barrier Δ1.

follows from the choice of the sets 𝐸𝑖 , 𝑖 ď 𝑁 , that there exists 𝑀 ě 1 such that 𝑀´1 ď |𝐵𝑖p𝜏q| ď 𝑀

for 𝜏 P Γ and 𝑖 ă 𝑁 . Thus, it necessarily holds that 𝑀´1 ď |𝐵𝑖p𝜏q| ď 𝑀 for all 𝑖 P N. It is also
clear that condition (ii) of Assumption 1 is satisfied. Hence, if Γ consists of non-intersecting Jordan
curves, it satisfies all the requirements of Assumption 1. The projection of Γ by the Joukovsky map
𝐽pZq is then an admissible symmetric contour Δ that we work with in this note. In general, there
are no reasons to exclude the cases of contours Γ with points of self-intersection. We do it here
only to simplify the analysis of the asymptotic behavior of the approximants. In particular, Figures 4
and 5 depict possible contours Δ obtained from the above construction for sets 𝐸𝑁 containing only
two distinct element in different proportions (one of them being infinity). In general, sets Γ from
Assumption 1 are not level lines of any particular rational function of the form (3), but certain limits
of such level lines.

Another way to think about the symmetric contours defined above is through heuristics of potential
theory. One can think of 𝐿 as an elastic band that can freely move in the complex plane except for
the fixed points ˘1. Assume also that, say positive, unit charge can freely float along 𝐿. Somewhat
unrealistically suppose also that the band can attach to itself to form a loop and then snap into disjoint
pieces at the point where the loop was formed. Distribute a unit, also positive, charge among the
points of the set 𝐸𝑖 , where each point gets the amount of charge proportional to its multiplicity in 𝐸𝑖 .
These charges create an external field that makes 𝐿 change its location. If 𝐿 settles down to some
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collection of bands in the limit as 𝑖 Ñ 8, this is exactly a symmetric contour Δ defined above. This
heuristics is the one used in captions to Figures 2 and 3. In particular, if 𝐿 is the lower unit semicircle,
then the unit charge at infinity will move it to Δ “ r´1, 1s. If we place one fifth of the charge at
point ´3i{4 and keep the rest of it at infinity, then we will get Δ as on Figure 5(a). By decreasing the
charge at ´3i{4, we will make 𝐿 wrap around ´3i{4 until it forms a loop around ´3i{4 when 1{6
the charge is placed there, Figure 5(b). If the charge at ´3i{4 is further decreased, the band 𝐿 snaps
into two pieces, one band Δ0 connecting ´1 and 1 and one loop Δ1 around ´3i{4, see Figure 5(c).

Let us now continue with the assumption on the weight function 𝜌p𝑠q in (1). To this end, we
introduce an orientation for all the connected components of Δ. We orient Δ0 from ´1 to 1. To orient
Δ𝑙 , 𝑙 ą 0, put

(4) 𝑏𝑖p𝑧q :“
ź

𝑒P𝐸𝑖

𝜑Δ0 p𝑧q ´ 𝜑𝐿p𝑒q

1 ´ 𝜑Δ0 p𝑧q𝜑𝐿p𝑒q
“ 𝐵𝑖pZq,

where 𝑧 “ 𝐽pZq and Z belongs to the interior domain of Γ0. Let 𝐷Δ :“ CzΔ and denote by 𝐷0
Δ

and 𝐷8
Δ

the parts of 𝐷Δ where the functions |𝑏𝑖p𝑧q| converge to 0 and diverge to 8, respectively
(𝐷Δ “ 𝐷0

Δ
Y 𝐷8

Δ
), see Figures 2 and 3. Notice that each curve Δ𝑙 , 𝑙 ą 0, is a part of the

boundary of both 𝐷0
Δ

and 𝐷8
Δ

and we orient it so that 𝐷0
Δ

remains on the left as Δ𝑙 is traversed
in the positive direction (this orientation allows us to distinguish ` side (left) and ´ side (right) of
Δ𝑙 in a manner convenient for our purposes; our choice is not related to the location of the interior
domain of Δ𝑙 , it might end up on any side of the curve, see, for example, Figure 3). Let us write
Czp𝐿 Y Δ0q “: 𝑈𝑢 Y𝑈𝑏 , where𝑈𝑢 is the unbounded component of Czp𝐿 Y Δ0q. We shall also set
𝑈𝑙,𝑏 to be the interior of Δ𝑙 , 𝑙 ą 0.

Assumption 2

It is assumed that 𝜌p𝑧q is analytic in a domain that contains each 𝑈𝑙,𝑏 , 𝑙 ą 0, as well as 𝑈𝑏

(resp. 𝑈𝑢) when 8 P 𝐷0
Δ

(resp. 8 P 𝐷8
Δ

). It is also assumed that 𝜌p𝑧q is non-vanishing on
Δ0 and Y𝑙ą0𝑈𝑙,𝑏 (thus, it has zero winding number on each Δ𝑙 , 𝑙 ą 0).

