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Abstract. We investigate asymptotic behavior of polynomials Qn(z) sat-
isfying non-Hermitian orthogonality relations∫

∆

skQn(s)ρ(s)ds = 0, k ∈ {0, . . . , n− 1},

where ∆ := [−a, a]∪ [−ib, ib], a, b > 0, and ρ(s) is a Jacobi-type weight.
The primary motivation for this work is study of the convergence prop-
erties of the Padé approximants to functions of the form

f(z) = (z − a)α1(z − ib)α2(z + a)α3(z + ib)α4 ,

where the exponents αi 6∈ Z add up to an integer.
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1. Introduction

Let a, b > 0 be fixed. Set

∆ := [−a, a] ∪ [−ib, ib] and ∆◦ := ∆ \ {0, a1, a2, a3, a4}, (1.1)

where we put a1 = −a3 = a and a2 = −a4 = ib. Denote by ∆i, i ∈ {1, 2, 3, 4},
the segment joining the origin and ai, which we orient towards the origin.
In this work we are interested in strong asymptotics of polynomials Qn(z),
deg(Qn) ≤ n, satisfying orthogonality relations∫

∆

skQn(s)ρ(s)ds = 0, k ∈ {0, . . . , n− 1}, (1.2)

where ∆ inherits its orientation from the segments ∆i and ρ(s) is a certain
weight function on ∆. Orthogonality relations (1.2) are non-Hermitian and
therefore there are no a priori reasons to assume that deg(Qn) = n. In what
follows, we shall understand that Qn(z) stands for the monic polynomial of
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minimal degree satisfying (1.2). The weight functions we are interested in are
holomorphic perturbations of the power functions. More precisely, we define
the following nested sequence of classes of weights.

Definition. Let ` be a positive integer or infinity. We shall say that a function
ρ(s) on ∆ belongs to the class W` if

(i) ρi(s) := ρ|∆i
(s) factors as a product ρi(s) = ρ∗i (s)(s− ai)αi , where the

function ρ∗i (z) is non-vanishing and holomorphic in some neighborhood
of ∆i, αi > −1, and (z− ai)αi is a branch holomorphic across ∆ \ {ai},
i ∈ {1, 2, 3, 4};

(ii) the ratio (ρ1ρ3)(z)/(ρ2ρ4)(z) is constant in some neighborhood of the
origin;

(iii) it holds that ρ1(0) + ρ2(0) + ρ3(0) + ρ4(0) = 0;

(iv) the quantities ρ
(l)
i (0)/ρi(0), 0 ≤ l < `, do not depend on i ∈ {1, 2, 3, 4}.

Observe that conditions (ii) and (iii) say that one of the functions ρi(z)
is fully determined by the other three. In particular, it must hold that

ρ4(z) = −(ρ1 + ρ2 + ρ3)(0)(ρ2/ρ1ρ3)(0)(ρ1ρ3/ρ2)(z).

Notice also that W`1 ⊂ W`2 whenever `2 < `1 and that ρ(s) ∈ W∞ if and
only if there exists a function F (z), holomorphic in some neighborhood of
∆ \ {a1, a2, a3, a4}, such that ρi(s) = ciF|∆i

(s) for some constants ci that
add up to zero.

Holomorphy of the weights ρi(z) allows one to deform ∆ in (1.2) to any
cross-like contour consisting of four arcs connecting the points ai to the origin
(some central point if the weight add up to zero in a neighborhood of the
origin). Hence, the following question arises: which contour do we expect to
attract the zeros of the polynomials Qn(z) as n→∞? This fundamental ques-
tion in the theory of non-Hermitian orthogonal polynomials was answered by
Herbert Stahl in [11, 12, 13]. It turns out that the attracting contour is es-
sentially characterized by having the smallest logarithmic capacity among all
continua containing {a1, a2, a3, a4}. It is also known from the works [8, 10]
that this contour must consist of the orthogonal critical trajectories of the
quadratic differential

(z − b1)(z − b2)dz2

(z2 − a2)(z2 + b2)
(1.3)

for some uniquely determined constants b1, b2. It can be readily verified that
∆ is the desired contour and b1 = b2 = 0.

Strong asymptotics of the polynomials Qn(z) was considered as part of
a study in [14] under much more restrictive assumption ρ(s) = h(s)/w+(s),
where h(z) is a holomorphic and non-vanishing function is some neighborhood
of ∆ and w(z) is defined in (2.1) further below. It is also worth pointing out
that if the points {a1, a2, a3, a4} do not form a cross with two symmetries,
then the points b1, b2 in (1.3) are distinct and the corresponding minimal
capacity contour consists of five arcs: one joining b1 and b2, two connecting
b1 to two points in {a1, a2, a3, a4}, and two connecting b2 to the other two
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points in {a1, a2, a3, a4}. Non-Hermitian orthogonal polynomials on such a
contour for a class of weights defined similarly to W1 is a particular example
of polynomials studied in [1].

2. Statement of Results

The functions describing the asymptotic behavior of the polynomials Qn(z)
are constructed in three steps, carried out in Sections 2.2-2.4, and naturally
defined on a Riemann surface corresponding to ∆ that is introduced in Sec-
tion 2.1. The main results of this work are stated in Sections 2.5 and 2.6.

2.1. Riemann Surface

Let ∆ = ∪4
i=1∆i be given by (1.1). Set

w(z) :=
√

(z2 − a2)(z2 + b2), z ∈ C \∆, (2.1)

to be the branch normalized so that w(z) = z2 +O(z) as z →∞. Denote by
R the Riemann surface of w(z) realized as a two-sheeted ramified cover of C
constructed in the following manner. Two copies of C are cut along each arc
∆i. These copies are glued together along the cuts in such a manner that the

right (resp. left) side of the arc ∆i belonging to the first copy, say R(0), is
joined with the left (resp. right) side of the same arc ∆i only belonging to the

second copy, R(1). We denote by π the canonical projection π : R→ C and

<
>

<> •a1•a3

•
a2

•
a4

<
π(β)

>
π(α)

•0

•
0

◦
0∗

◦0∗
>

<

<>

>

<

<>

Figure 1. The arcs ∆i together with their orientation (solid
lines), a schematic representation of the arcs ∆i = π−1(∆i)

(dashed lines) as viewed from R(0), and the chosen homology

basis {α,β} projected down from R(0).

define ∆ := π−1(∆), ∆i := π−1(∆i), i ∈ {1, 2, 3, 4}. Then ∆ is a curve on R
that intersects itself exactly twice (once at each point on top of the origin),

see Figures 1 and 2. We orient ∆ so that R(0) remains on the left when ∆
is traversed in the positive direction. We shall denote by z(k), k ∈ {0, 1},
the point on R(k) with canonical projection z and designate the symbol ·∗
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to stand for the conformal involution that sends z(k) into z(1−k), k ∈ {0, 1}.
We use bold lower case letters such as z, t, s to indicate points on R with
canonical projections z, t, s. Since R is elliptic (genus 1), any homology basis
on R consists of only two cycles. In what follows, we choose cycles α,β to
be involution-symmetric and such that π(α), π(β) are rectifiable Jordan arcs
joining a1, a2 and a4, a1, respectively, oriented as on Figures 1 and 2.

•
a1

•
a1

•
a1

•
a1

•a2 •a2•
a3

•
a4

•
a4

•
0∗

•
0

<∆1

<∆1

<
∆2

<
∆2

<
∆3

<
∆3

<∆4

<∆4

< <
α α

< <
α α

<
<

β

β

<
<

β

β

R(0)

R(1)

Figure 2. Schematic representation of the surface R (shaded

region represents R(1)), which topologically is a torus, the arcs
∆1,∆2,∆3,∆4, and the homology basis α,β.

