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Abstract. Let 𝑓 p𝑧q “
ş

p𝑧 ´ 𝑥q´1d𝜇p𝑥q, where 𝜇 is a Borel measure supported on
several subintervals of p´1, 1q with smooth Radon-Nikodym derivative. We study strong
asymptotic behavior of the error of approximation p 𝑓 ´𝑟𝑛qp𝑧q, where 𝑟𝑛p𝑧q is the 𝐿2

R-best
rational approximant to 𝑓 p𝑧q on the unit circle with 𝑛 poles inside the unit disk.

1. 𝐿2
R-best Rational Approximants

1.1. Meromorphic Approximation Problem. Let D be the unit disk and T be the unit
circle. Denote by 𝐿2 the space of square-summable functions on T and by 𝐻2 the Hardy
space of functions 𝑓 p𝑧q that are holomorphic in D and satisfy

} 𝑓 }2
2 :“ sup

0ă𝑟ă1

1
2𝜋

ż

T
| 𝑓 p𝑟𝜏q|2|d𝜏| ă 8.

Every function in 𝐻2 is uniquely determined by its non-tangential limit on T, which
necessarily belongs to 𝐿2 and the 𝐿2-norm of this trace is equal to the 𝐻2-norm of the
function. Thus, 𝐻2 can be regarded as a closed subspace of 𝐿2. We shall further denote
by 𝐿2

R and 𝐻2
R the subspaces of 𝐿2 and 𝐻2, respectively, consisting of functions with real

Fourier coefficients, that is, functions satisfying 𝑓 p𝜏q “ 𝑓 p𝜏q for 𝜏 P T.
Denote byP𝑛 the space of algebraic polynomials of degree at most 𝑛with real coefficients

and by Q𝑛 its subset consisting of monic polynomials with exactly 𝑛 zeros in D. Put

R𝑛 :“
"

𝑝p𝑧q

𝑞p𝑧q
“
𝑝𝑛´1𝑧

𝑛´1 ` 𝑝𝑛´2𝑧
𝑛´2 ` ¨ ¨ ¨ ` 𝑝0

𝑧𝑛 ` 𝑞𝑛´1𝑧𝑛´1 ` ¨ ¨ ¨ ` 𝑞0
: 𝑝 P P𝑛´1, 𝑞 P Q𝑛

*

and consider the following meromorphic approximation problem: given 𝑓 P 𝐿2
R and 𝑛 P N,

find 𝑔𝑛 P 𝐻2
R ` R𝑛 such that } 𝑓 ´ 𝑔𝑛}2 “ inf𝑔P𝐻 2

R`R𝑛
} 𝑓 ´ 𝑔}2.

1.2. Rational Approximation Problem. The above problem can be reduced to a rational
approximation problem. To this end, denote by 𝐻̄2

R the orthogonal complement of 𝐻2
R in

𝐿2
R, 𝐿2

R “ 𝐻2
R ‘ 𝐻̄2

R, with respect to the standard scalar product. From the viewpoint of
analytic function theory, 𝐻̄2

R can be regarded as a space of traces of functions holomorphic
in t|𝑧| ą 1u, having real Fourier coefficients and vanishing at infinity, and whose square-
means on the concentric circles centered at zero (this time with radii greater then 1) are
uniformly bounded above. The orthogonal decomposition 𝐿2

R “ 𝐻2
R ‘ 𝐻̄2

R yields that

} 𝑓 ´ 𝑔𝑛}2
2 “ } 𝑓` ´ 𝑔`

𝑛 }2
2 ` } 𝑓´ ´ 𝑔´

𝑛 }2
2,

where 𝑓 “ 𝑓` ` 𝑓´, 𝑔𝑛 “ 𝑔`
𝑛 ` 𝑔´

𝑛 , and 𝑓`, 𝑔`
𝑛 P 𝐻2

R, 𝑓´, 𝑔´
𝑛 P 𝐻̄2

R. One can see that in
order for 𝑔𝑛 to be a best approximant it is necessary that 𝑔`

𝑛 “ 𝑓`. Moreover, one can readily
check that 𝑔´

𝑛 P R𝑛. Thus, an equivalent rational approximation problem can be stated as
follows: given 𝑓 P 𝐻̄2

R and 𝑛 P N, find 𝑟𝑛 P R𝑛 such that } 𝑓 ´ 𝑟𝑛}2 “ inf𝑟PR𝑛
} 𝑓 ´ 𝑟}2.
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1.3. Irreducible Critical Points. 𝐿2
R-best rational approximants are a part of a larger class

of critical points in rational 𝐻̄2
R-approximation. From the computational viewpoint, critical

points are as important as best approximants since a numerical search is more likely to
yield a locally best rather than a best approximant. For a fixed 𝑓 P 𝐻̄2

R, critical points can
be defined as follows. Set

Σ 𝑓 ,𝑛 : P𝑛´1 ˆ Q𝑛 Ñ r0,8q

p𝑝, 𝑞q ÞÑ } 𝑓 ´ 𝑝{𝑞}2
2.

In other words,Σ 𝑓 ,𝑛 is the squared error of approximation of 𝑓 by 𝑟 “ 𝑝{𝑞 inR𝑛. The cross-
product P𝑛´1 ˆ Q𝑛 is topologically identified with an open subset of R2𝑛 with coordinates
𝑝 𝑗 and 𝑞𝑘 , 𝑗 , 𝑘 P t0, . . . , 𝑛 ´ 1u. Then a pair of polynomials p𝑝𝑐 , 𝑞𝑐q P P𝑛´1 ˆ Q𝑛,
identified with a vector in R2𝑛, is said to be a critical pair of order 𝑛, if all the partial
derivatives of Σ 𝑓 ,𝑛 do vanish at p𝑝𝑐 , 𝑞𝑐q. Respectively, a rational function 𝑟𝑐 P R𝑛 is a
critical point of order 𝑛 if it can be written as the ratio 𝑟𝑐 “ 𝑝𝑐{𝑞𝑐 of a critical pair p𝑝𝑐 , 𝑞𝑐q

in P𝑛´1 ˆ Q𝑛. A particular example of a critical point is a locally best approximant.
That is, a rational function 𝑟𝑙 “ 𝑝𝑙{𝑞𝑙 associated with a pair p𝑝𝑙 , 𝑞𝑙q P P𝑛´1 ˆ Q𝑛 such
that Σ 𝑓 ,𝑛p𝑝𝑙 , 𝑞𝑙q ď Σ 𝑓 ,𝑛p𝑝, 𝑞q for all pairs p𝑝, 𝑞q in some neighborhood of p𝑝𝑙 , 𝑞𝑙q in
P𝑛´1 ˆ Q𝑛. We call a critical point of order 𝑛 irreducible if it belongs to R𝑛zR𝑛´1.
Best approximants, as well as local minima, are always irreducible critical points unless
𝑓 P R𝑛´1. In general, there may be other critical points, reducible or irreducible, which
are saddles or maxima.

One of the most crucial features of the critical points is the fact that they are “maximal”
rational interpolants. More precisely, if 𝑓 P 𝐻̄2

R and 𝑟𝑛p𝑧q is an irreducible critical point of
order 𝑛, then 𝑟𝑛p𝑧q interpolates 𝑓 p𝑧q at the reflection (𝑧 ÞÑ 1{𝑧) of each pole of 𝑟𝑛p𝑧q with
order twice the multiplicity of the pole [5], which is the maximal number of interpolation
conditions (i.e., 2𝑛) that can be imposed in general on a rational function of type p𝑛´ 1, 𝑛q.

1.4. Multipoint Padé Approximants. The just described property of irreducible critical
points can also be expressed by saying that they are multipoint Padé approximants. The
latter are defined as follows. Let 𝑓 p𝑧q be a function holomorphic and vanishing at infinity
(the second condition is there for convenience only as functions in 𝐻̄2

R vanish at infinity
by definition) and 𝐷 be an unbounded domain in which 𝑓 p𝑧q is analytic or to which it
possesses an analytic continuation, again, denoted by 𝑓 p𝑧q. Let t𝐸𝑛u𝑛PN be a triangular
scheme of points in 𝐷, i.e., each 𝐸𝑛 consists of 2𝑛 not necessarily distinct nor necessarily
finite points. Further, let 𝑣𝑛p𝑧q be the monic polynomial with zeros at the finite points of 𝐸𝑛
(multiplicity of a zero is equal to the number of its occurrences in 𝐸𝑛). The 𝑛-th diagonal
Padé approximant of 𝑓 p𝑧q associated with 𝐸𝑛 is a rational function p𝑝𝑛{𝑞𝑛qp𝑧q such that
deg 𝑝𝑛 ď 𝑛, deg 𝑞𝑛 ď 𝑛, and 𝑞𝑛 ı 0, while

(1.1) 𝑅𝑛p𝑧q :“
𝑞𝑛p𝑧q 𝑓 p𝑧q ´ 𝑝𝑛p𝑧q

𝑣𝑛p𝑧q
“ O

`

1{𝑧𝑛`1˘ as 𝑧 Ñ 8,

and is analytic in 𝐷. Multipoint Padé approximant always exists since the conditions for
𝑝𝑛p𝑧q and 𝑞𝑛p𝑧q amount to solving a system of 2𝑛` 1 homogeneous linear equations with
2𝑛 ` 2 unknown coefficients, no solution of which can be such that 𝑞𝑛 ” 0 (thus, we may
assume that 𝑞𝑛p𝑧q is monic). Observe that given 𝑞𝑛p𝑧q, 𝑝𝑛p𝑧q is uniquely defined. Indeed,
if 𝑝p𝑧q and 𝑝˚p𝑧q were to correspond to the same 𝑞𝑛p𝑧q, the expression p𝑝´ 𝑝˚qp𝑧q{𝑣𝑛p𝑧q

would vanish at infinity with order at least 𝑛 ` 1 while being finite at every zero of
𝑣𝑛p𝑧q, which is clearly impossible. Moreover, if the pairs 𝑝p𝑧q, 𝑞p𝑧q and 𝑝˚p𝑧q, 𝑞˚p𝑧q are
solutions, then so is any linear combination p𝑐1𝑝` 𝑐2𝑝˚qp𝑧q, p𝑐1𝑞` 𝑐2𝑞˚qp𝑧q. Therefore,
the solution corresponding to the monic denominator of the smallest degree is unique. In
what follows, we understand that 𝑝𝑛p𝑧q, 𝑞𝑛p𝑧q, 𝑅𝑛p𝑧q come from this unique solution and
write r𝑛{𝑛; 𝐸𝑛s 𝑓 p𝑧q :“ p𝑝𝑛{𝑞𝑛qp𝑧q.

As mentioned above, irreducible critical points 𝑟𝑛p𝑧q “ p𝑝𝑛{𝑞𝑛qp𝑧q turn out to be
multipoint Padé approximants for which 𝑣𝑛p𝑧q :“ 𝜘𝑛𝑞

2
𝑛p𝑧q, where 𝑞𝑛p𝑧q :“ 𝑧𝑛𝑞𝑛p1{𝑧q is
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the reciprocal polynomial of 𝑞𝑛p𝑧q and 𝜘𝑛 is the reciprocal of the leading coefficient of
𝑞2
𝑛p𝑧q.

2. Markov Functions on One Interval

2.1. Markov Functions and Szegő Measures. Assume that

(2.1) 𝑓 p𝑧q “

ż

d𝜇p𝑥q

𝑧 ´ 𝑥

for some finite positive compactly supported Borel measure 𝜇 on the real line. Such
functions, known as Markov functions, are well suited for asymptotic analysis of the
behavior of their multipoint Padé approximants because the denominator polynomials
𝑞𝑛p𝑧q turn out to be orthogonal polynomials. More precisely, it holds that

(2.2)
ż

𝑥𝑚𝑞𝑛p𝑥q
d𝜇p𝑥q

𝑣𝑛p𝑥q
“ 0, 𝑚 P t0, . . . , 𝑛 ´ 1u,

and the error of approximation can be represented as

𝑓 p𝑧q ´
𝑝𝑛p𝑧q

𝑞𝑛p𝑧q
“
𝑣𝑛p𝑧q

𝑞2
𝑛p𝑧q

ż

𝑞2
𝑛p𝑥q

𝑣𝑛p𝑥q

d𝜇p𝑥q

𝑧 ´ 𝑥
.

In this section we shall assume that 𝜇 is a Szegő measure, that is, suppp𝜇q “ r𝑎, 𝑏s and

(2.3) d𝜇p𝑥q “
9𝜇p𝑥qd𝑥

𝜋
a

p𝑥 ´ 𝑎qp𝑏 ´ 𝑥q
` d𝜇𝑠p𝑥q,

where 𝜇𝑠 is singular to Lebesgue measure and 9𝜇p𝑥q satisfies Szegő condition
ş

log 9𝜇p𝑥qd𝑥 ą

´8.

2.2. Multipoint Padé Approximants. Set 𝑤p𝑧q :“ 𝑤p𝑧; 𝑎, 𝑏q “
a

p𝑧 ´ 𝑎qp𝑧 ´ 𝑏q to be
holomorphic in Czr𝑎, 𝑏s and normalized so that 𝑤p𝑧q “ 𝑧 ` Op1q as 𝑧 Ñ 8. Given a
Szegő measure, one can define its Szegő function by

𝑆 9𝜇p𝑧q :“ exp
"

𝑤p𝑧q

2𝜋i

ż 𝑏

𝑎

log 9𝜇p𝑥q

𝑥 ´ 𝑧

d𝑥
𝑤`p𝑥q

*

, 𝑧 P Czr𝑎, 𝑏s,

where 𝐹˘p𝑥q :“ lim𝑦Ñ0 𝐹p𝑥 ˘ i𝑦q, 𝑥 P p𝑎, 𝑏q, for any function 𝐹p𝑧q holomorphic off
r𝑎, 𝑏s. This is a holomorphic and non-vanishing function in Czr𝑎, 𝑏s whose traces exist
almost everywhere on r𝑎, 𝑏s and satisfy |𝑆 9𝜇˘p𝑥q|2 “ 9𝜇p𝑥q. Now, let 𝜓p𝑧q be the conformal
map of Czr𝑎, 𝑏s onto D with 𝜓p8q “ 0 and 𝜓1p8q ą 0. It is given by

𝜓p𝑧q “
2

𝑏 ´ 𝑎

ˆ

𝑧 ´
𝑏 ` 𝑎

2
´ 𝑤p𝑧q

˙

.