The situation 8 P 𝐷0
Δ

is schematically depicted on Figures 2(a,b) and 3(a). It means that
the unbounded component of the complement of 𝐷Δ is a part of 𝐷0

Δ
. The situation 8 P 𝐷8

Δ
is

schematically depicted on Figure 3(b) and represents geometries where the unbounded component of
the complement of 𝐷Δ is a part of 𝐷8

Δ
. Under Assumption 2 the following proposition holds.

Proposition 1

For all 𝑖 large enough each element of 𝐸𝑖 has a neighborhood in which p𝜌𝐿p𝑧q “ p𝜌Δp𝑧q,
where

(5) p𝜌Δp𝑧q :“
1

2𝜋i

ż

Δ

𝜌p𝑠q

𝑠 ´ 𝑧

d𝑠
𝑤p𝑠q

, 𝑧 P 𝐷Δ,

we set 𝜍 :“ 1 when 8 P 𝐷0
Δ

and 𝜍 :“ ´1 when 8 P 𝐷8
Δ

, as well as

(6) 𝑤p𝑠q :“

#

𝜍𝑤Δ0`p𝑠q, 𝑠 P Δ0,

𝑤Δ0 p𝑠q, 𝑠 P Y𝑙ą0Δ𝑙 .

In particular, r𝑚{𝑛; 𝐸𝑚`𝑛s
p𝜌𝐿 p𝑧q “ r𝑚{𝑛; 𝐸𝑚`𝑛s

p𝜌Δp𝑧q for all 𝑚 ` 𝑛 large enough.

In view of the above proposition we can now define functions of the second kind as

(7) 𝑅𝑚,𝑛p𝑧q :“
𝑞𝑚,𝑛p𝑧qp𝜌Δp𝑧q ´ 𝑝𝑚,𝑛p𝑧q

𝑣𝑚,𝑛p𝑧q
, 𝑧 P 𝐷Δ

(in the diagonal case we shall simply denote them by 𝑅𝑛p𝑧q). It follows from (2) and Proposition 1
that 𝑅𝑚,𝑛p𝑧q is analytic in the domain of its definition and vanishes at infinity with order at least
mint𝑚, 𝑛u ` 1.
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Proposition 2

With 𝑤p𝑠q given by (6), it holds that

𝑅𝑚,𝑛p𝑧q “
1

2𝜋i

ż

Δ

𝑞𝑚,𝑛p𝑠q

𝑣𝑚,𝑛p𝑠q

𝜌p𝑠q

𝑤p𝑠q

d𝑠
𝑠 ´ 𝑧

, 𝑧 P 𝐷Δ.

Recall that 𝜌p𝑠q is assumed to be non-vanishing on Δ with a zero winding number on each Δ𝑙 ,
𝑙 ą 0. Thus, we can define log 𝜌p𝑠q continuously on Δ. Let

(8) 𝑆𝜌p𝑧q :“ exp
"

𝑤Δ0 p𝑧q

2𝜋i

ż

Δ

log 𝜌p𝑠q

𝑧 ´ 𝑠

d𝑠
𝑤p𝑠q

*

, 𝑧 P 𝐷Δ,

be the Szegő function of 𝜌p𝑠q. That is, 𝑆𝜌p𝑧q is holomorphic and non-vanishing in𝐷Δ with continuous
traces on Δ that satisfy

(9)

#

𝑆𝜌`p𝑠q𝑆𝜌´p𝑠q “ 𝜌´𝜍 p𝑠q, 𝑠 P Δ0,

𝑆𝜌`p𝑠q “ 𝑆𝜌´p𝑠q{𝜌p𝑠q, 𝑠 P Δ𝑙 , 𝑙 ą 0.

Proposition 3

Let 𝑏2𝑛p𝑧q be given by (4) and 𝑆𝜌p𝑧q be given by (8). Then there exist choices of the branch
of the square root so that

(10) Ψ𝑛p𝑧q :“

#
a

𝑣𝑛p𝑧q{𝑏2𝑛p𝑧q𝑆𝜌p𝑧q, 𝑧 P 𝐷0
Δ
,

a

𝑣𝑛p𝑧q𝑏2𝑛p𝑧q{𝑆𝜌p𝑧q, 𝑧 P 𝐷8
Δ
,

is an analytic and non-vanishing function in 𝐷Δ that satisfies

(11)

#

Ψ𝑛p𝑧q “ 𝛾
´1
𝑛 𝑧𝑛 ` Op𝑧𝑛´1q as 𝑧 Ñ 8,

Ψ𝑛`p𝑠qΨ𝑛´p𝑠q “ p𝑣𝑛{𝜌qp𝑠q, 𝑠 P Δ,

for some non-zero constant 𝛾𝑛.

The following theorem constitutes the main result of this note.