2.2. Geometric Term

With a slight abuse of notation, let us set

w(z) := (−1)kw(z), z ∈R(k) \∆, k ∈ {0, 1},

which we then extend by continuity to ∆. One can readily verify that

Ω(z) :=

(∮
α

ds

w(s)

)−1
dz

w(z)
(2.2)

is the holomorphic differential on R normalized to have unit period on α. In
this case it is known that the constant

B :=

∮
β

Ω (2.3)

has positive purely imaginary part. It also readily follows from the properties
of the quadratic differential (1.3) that

G(z) :=
zdz

w(z)

is a meromorphic differential on R having two simple poles at∞(1) and∞(0)

with respective residues 1 and −1, whose period on any cycle on R is purely
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imaginary. Define

ω := − 1

2πi

∮
β

G and τ :=
1

2πi

∮
α

G, (2.4)

which are necessarily real constants. By deforming α (resp. β) into −∆1−∆4

(resp. ∆1 + ∆2) and using the symmetry G(z∗) = −G(z), one gets that

ω = τ =
1

4πi

∮
Γ

zdz

w(z)
=

1

2
, (2.5)

where Γ is any positively oriented rectifiable Jordan curve encircling ∆. Let

Φ(z) := exp

{∫ z

a3

G

}
, z ∈Rα,β := R \ {α,β}, (2.6)

where the path of integration lies entirely in Rα,β. The function Φ(z) is

holomorphic and non-vanishing on Rα,β except for a simple pole at ∞(0)

and a simple zero at ∞(1). Furthermore, it possesses continuous traces on
both sides of each cycle of the canonical basis that satisfy1

Φ+(s) = −Φ−(s), s ∈ α ∪ β, (2.7)

by (2.4)–(2.5). It is not a difficult computation to verify that Φ(z)Φ(z∗) ≡ 1
and ∣∣Φ(z)

∣∣ = exp
{

(−1)kg∆(z;∞)
}
, z ∈R(k),

k ∈ {0, 1}, where g∆(z;∞) is the Green function for C \∆ with pole at ∞2.
In fact, the above properties allow us to verify that

Φ2
(
z(k)

)
=

2

a2 + b2

(
z2 +

b2 − a2

2
+ (−1)kw(z)

)
, (2.8)

k ∈ {0, 1}. In particular, this implies that the logarithmic capacity of ∆ is

equal to
√
a2 + b2/2 since

Φ
(
z(0)
)

=
−2z√
a2 + b2

+O(1) as z →∞ (2.9)

(the sign in (2.9) is determined by the fact that Φ(a3) = 1 and Φ(z) is
non-vanishing on π−1((−∞,−a))).

2.3. Szegő Function

Let ρ(s) ∈ W1. For each i ∈ {1, 2, 3, 4}, fix log ρi(s) to be a branch continuous
on ∆i \ {ai}, selected so that

ν :=
1

2πi

4∑
i=1

(−1)i log ρi(0) satisfies Re(ν) ∈
(
−1

2
,

1

2

]
. (2.10)

1Here and in what follows we state jump relations understanding that they hold outside

the points of self-intersection of the considered arcs.
2g∆(z;∞) is equal to zero on ∆, is positive and harmonic in C \∆, and satisfies g(z;∞) =
log |z|+O(1) as z →∞.
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Further, it can be readily verified that we can set

logw+(s) = log |w+(s)|+ (−1)i
πi

2
, s ∈ ∆◦i := ∆i \ {0, ai}, (2.11)

where w+(s) is the trace of (2.1) on the positive side of ∆◦i according to the
chosen orientation. We also let log(ρiw+)(s) to stand for log ρi(s)+logw+(s)
with the just selected branches. Put

Sρ(z) := exp

{
− 1

4πi

∮
∆

log(ρw+)(s)Ωz,z∗(s)

}
, (2.12)

where Ωz,z∗(s) is the meromorphic differential with two simple poles at z
and z∗ with respective residues 1 and −1 normalized to have zero period
on α. When z does not lie on top of the point at infinity, it can be readily
verified that

Ωz,z∗(s) =
w(z)

s− z
ds

w(s)
−
(∮

α

w(z)

t− z
dt

w(t)

)
Ω(s), (2.13)

where Ω(s) is the holomorphic differential (2.2).

Proposition 2.1. Let ρ(s) ∈ W1 and Sρ(z) be given by (2.12). Then Sρ(z) is
a holomorphic and non-vanishing function in R \ {∆ ∪ α} with continuous
traces on (∆ ∪ α) \ {a1,a2,a3,a4,0,0

∗} that satisfy

Sρ+(s) = Sρ−(s)

{
exp

{
2πicρ

}
, s ∈ α,

1/(ρw+)(s), s ∈∆,
(2.14)

where cρ := 1
2πi

∮
∆

log(ρw+)Ω. It also holds that Sρ(z)Sρ(z
∗) ≡ 1 and 3

∣∣Sρ(z(0)
)∣∣ ∼ { |z − ai|−(2αi+1)/4 as z → ai,

|z|(−1)jRe(ν) as Qj 3 z → 0,
(2.15)

for i, j ∈ {1, 2, 3, 4}, where Qj is the j-th quadrant and ν is given by (2.10).

2.4. Theta Function

Let Jac(R) := C/{Z + BZ} be the Jacobi variety of R, where B is given by
(2.3). We shall represented elements of Jac(R) as equivalence classes [s] =
{s+ l + Bm : l,m ∈ Z}, where s ∈ C. Since R is elliptic, Abel’s map

z ∈R 7→
[∫ z

a3

Ω

]
∈ Jac(R)

is a holomorphic bijection. Hence, given any s ∈ C, there exists a unique

z[s] ∈R such that
[∫ z[s]

a3
Ω
]

= [s].

Denote by θ(ζ) the Riemann theta function associated to B, i.e.,

θ(ζ) :=
∑
n∈Z

exp
{
πiBn2 + 2πinζ

}
.

3In what follows we write |g1(z)| ∼ |g2(z)| as z → z0 if there exists a constant C > 1 such
that C−1|g1(z)| ≤ |g2(z)| ≤ C|g1(z)| for all z close to z0.
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As shown by Riemann, θ(ζ) is an entire, even function that satisfies

θ(ζ + l +mB) = θ(ζ) exp{−πim2B− 2πimζ} (2.16)

for any integers l,m. Moreover, its zeros are simple and θ (ζ) = 0 if and
only if [ζ] = [(1 + B)/2]. The constant (1 + B)/2, known as the Riemann
constant, will appear often in our computations. So, we choose to abbreviate
the representatives of its “half”-classes by

K+ := (1 + B)/4 and K− := (1− B)/4, (2.17)

i.e., [2K+] = [2K−]. The symmetries of Ω(z) (Ω(−z) = −Ω(z) = Ω(z∗)) yield
that ∫ ∞(0)

∞(1)

Ω =
1

2

∫
δ

Ω = 2K+ ⇒
∫ ∞(k)

a3

= (−1)kK+, (2.18)

k ∈ {0, 1}, where δ = π−1
(
(−∞,−a] ∪ [a,∞)

)
is a cycle on R oriented from

∞(1) to ∞(0) (on Figure 2, δ would be represented by the anti-diagonal),
which is clearly is homologous to α + β.