We shall assume that the interpolation sets 𝐸𝑛 are conjugate-symmetric (i.e., if 𝑒 P 𝐸𝑛,
then 𝑒 P 𝐸𝑛) and lie sufficiently far away from r𝑎, 𝑏s in the sense that

(2.4) lim
𝑛Ñ8

ÿ

𝑒P𝐸𝑛

`

1 ´ |𝜓p𝑒q|
˘

“ 8.

The above condition is always satisfied if there exists a neighborhood of r𝑎, 𝑏s devoid of
elements of all 𝐸𝑛.

Theorem 2.1. Let 𝑓 p𝑧q be given by (2.1) for a Szegő measure 𝜇, supported on r𝑎, 𝑏s, and
𝑝𝑛p𝑧q{𝑞𝑛p𝑧q be the multipoint Padé approximant of 𝑓 p𝑧q associated with 𝐸𝑛, where the
interpolation sets 𝐸𝑛 are conjugate-symmetric and satisfy (2.4). Then it holds that

𝑓 p𝑧q ´
𝑝𝑛p𝑧q

𝑞𝑛p𝑧q
“ p2 ` 𝑜p1qq

𝑆2
9𝜇
p𝑧q

𝑤p𝑧q

ź

𝑒P𝐸𝑛

𝜓p𝑧q ´ 𝜓p𝑒q

1 ´ 𝜓p𝑧q𝜓p𝑒q
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as 𝑛 Ñ 8 locally uniformly in Czr𝑎, 𝑏s (condition (2.4) ensures that the products above
converge to zero locally uniformly in Czr𝑎, 𝑏s).

As stated this theorem is taken from [8, Theorem 2], with an additional admissibility
condition it was proven in [2], and the case of absolutely continuous measures and the
interpolation points separated from r𝑎, 𝑏s was considered in [9].

2.3. Irreducible Critical Points. Let now r𝑎, 𝑏s Ă p´1, 1q, in which case 𝑓 P 𝐻̄2
R. Let

𝑟𝑛p𝑧q “ 𝑝𝑛p𝑧q{𝑞𝑛p𝑧q be an irreducible critical point of order 𝑛 in rational 𝐻̄2
R-approximation

of 𝑓 p𝑧q. Since the denominator polynomials satisfy (2.2) with 𝑣𝑛p𝑧q “ 𝜘𝑛𝑞
2
𝑛p𝑧q, all their

zeros belong to r𝑎, 𝑏s and therefore the zeros of 𝑞𝑛p𝑧q belong to r𝑎, 𝑏s´1 :“ t𝑥 : 𝑥´1 P

r𝑎, 𝑏su. Then one can reformulate Theorem 2.1 in a way more suitable for 𝐻̄2
R-approximants.

To this end, let 𝑤p𝑧q “ 𝑤p𝑧; 𝑎, 𝑏q be as above and set 𝑤̃p𝑧q :“ 𝑧𝑤p1{𝑧q. Observe that
𝑤̃p𝑧q is holomorphic in Czr𝑎, 𝑏s´1 and normalized so that 𝑤p0q “ 1. Put

d𝜔r𝑎,𝑏s,Tp𝑥q :“
1 ´ 𝑎𝑏

2𝐾
d𝑥

|p𝑤𝑤̃qp𝑥q|
, 𝑥 P r𝑎, 𝑏s,

where the constant 𝐾 turns 𝜔r𝑎,𝑏s,T into a probability measure and is, in fact, the complete
elliptic integral of the first kind with modulus p𝑏 ´ 𝑎q{p1 ´ 𝑎𝑏q. The measure 𝜔r𝑎,𝑏s,T

can be interpreted from the point of view of potential theory as the condenser equilibrium
distribution on r𝑎, 𝑏s of the condenser pr𝑎, 𝑏s,Tq, see [1]. Define

𝐺 9𝜇 :“ exp
"
ż

log 9𝜇p𝑥qd𝜔r𝑎,𝑏s,Tp𝑥q

*

.

It holds that 𝐺 9𝜇 ą 0 if and only if 𝜇 is a Szegő measure on r𝑎, 𝑏s, see [1, Lemma 2.37].
Put

𝐷 9𝜇p𝑧q :“ exp
"

p𝑤𝑤̃qp𝑧q

2𝜋i

ż 𝑏

𝑎

1 ´ 2𝑥𝑧 ` 𝑥2

p𝑥 ´ 𝑧qp1 ´ 𝑥𝑧q
log

ˆ

9𝜇p𝑥q

𝐺 9𝜇

˙

d𝑥
p𝑤`𝑤̃qp𝑥q

*

for 𝑧 P Cz
`

r𝑎, 𝑏s Y r𝑎, 𝑏s´1˘. The function 𝐷 9𝜇p𝑧q is non-vanishing and holomorphic
in Cz

`

r𝑎, 𝑏s Y r𝑎, 𝑏s´1˘, its argument has zero increment along T and |𝐷 9𝜇p𝜏q| ” 1 for
𝜏 P T. Moreover, its traces exist almost everywhere on r𝑎, 𝑏s Y r𝑎, 𝑏s´1 and satisfy
𝐺 9𝜇|𝐷 9𝜇˘p𝑥q|2 “ 9𝜇p𝑥q, 𝑥 P r𝑎, 𝑏s, and 𝐺 9𝜇|𝐷 9𝜇˘p𝑥q|´2 “ 9𝜇p1{𝑥q, 𝑥 P r𝑎, 𝑏s´1, see [1,
Lemma 2.40]. Further, let

𝜑p𝑧q :“ exp
"

𝜋
1 ´ 𝑎𝑏

2𝐾

ż 𝑧

1

d𝑠
p𝑤𝑤̃qp𝑠q

*

,

where the path of integration belongs to Cz
`

r𝑎, 𝑏s Y r𝑎, 𝑏s´1˘. This function is in fact the
conformal map of the ring domain Cz

`

r𝑎, 𝑏s Y r𝑎, 𝑏s´1˘ onto the annulus t𝑧 : 𝜌 ă |𝑧| ă

1{𝜌u, where 𝜌 :“ 𝜑p𝑏q. The following theorem was proven in [1, Theorem 8].

Theorem 2.2. Let 𝑓 p𝑧q be given by (2.1), for a Szegő measure 𝜇 on r𝑎, 𝑏s Ă p´1, 1q. Fur-
ther, let t𝑟𝑛p𝑧qu be a sequence of irreducible critical points in rational 𝐻̄2

R-approximation
of 𝑓 p𝑧q. Then it holds that

𝑓 p𝑧q ´ 𝑟𝑛p𝑧q “
`

2𝐺 9𝜇 ` 𝑜p1q
˘

𝐷2
9𝜇
p𝑧q

𝑤p𝑧q

ˆ

𝜌

𝜑p𝑧q

˙2𝑛

as 𝑛 Ñ 8 locally uniformly in Cz
`

r𝑎, 𝑏s Y r𝑎, 𝑏s´1˘.

3. Padé Approximation of Markov Functions On Several Intervals

In this section we shall explain how results from [10] specialize to the case of Markov
functions on several intervals. Part of the goal of this section is to provide as many explicit
formulae as possible (most of them were not presented in [10]).
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3.1. Measures of Orthogonality. Assume now that suppp𝜇q “ Y
𝑔`1
𝑖“1 r𝑎𝑖 , 𝑏𝑖s “: Δ, where

𝑔 ě 1 and, for convenience, we assume that 𝑏𝑖 ă 𝑎𝑖`1, 𝑖 P t1, . . . , 𝑔u. Let

(3.1) 𝑤p𝑧q :“
b

p𝑧 ´ 𝑎1qp𝑧 ´ 𝑏1q ¨ ¨ ¨ p𝑧 ´ 𝑎𝑔`1qp𝑧 ´ 𝑏𝑔`1q

be holomorphic in CzΔ and normalized so that 𝑤p𝑧q “ 𝑧𝑔`1 ` Op𝑧𝑔q as 𝑧 Ñ 8. In this
section we shall suppose that (2.3) is replaced by more stringent assumption

(3.2) d𝜇p𝑥q “ ´
1
𝜋i
𝜌p𝑥qd𝑥
𝑤`p𝑥q

, 𝑥 P Δ,

where 𝜌p𝑥q is a real-valued, smooth, see (3.4) further below, and non-vanishing function
on Δ whose sign distribution is such that 𝜇 is a positive measure. To capture the positivity,
choose 𝑚p𝑥q to be a monic polynomial of degree 𝑔 with exactly one zero in each gap
p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u. Observe also that ´i𝑤`p𝑥q “ p´1q𝑔`1´𝑘 |𝑤p𝑥q| for 𝑥 P

r𝑎𝑘 , 𝑏𝑘s, 𝑘 P t1, . . . , 𝑔 ` 1u. Hence, if we write

(3.3) 𝜌p𝑥q “: 9𝜇p𝑥q𝑚p𝑥q, 𝑥 P Δ,

then 9𝜇p𝑥q is a positive function on Δ from which we require that its logarithm belongs to a
fractional Sobolev space:

(3.4)
ĳ

ΔˆΔ

ˇ

ˇ

ˇ

ˇ

log 9𝜇p𝑥q ´ log 9𝜇p𝑦q

𝑥 ´ 𝑦

ˇ

ˇ

ˇ

ˇ

𝑝

d𝑥d𝑦 ă 8

for some 𝑝 ą 4 (then log 9𝜇p𝑥q is Hölder continuous with exponent at least 1 ´ 2{𝑝 ą 1{2).
Notice that 𝜌p𝑥q also admits a continuous branch of the logarithm on Δ that satisfies (3.4)
(this is the condition used in [10]). A particular choice of𝑚p𝑥q, on which 9𝜇p𝑥q does depend,
is not important to us. In fact, we could have chosen 𝑚p𝑥q simply to be 1 or ´1 on the
intervals comprising Δ. However, in the author’s opinion, some of the formulae further
below would have been less elegant in this case.

3.2. Riemann Surface and its Holomorphic Differentials. Let 𝕾 be a Riemann surface
realized as two copies of CzΔ, say 𝑫 and 𝑫˚ glued crosswise along Δ. Formally, it can be
defined as

𝕾 “

#

𝒛 “ p𝑧, 𝑤q : 𝑤2 “

𝑔`1
ź

𝑖“1
p𝑧 ´ 𝑎𝑖qp𝑧 ´ 𝑏𝑖q

+

.

Of course, it holds that 𝕾 “ 𝑫 Y 𝚫 Y 𝑫˚, where 𝚫 :“ 𝜋´1pΔq and 𝜋p𝒛q “ 𝑧 is the natural
projection. We denote by ¨˚ a conformal involution defined by 𝒛˚ “ p𝑧,´𝑤q for 𝒛 “ p𝑧, 𝑤q.
We choose a homology basis t𝜶𝑖 , 𝜷𝑖u

𝑔

𝑖“1 on𝕾 in the following way: 𝜶𝑖 :“ 𝜋´1pr𝑏𝑖 , 𝑎𝑖`1sq

and is oriented away from 𝒃𝑖 on 𝑫 while 𝜷𝑖 Ă 𝑫 Y𝚫 is such that 𝜋p𝜷𝑖q is a convex Jordan
curve that passes through 𝑎1 and 𝑏𝑖 and is oriented counter-clockwise (we also assume that
𝜋p𝜷𝑖qzt𝑎1u is contained in the interior of 𝜋p𝜷𝑖`1q).

Let V be the following matrix:

V :“
„
ż 𝑎𝑖`1

𝑏𝑖

𝑥𝑙d𝑥
𝑤p𝑥q

𝑔,𝑔´1

𝑖“1,𝑙“0
,

where 𝑖 is the row index and 𝑙 is the column one. It is straightforward to see that

detpVq “

ż 𝑎2

𝑏1

¨ ¨ ¨

ż 𝑎𝑔`1

𝑏𝑔

𝑉p𝑥1, . . . , 𝑥𝑔q

𝑤p𝑥1q ¨ ¨ ¨𝑤p𝑥𝑔q
d𝑥𝑔 ¨ ¨ ¨ d𝑥1 ‰ 0,

where𝑉p𝑥1, . . . , 𝑥𝑔q is the Vandermonde determinant and the inequality detpVq ‰ 0 follows
from the obvious fact that all the gaps p𝑏𝑘 , 𝑎𝑘`1q are disjoint. Hence, there exist polynomials
𝑙𝑖p𝑥q, degp𝑙𝑖q “ 𝑔 ´ 1, such that

(3.5)
ż 𝑎𝑘`1

𝑏𝑘

𝑙𝑖p𝑥qd𝑥
𝑤p𝑥q

“ 𝛿𝑘𝑖 , 𝑖, 𝑘 P t1, . . . , 𝑔u,
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where 𝛿𝑘𝑖 is the usual Kronecker symbol. Indeed, the coefficients of these polynomials
are the columns of V´1. Moreover, since these polynomials have degree 𝑔 ´ 1 and real
coefficients, (3.5) yields that each 𝑙𝑖p𝑥q has exactly one zero in each gap p𝑏𝑘 , 𝑎𝑘`1q for
𝑘 ‰ 𝑖.