Theorem 1

Let 𝐿, t𝐸𝑖u
8
𝑖“1, and 𝜌p𝑧q be such that Assumptions 1 and 2 are satisfied. Further,

let Δ be the symmetric contour corresponding to the interpolation scheme t𝐸𝑖u
8
𝑖“1 and

𝑝𝑛p𝑧q{𝑞𝑛p𝑧q “ r𝑛{𝑛; 𝐸2𝑛s
p𝜌𝐿 p𝑧q be the sequence of diagonal multipoint Padé approximants

of p𝜌𝐿p𝑧q associated with t𝐸𝑖u
8
𝑖“1, see (2). Then it holds uniformly on closed subsets of 𝐷Δ

that
(12) 𝑞𝑛p𝑧q “ 𝛾𝑛p1 ` 𝑜p1qqΨ𝑛p𝑧q

and

(13) 𝑅𝑛p𝑧q “
𝛾𝑛p1 ` 𝑜p1qq

𝑤Δ0 p𝑧qΨ𝑛p𝑧q

#

1, 𝑧 P 𝐷0
Δ
,

´1, 𝑧 P 𝐷8
Δ
.

In particular, it holds uniformly on closed subsets of 𝐷Δ that

(14) p𝜌Δp𝑧q ´ r𝑛{𝑛; 𝐸2𝑛s
p𝜌𝐿 p𝑧q “

1 ` 𝑜p1q

𝑤Δ0 p𝑧q

#

𝑏2𝑛p𝑧q𝑆
´2
𝜌 p𝑧q, 𝑧 P 𝐷0

Δ
,

´𝑏
´1
2𝑛 p𝑧q𝑆2

𝜌p𝑧q, 𝑧 P 𝐷8
Δ
.

Let us place the above theorem, which covers contours on Figures 4(d) and 5(c), in the context of
recent and not so distant results on attracting curves of the poles of Padé approximants. When the
approximants are classical (i.e., all interpolation points are at infinity) and the approximated functions
are of hyperelliptic type (Cauchy integrals of densities of the form 𝜌p𝑠q{𝑤𝐿`p𝑠q, where 𝑤2

𝐿
p𝑠q is

a polynomial of even degree), it was recognized by Nuttall and Singh [13] that the pole attracting
contour Δ is a projection of a certain level line on the Riemann surface of 𝑤𝐿p𝑧q to the complex plane
(such Δ’s do not separate the plane). In this case an analog of Theorem 1 was obtained in [23] by
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Figure 4. Symmetric contoursΔ that correspond to 𝐿 that connects ´1 to some 𝑥˚ ą 5{4
through the upper half-plane and then 𝑥˚ to 1 through the lower half-plane and interpolation
schemes where the interpolation conditions are equally distributed between between 8 and
5{4 (panel (a)) or there are twice (panel (b)), three times (panel (c)), or four times (panel
(d)) more interpolation conditions at 8 than at 5{4 (the disk on all of the figures). The
plots are obtained by numerically plotting the level-line t|𝐵𝑖p𝜏q| “ 1u.
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Figure 5. Symmetric contours Δ that correspond to 𝐿 being a lower unit semi-circle and
interpolation schemes where there are four (panel (a)), five (panel (b)), or six (panel (c))
times more interpolation conditions at 8 than at ´3i{4 (the disk on all of the figures).

the author (see also [18, 19, 3]). This approach was later applied to multipoint Padé approximants by
Baratchart and the author in [2] when Δ is Jordan arc, which covers the contour on Figure 5(a) (see
also [6, 17]) and by the author [21] in the full generality of [13] for contours that do not separate the
plane. So, this work is a natural continuation of [2] (Δ0 is a Jordan arc in Theorem 1) and the author
is currently preparing generalization of [21] to the case of contours that do disconnect the plane.
When the approximated function is multi-valued but not hyperelliptic, the approach of [13] no longer
works. However, in a series of pathbreaking papers [14, 15, 16] Stahl showed that attracting contours
for classical Padé approximants can be identified as the ones having minimal logarithmic capacity
among all possible branch cuts for the approximated function. Strong asymptotics of classical Padé
approximants for "generic" geometries then was obtained by Aptekarev and the author [1]. Stahl’s
approach was extended to the set up that includes multipoint Padé approximants by Gonchar and
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Rakhmanov [12] (contours are not allowed to separate the plane). Further extension of Stahl’s ideas
to contours that are allowed to separate the plane was obtained by Buslaev [4, 5]. Buslaev’s existence
theorem covers all possible contours arising from interpolation schemes with finitely many points
(in particular, it covers Figures 4 and 5). However, his convergence results consider only those
geometries where each component of CzΔ contains a branch point of the approximated function as
on Figure 4(a,b) (they are also concerned with weak asymptotics). Some strong asymptotics analogs
of Buslaev convergence results were recently obtained by the author [22]. In this sense the current
note is a continuation of the work done in [22].