With cρ as in Proposition 2.1, define

Tk(z) := exp

{
πik

∫ z

a3

Ω

}
θ
( ∫ z
a3

Ω− cρ − (−1)kK+

)
θ
( ∫ z
a3

Ω− K+

) (2.19)

for k ∈ {0, 1} and z ∈Rα,β, where the path of integration lies entirely within
Rα,β. Tk(z) is a meromorphic function that is finite and non-vanishing except

for a simple pole at∞(1), see (2.18), and a simple zero at zk := z[cρ−(−1)kK+],
where zk ∈R is uniquely characterized by∫ zk

a3

Ω = cρ − (−1)kK+ + lk +mkB, (2.20)

k ∈ {0, 1}, for some l0,m0, l1,m1 ∈ Z. Furthermore, it follows from the
normalization in (2.2), the definition of B in (2.3), and (2.16) that

Tk+(s) = Tk−(s)

{
exp

{
2πi(k/2− cρ)

}
, s ∈ α,

exp
{
πik
}
, s ∈ β.

(2.21)

2.5. Asymptotics

Given ρ(s) ∈ W1, let cρ be as in Proposition 2.1. Set

{0, 1} 3 ı(n) := n mod 2, n ∈ Z,

to be the parity function. Then it follows from (2.7), (2.14), and (2.21) that
the function

Ψn(z) :=
(
ΦnSρTı(n)

)
(z), z ∈R \∆, (2.22)

is meromorphic in R\∆ with a pole of order n at∞(0), a zero of multiplicity
n− 1 at ∞(1), a simple zero at zı(n), and otherwise non-vanishing and finite,
whose traces on ∆ satisfy

Ψn+(s) = Ψn−(s)/(ρw+)(s), s ∈∆, (2.23)
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and whose behavior around the ramification points of R as well as 0∗,0 is
governed by (2.15).

In what follows, we have to restrict the subsequence of indices n. To
this end, set σk := (−1)lk+mk+k, k ∈ {0, 1}, see (2.20) . Put Aρ,n := 0 when
Re(ν) = 0, and otherwise set

Aρ,n := σı(n)A
′
ρ,nΦ(zı(n))Φ

2(n−1)(s), (2.24)

where s = 0 when Re(ν) > 0 and s = 0∗ when Re(ν) < 0, and

A′ρ,n := Aρe
πiςν(cρ+1/4)

√
a2 + b2

2

Γ(1− ςνν)√
2π

×

×
[

lim
z→0,arg(z)=5π/4

|z|2νS2
ρ

(
z(0)
)]ςν ( ab

2n

)1/2−ςνν

,

where ςν := 1 when Re(ν) > 0 and ςν := −1 when Re(ν) < 0, and

Aρ := eπiνρ3(0)
(ρ2 + ρ3)(0)

ρ2(0)
or Aρ :=

1

(ab)2

(ρ3 + ρ4)(0)

(ρ3ρ4)(0)

depending on whether Re(ν) > 0 or Re(ν) < 0. Observe also that a calculus
level computation tells us that

Φ(0) = Φ(0∗) = exp
{

i arctan
(a
b

)}
. (2.25)

Proposition 2.2. For every ε ∈ (0, 1/2), let

Nρ,ε :=
{
n ∈ N : zı(n) 6=∞(0) and |1−Aρ,n| ≥ ε

}
.

It holds that

Nρ,ε = Nρ :=

{
2N when [cρ] = [0],

N \ 2N when [cρ] = [(1 + B)/2].

Otherwise, Nρ,ε = Nρ := N when Re(ν) ∈ (−1/2, 1/2) and it is an infinite
subsequence when Re(ν) = 1/2. In particular, dependence on ε is significant
only when Re(ν) = 1/2 and [cρ] /∈ {[0], [(1 + B)/2]}.

Indeed, it readily follows from (2.20) and (2.18) that

[cρ] = [k(1 + B)/2] ⇔ z1 =∞(k) ⇔ z0 =∞(1−k)

for k ∈ {0, 1} (in which case Φ(zı(n)) = Φ
(
∞(1)

)
= 0 = Aρ,n). On the other

hand, because Abel’s map is a bijection, we also get that |π(z1)| < ∞ ⇔
|π(z0)| < ∞. Since Aρ,n → 0 as n → ∞ when Re(ν) ∈ (−1/2, 1/2), this
proves the first three claims of the proposition. As arctan(a/b) ∈ (0, π/2),
the last claim follows from the arithmetic properties of numbers.

Theorem 2.3. Let ρ(s) ∈ W`, where ` is a positive integer or infinity and
Ψn(z) be given by (2.22). Assume in addition that

`(3− 2|Re(ν)|) > 2|Re(ν)|(3 + 2|Re(ν)|).
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Given ε > 0, it holds for all n ∈ Nρ,ε large enough that

Qn(z) = γn
(
1 + υn1(z)

)
Ψn

(
z(0)
)

+ γnυn2(z)Ψn−1

(
z(0)
)

(2.26)

locally uniformly in C \∆, where γn := limz→∞ znΨ−1
n

(
z(0)
)

is the normal-
izing constant, υni(∞) = 0,

υni(z) = z−1Lni +O
(
n−dν,`

)
, Lni = O

(
n|Re(ν)|−1/2

)
, (2.27)

locally uniformly in C \ {0} (uniformly in C when ` =∞) with

dν,` :=


( 1
2 +|Re(ν)|)(`−2|Re(ν)|)

`+1+2|Re(ν)| , ` ≥ 4|Re(ν)|(1+|Re(ν)|)
1−2|Re(ν)| ,

`(3−2|Re(ν)|)−2|Re(ν)|(3+2|Re(ν)|)
2(`+3+2|Re(ν)|) , otherwise,

(2.28)

(dν,∞ = 1/2 + |Re(ν)|), and

Lni = (−1)ı(n) Aρ,n
1−Aρ,n

(
−

ΦTı(n)

Tı(n−1)

)i−1

(s)
(T0/T1)(s)

(T0/T1)′(s)
(2.29)

for i ∈ {1, 2}, where s = 0 when Re(ν) > 0 and s = 0∗ when Re(ν) < 0
when |π(zk)| < ∞ (when |π(zk)| = ∞, the expression for Lni is even more
cumbersome and therefore is omitted here). In particular, the polynomials
Qn(z) have degree n for all n ∈ Nρ,ε large enough.

The condition on the index ` amounts to saying that it can be any
when |Re(ν)| ∈ [0,−1 +

√
7/2), it must be at least 2, when |Re(ν)| ∈ [−1 +√

7/2, 1/2), and it must be at least 3 when |Re(ν)| = 1/2.
Notice that the behavior of the orthogonal polynomials is qualitatively

different for Re(ν) ∈ (−1/2, 1/2) and Re(ν) = 1/2 as the first summand in
(2.27) is decaying with n in the former case, but not in the latter.

2.6. Padé Approximation

For an integrable weight ρ(s) on ∆ define

ρ̂(z) :=
1

2πi

∫
∆

ρ(s)ds

s− z
, z ∈ C \∆. (2.30)

In particular, it can be readily verified that the functions

4∑
i=1

Ci log(z − ai) and

4∏
i=1

(z − ai)αi ,

where the constants Ci add up to zero and the exponents −1 < αi 6∈ Z
add up to an integer, possess branches holomorphic off ∆ that can be rep-
resented by (2.30) for certain weight functions in W∞ (the second function
can represented by (2.30) up to an addition of a polynomial).