Observe also that the differentials

(3.6) H𝑖p𝒛q :“
"

p𝑙𝑖p𝑧qd𝑧q{p2𝑤p𝑧qq, 𝒛 P 𝑫,

´H𝑖p𝒛
˚q, 𝒛 P 𝑫˚,

are holomorphic on 𝕾 and normalized so that
ű

𝜶𝑘
H𝑖 “ 𝛿𝑘𝑖 (since 𝑤`p𝑥q “ ´𝑤´p𝑥q

on Δ, these differentials do holomorphically extend across 𝚫). It is a well-known fact of
the theory of compact Riemann surfaces, see [3, Section III.2.7], that the integrals of the
normalized holomorphic differentials over the 𝜷-cycles of the chosen homology basis form
a symmetric matrix with positive definite imaginary part:

(3.7) B :“
“

B𝑘 𝑗
‰𝑔

𝑘, 𝑗“1, B𝑘 𝑗 :“
¿

𝜷𝑘

H 𝑗 “ ´

𝑘
ÿ

𝑖“1

ż 𝑏𝑖

𝑎𝑖

𝑙 𝑗p𝑥qd𝑥
𝑤`p𝑥q

,

where to get the second representation for B𝑘 𝑗 we used holomorphy of the integrands to
deform 𝜷𝑘 to 𝜋´1pr𝑎1, 𝑏𝑘sq X p𝑫 Y 𝚫q and the fact that the integrals over the gaps cancel
each other out. This representation shows that all the entries of B are purely imaginary.

3.3. Third Kind Differentials. Let 𝑚8p𝑧q be a polynomial of degree 𝑔 such that

(3.8)
1

2𝜋i

ż

|𝑧|“𝜌

𝑚8p𝑠qd𝑠
𝑤p𝑠q

“ ´1 and
ż 𝑎𝑖`1

𝑏𝑖

𝑚8p𝑥qd𝑥
𝑤p𝑥q

“ 0, 𝑖 P t1, . . . , 𝑔u,

where the circle |𝑧| “ 𝜌 is positively oriented and contains Δ in its interior. Using
polynomials 𝑙𝑖p𝑧q from (3.5), it can be readily checked that

𝑚8p𝑥q “ ´𝑥𝑔 `

𝑔
ÿ

𝑖“1

ˆ
ż 𝑎𝑖`1

𝑏𝑖

𝑦𝑔d𝑦
𝑤p𝑦q

˙

𝑙𝑖p𝑥q.

Clearly, the polynomial 𝑚8p𝑥q has real coefficients and therefore has exactly one simple
zero in each gap p𝑏𝑖 , 𝑎𝑖`1q. Thus, the measure d𝜔Δp𝑥q “ p𝑚8p𝑥qd𝑥q{p𝜋i𝑤`p𝑥qq is a
positive probability measure on Δ. In fact, from the point of view of potential theory, 𝜔Δ

can be interpreted as the logarithmic equilibrium distribution on Δ (in particular, if one
chooses 𝑚p𝑥q “ 𝑚8p𝑥q in (3.3), then 9𝜇p𝑥q again can be interpreted as the Radon-Nikodym
derivative with respect to the logarithmic equilibrium distribution).

More generally, given 𝑒 P Czr𝑎1, 𝑏𝑔`1s, let 𝑚𝑒p𝑧q be a polynomial of degree 𝑔 such that

(3.9)
1

2𝜋i

ż

|𝑧´𝑒|“𝜌

𝑚𝑒p𝑠q

𝑠 ´ 𝑒

d𝑠
𝑤p𝑠q

“ 1 and
ż 𝑎𝑖`1

𝑏𝑖

𝑚𝑒p𝑥q

𝑥 ´ 𝑒

d𝑥
𝑤p𝑥q

“ 0, 𝑖 P t1, . . . , 𝑔u,

where the circle |𝑧 ´ 𝑒| “ 𝜌 is positively oriented and contains Δ in its exterior. Similarly
to 𝑚8p𝑥q, one can check that

𝑚𝑒p𝑥q “ 𝑐𝑒

˜

1 ´

𝑔
ÿ

𝑖“1

ˆ
ż 𝑎𝑖`1

𝑏𝑖

1
𝑦 ´ 𝑒

d𝑦
𝑤p𝑦q

˙

p𝑥 ´ 𝑒q𝑙𝑖p𝑥q

¸

,

where the normalizing constant 𝑐𝑒 is chosen so that the first condition in (3.9) is fulfilled.
Notice that 𝑚𝑒p𝑥q is a polynomial with real coefficients when 𝑒 is real (in particular, it
has exactly one zero in each gap p𝑏𝑖 , 𝑎𝑖`1q). In this situation the corresponding measure
p𝑚𝑒p𝑥qd𝑥q{p𝜋ip𝑥´ 𝑒q𝑤`p𝑥qq is a positive probability measure on Δ and can be interpreted
as the weighted equilibrium distribution in the field generated by a single unit charge placed
at 𝑒, or equivalently as the balayage of the Dirac mass at 𝑒 to Δ. This is no longer the case
when =𝑒 ‰ 0. However, since 𝑚𝑒̄p𝑧q “ 𝑚𝑒p𝑧q, it holds that p𝑧 ´ 𝑒q𝑚𝑒p𝑧q ` p𝑧 ´ 𝑒q𝑚𝑒̄p𝑧q

is a polynomial with real coefficients as well (again, it must have exactly one zero in each
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gap). In this case the average of densities corresponding to 𝑒 and 𝑒 produces a positive
probability measure with a similar potential-theoretic interpretation.

Let Ω𝑒p𝒛q be the normalized (that is, having zero periods on the 𝜶-cycles) third kind
differential on 𝕾 with two simple poles at 𝒆, 𝒆˚, 𝒆 P 𝑫, with respective residues 1 and ´1,
which is otherwise holomorphic. It can be readily checked that

Ω𝑒p𝒛q “

"

p𝑚𝑒p𝑧qd𝑧q{pp𝑧 ´ 𝑒q𝑤p𝑧qq, 𝒛 P 𝑫,

´Ω𝑒p𝒛
˚q, 𝒛 P 𝑫˚.

When 𝑒 is real (including 𝑒 “ 8, in which case𝑚𝑒p𝑧q{p𝑧´𝑒q above is replaced by𝑚8p𝑧q),
Ω𝑒p𝒛q can be considered as normalized to have purely imaginary periods on all of the cycles
of the homology basis due to the second requirements in (3.8) and (3.9). This is no longer
true when =𝑒 ‰ 0, however, the differential Ω𝑒p𝒛q `Ω𝑒̄p𝒛q can also be seen as normalized
to have purely imaginary periods.

3.4. Blaschke-type Functions. Let 𝐸𝑛 be a conjugate-symmetric interpolation set in
Czr𝑎1, 𝑏𝑔`1s (as usual, it consists of 2𝑛 not necessarily finite nor distinct elements). Let

(3.10) 𝜓𝑛p𝑧q :“ exp

$

&

%

ż 𝑧

𝑏𝑔`1

¨

˝

ÿ

𝑒P𝐸𝑛 ,|𝑒|ă8

𝑚𝑒p𝑠q

𝑠 ´ 𝑒
`

ÿ

𝑒P𝐸𝑛 ,|𝑒|“8

𝑚8p𝑠q

˛

‚

d𝑠
𝑤p𝑠q

,

.

-

,

where the path of integration lies entirely in Czp´8, 𝑏𝑔`1q. Furthermore, set

(3.11) 𝜔𝑛,𝑘 :“ fr

$

&

%

´
1

2𝜋i

𝑘
ÿ

𝑖“1

ż 𝑏𝑖

𝑎𝑖

¨

˝

ÿ

𝑒P𝐸𝑛 ,|𝑒|ă8

𝑚𝑒p𝑥q

𝑥 ´ 𝑒
`

ÿ

𝑒P𝐸𝑛 ,|𝑒|“8

𝑚8p𝑥q

˛

‚

d𝑥
𝑤`p𝑥q

,

.

-

𝑘 P t1, . . . , 𝑔u, where frt𝑥u P r0, 1q is such that 𝑥 ´ frt𝑥u P Z. It follows from the
conjugate-symmetry of 𝐸𝑛 and the discussion after (3.9) that these constants are real.

Proposition 3.1. The function 𝜓𝑛p𝑧q is analytic in Czr𝑎1, 𝑏𝑔`1s and has a zero at each
𝑒 P 𝐸𝑛 of order equal to the multiplicity of 𝑒 in 𝐸𝑛. It holds that |𝜓𝑛p𝑧q| ă 1 in CzΔ and

(3.12)

#

𝜓𝑛`p𝑥q “ 𝜓𝑛´p𝑥q𝑒´4𝜋i𝜔𝑛,𝑘 , 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u,

|𝜓𝑛˘p𝑥q| ” 1, 𝑥 P Δ.

Proof. The integrand in (3.10) behaves like ´𝑘𝑠´1 ` Op𝑠´2q as 𝑠 Ñ 8, where 𝑘 is the
multiplicity of 8 in 𝐸𝑛. Therefore, the integral of the integrand is equal to an integer
multiple of 2𝜋i on any closed curve encircling r𝑎1, 𝑏𝑔`1s, which implies analyticity of
𝜓𝑛p𝑧q in Czr𝑎1, 𝑏𝑔`1s. Vanishing of 𝜓𝑛p𝑧q at 𝑒 P 𝐸𝑛 follows from the first requirements in
(3.8) and (3.9). Since the integrand in (3.10) is real on RzΔ, (3.12) follows from conjugate
symmetry of 𝐸𝑛 and the second requirements in (3.8) and (3.9). As the function log |𝜓𝑛p𝑧q|

is subharmonic in CzΔ and is identically zero on Δ, the conclusion |𝜓𝑛p𝑧q| ă 1 follows
from the maximum principle for subharmonic functions [7, Theorem 2.3.1]. �

For the future comparison with [10], let us point out that a function

(3.13) 𝑆𝑛p𝒛q :“ exp

#

ż 𝒛

𝒃𝑔`1

𝐺𝑛

+#

1, 𝒛 P 𝑫,

𝑣´1
𝑛 p𝑧q, 𝒛 P 𝑫˚,

was defined there, where, as before, 𝑣𝑛p𝑧q “
ś

𝑒P𝐸𝑛 ,|𝑒|ă8p𝑧´𝑒q, 𝒂𝑖 , 𝒃𝑖 are the ramification
point of 𝕾 with the respective natural projections 𝑎𝑖 , 𝑏𝑖 , 𝑖 P t1, . . . , 𝑔 ` 1u, and 𝐺𝑛p𝒛q is a
meromorphic differential on 𝕾 given by

𝐺𝑛p𝒛q :“
1
2

ÿ

𝑒P𝐸𝑛 ,|𝑒|ă8

ˆ

d𝑧
𝑧 ´ 𝑒

´ Ω𝑒p𝒛q

˙

´
1
2

ÿ

𝑒P𝐸𝑛 ,|𝑒|“8

Ω8p𝒛q.
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This function is holomorphic and non-vanishing in 𝜋´1pCzr𝑎1, 𝑏𝑔`1sq with a pole and a
zero of order 𝑛 lying on top of infinity in 𝑫 and 𝑫˚, respectively. It then follows that

(3.14) 𝜓𝑛p𝑧q “ 𝑣𝑛p𝑧q𝑆𝑛p𝒛˚q𝑆´1
𝑛 p𝒛q, 𝒛 P 𝑫 .

As far as the boundary values of 𝑆𝑛p𝒛q are concerned, it holds that

(3.15) 𝑆𝑛`p𝒔q “ 𝑆𝑛´p𝒔q

"

𝑣𝑛p𝑠q, 𝒔 P 𝚫,

𝑒2𝜋i𝜔𝑛,𝑘 , 𝒔 P 𝜶𝑘 , 𝑘 P t1, . . . , 𝑔u.

There exists an alternative construction of the functions 𝑆𝑛p𝒛q. It will be presented further
below in Section 3.8 for the sake of completeness of the exposition. There, rather than
using third kind differentials, we shall use Riemann theta functions.

3.5. Szegő Functions. Let 𝑝p𝑧q be a monic polynomial of degree 𝑑 ď 𝑔 with simple zeros,
say 𝑧1, . . . , 𝑧𝑑 (of course, when 𝑑 “ 0, there are no zeros). Assume that the zeros of 𝑝p𝑧q

do not belong to Δ. Given 𝜇 as in (3.2)–(3.3), let

(3.16) 𝑆 9𝜇p𝑧q :“ exp

#

1
2𝜋i

𝑤p𝑧q

𝑝p𝑧q

«

ż

Δ

log 9𝜇p𝑥q

𝑥 ´ 𝑧

𝑝p𝑥qd𝑥
𝑤`p𝑥q

´

𝑔
ÿ

𝑖“1

ż 𝑎𝑖`1

𝑏𝑖

2𝜋i𝑐 9𝜇,𝑖

𝑦 ´ 𝑧

𝑝p𝑦qd𝑦
𝑤p𝑦q

ff+

,

𝑧 P Czr𝑎1, 𝑏𝑔`1s, where the constants 𝑐 9𝜇,𝑖 are defined by

(3.17) 𝑐 9𝜇,𝑖 :“
1

2𝜋i

ż

Δ

log 9𝜇p𝑥q
𝑙𝑖p𝑥qd𝑥
𝑤`p𝑥q

.

Proposition 3.2. The Szegő function 𝑆 9𝜇p𝑧q is analytic and non-vanishing in its domain of
definition. Moreover, it holds that

(3.18)

#

𝑆 9𝜇`p𝑥q “ 𝑆 9𝜇´p𝑥q𝑒´2𝜋i𝑐 9𝜇,𝑘 , 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u,

|𝑆 9𝜇˘p𝑥q|2 “ 9𝜇p𝑥q, 𝑥 P Y
𝑔

𝑖“1p𝑎𝑖 , 𝑏𝑖q.

The function 𝑆2
9𝜇
p𝑧q does not depend on the choice of a polynomial 𝑝p𝑧q.