2. Proofs

Let us recall one of the Plemelj-Sokhotski formulae [11, Section I.4.2] that states that

Φ`p𝑠q ´ Φ´p𝑠q “ 𝜙p𝑠q, 𝑠 P 𝐼˝, Φp𝑧q :“
1

2𝜋i

ż

𝐼

𝜙p𝑠qd𝑠
𝑠 ´ 𝑧

,

where 𝐼 is a smooth oriented Jordan arc (closed or open), 𝐼˝ is its interior, and 𝜙p𝑠q is a function
that is Hölder smooth on any subarc of 𝐼˝. It also holds that Φ˘p𝑠q are Hölder smooth functions
on any subarc of 𝐼˝. Recall further Yamashita-Bagemihl analytic continuation principle, see [20,
Theorem 3]: if domains 𝐷1, 𝐷2 are disjoint, 𝐼 is an open analytic arc that belongs to the boundary
of both domains, 𝑓𝑖p𝑧q belongs to the Hardy space 𝐻1p𝐷𝑖q, 𝑖 P t1, 2u (in particular, bounded in 𝐷𝑖),
and

lim
𝐿1p𝑠qQ𝑧Ñ𝑠

𝑓1p𝑧q “ lim
𝐿2p𝑠qQ𝑧Ñ𝑠

𝑓2p𝑧q ‰ 8

for almost every 𝑠 P 𝐼, where 𝐿𝑖p𝑠q is some arc in 𝐷𝑖 terminating at 𝑠, then 𝑓2p𝑧q is the analytic
continuation of 𝑓1p𝑧q across 𝐿 from 𝐷1 into 𝐷2.

Proof of Proposition 1. Denote the unbounded component of 𝐷Δ by Ω. We shall consider only
those indices 𝑖 that are large enough so that 𝑏𝑖p𝑒q “ 0 when 𝑒 P 𝐸𝑖 X 𝐷0

Δ
and 𝑏𝑖p𝑒q “ 8 when

𝑒 P 𝐸𝑖 X 𝐷8
Δ

. Fix such an index 𝑖. Since 𝐸𝑖 is finite and 𝐿 can be perturbed in (1) without changing
the relevant values of p𝜌𝐿p𝑧q in (2), we can assume that 𝐿 and Δ0 have at most finitely many points in
common and these arcs intersect at those points transversally.

According to Plemelj-Sokhotski formulae it follows from (1) that
p𝜌𝐿`p𝑠q ´ p𝜌𝐿´p𝑠q “ 𝜌p𝑠q{𝑤𝐿`p𝑠q, 𝑠 P 𝐿.

Therefore, the analytic continuation of p𝜌𝐿p𝑧q across 𝐿 is given by p𝜌𝐿p𝑧q´𝜌p𝑧q{𝑤𝐿p𝑧q. Define p𝜌Δ0 p𝑧q

as in (1) with 𝐿 replaced by Δ0. Note that 𝑤𝐿p𝑧q “ ´𝑤Δ0 p𝑧q for 𝑧 P 𝑈𝑏 and 𝑤𝐿p𝑧q “ 𝑤Δ0 p𝑧q

for 𝑧 P 𝑈𝑢 . Respectively, it also holds that 𝜑Δ0 p𝑧q “ 1{𝜑𝐿p𝑧q for 𝑧 P 𝑈𝑏 and 𝜑Δ0 p𝑧q “ 𝜑𝐿p𝑧q for
𝑧 P 𝑈𝑢 .

Assume that Ω Ď 𝐷0
Δ

. Then

(15) p𝜌Δ0 p𝑧q “

"

p𝜌𝐿p𝑧q ` 𝜌p𝑧q{𝑤Δ0 p𝑧q, 𝑧 P 𝑈𝑏 ,

p𝜌𝐿p𝑧q, 𝑧 P 𝑈𝑢 .

Indeed, the right- and left-hand sides of (15) are analytic in CzΔ0, vanish at infinity, and have smooth
traces on Δ0. The jump of the right-hand side across Δ0 is equal to 𝜌p𝑠q{𝑤Δ0`p𝑠q when 𝑈𝑏 lies to
the left of Δ0 and again ´𝜌p𝑠q{𝑤Δ0´p𝑠q “ 𝜌p𝑠q{𝑤Δ0`p𝑠q when 𝑈𝑏 lies to the right of Δ0. That is,
in any case it matches the jump of p𝜌Δ0 p𝑧q across Δ0. Hence, the difference of the left- and right-hand
sides of (15) is analytic in Czt˘1u by the analytic continuation principle. As it vanishes at infinity
and can have at most square root singularities at ˘1 by [11, Section I.8.4], it must be identically zero.
Let 𝑒 P 𝐸𝑖 X Ω. As Ω Ď 𝐷0

Δ
, 𝑏𝑖p𝑒q “ 0 and therefore 𝑒 P 𝑈𝑢 . In this case

(16) p𝜌Δp𝑧q “ p𝜌Δ0 p𝑧q “ p𝜌𝐿p𝑧q

for 𝑧 around 𝑒 as claimed, where the first conclusion follows from Assumption 2 and Cauchy theorem.
Let now 𝑒 P 𝐸𝑖 X 𝐷0

Δ
, 𝑒 R Ω. Again, it must hold that 𝑒 P 𝑈𝑢 . Since each curve Δ𝑙 , 𝑙 ą 0, lies on

the border of both 𝐷0
Δ

and 𝐷8
Δ

, 𝑒 is an interior point of even number of such curves. As orientations
of these curves alternate between clockwise and counter-clockwise and

(17) p𝜌Δ𝑙
p𝑧q :“

1
2𝜋i

ż

Δ𝑙

𝜌p𝑠q

𝑠 ´ 𝑧

d𝑠
𝑤Δ0 p𝑠q

“ ˘
𝜌p𝑧q

𝑤Δ0 p𝑧q
, 𝑧 P 𝑈𝑙,𝑏 ,

(the choice of the sign depends on the orientation of Δ𝑙) by Assumption 2 and Cauchy integral
formula, we again get that (16) holds. Now, when 𝑒 P 𝐸𝑖 X 𝐷8