Given ρ̂(z) as in (2.30), it follows from the orthogonality relations (1.2)
that there exists a polynomial Pn(z) of degree at most n− 1 such that

Rn(z) :=
(
Qnρ̂

)
(z)− Pn(z) = O

(
z−n−1

)
as z →∞. (2.31)

The rational function [n/n]ρ̂(z) := Pn(z)/Qn(z) is called the n-th diagonal
Padé approximant to ρ̂(z).
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Theorem 2.4. Let ρ̂(z) be given by (2.30) and Rn(z) be defined by (2.31). In
the setting of Theorem 2.3, it holds for all n ∈ Nρ,ε large enough that

(wRn)(z) = γn
(
1 + υn1(z)

)
Ψn

(
z(1)
)

+ γnυn2(z)Ψn−1

(
z(1)
)

(2.32)

locally uniformly in C \∆, where υni(z) are the same as in Theorem 2.3.

3. Examples

In this section, we illustrate Theorem 2.3 by three examples. In them, we
shall not compute Sρ(z) and cρ via their integral representations, see (2.12),

but rather construct a candidate Ŝρ(z) with the desired jump over ∆ and
the singular behavior as in (2.15). This construction will also determine a
candidate constant ĉρ. It is simple to argue that

Sρ(z) = Ŝρ(z) exp

{
2πim

∫ z

a3

Ω

}
, cρ = ĉρ −mB,

for some integer m. Using ĉρ in (2.19), we then construct T̂ı(n)(z) for which
it holds that

Tı(n)(z) = T̂ı(n)(z) exp

{
−2πim

∫ z

a3

Ω− πim2B + 2πi(−1)ı(n)K+

}
with the same integer m. This means that(

SρTı(n)

)
(z)/

(
SρTı(n)

)(
∞(0)

)
=
(
ŜρT̂ı(n)

)
(z)/

(
ŜρT̂ı(n)

)(
∞(0)

)
and therefore (2.26) and (2.32) remain valid with Sρ(z), Tı(n)(z) replaced by

Ŝρ(z), T̂ı(n)(z). Furthermore, the value of Aρ,n in (2.24) will not change either

as the limit in the definition of A′ρ,n will be augmented by eπim(1−B), see (4.1),
that will be offset by the change in cρ and σk (σ̂k = (−1)mσk). Thus, with a
slight abuse of notation, we shall keep on writing Sρ(z), Tı(n)(z) below.

3.1. Chebyshëv-type case

Let 2ρ̂(z) = 1/w(z), in which case it holds that

ρ(s) = 1/w+(s), s ∈ ∆,

where ρ̂(z) and w(z) were defined in (2.30) and (2.1), respectively, and the
implication follows from Plemelj-Sokhotski formulae and Privalov’s theorem.
Using analytic continuations of w(z) one can easily see that ρ(s) ∈ W∞
and ν = 0. Since (ρw+)(s) ≡ 1, we get that Sρ(z) ≡ 1 and necessarily

cρ = 0. Thus, Nρ,ε = 2N and z0 =∞(1) (z1 =∞(0)). Moreover, we get that
T0(z) ≡ 1 and T1(z) = 1/Φ(z), see (4.2). Hence, it follows from (2.8) and
(2.26) that

Q2n(z) =
1 + o(1)

2n

(
z2 +

b2 − a2

2
+ w(z)

)n
,

where it holds that o(1) is geometrically small on closed subsets of C\∆ (see
[14] for the error rate in this case). To show that the above result is in a way
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best possible, assume that a = b = 1. Recall that the n-th monic Chebyshëv
polynomial of the first kind is defined by

2nTn(z) =
(
z +

√
z2 − 1

)n
+
(
z −

√
z2 − 1

)n
and is orthogonal to xj , j ∈ {0, . . . , n − 1}, on (−1, 1) with respect to the

weight 1/
√

1− x2. Hence,

i

∫
∆

skTn
(
s2
)
ρ(s)ds =(∫ 1

0

−
∫ 0

−1

)
xkTn

(
x2
)
dx

√
1− x4

− ik+1

(∫ 1

0

−
∫ 0

−1

)
xkTn

(
− x2

)
dx

√
1− x4

.

Clearly, the above expression is zero for all even k. Assume now that k =
2j+ 1, j ∈ {0, . . . , n−1}. Then we can continue the above chain of equalities
by ∫ 1

0

xjTn(x)dx√
1− x2

− (−1)j+1

∫ 1

0

xjTn(−x)dx√
1− x2

=

∫ 1

−1

xjTn(x)dx√
1− x2

= 0,

where the last equality follows from the orthogonality properties of the Chebyshëv
polynomials. Thus, it holds that

Q2n+1(z) = Q2n(z) = Tn
(
z2
)

in this case, which justifies the exclusion of odd indices from Nρ = Nρ,ε as
for such indices polynomials can and do degenerate.

3.2. Legendre-type case

Let ρ̂(z) = 1
2πi

(
log(z2 − 1)− log(z2 + 1)

)
, in which case it holds that

ρ(s) = (−1)i, s ∈ ∆i,

i ∈ {1, 2, 3, 4}, where the justification for the implication is the same as
before. As in the previous case, it holds that ν = 0. Let

√
w(z) be the branch

holomorphic in C \∆ such that
√
w(z) = z +O(1) as z →∞. Further, let

Φ∗(z) :=

√
2

a2 + b2

(
z2 +

b2 − a2

2
+ w(z)

)1/2

,

be the branch holomorphic in C \ ∆ such that Φ∗(z) = z + O(1) as z →
∞. It easily follows from (2.7), (2.8), and (2.9) that Φ∗(z) is an analytic
continuation of −Φ

(
z(0)
)

across π(α) ∪ π(β). It is now straightforward to
check that

Sρ
(
z(0)
)

= e−πi/4Φ∗(z)/
√
w(z)

and thus cρ = 0. Hence, as in the previous subsection, Nρ,ε = 2N and T0(z) ≡
1 while T1(z) = 1/Φ(z). Therefore, we again deduce from (2.8) and (2.26)
that

Q2n(z) =
1 +O(n−1/2)

2n+1/2
√
w(z)

(
z2 +

b2 − a2

2
+ w(z)

)n+1/2

,
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uniformly on closed subsets of C \ ∆. Again, to show that the above result
is best possible, assume that a = b = 1. Then we can check exactly as in the
previous subsection that

Q2n+1(z) = Q2n(z) = Ln
(
z2
)
,

where Ln(x) is the n-th monic Legendre polynomial, that is, degree n poly-
nomial orthogonal to xj , j ∈ {0, . . . , n − 1}, on (−1, 1) with respect to a
constant weight.

3.3. Jacobi-1/4 case

Let
√

2ρ̂(z) = 1/
√
w(z), in which case it holds that

ρ(s) = −i4−i/|
√
w(s)|, s ∈ ∆i, i ∈ {1, 2, 3, 4},

where
√
w(z) is the branch defined in the previous subsection. Observe that

(ρw+)(s) = ii−1|
√
w(s)|, s ∈ ∆i,

and that ν = 1/2. In particular, the constant Aρ appearing in the definition

of Aρ,n in (2.24) is equal to Aρ =
√

2e−πi/4/
√
ab.

To construct a Szegő function of ρ(s), let

Θ2(z) :=
θ
( ∫ z
a3

Ω + K−
)

θ
( ∫ z
a3

Ω− K−
) θ( ∫ za3

Ω− K+

)
θ
( ∫ z
a3

Ω + K+

) , z ∈Rα,β,

where the path of integration lies entirely in Rα,β. It follows from (2.18) and
(4.1) further below that Θ2(z) is a meromorphic function in Rα,β with two

simple poles, namely,∞(0),0, and two simple zeros∞(1),0∗. Moreover, Θ2(z)
is continuous across β and satisfies Θ2

+(s) = Θ2
−(s)e−2πiB on α by (2.16) and

Θ2(z)Θ2(z∗) ≡ 1 by the symmetries of θ(ζ) and Ω(z). Since each individual
fraction in the definition of Θ2(z) is injective, we can define a branch Θ(z)
such that

Θ+(s) = Θ−(s)

{
e−πiB, s ∈ α,

−1, s ∈∆3 ∪ π−1((−∞,−a]),

and Θ(z)Θ(z∗) ≡ 1. Further, let w1/4(z) be the branch holomorphic in C \(
∆∪ (−∞, a)

)
that is positive for z > a. Now, one can verify that cρ = −B/2

and

Sρ
(
z(k)

)
= Θ

(
z(k)

)
w

2k−1
4 (z), k ∈ {0, 1}.