Proof. Observe that

(3.19) 𝑥 𝑗 ´

𝑔
ÿ

𝑖“1
𝑙𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑦 𝑗d𝑦
𝑤p𝑦q

” 0

for any 𝑗 P t0, . . . , 𝑔 ´ 1u. Indeed, (3.19) holds with 𝑥 𝑗 , 𝑦 𝑗 replaced by 𝑙𝑘p𝑥q, 𝑙𝑘p𝑦q for
any 𝑘 P t1, . . . , 𝑔u by the very definition of the polynomials 𝑙𝑘p𝑥q in (3.5). Since these
polynomials are linearly independent, (3.19) follows. Given 𝑝p𝑧q as above, (3.19) yields
that

(3.20)
𝑝p𝑥q

𝑥 ´ 𝑧𝑙
´

𝑔
ÿ

𝑖“1
𝑙𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑝p𝑦q

𝑦 ´ 𝑧𝑙

d𝑦
𝑤p𝑦q

” 0

for each 𝑙 P t1, . . . , 𝑑u, and that

(3.21)
𝑝p𝑥q

𝑥 ´ 𝑧
´

𝑔
ÿ

𝑖“1
𝑙𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑝p𝑦q

𝑦 ´ 𝑧

d𝑦
𝑤p𝑦q

“ O
`

𝑧𝑑´𝑔´1˘ , 𝑧 Ñ 8.

The first claim of the proposition holds because the term in square brackets in (3.16)
vanishes at every zero 𝑧𝑙 of 𝑝p𝑧q by (3.20) and at infinity with order 𝑔 ` 1 ´ 𝑑 by (3.21)
(notice that p𝑤{𝑝qp𝑧q “ 𝑧𝑔`1´𝑑 ` Op𝑧𝑔´𝑑q as 𝑧 Ñ 8).

The well-known boundary behavior of Cauchy integrals, see [4, Section I.4], yields the
first relation in (3.18). It also follows from [4, Section I.4] that 𝑆 9𝜇`p𝑥q𝑆 9𝜇´p𝑥q “ 9𝜇p𝑥q.
If the polynomial 𝑝p𝑧q has real coefficients, then the obvious conjugate-symmetry implies
the second relation in (3.18). To prove it in general, take a ratio of Szegő functions
corresponding to two different polynomials (one having real coefficients). Call it 𝑆p𝑧q

and lift it to 𝑫. Lift 𝑆´1p𝑧q to 𝑫˚. Since 𝑆`𝑆´ ” 1 on Δ, the lifted function is in
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fact holomorphic on the whole surface 𝕾. That is, it is a constant. Because both, 𝑆p𝑧q

and 𝑆´1p𝑧q, are equal to this constant, the constant is either 1 or ´1. Hence, 𝑆2
9𝜇
p𝑧q is

independent of 𝑝p𝑧q and, as relations (3.18) do not change if 𝑆 9𝜇p𝑧q is multiplied by ´1, the
second relation in (3.18) follows. �

In [10, Section 5.2], the above construction was applied directly to the function 𝜌p𝑥q,
see (3.2)–(3.3). However, we use it only for 9𝜇p𝑥q since we can then leverage the positivity
of 9𝜇p𝑥q, it makes the comparison with the case of classical Szegő functions (𝑔 “ 0)
clearer, and because a Szegő function of a polynomial can be constructed differently using
Riemann theta functions, see Section 3.8. There it will become clear that (3.16) is not the
only function which is non-vanishing and has boundary behavior as in (3.18). However,
the ratio of any two such functions is equal to the exponential of a linear combination of
holomorphic differentials with coefficients that are integer multiples of 2𝜋i.

3.6. Jacobi Inversion Problem. Recall that a divisor on𝕾 is a formal linear combination
of points from𝕾 with integer coefficients. Denote by Jacp𝕾q the Jacobi variety of𝕾, that is,
the set of equivalence classes r®𝑢s, ®𝑢 P C𝑔, where r®𝑢s “ r®𝑣s if and only if ®𝑢 ´ ®𝑣 “ ®𝑗 ` B ®𝑚
for some ®𝑗 , ®𝑚 P Z𝑔 and B was defined in (3.7). Abel’s map from the divisors of 𝕾 onto
Jacp𝕾q is defined by

(3.22)
ÿ

𝑛 𝑗 𝒛 𝑗 ÞÑ

«

ÿ

ż 𝒛 𝑗

𝒃𝑔`1

®H
ff

,

where ®H :“ pH1, . . . ,H𝑔qT is the column vector of the holomorphic differentials on 𝕾,
see (3.6) (since the difference of two paths with the same endpoints is homologous to a
linear combination of the cycles of the homology basis with integer coefficients, this map
is indeed well-defined).

Let ®𝜔𝑛 :“ p𝜔𝑛,1, . . . , 𝜔𝑛,𝑔qT and ®𝑐 9𝜇 :“ p𝑐 9𝜇,1, . . . , 𝑐 9𝜇,𝑔qT be the column vectors of
real constants defined in (3.11) and (3.17), respectively. Further, let 𝒔𝑖 P 𝑫˚ be such that
𝜋p𝒔𝑖q P p𝑏𝑖 , 𝑎𝑖`1q and is a zero of the polynomial 𝑚p𝑥q from (3.3), 𝑖 P t1, . . . , 𝑔u. We
are interested in the solutions of the following Jacobi inversion problem: find a divisor
D𝑛 “

ř𝑔

𝑖“1 𝒙𝑛,𝑖 such that

(3.23)

«

𝑔
ÿ

𝑖“1

ż 𝒙𝑛,𝑖

𝒃𝑔`1

®H
ff

“

«

𝑔
ÿ

𝑖“1

ż 𝒔𝑖

𝒃𝑔`1

®H ` ®𝑐 9𝜇 ` ®𝜔𝑛

ff

.

It is known that (3.23) is always solvable and the solution is unique up to a principal divisor
(divisor of a rational function on 𝕾). That is, if D𝑛 ´

 

principal divisor
(

is an effective
divisor (all the coefficients are positive), then it also solves (3.23). Immediately one can
see that the subtracted principal divisor should have a positive part of degree at most 𝑔. As
𝕾 is hyperelliptic, such divisors come solely from rational functions on C lifted to 𝕾 [6,
Appendix 1]. In particular, such principal divisors are involution-symmetric. Hence, if a
solution of (3.23) contains at least one involution-symmetric pair of points, then replacing
this pair by another such pair produces a different solution of (3.23). However, if a solution
does not contain such a pair, then it solves (3.23) uniquely. Hence, in the case where (3.23)
has multiple solutions, we denote by D𝑛 the one whose involution-symmetric pairs are all
of the form 8 ` 8˚, where 8 and 8˚ are the points on top of infinity in 𝑫 and 𝑫˚,
respectively. In particular, if 𝑘𝑛 is the number of involution-symmetric pairs within a given
solution of (3.23), then D𝑛 ´ 𝑘𝑛8 ´ 𝑘𝑛8˚ is a common part of every solution of (3.23).

Proposition 3.3. With an appropriate labeling, solution D𝑛 “
ř𝑔

𝑖“1 𝒙𝑛,𝑖 of (3.23) is such
that 𝜋p𝒙𝑛,𝑖q P r𝑏𝑖 , 𝑎𝑖`1s, 𝑖 P t1, . . . , 𝑔u (in particular, there are no other solutions).
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Proof. Recall that 𝜋p𝒔𝑖q P p𝑏𝑖 , 𝑎𝑖`1q, 𝑖 P t1, . . . , 𝑔u, and observe that (3.23) can be
rewritten as

(3.24)

«

𝑔
ÿ

𝑖“1

ż 𝒙𝑛,𝑖

𝒃𝑖

®H
ff

“

”

®𝑉𝑛
ı

, ®𝑉𝑛 :“ ®𝑉 ` ®𝑐 9𝜇 ` ®𝜔𝑛, ®𝑉 :“
𝑔
ÿ

𝑖“1

ż

r𝒃𝑖 ,𝒔𝑖s

®H ,

where the path of integration r𝒃𝑖 , 𝒔𝑖s is a “segment” on𝕾, that is, 𝜋 : r𝒃𝑖 , 𝒔𝑖s Ñ r𝑏𝑖 , 𝑠𝑖s is a
bijection. In this case (3.6) immediately shows that the vector ®𝑉 and therefore the vectors
®𝑉𝑛 have real entries. Denote by 𝒛̄ the point on the same sheet of 𝕾 as 𝒛 with 𝜋p𝒛̄q “ 𝑧 if
𝒛 R 𝚫 and 𝒛̄ “ 𝒛˚ if 𝒛 P 𝚫. Since the polynomials 𝑙𝑖p𝑥q have real coefficients, it holds that

ż 𝒛

𝒃𝑖

®H “

ż 𝒛̄

𝒃𝑖

®H

by (3.6), where the paths of integration are reflections of each other under the map 𝒔 ÞÑ 𝒔̄.
Thus, since ®𝑉𝑛 is a real vector, if D𝑛 “

ř

𝒙𝑛,𝑖 solves (3.24), so does
ř

𝒙̄𝑛,𝑖 . As explained
just before the proposition, it must holds that D𝑛 “

ř

𝒙̄𝑛,𝑖 . Now, let us partially fix the
labeling of the points of D𝑛. Namely, if a cycle 𝜶𝑘 contains at least one point of the divisor
D𝑛, we label one of these points as 𝒙𝑛,𝑘 and distribute indices 𝑖 arbitrarily to the rest of
elements of D𝑛. Further, let 𝐼1 Y 𝐼2 Y 𝐼3 Y 𝐼4 :“ t1, . . . , 𝑔u be disjoint sets such that
𝒙𝑛,𝑖 P 𝜶𝑖 for 𝑖 P 𝐼1, 𝜋p𝒙𝑛,𝑖q P Rzr𝑎1, 𝑏𝑔`1s for 𝑖 P 𝐼2, 𝒙𝑛,𝑖 P 𝜶 𝑗 for some 𝑗 ‰ 𝑖 when 𝑖 P 𝐼3
(notice that necessarily 𝑗 P 𝐼1 in this case), and for each 𝑖 P 𝐼4 there exists 𝑗 P 𝐼4 such that
𝒙𝑛, 𝑗 “ 𝒙̄𝑛,𝑖 . Then ®𝑉𝑛,𝑖 :“

ş𝒙𝑛,𝑖

𝒃𝑖
®H P R𝑔 when 𝑖 P 𝐼1. Moreover,

„
ż 𝒙𝑛,𝑖

𝒃𝑖

®H


“

„

®𝑉𝑛,𝑖 `
1
2
“

B
‰

𝑖



, ®𝑉𝑛,𝑖 :“
ż 𝒙𝑛,𝑖

𝒂1

®H P R𝑔,

for 𝑖 P 𝐼2, where
“

B
‰

𝑖
is the 𝑖-th column of B and the path of integration in the last integral

has a natural projection that belongs to Rzr𝑎1, 𝑏𝑔`1s (it is allowed to pass through points
on top of infinity). Further,

„
ż 𝒙𝑛,𝑖

𝒃𝑖

®H


“

„

®𝑉𝑛,𝑖 `
1
2
“

B
‰

𝑖
`

1
2
“

B
‰

𝑗



, ®𝑉𝑛,𝑖 :“
ż

r𝒃 𝑗 ,𝒙𝑛,𝑖s

®H P R𝑔,

for 𝑖 P 𝐼3, where 𝑗 is such that 𝒙𝑛,𝑖 P 𝜶 𝑗 and one needs to notice that adding rather than
subtracting half a column of B does not change the point on the Jacobi variety as vectors
that differ by a linear combination of the columns of B with integer coefficients define the
same element of Jacp𝕾q. Next, let 𝑖, 𝑗 P 𝐼4 be such that 𝒙𝑛,𝑖 “ 𝒙̄𝑛, 𝑗 . Then

„
ż 𝒙𝑛,𝑖

𝒃𝑖

®H `

ż 𝒙𝑛, 𝑗

𝒃𝑖

®H


“

„

®𝑉𝑛,𝑖 `
1
2
“

B
‰

𝑖
`

1
2
“

B
‰

𝑗



, ®𝑉𝑛,𝑖 “ 2<
ˆ
ż 𝒙𝑛,𝑖

𝒃𝑖

®H
˙

.

Denote by 𝑑𝑖 ` 1 the number of elements of D𝑛 that belong to 𝜶𝑖 for 𝑖 P 𝐼1, and let 𝐼5 be
the largest subset of 𝐼4 such that for any 𝑖 P 𝐼5 there exists 𝑗 P 𝐼4z𝐼5 for which 𝒙𝑛,𝑖 “ 𝒙̄𝑛, 𝑗
and 𝑗 ă 𝑖. Then it follows from (3.24) that

”

®𝑉𝑛
ı

“

«

ÿ

𝑖P𝐼1Y𝐼2Y𝐼3Y𝐼5

®𝑉𝑛,𝑖 ` ®𝑈
ff

, ®𝑈 :“
1
2

˜

ÿ

𝑖P𝐼1

𝑑𝑖
“

B
‰

𝑖
`

ÿ

𝑖P𝐼2Y𝐼3Y𝐼4

“

B
‰

𝑖

¸

.

Recall that the entries of B are purely imaginary and that the columns of B are linearly
independent. Thus, ®𝑈 P piRq𝑔 and r ®𝑈s “ r®0s only if the sets 𝐼2 “ 𝐼3 “ 𝐼4 “ ∅, which then
yields that each 𝑑𝑖 “ 0. This observation finishes the proof of the proposition. �

Proposition 3.3 did not appear in [10] since there are no reasons to believe that solutions
of (3.23) are confined to a certain subset of 𝕾𝑔 for more general geometries.
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3.7. Riemann Theta Function. Let 𝔞p𝒛q be a function defined by

(3.25) 𝔞p𝒛q “

ż 𝒛

𝒃𝑔`1

®H , 𝒛 P 𝕾𝜶,𝜷 :“ 𝕾z Y
𝑔

𝑖“1 t𝜶𝑖 Y 𝜷𝑖u,

where the path of integration can be any as the domain of definition is simply connected.
This function has continuous traces on the cycles of the homology basis (away from the
points of intersection of different cycles) that satisfy

(3.26) 𝔞`p𝒔q ´ 𝔞´p𝒔q “

#

´B®𝑒𝑘 , 𝒔 P 𝜶𝑘 ,

®𝑒𝑘 , 𝒔 P 𝜷𝑘 ,
𝑘 P t1, . . . , 𝑔u,

by (3.7) and the normalization of ®H .
The theta function associated with B is an entire transcendental function of 𝑔 complex

variables defined by

𝜃 p®𝑢q :“
ÿ

®𝑛PZ𝑔

exp
"

𝜋i®𝑛TB®𝑛 ` 2𝜋i®𝑛T ®𝑢
*

, ®𝑢 P C𝑔 .