Δ
, 𝑏𝑖p𝑧q must have a pole at 𝑒, that
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is, 𝜑Δ0 p𝑒q “ 1{𝜑𝐿p𝑒q, which implies that 𝑒 P 𝑈𝑏 . Let Δ𝑙𝑒 be the curve that borders Ω and contains
𝑒 in its interior. Then Δ𝑙𝑒 is clockwise oriented. There could be other curves Δ𝑙 containing 𝑒 in
their interior, but they are even in number and their net contribution to p𝜌Δp𝑧q around 𝑒 is zero due to
alternating orientations and (17). Hence,

p𝜌Δp𝑧q “ p𝜌Δ0 p𝑧q ` p𝜌Δ𝑙𝑒
p𝑧q “ p𝜌𝐿p𝑧q ` 𝜌p𝑧q{𝑤Δ0 p𝑧q ` p𝜌Δ𝑙𝑒

p𝑧q “ p𝜌𝐿p𝑧q

for 𝑧 around 𝑒 as claimed, where we used (15) and (17) one more time.
Assume now that Ω Ď 𝐷8

Δ
. Since 𝑤𝐿p𝑧q “ 𝑤Δ0 p𝑧q for 𝑧 P 𝑈𝑢 , reasoning as in (15) now implies

that

(18) ´ p𝜌Δ0 p𝑧q “

"

p𝜌𝐿p𝑧q, 𝑧 P 𝑈𝑏 ,

p𝜌𝐿p𝑧q ´ 𝜌p𝑧q{𝑤Δ0 p𝑧q, 𝑧 P 𝑈𝑢 .

Let 𝑒 P 𝐸𝑖 X Ω. Since Ω Ď 𝐷8
Δ

, 𝑏𝑖p𝑧q has a pole at 𝑒 and therefore 𝑒 P 𝑈𝑏 . Recall (6). Since 𝜌p𝑧q

is analytic on each𝑈𝑙,𝑏 , we get as in (16) that

(19) p𝜌Δp𝑧q “ ´p𝜌Δ0 p𝑧q “ p𝜌𝐿p𝑧q

for 𝑧 around 𝑒. If 𝑒 P 𝐸𝑖 X p𝐷8
Δ

zΩq, then 𝑒 P 𝑈𝑏 and it lies interior to even number of curves
Δ𝑙 , 𝑙 ą 0, with consecutively alternating orientations. Then the net contribution to p𝜌Δp𝑧q by these
curves is zero and (19) remains valid. Finally, if 𝑒 P 𝐸𝑖 X 𝐷0

Δ
, then 𝑒 P 𝑈𝑢 and it lies interior to odd

number of curves Δ𝑙 , 𝑙 ą 0, with consecutively alternating orientations starting (and ending) with
the counter-clockwise one. The desired claim now follows from (17) and (18). �

Proof of Proposition 2. It follows from (5), (7), Plemelj-Sokhotski formulae, and the analytic con-
tinuation principle that the difference

𝑅𝑚,𝑛p𝑧q ´
1

2𝜋i

ż

Δ

𝑞𝑚,𝑛p𝑠q

𝑣𝑚,𝑛p𝑠q

𝜌p𝑠q

𝑤p𝑠q

d𝑠
𝑠 ´ 𝑧

is analytic in Czt˘1u and is vanishing at infinity. It is also follows from the known behavior of
Cauchy integrals around the endpoints of contours of integration [11, Section I.8.4] that it can have
at most square root singularity at ˘1. Hence, it must be identically zero. �

Proof of Proposition 3. Write 𝑣𝑛p𝑧q “ 𝑣𝑛,0p𝑧q𝑣𝑛,8p𝑧q, where 𝑣𝑛,0p𝑧q and 𝑣𝑛,8p𝑧q are monic poly-
nomials that vanish at the zeros and poles of 𝑏2𝑛p𝑧q in C, respectively. It follows from (4) that

𝑏2𝑛p𝑧q
𝑣𝑛,8p𝑧q

𝑣𝑛,0p𝑧q
“

˜

𝑐𝑛Z
𝑛´degp𝑣𝑛,8q

ś

𝑒P𝐸2𝑛,8
pZ ´ 𝜑𝐿p𝑒qq

ś

𝑒P𝐸2𝑛,0
p1 ´ Z𝜑𝐿p𝑒qq

¸2

:“ 𝑇2
𝑛 pZq,

where 𝑧 “ 𝐽pZq, Z belongs to the interior domain of Γ0, 𝐸2𝑛,0 and 𝐸2𝑛,8 are the multi-sets of zeros
of 𝑣𝑛,0p𝑧q and 𝑣𝑛,8p𝑧q (i.e., counting multiplicities), and