Let us now computeA′ρ,n appearing in (2.24). Since
√
w(z)→ e−3πi/4

√
ab

as Q3 3 z → 0, we get that

lim
z→0,arg(z)=5π/4

|z|S2
ρ

(
z(0)
)

=
e−πi/2

√
ab

lim
Q33z→0

zΘ2
(
z(0)
)

= eπiB/2 2
√
ab√

a2 + b2
Φ(0),

where the second equality follows from (4.1), (4.5), (4.9), and (4.10) further
below. Therefore, it holds that A′ρ,n = Φ(0). It is easy to see from (4.1) that



Jacobi-type Polynomials on a Cross 13

z0 = 0, l0 = 0,m0 = 1, and z1 = 0∗, l1 = m1 = 0. Therefore, σı(n) = −1
and the condition defining Nρ,ε in Proposition 2.2 specializes to∣∣1 + exp

{
2i(n− ı(n)) arctan(a/b)

}∣∣ > ε

by (2.25) and since Φ(z1)Φ(z0) = 1, see (4.4) further below. As T0(0) = 0
and respectively Ln1 = 0, we then get that Qn(z), n ∈ Nρ,ε, is equal to

γn
(
SρΦ

n
)(
z(0)
){ (

T0

(
z(0)
)

+Oε(n−1)
)
, n ∈ 2N,(

T1

(
z(0)
)

+ z−1Ln2(T0/Φ)
(
z(0)
)

+Oε(n−1)
)
, n 6∈ 2N,

uniformly on closed subsets of C \∆, where

Ln2 =
−1

(T0/T1)′(0)

Φ2n−1(0)

1 + Φ2(n−1)(0)

for all odd n. When a = b, we further get that Ln2 = −eπi/4/[2(T0/T1)′(0)]
for n ∈ Nρ,ε and

Nρ,ε = {n = 4k, 4k + 1 : k ∈ N}.
Assume further that a = b = 1 and let Pn,1(x) be the n-th degree monic
polynomial orthogonal on [0, 1] to xj , j ∈ {0, . . . , n− 1}, with respect to the
weight function x−3/4(1− x)−1/4. Then∫

∆

skPn,1
(
s4
)
ρ(s)ds =

(
1 + ik

) ∫ 1

−1

ykPn,1
(
y4
) dy

(1− y4)1/4
,

which is equal to zero for all k odd by symmetry and for all k = 4j + 2 due
to the factor 1 + ik. When k = 4j, j ∈ {0, . . . , n−1}, we can further continue
the above equality by

4

∫ 1

0

y4jPn,1
(
y4
) dy

(1− y4)1/4
=

∫ 1

0

xjPn,1(x)
dx

x3/4(1− x)1/4
= 0,

where the last equality now holds by the very choice of Pn,1(z). Hence, it
holds that

Q4n(z) = Pn,1
(
z4
)

and Q4n+1(z) = Q4n+2(z) = Q4n+3(z) = zPn,2
(
z4
)
,

where the second set of relations can be shown similarly with Pn,2(x) being
the n-th degree monic polynomial orthogonal on [0, 1] to xj , j ∈ {0, . . . , n−1},
with respect to the weight function x1/4(1 − x)−1/4. That is, the restriction
to the sequence of indices {n = 4k, 4k+1 : k ∈ N} is not superfluous and the
main term of the asymptotics of the polynomials does depend on the parity
of n.

4. Auxiliary Identities

In this section we state a number of identities, some of which we have already
used and some of which we shall use later.
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Lemma 4.1. Recall (2.17). It holds that∫ 0

a3

Ω = −K− and

∫ 0∗

a3

Ω = K−, (4.1)

where the path of integration lies entirely in Rα,β.

Proof. Exactly as in the case of (2.18), the symmetries of Ω(z) imply that

−
∫ 0

a3

Ω =

∫ 0∗

a3

Ω =
1

2

∫
∆3

Ω =
1

4

∫
∆3−∆1

Ω.

The claim now follows from the fact that ∆3−∆1 is homologous to α−β. �

Lemma 4.2. It holds that

Φ(z) = exp

{
−πi

∫ z

a3

Ω

}
θ
( ∫ z
a3

Ω− K+

)
θ
( ∫ z
a3

Ω + K+

) . (4.2)

Proof. It follows from (2.18) and (2.16) that the right hand side of (4.2) is a
meromorphic functions with a simple pole at∞(0), a simple zero at∞(1), and
otherwise non-vanishing and finite that satisfies (2.7). As only holomorphic
functions on R are constants, the normalization at a3 yields (4.2). �

Lemma 4.3. Let l0, l1,m0,m1 be given by (2.20). Then it holds that{
Φ(z0) = (−1)l0+m0e−πi(cρ−K+)θ(cρ + 2K−)/θ(cρ),

Φ(z1) = (−1)l1+m1e−πi(cρ+K+)θ(cρ)/θ(cρ + 2K+).
(4.3)

In particular, when |π(zk)| <∞, it holds that

Φ(z0)Φ(z1) = −(−1)l0−l1+m0−m1 . (4.4)

Moreover, we have that

Φ
(
0
)

= eπiK−θ(1/2)/θ(B/2). (4.5)

Proof. Since −2K+ = 2K− − 1, we get from (4.2) that

Φ(z0) = eπi(K+−cρ−l0−m0B) θ(cρ + 2K− +m0B)

θ(cρ +m0B)
.

The first relation in (4.3) now follows from (2.16). Similarly, we have that

Φ(z1) = eπi(−K+−cρ−l1−m1B) θ(cρ +m1B)

θ(cρ + 2K+ +m1B)
,

which yields the second relation in (4.3), again by (2.16). To get (4.4), observe
that

θ(cρ + 2K−) = θ(cρ + 2K+ − B) = −e2πicρθ(cρ + 2K+)

by (2.16). Finally, (4.5) follows from (4.2) and (4.1). �
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Lemma 4.4. Let

Xn := lim
z→∞

z−2Ψn

(
z(0)
)
Ψn−1

(
z(1)
)
. (4.6)

When |π(zk)| <∞, it holds that

Xn =
4

a2 + b2
θ2(cρ)

θ2(0)

(−1)ı(n)

Φ2ı(n)(z1)
. (4.7)

Proof. Since Φ(z)Φ(z∗) ≡ 1 and Sρ(z)Sρ(z
∗) ≡ 1, the desired limit is equal

to
4

a2 + b2
Tı(n)

(
∞(0)

)
lim
z→∞

Φ
(
z(1)
)
Tı(n−1)

(
z(1)
)
,

where we also used (2.9). Since −2K+ = 2K− − 1, it follows from (2.19) and
(2.18) that

Tı(n)

(
∞(0)

)
= eπiı(n)K+

θ
(
cρ + 2ı(n)K−

)
θ(0)

.

We further deduce from (2.19) and (4.2) that

(
ΦTı(n−1)

)
(z) = exp

{
−πiı(n)

∫ z

a3

Ω

}
θ
( ∫ z
a3

Ω− cρ + (−1)ı(n)K+

)
θ
( ∫ z
a3

Ω + K+

) .