As shown by Riemann, the symmetry of B and positive definiteness of its imaginary part
ensures the convergence of the series for any ®𝑢. It can be directly checked that 𝜃p´®𝑢q “ 𝜃p®𝑢q

and it enjoys the following periodicity property:

(3.27) 𝜃

´

®𝑢 ` ®𝑗 ` B ®𝑚
¯

“ exp
"

´ 𝜋i ®𝑚TB ®𝑚 ´ 2𝜋i ®𝑚T ®𝑢
*

𝜃
`

®𝑢
˘

, ®𝑗 , ®𝑚 P Z𝑔 .

It is also known that 𝜃 p®𝑢q “ 0 if and only if
“

®𝑢´ ®𝐾
‰

is the image of some effective divisor
of degree 𝑔 ´ 1 under Abel’s map (3.22), where ®𝐾 is a fixed vector known as the vector of
Riemann constants (it can be explicitly defined via ®H ).

Let ®𝑉 “: p𝑉1, . . . , 𝑉𝑔qT and ®𝑉𝑛 “: p𝑉𝑛,1, . . . , 𝑉𝑛,𝑔qT be given by (3.24). Set

(3.28) Θ𝑛p𝒛q :“
𝜃

´

𝔞p𝒛q ´ ®𝑉𝑛 ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ ®𝑉 ´ ®𝐾
¯ ,

which is a multiplicatively multi-valued meromorphic function on 𝕾 with a simple zero
at each 𝒙𝑛,𝑖 , a simple pole at each 𝒔𝑖 , 𝑖 P t1, . . . , 𝑔u, and otherwise non-vanishing and
finite. In fact, it follows from (3.26) and (3.27) that it is holomorphic, non-vanishing, and
single-valued in 𝕾𝜶 :“ 𝕾z Y

𝑔

𝑖“1 𝜶𝑖 and for 𝒔 P 𝜶𝑘 it holds that

(3.29) Θ𝑛`p𝒔q “ Θ𝑛´p𝒔q exp
 

2𝜋i
`

𝑉𝑘 ´𝑉𝑛,𝑘
˘(

“ Θ𝑛´p𝒔q exp
 

´2𝜋ip𝑐 9𝜇,𝑘 ` 𝜔𝑛,𝑘q
(

(these traces do vanish at 𝒙𝑛,𝑖’s and blow up at 𝒔𝑖’s).
The functions Θ𝑛p𝒛q form a normal family in 𝕾𝜶. Indeed, for any subsequence t𝑛𝑘u𝑘

there always exists a subsequence t𝑛𝑘𝑖u𝑖 along which the vectors ®𝑉𝑛𝑘𝑖 converge to some
vector ®𝑉˚ since these vectors form a bounded subset of R𝑔 by (3.11) and (3.24). Then the
corresponding limit point is obtained be replacing ®𝑉𝑛 with ®𝑉˚ in (3.28) and is holomorphic
and non-vanishing in 𝕾𝜶 (its zeros must belong to the 𝜶-cycles). Hence, according to
Montel’s theorem, the functions Θ𝑛p𝒛q are uniformly bounded on closed subsets of 𝕾𝜶.
Moreover, since their zeros belong to the 𝜶-cycles, the above argument also shows that
the reciprocals of the functions Θ𝑛p𝒛q also form a normal family in 𝕾𝜶 and therefore the
functions themselves are uniformly bounded away from zero on closed subsets of 𝕾𝜶.

Recall the notation 𝒛̄ introduced after (3.24). There exists a constant 𝑐𝑛 such that

(3.30) Θ𝑛p𝒛̄q “ 𝑐𝑛Θ𝑛p𝒛q, 𝒛 P 𝕾𝜶 .

Indeed, functionsΘ𝑛p𝒛q andΘ𝑛p𝒛̄q are both holomorphic in𝕾𝜶, have the same jumps across
the 𝜶-cycles (the fact that ®𝑐 9𝜇 ` ®𝜔𝑛 P R𝑔 is important here), and have the same poles and
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zeros (points on the 𝜶-cycles remain unchanged under the map 𝒔 ÞÑ 𝒔̄). Thus, their ratio is
holomorphic on the whole surface 𝕾 and therefore is a constant.

Proposition 3.4. For each natural number 𝑛, 𝑧 P Czr𝑎1, 𝑏𝑔`1s, and 𝒛 P 𝑫, let

(3.31) 𝑇𝑛p𝑧q :“ Θ𝑛p𝒛˚qΘ´1
𝑛 p𝒛q.

Then 𝑇𝑛p𝑧q is holomorphic and non-vanishing in its domain of definition and

(3.32)

#

𝑇𝑛`p𝑥q “ 𝑇𝑛´p𝑥q𝑒4𝜋ip𝑐 9𝜇,𝑘`𝜔𝑛,𝑘q, 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u,

|𝑇𝑛˘p𝑥q| ” 1, 𝑥 P Δ.

Hence, 𝑇𝑛p𝑧q can be analytically continued through each gap p𝑏𝑖 , 𝑎𝑖`1q and any such
continuation has a simple pole at 𝑠𝑖 , a simple pole at 𝑥𝑛,𝑖 if 𝒙𝑛,𝑖 P 𝑫, and a simple zero at
𝑥𝑛,𝑖 if 𝒙𝑛,𝑖 P 𝑫˚ (if 𝒙𝑛,𝑖 is a ramification point of 𝕾 then 𝑇𝑛p𝑧q has a non-zero finite limit
at 𝑥𝑛,𝑖). Moreover, the families

 

𝑇𝑛p𝑧q
(

𝑛
and

 

𝑇𝑛p𝑧q´1(

𝑛
are normal in Czr𝑎1, 𝑏𝑔`1s.

Proof. The properties of the functions 𝑇𝑛p𝑧q follow immediately from the corresponding
properties of the functions Θ𝑛p𝒛q except for the second identity of (3.32). To derive it,
notice that on the one hand 𝑇𝑛p𝑧q “ 𝑇𝑛p𝑧q by (3.30) and therefore 𝑇𝑛˘p𝑥q “ 𝑇𝑛¯p𝑥q for
𝑥 P Δ, and on the other, 𝑇𝑛˘p𝑥q “ 1{𝑇𝑛¯p𝑥q, 𝑥 P Δ, by the very definition (3.31). These
two equalities together do yield the desired claim. �

3.8. Szegő Functions of Polynomials. Take 𝑞p𝑧q “ 𝑧´ 𝑒, 𝑒 R Δ. As usual, let 𝒆 P 𝑫˚ be
such that 𝜋p𝒆q “ 𝑒 and let 𝔞p𝒆q be given by (3.25), where with a slight abuse of notation
we set 𝔞p𝒆q :“ 𝔞`p𝒆q if 𝒆 P Y

𝑔

𝑖“1𝜶𝑖 . Define

𝑆𝑒p𝒛q :“
𝜃

´

𝔞p𝒛q ´ 𝔞p8˚q ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ 𝔞p𝒆q ´ ®𝐾
¯

"

1, 𝒛 P 𝑫,

𝑞p𝑧q, 𝒛 P 𝑫˚,

where, as before, 8 and 8˚ are the points on top infinity that belong to 𝑫 and 𝑫˚,
respectively. This function is holomorphic and non-vanishing on 𝕾𝜶z𝚫 (notice that both
the numerator and the denominator of the fraction above have a zero of order 𝑔´ 1 at 𝒃𝑔`1
as can be easily seen from (3.22) and (3.25)), whose traces on 𝚫 and the 𝜶-cycles satisfy

𝑆𝑒`p𝒔q “ 𝑆𝑒´p𝒔q

#

𝑞p𝑠q, 𝒔 P 𝚫,

𝑒2𝜋ip𝔞𝑘p𝒆q´𝔞𝑘p8˚qq, 𝒔 P 𝜶𝑘 , 𝑘 P t1, . . . , 𝑔u,

where 𝔞𝑘p𝒛q is the 𝑘-th component of the vector 𝔞p𝒛q and we exclude the points of inter-
section of different cycles. It is quite straightforward to see that the product 𝑆𝑒p𝒛q𝑆𝑒p𝒛˚q is
continuous across both 𝚫 and the 𝜶-cycles and therefore is an entire function on the whole
surface. Thus, 𝑆𝑒p𝒛q𝑆𝑒p𝒛˚q ” 𝑆2

𝑒p𝒂1q on 𝕾. Hence, if we put 𝑆𝑞p𝑧q :“ 𝑆𝑒p𝒛q{𝑆𝑒p𝒂1q,
𝒛 P 𝑫, then 𝑆𝑞p𝑧q is holomorphic and non-vanishing in Czr𝑎1, 𝑏𝑔`1s and satisfies

#

𝑆𝑞`p𝑥q𝑆𝑞´p𝑥q “ 𝑞p𝑥q, 𝑥 P Δ,

𝑆𝑞`p𝑥q “ 𝑆𝑞´p𝑥q𝑒2𝜋ip𝔞𝑘p𝒆q´𝔞𝑘p8˚qq, 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u.

Now, if 𝑒 P p´8,8qzr𝑎1, 𝑏𝑔`1s, one can see from (3.6) and (3.25) that the constant
𝔞𝑘p𝒆q ´ 𝔞𝑘p8˚q is real. In this case, similarly to (3.30), one can check that 𝑆𝑒p𝒛̄q “

𝑐𝑒𝑆𝑒p𝒛q and therefore 𝑆𝑒p𝒛q{𝑆𝑒p𝒂1q “ 𝑆𝑒p𝒛̄q{𝑆𝑒p𝒂1q. Hence, it additionally holds that
|𝑆𝑞˘p𝑥q|2 “ 𝑞p𝑥q for 𝑥 P Δ. In the same way one can also check that the last equality also
holds when 𝑞p𝑧q “ p𝑧´ 𝑒qp𝑧´ 𝑒q (in this case we define 𝑆𝑞p𝑧q as a product of 𝑆¨´𝑒p𝑧q and
𝑆¨´𝑒̄p𝑧q).

The non-uniqueness of the above construction stems from the vectors 𝔞p8˚q and 𝔞p𝒆q

as they can be replaced by any pair ®𝑢 and ®𝑣 such that r𝔞p8˚qs “ r®𝑢s and r𝔞p𝒆qs “ r®𝑣s. Such
a substitution will lead to a different function 𝑆𝑞p𝑧q with the same jump relation on Δ, but
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different constant jumps in the gaps. Clearly, the ratio of two such Szegő functions is equal
to a constant multiple of expt2𝜋i ®𝑚T𝔞p𝒛qu for some ®𝑚 P Z𝑔 as can be seen from (3.27).

The above construction also leads to a formula for 𝑆𝑛p𝒛q different from (3.13). Indeed,
up to multiplication by a constant multiple of expt2𝜋i ®𝑚T𝔞p𝒛qu, ®𝑚 P Z𝑔, 𝑆𝑛p𝒛q is equal to

¨

˝

ź

𝑒P𝐸𝑛 , |𝑒|ă8

𝑆𝑒p𝒛q

˛

‚

¨

˝

𝜃

´

𝔞p𝒛q ´ 𝔞p8˚q ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ 𝔞p8q ´ ®𝐾
¯

˛

‚

𝑛

.

3.9. Main Theorem. Recall (3.1) and Propositions 3.1–3.4. An analog of Theorem 2.1 in
the multi-cut case can be stated as follows.

Theorem 3.1. Let 𝑓 p𝑧q be given by (2.1) and (3.2)–(3.4). Further, let 𝑝𝑛p𝑧q{𝑞𝑛p𝑧q be the
multipoint Padé approximant of 𝑓 p𝑧q associated with 𝐸𝑛, where the interpolation sets 𝐸𝑛
are conjugate-symmetric and there exists a neighborhood of r𝑎1, 𝑏𝑔`1s disjoint from all the
multisets 𝐸𝑛. Then it holds that

𝑓 p𝑧q ´
𝑝𝑛p𝑧q

𝑞𝑛p𝑧q
“ p2 ` 𝑜p1qqp𝑇𝑛𝜓𝑛qp𝑧q

`

𝑚𝑆2
9𝜇

˘

p𝑧q

𝑤p𝑧q
,

as 𝑛 Ñ 8 locally uniformly in Czr𝑎1, 𝑏𝑔`1s.

Recall that 𝜓𝑛p𝑧q satisfies |𝜓𝑛p𝑧q| ă 1, 𝑧 P CzΔ, and that it has 2𝑛 zeros there. Since
these zeros are separated fromΔ for all 𝑛, the functions𝜓𝑛p𝑧q converge to zero geometrically
fast in CzΔ. Recall also that the functions 𝑇𝑛p𝑧q are uniformly bounded away from infinity
and zero on closed subsets of Czr𝑎1, 𝑏𝑔`1s.

Proof. Let 𝑆𝑛p𝒛q, 𝑆 9𝜇p𝑧q, and Θ𝑛p𝒛q be given by (3.13), (3.16), and (3.28), respectively.
Define

(3.33) Ψ𝑛p𝒛q :“ p𝑆𝑛Θ𝑛qp𝒛q

"

1{𝑆 9𝜇p𝑧q, 𝒛 P 𝑫,

p𝑚𝑆 9𝜇qp𝑧q, 𝒛 P 𝑫˚.