𝑐2
𝑛 :“ p´2qdegp𝑣𝑛,0q´degp𝑣𝑛,8q

ź

𝑒P𝐸2𝑛,0

𝜑𝐿p𝑒q
ź

𝑒P𝐸2𝑛,8

𝜑
´1
𝐿

p𝑒q

whose square root we fix arbitrarily. Observe that 𝑇𝑛pZq is a non-vanishing holomorphic function in
the interior of Γ0 except for a possible zero or pole at the origin. In any case, we can define

b

p𝑏2𝑛𝑣𝑛,8{𝑣𝑛,0qp𝑧q :“ 𝑇𝑛pZq,

where 𝑧 “ 𝐽pZq and Z belongs to the interior domain of Γ0, which is a holomorphic and non-vanishing
function in CzΔ0 that has either a pole or a zero at infinity. Then we have that

(20)
b

p𝑏2𝑛𝑣𝑛,8{𝑣𝑛,0qp𝑠q
`

b

p𝑏2𝑛𝑣𝑛,8{𝑣𝑛,0qp𝑠q
´

“ 𝑇𝑛p𝜏q𝑇𝑛p1{𝜏q “ p𝑣𝑛,8{𝑣𝑛,0qp𝑠q

for 𝑠 “ 𝐽p𝜏q P Δ0, i.e., 𝜏 P Γ0. Now we can define

(21)
b

𝑣𝑛p𝑧q{𝑏2𝑛p𝑧q :“ 𝑣𝑛,8p𝑧q𝑇
´1
𝑛 pZq and

b

𝑣𝑛p𝑧q𝑏2𝑛p𝑧q :“ 𝑣𝑛,0p𝑧q𝑇𝑛pZq,

where 𝑧 “ 𝐽pZq and Z belongs to the interior domain of Γ0. Relations (11) now easily follow from
(9), (20), and (21) (observe that it necessarily holds that 𝐸2𝑛 Ă C when 8 P 𝐷8

Δ
, in which case

2𝑛 “ degp𝑣𝑛q “ degp𝑣𝑛,0q ` degp𝑣𝑛,8q). �



SYMMETRIC CONTOURS THAT SEPARATE THE PLANE 9

Proof of Theorem 1. For brevity, let us set

𝑰 :“
ˆ

1 0
0 1

˙

and 𝜎3 :“
ˆ

1 0
0 ´1

˙

.

To prove the theorem, we follow by now classical approach of Fokas, Its, and Kitaev [9, 10] connecting
orthogonal polynomials to matrix Riemann-Hilbert problems and then utilizing the non-linear steepest
descent method of Deift and Zhou [8].

Step 1. Consider the following 2 ˆ 2 Riemann-Hilbert problem (RHP-𝒀):

(a) 𝒀p𝑧q is analytic in CzΔ and lim
𝑧Ñ8

𝒀p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b) 𝒀p𝑧q has continuous traces on Δzt˘1u that satisfy

𝒀`p𝑠q “ 𝒀´p𝑠q

˜

1 p𝜌{p𝑣𝑛𝑤qqp𝑠q

0 1

¸

, 𝑠 P Δzt˘1u,

where 𝑤p𝑠q was defined in (6);

(c) it holds that 𝒀p𝑧q “ O
˜

1 |𝑧 ´ 𝑒|´1{2

1 |𝑧 ´ 𝑒|´1{2

¸

as 𝐷Δ Q 𝑧 Ñ 𝑒 P t˘1u.

To connect RHP-𝒀 to the polynomials 𝑞𝑛p𝑧q, recall (7). If it holds that

(22) degp𝑞𝑛q “ 𝑛 and 𝑅𝑛`1,𝑛´1p𝑧q “ 𝑘
´1
𝑛 𝑧´𝑛r1 ` 𝑜p1qs as 𝑧 Ñ 8

for a non-zero finite constant 𝑘𝑛, then RHP-𝒀 is solved by

(23) 𝒀p𝑧q “

˜

𝑞𝑛p𝑧q 𝑅𝑛p𝑧q

𝑘𝑛𝑞𝑛`1,𝑛´1p𝑧q 𝑘𝑛𝑅𝑛`1,𝑛´1p𝑧q

¸

.

Conversely, if RHP-𝒀 is solvable, then its solution necessarily has form (23) and (22) is satisfied.
Indeed, if (22) holds, then so is RHP-𝒀(a) by (2) and since degp𝑞𝑛`1,𝑛´1q ă 𝑛. The fact that
RHP-𝒀(b) is fulfilled follows from Proposition 2 and Plemelj-Sokhotski formulae. Finally, RHP-𝒀(c)
holds due to the known behavior of Cauchy integrals around endpoints of contours of integration
[11, Section I.8.4]. Conversely, if 𝒀p𝑧q is a solution of RHP-𝒀 , then its unique (if 𝒀1p𝑧q and 𝒀2p𝑧q

are solutions, then their determinants are identically equal to 1 and 𝒀1p𝑧q𝒀´1
2 p𝑧q must be entire and

equal to 𝑰 at infinity, i.e., equal to 𝑰 everywhere). Furthermore, 𝑞p𝑧q, the p1, 1q-entry of 𝒀p𝑧q, must
be a monic polynomials of degree exactly 𝑛 by RHP-𝒀(a,b) and 𝑅p𝑧q, the p1, 2q-entry, must have
an integral representation as in Proposition 2 with 𝑞𝑛p𝑧q replaced by 𝑞p𝑧q by RHP-𝒀(b,c) and the
analytic continuation principle. Replace the first row of 𝒀p𝑧q with