Therefore, it follows from (2.18) that(
ΦTı(n−1)

)(
∞(1)

)
= eπiı(n)K+

θ
(
cρ + 2ı(n)K+

)
θ(0)

.

Hence, we get from (4.3) that

Xn =
4

a2 + b2
θ2(cρ)

θ2(0)

(
(−1)l0−l1+m0−m1

Φ(z0)

Φ(z1)

)ı(n)

.

The claim of the lemma now follows from (4.4). �

Lemma 4.5. It holds that

d

dζ

(
eπiζ θ(ζ + K+)

θ(ζ − K+)

)
= iπθ2(0)eπiζ θ(ζ − K−)θ(ζ + K−)

θ2(ζ − K+)
. (4.8)

Proof. See [4, Eq. (20.7.25)] (observe that θ(ζ) = θ3(πζ|B) in the notation of
[4, Chapter 20]). �

Lemma 4.6. It holds that

z = −
√
a2 + b2

2

e−πiK+θ2(0)

θ(1/2)θ(B/2)

θ
( ∫ z
a3

Ω− K−
)
θ
( ∫ z
a3

Ω + K−
)

θ
( ∫ z
a3

Ω− K+

)
θ
( ∫ z
a3

Ω + K+

) . (4.9)

Proof. It follows from (2.16), (2.18), and (4.1) that

z = C
θ
( ∫ z
a3

Ω− K−
)
θ
( ∫ z
a3

Ω + K−
)

θ
( ∫ z
a3

Ω− K+

)
θ
( ∫ z
a3

Ω + K+

)



16 Ahmad Barhoumi and Maxim L. Yattselev

for some normalizing constant C. It further follows from (2.9), (4.2), and
(2.18) that

−
√
a2 + b2

2
= lim
z→∞

zΦ−1
(
z(0)
)

= CeπiK+
θ(1/2)θ(B/2)

θ2(0)
,

which yields the desired result. �

Lemma 4.7. It holds that

eπiB/2 θ
2(1/2)θ2(B/2)

θ4(0)
=
a2 + b2

4ab
. (4.10)

Proof. To prove (4.10), evaluate (4.9) at a3 to get

θ(1/2)θ(B/2)

θ2(0)
=

√
a2 + b2

2a
e−πiK+

θ2(K−)

θ2(K+)
.

Since ∆3−∆1 is homologous to α−β, one can easily deduce from Figure 1
that it also holds that∫ a2

a3

Ω =

(∫ 0∗

a3

+

∫ a1

0∗
+

∫ a2

a1

)
Ω =

1

2

∫
∆3−∆1+β

Ω =
1

2
,

where the initial path of integration (except for a2) belongs to Rα,β. Thus,
evaluating (4.9) at a2 gives us

θ(1/2)θ(B/2)

θ2(0)
= −
√
a2 + b2

2ib
e−πiK+

θ2(K+)

θ2(K−)
,

where we used (2.16). Multiplying two expressions for θ(1/2)θ(B/2)/θ2(0)
yields the desired result. �

Lemma 4.8. It holds that∮
α

ds

w(s)
=

2πi√
a2 + b2

eπiK+θ(1/2)θ(B/2). (4.11)

Proof. We can deduce from (4.2), (4.8), and the evenness of the theta function
that

Φ′(z) = −iπθ2(0)

(∮
α

ds

w(s)

)−1
Φ(z)

w(z)

θ
( ∫ z
a3

Ω + K−
)
θ
( ∫ z
a3

Ω− K−
)

θ
( ∫ z
a3

Ω + K+

)
θ
( ∫ z
a3

Ω− K+

) .
Since Φ′(z) = zΦ(z)/w(z) by (2.6), (4.11) follows from (4.9). �

Lemma 4.9. Let

Yn :=
(
T ′ı(n)Tı(n−1)/Φ− Tı(n)(Tı(n−1)/Φ)′

)(
0
)
. (4.12)

When |π(zk)| =∞, it holds that Yn = 0, otherwise, we have that

Yn = (−1)l0+m0+ı(n) 2eπicρ

√
a2 + b2

Φ(z0)

Φ2
(
0
) θ2(cρ)

θ2(0)
, (4.13)

where the integers l0,m0 were defined in (2.20).



Jacobi-type Polynomials on a Cross 17

Proof. Since Φ′(z) = zΦ(z)/w(z) by (2.6), Φ′
(
0
)

= 0. Therefore,

Yn =
(
T 2
ı(n−1)/Φ

)(
0
)(
Tı(n)/Tı(n−1)

)′(
0
)
.

Assume that |π(zk)| <∞. Then it follows from (2.19), (4.8), and (4.11) that(
Tı(n)

Tı(n−1)

)′
(z) = −(−1)ı(n)

√
a2 + b2

2w(z)

e−πiK+θ2(0)

θ(1/2)θ(B/2)

(
Tı(n)

Tı(n−1)

)
(z)×

×
θ
( ∫ z
a3

Ω− cρ + K−
)
θ
( ∫ z
a3

Ω− cρ − K−
)

θ
( ∫ z
a3

Ω− cρ + K+

)
θ
( ∫ z
a3

Ω− cρ − K+

) .
We further deduce from (2.19), (4.1), and (4.5) that

(Tı(n−1)Tı(n))
(
0
)

=
1

Φ
(
0
) θ(cρ − B/2)θ(cρ + 1/2)

θ(1/2)θ(B/2)
.

Since w
(
0
)

= iab, we therefore get from (4.1) that

Yn =

√
a2 + b2

2ab

i(−1)ı(n)

Φ2
(
0
) e−πiK+θ4(0)

θ2(1/2)θ2(B/2)

θ(cρ)θ(cρ + 2K−)

θ2(0)
.

(4.13) now follows from (4.10) and the first formula in (4.3).
Let now z0 =∞(1), in which case [cρ] = [0]. Since Φ

(
∞(1)

)
= 0, we get

that Yn = 0. Finally, let z1 =∞(1). Then we have that −cρ = −(−1)k2K+ +
lk +mkB and therefore

T1(z)

T0(z)
= exp

{
πi

∫ z

a3

Ω

}
θ
( ∫ z
a3

Ω +m1B + 3K+

)
θ
( ∫ z
a3

Ω + (m1 + 1)B− 3K+

)
= exp

{
πi

∫ z

a3

Ω

}
θ
( ∫ z
a3

Ω + (m1 + 1)B− K+

)
θ
( ∫ z
a3

Ω +m1B + K+

)
= e2πi(2m1+1)K−Φ(z)

by (2.16) and (4.2). As Φ′
(
0
)

= 0, it also holds that Yn = 0. �

Lemma 4.10. Let

Zn :=
(
T ′ı(n)Tı(n−1)/Φ− Tı(n)(Tı(n−1)/Φ)′

)(
0∗
)
. (4.14)

When |π(zk)| =∞, it holds that Zn = 0, otherwise, we have that

Zn = (−1)l0+m0+ı(n) 2e−πicρ

√
a2 + b2

Φ(z0)

Φ2
(
0∗
) θ2(cρ)

θ2(0)
. (4.15)

Proof. The proof is the same as in the previous lemma. �

Lemma 4.11. Let σ0, σ1 be as in (2.24). When |π(zk)| <∞, it holds that

YnX
−1
n = σı(n)e

πicρ

√
a2 + b2

2

Φ
(
zı(n)

)
Φ2
(
0
) (4.16)

and

ZnX
−1
n = σı(n)e

−πicρ

√
a2 + b2

2

Φ
(
zı(n)

)
Φ2
(
0∗
) , (4.17)
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where Xn, Yn, and Zn are given by (4.6), (4.12), and (4.14), respectively.