It holds that Ψ𝑛p𝒛q is a meromorphic function in𝕾z𝚫 with a pole of order 𝑛 at 8, a zero of
order 𝑛 ´ 𝑔 at 8˚, a simple zero at each 𝒙𝑛,𝑖 , 𝑖 P t1, . . . , 𝑔u, and otherwise non-vanishing
and finite. Moreover, it has continuous traces on 𝚫 that satisfy

(3.34) Ψ𝑛`p𝒔q “ Ψ𝑛´p𝒔qp𝑣𝑛{𝜌qp𝑥q, 𝒔 P 𝚫,

by (3.3), (3.15), (3.18), and (3.29). Hence, Ψ𝑛p𝒛q is exactly the function from [10, Propo-
sition 3.3]. Further, let ®𝑊𝑛 :“ ®𝑉𝑛 ` 𝔞p8˚q ´ 𝔞p8q, see (3.24). Define

(3.35) Υ𝑛p𝒛q :“
𝜃

´

𝔞p𝒛q ´ 𝔞p8q ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ 𝔞p8˚q ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ ®𝑊𝑛 ´ ®𝐾
¯

𝜃

´

𝔞p𝒛q ´ ®𝑉𝑛 ´ ®𝐾
¯ .

Then it follows from (3.24) and (3.27) that Υ𝑛p𝒛q is a rational function on𝕾 with poles only
at 𝒙𝑛,1, . . . , 𝒙𝑛,𝑔,8˚, which are simple, and a zero at 8 (the rest of 𝑔 zeros are uniquely
determined by the corresponding Jacobi inversion problem). This is exactly the function
from [10, Proposition 3.4]. Observe also that an argument virtually similar to the one after
(3.29) shows that the functions Υ𝑛p𝒛q form a normal family in 𝕾𝜶zt8˚u.

Let 𝛾𝑛 be a constant such that lim𝒛Ñ8 𝛾𝑛𝑧
´𝑛Ψ𝑛p𝒛q “ 1. Recall also the definition of

𝑅𝑛p𝑧q in (1.1). It was shown in [10, Theorem 3.7] that

(3.36)

#

𝑞𝑛p𝑧q “ 𝛾𝑛
`

1 ` 𝑜p1q ` 𝑜p1qΥ𝑛p𝒛q
˘

Ψ𝑛p𝒛q,

p𝑤𝑅𝑛qp𝑧q “ 𝛾𝑛
`

2 ` 𝑜p1q ` 𝑜p1qΥ𝑛p𝒛˚q
˘

Ψ𝑛p𝒛˚q,

locally uniformly in CzΔ, where 𝒛 P 𝑫 and the error terms 𝑜p1q vanish at infinity. The
normality of Υ𝑛p𝒛q and the fact that each of them has a simple pole at 8˚ while the
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error functions are holomorphic and vanish at infinity coupled with the maximum modulus
principle show that we can write

(3.37)

#

𝑞𝑛p𝑧q “ 𝛾𝑛
`

1 ` 𝑜p1q
˘

Ψ𝑛p𝒛q,

p𝑤𝑅𝑛qp𝑧q “ 𝛾𝑛
`

2 ` 𝑜p1q
˘

Ψ𝑛p𝒛˚q,

locally uniformly in Czr𝑎1, 𝑏𝑔`1s. The desired claim now follows from the very definitions
of 𝑅𝑛p𝑧q and Ψ𝑛p𝒛q, (3.14), and (3.31). �

4. 𝐻̄2
R-approximation of Markov Functions On Several Intervals

Assume now in addition to (3.2)–(3.4) that Δ Ă p´1, 1q.

4.1. Auxiliary Polynomials. Given 𝑤p𝑧q as in (3.1), set

(4.1) 𝑤̃p𝑧q :“ 𝑧𝑔`1𝑤p1{𝑧q,

which is holomorphic in CzΔ´1 and normalized so that 𝑤̃p0q “ 1 (in particular, 𝑤̃p𝑥q ą 0
for 𝑥 P p´1, 1q). Let W be the following matrix:

(4.2) W :“
„
ż 𝑎𝑖`1

𝑏𝑖

`

𝑥 ` 𝑥´1˘𝑙 𝑥𝑔d𝑥
p𝑤𝑤̃qp𝑥q

𝑔,𝑔

𝑖“1,𝑙“1
,

where 𝑖 is the row index and 𝑙 is the column one (powers 𝑙 do go up to 𝑔 but exclude 0). Let
us abbreviate 𝑦𝑙 “ 𝑥𝑙 ` 𝑥´1

𝑙
. Then

detpWq “

ż 𝑎2

𝑏1

¨ ¨ ¨

ż 𝑎𝑔`1

𝑏𝑔

𝑉
`

𝑦1, . . . , 𝑦𝑔
˘ p𝑦𝑔 ¨ ¨ ¨ 𝑦1qp𝑥

𝑔
𝑔 ¨ ¨ ¨ 𝑥

𝑔

1 q

p𝑤𝑤̃qp𝑥𝑔q ¨ ¨ ¨ p𝑤𝑤̃qp𝑥1q
d𝑥𝑔 ¨ ¨ ¨ d𝑥1,

where, as before, 𝑉p𝑦1, . . . , 𝑦𝑔q is the Vandermonde determinant.
If 0 P Δ, then it is clear that detpWq ‰ 0 since all the gaps p𝑏𝑘 , 𝑎𝑘`1q are disjoint and

the Jukovski map 𝑥 ` 𝑥´1 preserves this property. In this case we can set

(4.3) ℓ 𝑗p𝑥q :“ 𝑥𝑔
𝑔
ÿ

𝑖“1
ℓ𝑖 𝑗

`

𝑥 ` 𝑥´1˘𝑖 “ ℎ 𝑗

𝑔
ź

𝑖“1
p𝑥 ´ 𝑥𝑖 𝑗qp1 ´ 𝑥𝑥𝑖 𝑗q,

where rℓ𝑖 𝑗s
𝑔

𝑖, 𝑗“1 “ W´1 and we agree that |𝑥𝑖 𝑗 | ď 1. Then these polynomials satisfy

(4.4)
ż 𝑎𝑘`1

𝑏𝑘

ℓ 𝑗p𝑥qd𝑥
p𝑤𝑤̃qp𝑥q

“ 𝛿𝑘 𝑗 , 𝑘, 𝑗 P t1, . . . , 𝑔u.

Since each ℓ 𝑗p𝑥q has real coefficients, it has at least one zero in each gap p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 ‰ 𝑗 .
To see that polynomials satisfying (4.4) exist even if 0 R Δ, observe that they can be

carried forward and backward by Möbius transformations. Indeed, let ℓp𝑡q “ ℎ
ś𝑔

𝑖“1p𝑡 ´

𝑡𝑖qp1 ´ 𝑡𝑡𝑖q be a symmetric polynomial of degree 2𝑔 and 𝑡p𝑥q “ p𝑥 ´ 𝑥0q{p1 ´ 𝑥𝑥0q be a
Möbius transformation that carries a system of intervals Δ1 into another system Δ2. Then

ℓp𝑡q “ ℎ

𝑔
ź

𝑖“1

˜

1 ´ 𝑥2
0

1 ´ 𝑥𝑖𝑥0

¸2 ś𝑔

𝑖“1p𝑥 ´ 𝑥𝑖qp1 ´ 𝑥𝑥𝑖q

p1 ´ 𝑥𝑥0q2𝑔 ,

where 𝑡𝑖 “ 𝑡p𝑥𝑖q. Let 𝑤Δ𝑖
p𝑥q and 𝑤̃Δ𝑖

p𝑥q be defined via (3.1) and (4.1), respectively, with
respect to the system of intervals Δ𝑖 . Then

p𝑤Δ2 𝑤̃Δ2qp𝑡q “

𝑔`1
ź

𝑘“1

p1 ´ 𝑥2
0q2

p1 ´ 𝑎𝑘𝑥0qp1 ´ 𝑏𝑘𝑥0q

p𝑤Δ1 𝑤̃Δ1qp𝑥q

p1 ´ 𝑥𝑥0q2𝑔`2 .

Since d𝑡 “ p1 ´ 𝑥2
0qp1 ´ 𝑥𝑥0q´2d𝑥, it holds that

ż 𝑡p𝑑q

𝑡p𝑐q

ℓp𝑡qd𝑡
p𝑤Δ2 𝑤̃Δ2qp𝑡q

“

ż 𝑑

𝑐

ℓ˚p𝑥qd𝑥
p𝑤Δ1 𝑤̃Δ1qp𝑥q

,
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where ℓ˚p𝑥q :“ ℎ˚

ś𝑔

𝑖“1p𝑥 ´ 𝑥𝑖qp1 ´ 𝑥𝑥𝑖q and ℎ˚ :“ ℎp1 ´ 𝑥2
0q
ś𝑔`1
𝑘“1

p1´𝑎𝑘 𝑥0qp1´𝑏𝑘 𝑥0q

p1´𝑥𝑘´1𝑥0q2 .
Then, by applying to Δ a Möbius transformation that sends a point from Δ to the origin,
constructing polynomials satisfying (4.3) and (4.4) for the image of Δ, and carrying them
back by the inverse Möbius transformation, we shall construct the desired polynomials ℓ𝑖p𝑥q

for Δ.

4.2. Condenser Map. Let 𝑢p𝑥q be a symmetric polynomial of degree 2𝑔 such that

(4.5)
ż

Δ

𝑢p𝑥qd𝑥
p𝑤`𝑤̃qp𝑥q

“ ´i and
ż 𝑎𝑘`1

𝑏𝑘

𝑢p𝑥qd𝑥
p𝑤𝑤̃qp𝑥q

“ 0, 𝑘 P t1, . . . , 𝑔u.

It can be readily checked that

(4.6) 𝑢p𝑥q “ 𝑢0

˜

𝑥𝑔 ´

𝑔
ÿ

𝑖“1

ˆ
ż 𝑎𝑖`1

𝑏𝑖

𝑦𝑔d𝑦
p𝑤𝑤̃qp𝑦q

˙

ℓ𝑖p𝑥q

¸

“ 𝑐

𝑔
ź

𝑖“1
p𝑥 ´ 𝑥𝑖qp1 ´ 𝑥𝑖𝑥q,

where the constant 𝑐 (and therefore 𝑢0) is chosen so that the first condition in (4.5) is fulfilled
and we agree that |𝑥𝑖| ď 1, 𝑖 P t1, . . . , 𝑔u. Observe that each gap p𝑏𝑘 , 𝑎𝑘`1q must contain
exactly one zero of of 𝑢p𝑥q, say 𝑥𝑘 . In particular, since 𝑤`p𝑥q “ p´1q𝑔`1´𝑘 i|𝑤p𝑥q| for
𝑥 P p𝑎𝑘 , 𝑏𝑘q, it holds that p´1q𝑔`1´𝑘𝑢p𝑥q ą 0 for 𝑥 P p𝑎𝑘 , 𝑏𝑘q, 𝑘 P t1, . . . , 𝑔 ` 1u.

Proposition 4.1. Define

(4.7) 𝜑p𝑧q :“ exp
"

𝜋

ż 𝑧

1

𝑢p𝑠qd𝑠
p𝑤𝑤̃qp𝑠q

*

,

where the path of integration lies entirely in Cz
`

r𝑎1, 𝑏𝑔`1s Y r𝑎1, 𝑏𝑔`1s´1˘. The function
𝜑p𝑧q is well-defined and holomorphic in its domain of definition and satisfies

(4.8) 𝜑p𝑧q “ 𝜑p𝑧q and 𝜑p1{𝑧q “ 1{𝜑p𝑧q.

Moreover, the increment of the argument of 𝜑p𝑧q along the unit circle is equal to 2𝜋 and it
holds that

(4.9)
"

|𝜑p𝜏q| ” 1, 𝜏 P T,

|𝜑p𝑥q| ” 𝜌˘1, 𝑥 P Δ˘1, 𝜌 :“ 𝜑p𝑏𝑔`1q ă 1.

Furthermore, 𝜑p𝑧q has continuous traces in the gaps Y
𝑔

𝑖“1p𝑏𝑖 , 𝑎𝑖`1q that satisfy

(4.10) 𝜑`p𝑥q “ 𝜑´p𝑥q𝑒´2𝜋i𝜔𝑘 , 𝜔𝑘 :“
𝑘
ÿ

𝑖“1

ż 𝑏𝑖

𝑎𝑖

d𝜔Δ,T,

for 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q and each 𝑘 P t1, . . . , 𝑔u, where the probability measure 𝜔Δ,T is given
by

(4.11) d𝜔Δ,Tp𝑥q :“
|𝑢p𝑥q|d𝑥

|p𝑤𝑤̃qp𝑥q|
“

i𝑢p𝑥qd𝑥
p𝑤`𝑤̃qp𝑥q

, 𝑥 P Δ.