`

𝑞p𝑧q ` 𝑞𝑛p𝑧q 𝑅p𝑧q ` 𝑅𝑛p𝑧q
˘

or
`

p𝑞p𝑧q ` 𝑞𝑛p𝑧qq{2 p𝑅p𝑧q ` 𝑅𝑛p𝑧qq{2
˘

depending on wether degp𝑞𝑛q ă 𝑛 or degp𝑞𝑛q “ 𝑛. Thus obtained matrix is still a solution of RHP-𝒀
and therefore must be equal to 𝒀p𝑧q. That is, 𝑞𝑛p𝑧q “ 𝑞p𝑧q as claimed. The form of the second row
can be deduced similarly.

Step 2. Let 𝐽0 be a smooth Jordan curve encircling Δ0 such that 𝜌p𝑧q is non-vanishing and
analytic on the closure of Ω0, the interior domain of 𝐽0 with Δ0 removed. We orient 𝐽0 clockwise
when 8 P 𝐷0

Δ
and counter-clockwise otherwise. Further, let 𝐽`

𝑙
Ă 𝐷0

Δ
and 𝐽´

𝑙
Ă 𝐷8

Δ
, 𝑙 ą 0, be

Jordan curves such that Δ𝑙 contains one of them in its interior and another one in its exterior, and 𝜌p𝑧q

is non-vanishing and analytic on the closures of Ω`

𝑙
and Ω

´

𝑙
, the annular domains with boundaries

𝐽
`

𝑙
YΔ𝑙 and 𝐽´

𝑙
YΔ𝑙 , respectively. We orient 𝐽˘

𝑙
in the direction ofΔ𝑙 . Set 𝐽 :“ 𝐽0

Ť

Y𝑙ą0p𝐽
`

𝑙
Y𝐽

´

𝑙
q.

Assume also that the closures of Ω0 and Ω
`

𝑙
Y Ω

´

𝑙
, 𝑙 ą 0, are pairwise disjoint.

Recall the definition of 𝜍 in Proposition 1. If 𝒀p𝑧q is a solution of RHP-𝒀 , let

(24) 𝑿p𝑧q :“ 𝒀p𝑧q

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

˜

1 0
´𝜍p𝑣𝑛𝑤Δ0 {𝜌qp𝑧q 1

¸

, 𝑧 P Ω0,

˜

1 0
¯p𝑣𝑛𝑤Δ0 {𝜌qp𝑧q 1

¸

, 𝑧 P Ω
˘
𝑖
,

𝑰, otherwise.

Then the matrix function 𝑿p𝑧q solves the following Riemann-Hilbert problem (RHP-𝑿):
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(a) 𝑿p𝑧q is analytic in CzpΔ Y 𝐽q and lim
𝑧Ñ8

𝑿p𝑧q𝑧´𝑛𝜎3 “ 𝑰;
(b) 𝑿p𝑧q has continuous traces on pΔ Y 𝐽qzt˘1u that satisfy

𝑿`p𝑠q “ 𝑿´p𝑠q

$

’

’

’

’

&

’

’

’

’

%

˜

0 p𝜌{p𝑣𝑛𝑤qqp𝑠q

´p𝑣𝑛𝑤{𝜌qp𝑠q 1

¸

, 𝑠 P Δ,

˜

1 0
p𝑣𝑛𝑤Δ0 {𝜌qp𝑠q 1

¸

, 𝑠 P 𝐽;

(c) it holds that 𝑿p𝑧q “ O
˜

1 |𝑧 ´ 𝑒|´1{2

1 |𝑧 ´ 𝑒|´1{2

¸

as 𝐷Δ Q 𝑧 Ñ 𝑒 P t˘1u.

In fact, it is quite easy to see that RHP-𝑿 is solvable if and only if RHP-𝒀 is solvable and the
solutions are connected by (24) (all matrices in (24) have determinants identically equal to 1 and
therefore are invertible).

Step 3. Let Ψ𝑛p𝑧q be given by (10) and 𝜑p𝑧q “ 𝑧 ´ 𝜍𝑤Δ0 p𝑧q. Define

(25) 𝑴p𝑧q :“

$

’

’

’

’

&

’

’

’

’

%

˜

𝜍Ψ𝑛p𝑧q 𝜍{p𝑤Δ0Ψ𝑛qp𝑧q

𝜍p𝜑Ψ𝑛qp𝑧q 𝜍{p𝜑𝑤Δ0Ψ𝑛qp𝑧q

¸

, 𝑧 P 𝐷0
Δ
,

˜

𝜍Ψ𝑛p𝑧q ´𝜍{p𝑤Δ0Ψ𝑛qp𝑧q

𝜍pΨ𝑛{𝜑qp𝑧q ´𝜍p𝜑{p𝑤Δ0Ψ𝑛qqp𝑧q

¸

, 𝑧 P 𝐷8
Δ
.