Proof. The claim follows immediately from (4.7), (4.13), (4.15), and (4.4). �

5. Proof of Proposition 2.1

It follows from (2.13) that Ωz,z∗ = −Ωz∗,z for all z ∈R such that π(z) ∈ C
and therefore Sρ(z)Sρ(z

∗) ≡ 1 for such z. Clearly, this relation extends to
the points on top of infinity by continuity. It is also immediate from (2.12)
and (2.13) that

Sρ
(
z(0)
)

= exp

{
−

4∑
i=1

w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w|∆i+(s)

}
×

× exp
{

2πi(wH)(z)cρ
}
, (5.1)

where, for emphasis, we write w|∆i+(s) for w+(s) on s ∈ ∆◦i and

H(z) :=
1

2πi

∫
π(α)

dt

(t− z)w(t)
. (5.2)

Relations (2.14) now easily follow from (5.1), (5.2), and Plemelj-Sokhotski
formulae [7, equations (4.9)]. As for the behavior near ai, note that by [7,
equation (8.8)], the function (wH)(z) is bounded as z → ai. Furthermore, [7,
equations (8.8) and (8.35)] yield that

−w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w|∆i+(s)
= −1

2
log(z − ai)αi+1/2 +O(1).

Since the above integral is the only one with singular contribution around
ai, the validity of the top line in (2.15) follows. As for the behavior near the
origin, note that limQj∈z→0 w(z) = (−1)j−1iab, where, as before, Qj stands
for the j-th quadrant. Recall that each segment ∆i is oriented towards the
origin, see Figure 1. Hence, it follows from [7, equation (8.2)] that

− w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w∆i+(s)
= −w(z)

2πi

log(ρiw+)(0)

w|∆i+(0)
log(z) +O(1)

=
(−1)j+i

2πi
log(ρiw+)(0) log(z) +O(1), z ∈ Qj .

Thus, summing over i yields

−w(z)

2πi

∫
∆

log(ρiw+)(s)

s− z
ds

w+(s)
= (−1)jν log(z) +O(1), z ∈ Qj ,

where ν was defined in (2.10) and we used (2.11). Since (wH)(z) is holomor-
phic around the origin, the second line in (2.15) follows.
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6. Proofs of Theorems 2.3 and 2.4

6.1. Initial RH problem

Just as was first done by Fokas, Its, and Kitaev [5, 6], we connect the orthog-
onal polynomials Qn(z) to a 2× 2 matrix Riemann-Hilbert problem. To this
end, suppose that the index n is such that

degQn = n and Rn−1(z) ∼ z−n as z →∞, (6.1)

where Rn(z) is given by (2.31). Furthermore, let

Y (z) :=

(
Qn(z) Rn(z)

kn−1Qn−1(z) kn−1Rn−1(z)

)
, (6.2)

where kn−1 is a constant such that kn−1Rn−1(z) = z−n(1+o(1)) near infinity.
Then Y (z) solves the following Riemann-Hilbert problem (RHP-Y ):

(a) Y (z) is analytic in C \∆ and limz→∞ Y (z)z−nσ3 = I 4.
(b) Y (z) has continuous traces on ∆◦ that satisfy

Y +(s) = Y −(s)

(
1 ρ(s)
0 1

)
, s ∈ ∆◦.

(c) Y (z) is bounded around the origin and

Y (z) =



O
(

1 1
1 1

)
if αi > 0,

O
(

1 log |z − ai|
1 log |z − ai|

)
if αi = 0,

O
(

1 |z − ai|αi
1 |z − ai|αi

)
if − 1 < αi < 0,

as z → ai for each i ∈ {1, 2, 3, 4}.
Indeed, property RHP-Y (a) is an immediate consequence of (6.1). The jump
relations in RHP-Y (b) follow from (2.30), (2.31), and an application of the
Plemelj-Sokhotski formulae. Behavior of Cauchy integrals around the con-
tours of integration, see [7, Section 8], and an integral representation

Rn(z) =
1

2πi

∫
∆

Qn(s)ρ(s)

s− z
ds, z ∈ C \∆,

which easily follows from Cauchy integral formula and (2.30), yield RHP-
Y (c) (to deduce boundedness around the origin one needs to utilize the third
condition in the definition of the class W1).

On the other hand, it also can shown that if a solution of RHP-Y exists,
then it must be of the form (6.2) with the diagonal entries satisfying (6.1)
(see, for example, [1, Lemma 1]).

In what follows we prove solvability of RHP-Y for all n ∈ Nρ,ε large
enough via the matrix steepest descent method developed by Deift and
Zhou [3].

4Hereafter, we set σ3 :=

(
1 0

0 −1

)
and I to be the identity matrix.
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6.2. Opening of the Lenses

Let δ0 > 0 be small enough so that all the functions ρi(z) are holomorphic

in some neighborhood of {|z| ≤ δ0}. Define ∆̃i and ∆̃◦i to be the closed
and open segments connecting the origin and δ0e

(2i−1)πi/4, i ∈ {1, 2, 3, 4},
that are oriented towards the origin. Further, let Γi−,Γi+ be open smooth

<
>

<> •a1•a3

•
a2

•
a4

••

••

Γ1−

Γ1+

Γ2+Γ2−

Γ3+

Γ3−

Γ4−Γ4+

∆̃1∆̃2

∆̃3 ∆̃4

Ω2+Ω2−

Ω4+ Ω4−

Ω1+

Ω1−Ω3+

Ω3−

Figure 3. The arcs ∆i, ∆̃i and Γi±, and domains Ωi±.

arcs that lie within the domain of holomorphy of ρi(z) and connect ai to
δ0e

(2i−1)πi/4, δ0e
(2i−3)πi/4, respectively. We orient Γi± away from ai and as-

sume that no open arcs ∆◦i , ∆̃
◦
i ,Γi± intersect, see Figure 3. We denote by

Ωi± the domain partially bounded by ∆i and Γi±. Let

X(z) := Y (z)


(

1 0

∓1/ρi(z) 1

)
, z ∈ Ωi±,

I, z 6∈ Ωi+ ∪ Ωi−.

(6.3)

Then X(z) satisfies the following Riemann-Hilbert problem (RHP-X):

(a) X(z) is analytic in C \ ∪i(∆i ∪ ∆̃i ∪ Γi±) and lim
z→∞

X(z)z−nσ3 = I;

(b) X(z) has continuous traces on each ∆◦i , ∆̃◦i , and Γi± that satisfy

X+(s) = X−(s)



(
1 0

1/ρi(s) 1

)
, s ∈ Γi+ ∪ Γi−,(

0 ρi(s)
−1/ρi(s) 0

)
, s ∈ ∆◦i , 1 0

1

ρi(s)
+

1

ρi+1(s)
1

 , s ∈ ∆̃◦i ,
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where i ∈ {1, 2, 3, 4} and ρ5 := ρ1.
(c) X(z) is bounded around the origin and behaves like

X(z) =



O
(

1 1
1 1

)
if αi > 0,

O
(

1 log |z − ai|
1 log |z − ai|

)
if αi = 0,

O
(

1 |z − ai|αi
1 |z − ai|αi

)
if − 1 < αi < 0,

as z → ai from outside the lens while from inside the lens,

X(z) =



O
(
|z − ai|−αi 1

|z − ai|−αi 1

)
if αi > 0,

O
(

1 log |z − ai|
1 log |z − ai|

)
if αi = 0,

O
(

1 |z − ai|αi
1 |z − ai|αi

)
if − 1 < αi < 0.