Proof. The function 𝜑p𝑧q is well-defined due to the first requirement in (4.5). Relations
(4.8) follow from the conjugate-symmetry of the integrand as well as the symmetry with
respect to 𝑠 ÞÑ 1{𝑠 (here, one needs to include the differential d𝑠 as well). The first relation
in (4.9) is a direct consequence of (4.8) and to get the second relation one needs to use
the second requirement in (4.5) and the observation that the integrand in (4.7) is purely
imaginary on each side of Δ. The claim about the increment of the argument follows
directly from (4.5). Relations (4.10) can be verified via a direct computation. �

The probability measure 𝜔Δ,T can be interpreted from the point of view of potential
theory as the condenser equilibrium distribution on Δ of the condenser pΔ,Tq. Moreover,
since the traces 𝜑˘p𝑥q have constant argument in each gap p𝑏𝑖 , 𝑎𝑖`1q, 𝜑p𝑧q is a conformal
map of Cz

`

r𝑎1, 𝑏𝑔`1s Y r𝑎1, 𝑏𝑔`1s´1˘ into an annulus t𝜌 ă |𝑧| ă 𝜌´1u with “internal
spikes”.
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4.3. Condenser Szegő Function. Set

(4.12) 𝐾p𝑧; 𝑥q :“
1

𝑥 ´ 𝑧
`

𝑥

1 ´ 𝑥𝑧
“

1 ´ 2𝑥𝑧 ` 𝑥2

p𝑥 ´ 𝑧qp1 ´ 𝑥𝑧q

to be the condenser version of the Cauchy kernel. Given a Hölder-smooth function 𝜆p𝑥q on
Δ that is positive away from the endpoints t𝑎𝑖 , 𝑏𝑖u

𝑔`1
𝑖“1 and has integrable logarithm, let

(4.13) 𝐷𝜆p𝑧q :“ exp
"

1
2𝜋i

p𝑤𝑤̃qp𝑧q

𝑢p𝑧q

„
ż

Δ

𝐾p𝑧; 𝑥q log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

𝑢p𝑥qd𝑥
p𝑤`𝑤̃qp𝑥q

´

𝑔
ÿ

𝑖“1

ż 𝑎𝑖`1

𝑏𝑖

2𝜋i𝜅𝜆,𝑖𝐾p𝑧; 𝑦q
𝑢p𝑦qd𝑦

p𝑤𝑤̃qp𝑦q

ff+

for 𝑧 P Cz
`

r𝑎1, 𝑏𝑔`1s Y r𝑎1, 𝑏𝑔`1s´1˘, where the constants 𝐺𝜆 and 𝑘𝜆,𝑖 are given by
(4.14)

𝐺𝜆 :“ exp
"
ż

log𝜆p𝑥qd𝜔Δ,Tp𝑥q

*

and 𝜅𝜆,𝑖 :“
1

2𝜋i

ż

Δ

log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

ℓ𝑖p𝑥qd𝑥
p𝑤`𝑤̃qp𝑥q

.

Proposition 4.2. It holds that 𝐷𝜆p𝑧q is a well-defined non-vanishing holomorphic function
in its domain of definition. It has continuous traces on each open subinterval of Δ and in
each gap that satisfy

(4.15)

#

𝐺𝜆|𝐷𝜆˘p𝑥q|2 “ 𝜆p𝑥q, 𝑥 P Y
𝑔

𝑖“1p𝑎𝑖 , 𝑏𝑖q,

𝐷𝜆`p𝑥q “ 𝐷𝜆´p𝑥q𝑒´2𝜋i𝜅𝜆,𝑘 , 𝑥 P p𝑏𝑘 , 𝑎𝑘`1q, 𝑘 P t1, . . . , 𝑔u.

Furthermore, the increment of the argument of 𝐷𝜆p𝑧q along the unit circle is equal to zero
and it holds that

(4.16) 𝐷𝜆p1{𝑧q “ 1{𝐷𝜆p𝑧q and |𝐷𝜆p𝜏q| ” 1, 𝜏 P T.

Moreover, if 𝜆p𝑥q “ |𝑥 ´ 𝑒|𝛼𝜆˚p𝑥q, where 𝑒 P t𝑎𝑖 , 𝑏𝑖u
𝑔`1
𝑖“1 and 𝜆˚p𝑥q is Hölder-smooth,

then

(4.17) |𝐷𝜆p𝑧q|2 “ |𝑧 ´ 𝑒|𝛼|𝐷˚p𝑧q|2,

where the function 𝐷˚p𝑧q is bounded and non-vanishing in some neighborhood of 𝑒 (in-
cluding the traces on Δ).

Proof. To prove the first claim, it is enough to investigate what happens in the unit disk
only as 𝐷𝜆p1{𝑧q “ 1{𝐷𝜆p𝑧q. Indeed, we have that p𝑤𝑤̃{𝑢qp1{𝑧q “ p1{𝑧2qp𝑤𝑤̃{𝑢qp𝑧q and
p1{𝑧2q𝐾p1{𝑧; 𝑥q “ p2{𝑧q ´ 𝐾p𝑧; 𝑥q. Since the integrals in (4.13) with 𝐾p𝑧; 𝑥q replaced by
1{𝑧 vanish due to (4.5), (4.11), and the choice of 𝐺𝜆 in (4.14), the claim follows.

To continue, let us make the following observation: it follows from (4.3) and (4.4) that

ℓ𝑘p𝑥q ´

𝑔
ÿ

𝑖“1
ℓ𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

ℓ𝑘p𝑦qd𝑦
p𝑤𝑤̃qp𝑦q

” 0

for each 𝑘 P t1, . . . , 𝑔u. Further, let 𝑝p𝑥q be any symmetric polynomial of degree 2𝑔,
which we can write as, 𝑝p𝑥q “ 𝑝0𝑥

𝑔 `
ř𝑔

𝑘“1 𝑐𝑘p𝑝qℓ𝑘p𝑥q for some constants 𝑐𝑘p𝑝q. The
previous identity then yields that
(4.18)

𝑝p𝑥q ´

𝑔
ÿ

𝑖“1
ℓ𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑝p𝑦qd𝑦
p𝑤𝑤̃qp𝑦q

“ 𝑝0

˜

𝑥𝑔 ´

𝑔
ÿ

𝑖“1
ℓ𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑦𝑔d𝑦
p𝑤𝑤̃qp𝑦q

¸

“
𝑝0

𝑢0
𝑢p𝑥q,

where 𝑢p𝑥q was defined in (4.6).
Going back to the proof of the first claim, observe that 𝐾p𝑧; 𝑥q ´ p𝑧´ 𝑥q´1 is an analytic

function of 𝑧 P D for each 𝑥 P Δ, see (4.12). Therefore, 𝐷𝜆p𝑧q is analytic in Dzr𝑎1, 𝑏𝑔`1s

away from the zeros of 𝑢p𝑥q. However, it is analytic at those zeros as well since the term in
square brackets vanishes at them. Indeed, let 𝑥 𝑗 be such a zero. Observe that 𝑢p𝑥q𝐾p𝑥 𝑗 ; 𝑥q
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is a symmetric polynomial of degree 2𝑔 according to (4.12). Therefore, the term in square
brackets is equal to

ż

Δ

˜

𝑢p𝑥q𝐾p𝑥 𝑗 ; 𝑥q ´

𝑔
ÿ

𝑖“1
ℓ𝑖p𝑥q

ż 𝑎𝑖`1

𝑏𝑖

𝑢p𝑦q𝐾p𝑥 𝑗 ; 𝑦qd𝑦
p𝑤𝑤̃qp𝑦q

¸

log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

d𝑥
p𝑤`𝑤̃qp𝑥q

“

ℎ 𝑗

𝑢0

ż

Δ

𝑢p𝑥q log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

d𝑥
p𝑤`𝑤̃qp𝑥q

“ 0

by (4.18) and the choice of 𝐺𝜆 in (4.14), where ℎ 𝑗 is the coefficient next to 𝑥𝑔 of
𝑢p𝑥q𝐾p𝑥 𝑗 ; 𝑥q. Hence, 𝐷𝜆p𝑧q is indeed holomorphic and non-vanishing in Cz

`

r𝑎1, 𝑏𝑔`1s Y

r𝑎1, 𝑏𝑔`1s´1˘.
Relations (4.15) and (4.17) hold due to known behavior of Cauchy integrals and the fact

that 𝐾p𝑧; 𝑥q is “essentially” a Cauchy kernel, [4, Sections 4.2 and 8.6].
The first identity in (4.16) has already been explained and the second one follows from

the first and the fact that 𝐷𝜆p𝑧q “ 𝐷𝜆p𝑧q.
It only remains to prove the claim about the increment of the argument of 𝐷𝜆p𝑧q,

say 𝐼, along T (the proof is an adjustment of the one in [1, Lemmas 2.40 and 5.2]). 𝐼

is equal to the integral of the tangential derivative of the argument of 𝐷𝜆p𝑧q over the
unit circle (oriented counter-clockwise). Due to Cauchy-Riemann relations we have that
𝐼 “ 1

2𝜋
ű

TpB𝒏ℎqp𝑠q|d𝑠|, where B𝒏 is the partial derivative on B𝑈 with respect to the inner
normal and ℎp𝑧q :“ log |𝐷𝜆p𝑧q| is harmonic in 𝑈 :“ DzΔ (harmonicity across the gaps
follows from the second relation in (4.15) and the fact that constants 𝜅𝜆,𝑖 are real). Then it
follows from Green’s formula that

¿

B𝑈

𝑔p𝑠qpB𝒏ℎqp𝑠q|d𝑠| “

¿

B𝑈

ℎp𝑠qpB𝒏𝑔qp𝑠q|d𝑠|,

where 𝑔p𝑧q :“ log |𝜑p𝑧q{𝜌| is also a harmonic function in 𝑈, see (4.7) and (4.9). Since
ℎp𝑥q “ p1{2q logp𝜆{𝐺𝜆qp𝑥q for 𝑥 P Δ and ℎp𝑧q ” 0 on T by (4.15) and (4.16), and 𝑔p𝑧q ” 0
on Δ and 𝑔p𝑧q ” ´ log 𝜌 on T by (4.9), it holds that

𝐼 “
´1

4𝜋 log 𝜌

ż

Δ

log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

`

B𝒏`𝑔 ` B𝒏´𝑔qp𝑥qd𝑥.

Now, it readily follows from (4.7) that

pB𝒏˘𝑔qp𝑥q “ ˘𝜋B𝑦<
ˆ
ż 𝑧

1

𝑢p𝑠qd𝑠
p𝑤𝑤̃qp𝑠q

˙
ˇ

ˇ

ˇ

ˇ

𝑧“𝑥

“
𝜋i𝑢p𝑥q

p𝑤`𝑤̃qp𝑥q
.

Plugging the above expression in the last formula for 𝐼 and recalling (4.11) gives us

𝐼 “
´1

2 log 𝜌

ż

Δ

log
ˆ

𝜆p𝑥q

𝐺𝜆

˙

d𝜔Δ,Tp𝑥q “ 0,

where we used (4.14) for the last equality. �

4.4. Main Theorem. Let 𝑓 p𝑧q be given by (2.1) and (3.2)–(3.4) and t𝑟𝑛p𝑧qu be a se-
quence of irreducible critical points in rational 𝐻̄2

R-approximation of 𝑓 p𝑧q. Write 𝑟𝑛p𝑧q “

p𝑝𝑛{𝑞𝑛qp𝑧q. Recall that 𝑞𝑛p𝑧q satisfies (2.2) with

(4.19) 𝑣𝑛p𝑧q “ 𝜘𝑛𝑞
2
𝑛p𝑧q,

where 𝑞𝑛p𝑧q “ 𝑧𝑛𝑞𝑛p1{𝑧q and 𝜘𝑛 is the reciprocal of the square of the product of non-zero
zeros of 𝑞𝑛p𝑧q, which turns 𝑣𝑛p𝑧q into a monic polynomial. Let divisors D𝑛 “

ř𝑔

𝑖“1 𝒙𝑛,𝑖
be the solutions of Jacobi inversion problem (3.23) with 𝑣𝑛p𝑧q given by (4.19). Recall that
the points 𝒙𝑛,𝑖 could be labeled so that 𝑥𝑛,𝑘 P r𝑏𝑘 , 𝑎𝑘`1s for each 𝑘 P t1, . . . , 𝑔u. Set

(4.20) 𝑚𝑛p𝑧q :“ p𝑧 ´ 𝑥𝑛,1q ¨ ¨ ¨ p𝑧 ´ 𝑥𝑛,𝑔q.
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Denote further by 𝐵𝑛p𝑧q the Blaschke product that vanishes exactly at those points 𝑥𝑛,𝑖 that
correspond to the elements of the divisor D𝑛 that belong to 𝑫, that is,

(4.21) 𝐵𝑛p𝑧q :“
ź

𝒙𝑛,𝑖P𝑫

𝑧 ´ 𝑥𝑛,𝑖

1 ´ 𝑥𝑛,𝑖𝑧
.

We shall denote by 𝑑𝑛 the number of zeros of 𝐵𝑛p𝑧q, i.e., the number of elements of D𝑛

that belong to 𝑫. Finally, put

(4.22) 𝜆𝑛p𝑥q :“ 𝜌p𝑥q𝐵2
𝑛p𝑥q{𝑚𝑛p𝑥q, 𝑥 P Δ,

which is a positive and continuous function (with the exception of those 𝑥𝑛,𝑖 that belong to
t𝑎𝑖 , 𝑏𝑖u

𝑔`1
𝑖“1 ). Recall the definition of the function 𝑤p𝑧q in (3.1) as well as Propositions 4.1–

4.2. An analog of Theorem 2.2 in the multi-cut case can be stated as follows.

Theorem 4.1. Let 𝑓 p𝑧q be given by (2.1) and (3.2)–(3.4). Further, let t𝑟𝑛p𝑧qu be a sequence
of irreducible critical points in rational 𝐻̄2

R-approximation of 𝑓 p𝑧q. Then it holds that

𝑓 p𝑧q ´ 𝑟𝑛p𝑧q “
`

2𝐺𝜆𝑛 ` 𝑜p1q
˘𝑚𝑛p𝑧q

𝐵2
𝑛p𝑧q

𝐷2
𝜆𝑛

p𝑧q

𝑤p𝑧q

ˆ

𝜌

𝜑p𝑧q

˙2p𝑛´𝑑𝑛q

as 𝑛 Ñ 8 locally uniformly in Cz
`

r𝑎1, 𝑏𝑔`1s Y r𝑎1, 𝑏𝑔`1s´1˘.

It is tempting to surmise that 𝐷𝜆𝑛p𝑧q{𝜑𝑛´𝑑𝑛p𝑧q is analytic across the gaps the way
the product p𝑇𝑛𝜓𝑛𝑆

2
9𝜇
qp𝑧q from Theorem 3.1 is. Unfortunately, while the choice of 𝑇𝑛p𝑧q

was driven exactly by the need to cancel the jumps of p𝜓𝑛𝑆
2
9𝜇
qp𝑧q across the gaps, the

function 𝜆𝑛p𝑥q was devised out of necessities of the forthcoming proof. Observe also that
its definition requires the knowledge of the divisors D𝑛 and therefore of the exact locations
of the zeros of the polynomials 𝑞𝑛p𝑧q. Of course, it would be much preferable to be able
to argue that points 𝑥𝑛,𝑖 need to be selected so that 𝐷𝜆𝑛p𝑧q{𝜑𝑛´𝑑𝑛p𝑧q has no jumps across
the gaps and then to prove Theorem 4.1 with this knowledge only.