Using (11) and the fact that 𝜑`p𝑠q𝜑´p𝑠q ” 1 for 𝑠 P Δ0, one can readily check that 𝑴p𝑧q solves the
following Riemann-Hilbert problem (RHP-𝑴):

(a) 𝑴p𝑧q is analytic in CzΔ and 𝑪´1 :“ lim
𝑧Ñ8

𝑴p𝑧q𝑧´𝑛𝜎3 is a diagonal matrix with non-zero
entries;

(b) 𝑴p𝑧q has continuous traces on Δzt˘1u that satisfy

𝑴`p𝑠q “ 𝑴´p𝑠q

˜

0 p𝜌{p𝑣𝑛𝑤qqp𝑠q

´p𝑣𝑛𝑤{𝜌qp𝑠q 0

¸

, 𝑠 P Δzt˘1u;

(c) it holds that 𝑴p𝑧q “ O
˜

1 |𝑧 ´ 𝑒|´1{2

1 |𝑧 ´ 𝑒|´1{2

¸

as 𝐷Δ Q 𝑧 Ñ 𝑒 P t˘1u.

Observe also that

(26) detp𝑴p𝑧qq “
1

p𝑤Δ0𝜑qp𝑧q
´

𝜑p𝑧q

𝑤Δ0 p𝑧q
” 2𝜍, 𝑧 P C.

Step 4. Consider the following Riemann-Hilbert problem (RHP-𝒁):

(a) 𝒁p𝑧q is analytic in Cz𝐽 and 𝒁p8q “ 𝑰;
(b) 𝒁p𝑧q has continuous traces on 𝐽 that satisfy

𝒁`p𝑠q “ 𝒁´p𝑠q𝑴p𝑠q

˜

1 0
p𝑣𝑛𝑤Δ0 {𝜌qp𝑠q 1

¸

𝑴´1p𝑠q, 𝑠 P 𝐽.

Denote by 𝑱p𝑠q the jump matrix in RHP-𝒁(b), i.e., 𝒁`p𝑠q “ 𝒁´p𝑠q𝑱p𝑠q, 𝑠 P 𝐽. It follows from
(10), (25), (26), and a straightforward computation that

𝑱p𝑠q “ 𝑰 ` 𝑏2𝑛p𝑠q
𝜍

2p𝑤Δ0 𝜌𝑆
2
𝜌qp𝑠q

ˆ

𝜑´1p𝑠q ´1
𝜑´2p𝑠q ´𝜑´1p𝑠q

˙

“ 𝑰 ` 𝒐p1q

uniformly on 𝐽 X 𝐷0
Δ

as well as

𝑱p𝑠q “ 𝑰 `
1

𝑏2𝑛p𝑠q

𝜍𝑆2
𝜌p𝑠q

2p𝑤Δ0 𝜌qp𝑠q

ˆ

𝜑p𝑠q ´1
𝜑2p𝑠q ´𝜑p𝑠q

˙

“ 𝑰 ` 𝒐p1q

uniformly on 𝐽 X 𝐷8
Δ

, where we used Assumption 1(ii) and the very definition of 𝐷0
Δ

and 𝐷8
Δ

. The
above relations and [7, Corollary 7.108] yield that RHP-𝒁 is solvable for all 𝑛 large enough and the
solution satisfies 𝒁p𝑧q “ 𝑰 ` 𝒐p1q uniformly in C.
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It now can be quite readily checked that the solution of RHP-𝑿 is given by 𝑿p𝑧q “ 𝑪𝒁p𝑧q𝑴p𝑧q.
Observe that p1, 1q-entry of 𝑪 is 𝜍𝛾𝑛, see (11) and (25). Given a closed set 𝐾 Ă 𝐷Δ, the arcs
comprising 𝐽 can be chosen so that 𝐾 does not intersect the closures of Ω0 and Ω

`

𝑙
Y Ω

´

𝑙
, 𝑙 ą 0.

Then it follows from (24) that 𝑿p𝑧q “ 𝒀p𝑧q for 𝑧 P 𝐾 . Hence,

𝑞𝑛p𝑧q “ 𝛾𝑛Ψ𝑛p𝑧q

#

1 ` 𝑜p1q ` 𝑜p1q𝜑p𝑧q, 𝑧 P 𝐷0
Δ
,

1 ` 𝑜p1q ` 𝑜p1q𝜑´1p𝑧q, 𝑧 P 𝐷8
Δ
,

uniformly on 𝐾 . Since 𝜑𝜍 p8q “ 0, relations (12) follow. Similarly, (13) holds since

𝑅𝑛p𝑧q “
𝛾𝑛

𝑤Δ0 p𝑧qΨ𝑛p𝑧q

#

1 ` 𝑜p1q ` 𝑜p1q𝜑´1p𝑧q, 𝑧 P 𝐷0
Δ
,

´
`

1 ` 𝑜p1q ` 𝑜p1q𝜑p𝑧q
˘

, 𝑧 P 𝐷8
Δ
,

uniformly on 𝐾 , where one needs to observe that the error terms 𝑜p1q must vanish at infinity.
Asymptotic formula (14) now follows from (7), (10), (12), and (13). �
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