Below, we follow the approach developed in [1] for the proof of Theorem 2.2.

Proof of Theorem 4.1. As above, write 𝑟𝑛p𝑧q “ 𝑝𝑛p𝑧q{𝑞𝑛p𝑧q. Since 𝑞𝑛p𝑧q has real coeffi-
cients and its zeros belong to the unit disk, 𝑣𝑛p𝑧q has real coefficients and is non-zero in D.
Thus, Theorem 3.1 is applicable to p𝑝𝑛{𝑞𝑛qp𝑧q and we have

(4.23) p 𝑓 ´ 𝑟𝑛qp𝑧q “ p2 ` 𝑜p1qqp𝑇𝑛𝜓𝑛qp𝑧q

`

𝑚𝑆2
9𝜇

˘

p𝑧q

𝑤p𝑧q

locally uniformly in Czr𝑎1, 𝑏𝑔`1s. Define ℎ𝑛p𝑧q :“ log |𝐻𝑛p𝑧q|, where

𝐻𝑛p𝑧q :“ p𝑇𝑛𝜓𝑛qp𝑧q
𝑚p𝑧q

𝑚𝑛p𝑧q

𝐵2
𝑛p𝑧q𝑆2

9𝜇
p𝑧q

𝐺𝜆𝑛𝐷
2
𝜆𝑛

p𝑧q

ˆ

𝜑p𝑧q

𝜌

˙2p𝑛´𝑑𝑛q

.

It follows from (4.10) and (4.15) that |𝐻𝑛`p𝑥q| “ |𝐻𝑛´p𝑥q| for 𝑥 P Y
𝑔

𝑘“1p𝑏𝑘 , 𝑎𝑘`1q and
the jump is constant in each gap. Moreover, according to Proposition 3.4 and equations
(4.17), (4.21), the function |p𝑚𝑇𝑛𝐵

2
𝑛{𝑚𝑛𝐷

2
𝜆𝑛

qp𝑧q| is non-vanishing in the gaps ofΔ (observe
that if 𝑥𝑛,𝑖 is equal to either 𝑏𝑖 or 𝑎𝑖`1, then it is of course a simple zero of 𝑚𝑛p𝑧q, it is
essentially a "simple pole" of 𝐷2

𝜆𝑛
p𝑧q, while all other functions are non-vanishing around

it). Since the zeros of the polynomials 𝑞𝑛p𝑧q belong to Δ, the zeros of 𝑞𝑛p𝑧q and therefore
of 𝜓𝑛p𝑧q belong to Δ´1. Thus, ℎ𝑛p𝑧q is harmonic in DzΔ as well as across T (recall that
Δ Ă p´1, 1q). Furthermore, since

𝐺𝜆𝑛 |𝐷2
𝜆𝑛˘p𝑥q| “ 𝜆𝑛p𝑥q “ 𝐵2

𝑛p𝑥q 9𝜇p𝑥q𝑚p𝑥q{𝑚𝑛p𝑥q

by (4.15), it holds by (3.12), (3.18), (3.32), and (4.9) that

(4.24) ℎ𝑛p𝑥q ” 0, 𝑥 P Δ.
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To describe the behavior of ℎ𝑛p𝑧q on the unit circle, set 𝑏𝑛p𝑧q :“ 𝑞𝑛p𝑧q{𝑞𝑛p𝑧q. Then it
follows from (1.1) that

(4.25) p 𝑓 ´ 𝑟𝑛qp𝑧q “ 𝜘𝑛
`

𝑏´2
𝑛 𝑞𝑛𝑅𝑛

˘

p𝑧q.

Let now Ψ𝑛p𝒛q and 𝛾𝑛 be as in the proof of Theorem 3.1, see (3.33) and (3.36). Then we
get from (3.37) that

p 𝑓 ´ 𝑟𝑛qp𝑧q “
`

𝜘𝑛𝛾
2
𝑛

˘2 ` 𝑜p1q

𝑤p𝑧q

Ψ𝑛p𝒛qΨ𝑛p𝒛˚q

𝑏2
𝑛p𝑧q

locally uniformly in Czr𝑎1, 𝑏𝑔`1s. It is quite easy to see from (3.34) that the product
Ψ𝑛p𝒛qΨ𝑛p𝒛˚q has no jump on 𝚫 and therefore is a rational function on 𝕾. Since it is
symmetric with respect to the involution 𝒛 ÞÑ 𝒛˚, it must be a lift of a rational function on
C to 𝕾. The form of its zero/pole divisor then yields that

(4.26) Ψ𝑛p𝒛qΨ𝑛p𝒛˚q “ p𝛾˚
𝑛 {𝛾𝑛q𝑚𝑛p𝑧q,

where 𝛾˚
𝑛 :“ lim𝒛Ñ8˚ Ψ𝑛p𝒛q𝑧𝑛´𝑔. Since Blaschke products 𝑏𝑛p𝑧q are unimodular on the

unit circle, we can write

(4.27) |p 𝑓 ´ 𝑟𝑛qp𝜏q| “ p2 ` 𝑜p1qq|𝜘𝑛𝛾𝑛𝛾
˚
𝑛 ||p𝑚𝑛{𝑤qp𝜏q|

uniformly for 𝜏 P T. Comparing (4.23) and (4.27), we see that

𝜘𝑛𝛾𝑛𝛾
˚
𝑛 “ p1 ` 𝑜p1qq|p𝑇𝑛𝜓𝑛qp𝜏q||p𝑚{𝑚𝑛qp𝜏q||𝑆2

9𝜇p𝜏q|

uniformly for 𝜏 P T. We do not need an absolute value around the constant 𝜘𝑛𝛾𝑛𝛾˚
𝑛 since

𝜘𝑛𝛾𝑛𝛾
˚
𝑛 “ 𝜘𝑛 lim

𝒙Ñ8
𝑧2𝑛´𝑔Ψ𝑛p𝒛˚q{Ψ𝑛p𝒛q “ lim

0ă𝑥Ñ8
𝑥2𝑛´𝑔 𝜓𝑛p𝑥q

𝑞2
𝑛p𝑥q

𝑇𝑛p𝑥q𝑚p𝑥q

𝑆2
9𝜇
p𝑥q

ą 0,

where the first equality follows straight from the definitions of these constants, see (3.36)
and (4.26), the second one is a consequence of (3.33), (3.14), (3.31), (4.19), as well as the
meromorphy of Ψ𝑛p𝒛˚q{Ψ𝑛p𝒛q around 8, and the last inequality holds because p𝑞𝑛𝑆 9𝜇qp𝑥q

is real for 𝑥 ą 𝑏𝑔`1, 𝜓𝑛p𝑥q is positive there (exponential of a real-valued function), and so
is 𝑇𝑛p𝑥q (it is real and non-vanishing there and lim

𝑥Ñ𝑏
`

𝑔`1
𝑇𝑛p𝑥q “ 1). Because Blaschke

products 𝐵𝑛p𝑧q are unimodular on T, it follows from (4.9) and (4.16) that

(4.28) ℎ𝑛p𝜏q “ log
ˆ

𝜘𝑛𝛾𝑛𝛾
˚
𝑛

𝐺𝜆𝑛 𝜌
2p𝑛´𝑑𝑛q

˙

` 𝑜p1q

uniformly on T. Let us now recall [1, Lemma 4.7]. It states that if𝑈 Ă C is a domain such
that B𝑈 “ 𝐾1 Y 𝐾2, where 𝐾1, 𝐾2 are two compact disjoint sets and if ℎp𝑧q is a harmonic
function in𝑈 such that

(4.29)
¿

𝐶

B𝒏ℎp𝑠q|d𝑠| “ 0,

where B𝒏 is the normal derivative on a chain 𝐶 of smooth Jordan curves that separates 𝐾1
from 𝐾2 and has winding number 1 with respect to 𝐾1 and 0 with respect to 𝐾2, then for
both 𝑙 P t1, 2u it holds that

sup
𝑧1P𝐾𝑙

lim sup
𝑈Q𝑧Ñ𝑧1

ℎp𝑧q ě inf
𝑧1P𝐾3´𝑙

lim inf
𝑈Q𝑧Ñ𝑧1

ℎp𝑧q.

Since ℎ𝑛p𝑧q continuously extends to T as well as both sides of Δ where it satisfies (4.24),
this lemma, applied with𝑈 “ DzΔ, 𝐾1 “ Δ, 𝐾2 “ T, and ℎp𝑧q “ ℎ𝑛p𝑧q, yields that

(4.30) max
𝜏PT

ℎ𝑛p𝜏q ě 0 ě min
𝜏PT

ℎ𝑛p𝜏q,

granted integral condition (4.29) is satisfied. Take 𝐶 to be a circle in DzΔ centered at the
origin. Since ℎ𝑛p𝑧q is harmonic across T, it follows from Green’s formula that if (4.29)
is satisfied on T, then it is satisfied on 𝐶 as just described. Hence, we can, in fact, take
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𝐶 “ T. The integral of the normal derivative of ℎ𝑛p𝑧q over T is equal to the integral
of the tangential derivative of the harmonic conjugate of ℎ𝑛p𝑧q, that is, it is equal to the
total increment of the argument of 𝐻𝑛p𝑧q along T. The increment of the argument of
𝑇𝑛p𝑧qp𝑚{𝑚𝑛qp𝑧q𝑆2

9𝜇
p𝑧q is equal to 0 by the argument principle since this is a non-vanishing

holomorphic function in t|𝑧| ą maxt|𝑎1|, |𝑏𝑔`1|uu. The increment of the argument of
𝐷𝜆𝑛p𝑧q was shown to be equal to zero in Propositions 4.2. Finally, the increment of the
argument of 𝜓𝑛p𝑧q𝐵2

𝑛p𝑧q𝜑2p𝑛´𝑑𝑛qp𝑧q is zero because the first factor has exactly 2𝑛 zeros
counting multiplicities all belonging to Δ´1 (thus, the increment of its argument is ´4𝜋𝑛),
the Blaschke product 𝐵2

𝑛p𝑧q has exactly 2𝑑𝑛 zeros in D (so, the increment of its argument is
4𝜋𝑑𝑛), and the increment of the argument of 𝜑p𝑧q is 2𝜋, see Proposition 4.1. Hence, (4.30)
does indeed hold and (4.28) can be improved to

(4.31) ℎ𝑛p𝜏q “ log
ˆ

𝜘𝑛𝛾𝑛𝛾
˚
𝑛

𝐺𝜆𝑛 𝜌
2p𝑛´𝑑𝑛q

˙

` 𝑜p1q “ 𝑜p1q.

Combining the last estimate with (4.24), we get from the maximum principle for har-
monic functions that ℎ𝑛p𝑧q “ 𝑜p1q uniformly in D. Thus, the functions 𝐻𝑛p𝑧q form a
normal family inDzr𝑎1, 𝑏𝑔`1s and every limit point of this family is a unimodular constant.
It readily follows from (3.10), (3.16)–(3.17), (3.30)–(3.31), (4.7), and (4.12)–(4.14) (an ex-
planation similar to the one preceding (4.28)) that 𝐻𝑛p𝑥q ą 0 for 𝑥 P p𝑏𝑔`1, 1q. Therefore,
the only limit point is the function 1, that is,

(4.32) 𝐻𝑛p𝑧q “ 1 ` 𝑜p1q

locally uniformly in Dzr𝑎1, 𝑏𝑔`1s. It should be clear from the definition of 𝐻𝑛p𝑧q that
(4.32) proves the theorem in Dzr𝑎1, 𝑏𝑔`1s.

Let’s now consider what happens outside of the unit disk. Since 𝑏𝑛p1{𝑧q “ 𝑏´1
𝑛 p𝑧q, it

follows from (4.25), (3.37), and (4.26) that

p 𝑓 ´ 𝑟𝑛qp𝑧q “ 𝜘2
𝑛

p𝑞𝑛𝑅𝑛qp𝑧qp𝑞𝑛𝑅𝑛qp1{𝑧q

p 𝑓 ´ 𝑟𝑛qp1{𝑧q

“ p𝜘𝑛𝛾𝑛𝛾
˚
𝑛 q2 4 ` 𝑜p1q

p 𝑓 ´ 𝑟𝑛qp1{𝑧q

𝑚𝑛p𝑧q𝑚𝑛p1{𝑧q

𝑤p𝑧q𝑤p1{𝑧q

locally uniformly in CzpD Y Δ´1q. Because we have proven the theorem already for
𝑧 P DzΔ, we further get that

p 𝑓 ´ 𝑟𝑛qp𝑧q “ p2 ` 𝑜p1qqp𝜘𝑛𝛾𝑛𝛾
˚
𝑛 q2𝑚𝑛p𝑧q

𝑤p𝑧q

𝐵2
𝑛p1{𝑧q

𝐺𝜆𝑛𝐷
2
𝜆𝑛

p1{𝑧q

ˆ

𝜑p1{𝑧q

𝜌

˙2p𝑛´𝑑𝑛q

“ p2𝐺𝜆𝑛 ` 𝑜p1qq
𝑚𝑛p𝑧q

𝑤p𝑧q

𝐵2
𝑛p1{𝑧q

𝐷2
𝜆𝑛

p1{𝑧q
p𝜌𝜑p1{𝑧qq

2p𝑛´𝑑𝑛q

locally uniformly in CzpD Y Δ´1q, where we used (4.31) for the second equality. The
desired estimate in CzpD Y Δ´1q now follows from (4.8), (4.16), and the symmetries of
Blaschke products with real zeros. The full statement of the theorem now follows from
the maximum modulus principle that allows us to extend the error estimate across the unit
circle. �
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