The following observation can be easily checked: RHP-X is solvable if
and only if RHP-Y is solvable. When solutions of RHP-X and RHP-Y exist,
they are unique and connected by (6.3).

6.3. Global Parametrix

Let Ψn(z) be given by (2.22). For each n ∈ Nρ,ε, define

N(z) :=

(
γn 0
0 γ∗n−1

)(
Ψn

(
z(0)
)

Ψn

(
z(1)
)
/w(z)

Ψn−1

(
z(0)
)

Ψn−1

(
z(1)
)
/w(z)

)
, (6.4)

where the constants γn and γ∗n−1 are defined by the relations

lim
z→∞

γnz
−nΨn

(
z(0)
)

= 1 and lim
z→∞

γ∗n−1z
nΨn−1

(
z(1)
)
/w(z) = 1. (6.5)

Such constants do exist, see the explanation after Proposition 2.2. The prod-
uct γnγ

∗
n−1 assumes only two necessarily finite and non-zero values depending

on the parity of n (when |π(zk)| < ∞, it is equal to X−1
n , see (4.6)). The

matrix N(z) solves the following Riemann-Hilbert problem (RHP-N):

(a) N(z) is analytic in C \∆ and lim
z→∞

N(z)z−nσ3 = I;

(b) N(z) has continuous traces on ∆◦ that satisfy

N+(s) = N−(s)

(
0 ρ(s)

−1/ρ(s) 0

)
, s ∈ ∆◦;

(c) N(z) satisfies

N(z) = O

(
|z − ai|−(2αi+1)/4 |z − ai|(2αi−1)/4

|z − ai|−(2αi+1)/4 |z − ai|(2αi−1)/4

)
as z → ai,
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i ∈ {1, 2, 3, 4}, and

N(z) = O

(
|z|(−1)jRe(ν) |z|(−1)j+1Re(ν)

|z|(−1)jRe(ν) |z|(−1)j+1Re(ν)

)
as z → 0,

where j ∈ {1, 2, 3, 4} is the number of the quadrant from which z → 0
an ν is given by (2.10).

Indeed, RHP-N(a) holds by construction, while RHP-N(b,c) follow from
(2.23) and (2.15), respectively (notice that the actual rate of behavior in
RHP-N(c) can be different if the considered point happens to coincide with
zı(n) or zı(n−1)). Notice also that det(N(z)) ≡ 1 since this is an entire function
(it clearly has no jumps and it can have at most square root singularities at
the points ai) that converges to 1 at infinity.

For later calculations it will be convenient to set

M?(z) :=

(
(SρTı(n))(z

(0)) (SρTı(n))(z
(1))/w(z)

(SρTı(n−1)/Φ)(z(0)) (SρTı(n−1)/Φ)(z(1))/w(z)

)
, (6.6)

and M(z) := (I +Lν/z)M
?(z), where Lν is a certain constant matrix with

zero trace and determinant defined further below in (6.26). Observe that
N(z) = CM?(z)D(z), where

C :=

(
γn 0
0 γ∗n−1

)
and D(z) := Φnσ3

(
z(0)
)
. (6.7)

When Re(ν) ∈ (−1/2, 1/2), it is possible to take Lν to be the zero matrix,
but this would worsen the error rates in (2.26) and (2.32). When Re(ν) =
1/2, our analysis necessitates introduction of Lν . Notice that neither the
normalization of M(z) at infinity not its determinate do not depend on Lν .
In fact, it holds that det(M(z)) = det(M?(z)) = (γnγ

∗
n−1)−1.

6.4. Local Parametrix around ai

Let Ui be a disk around ai of small enough radius so that ρi(z) is holomorphic
around U i, i ∈ {1, 2, 3, 4}. In this section we construct solution of RHP-X
locally in each Ui. More precisely, we seeking a solution of the following local
Riemann-Hilbert problem (RHP-P ai):

(a,b,c) P ai(z) satisfies RHP-X(a,b,c) within Ui;
(d) P ai(s) = M(s)

(
I + O(1/n)

)
D(s) uniformly for s ∈ ∂Ui.

We shall only construct a solution of RHP-P a1 as other constructions
are almost identical.

6.4.1. Model Problem. Below, we always assume that the real line as well as
its subintervals are oriented from left to right. Further, we set

I± :=
{
z : arg(ζ) = ±2π/3

}
,

where the rays I± are oriented towards the origin. Given α > −1, let Ψα(ζ)
be a matrix-valued function such that

(a) Ψα(ζ) is analytic in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
;
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(b) Ψα(ζ) has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψα+ = Ψα−


(

0 1
−1 0

)
on (−∞, 0),(

1 0
e±πiα 1

)
on I±;

(c) as ζ → 0 it holds that

Ψα(ζ) = O
(
|ζ|α/2 |ζ|α/2
|ζ|α/2 |ζ|α/2

)
and Ψα(ζ) = O

(
log |ζ| log |ζ|
log |ζ| log |ζ|

)
when α < 0 and α = 0, respectively, and

Ψα(ζ) = O
(
|ζ|α/2 |ζ|−α/2
|ζ|α/2 |ζ|−α/2

)
and Ψα(ζ) = O

(
|ζ|−α/2 |ζ|−α/2
|ζ|−α/2 |ζ|−α/2

)
when α > 0, for | arg(ζ)| < 2π/3 and 2π/3 < | arg(ζ)| < π, respectively;

(d) it holds uniformly in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
that

Ψα(ζ) = S(ζ)
(
I + O

(
ζ−1/2

))
exp

{
2ζ1/2σ3

}
,

where S(ζ) :=
ζ−σ3/4

√
2

(
1 i
i 1

)
and we take the principal branch of ζ1/4.

Explicit construction of this matrix can be found in [9] (it uses modified
Bessel and Hankel functions). Observe that

S+(ζ) = S−(ζ)

(
0 1
−1 0

)
, (6.8)

since the principal branch of ζ1/4 satisfies ζ
1/4
+ = iζ

1/4
− . Also notice that the

matrix σ3Ψα(ζ)σ3 satisfies RHP-Ψα only with the reversed orientation of
(−∞, 0] and I±.

6.4.2. Conformal Map. Since w(z) has a square root singularity and a1 and
satisfies w+(s) = −w−(s), s ∈ ∆, the function

ζa1(z) :=

(
1

2

∫ z

a1

sds

w(s)

)2

, z ∈ U1, (6.9)

is holomorphic in U1 with a simple zero at a1. Thus, the radius of U1 can be
made small enough so that ζa1(z) is conformal on U1. Observe that sds/w±(s)
is purely imaginary on ∆◦1 and therefore ζa1(z) maps ∆1∩U1 into the negative
reals. It is also rather obvious that ζa1(z) maps the interval (a1,∞)∩U1 into
the positive reals. As we have had some freedom in choosing the arcs Γ1±,
we shall choose them within U1 so that Γ1− is mapped into I+ and Γ1+ is
mapped into I−. Notice that the orientation of the images of ∆1,Γ1+,Γ1−
under ζa1(z) are opposite from the ones of (−∞, 0], I−, I+.

In what follows, we understand that ζ
1/2
a1 (z) stands for the branch given

by the expression in the parenthesis in (6.9).
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6.4.3. Matrix P a1 . According to the definition of the class W1, it holds that

ρ(z) = ρ∗(z)(a1 − z)α1 , z ∈ U1,

where ρ∗(z) is non-vanishing and holomorphic in U1 and (a1 − z)α1 is the
branch holomorphic in U1 \ [a1,∞) and positive on ∆1. Define

ra1(z) :=
√
ρ∗(z)(z − a1)α1/2, z ∈ U1 \∆1,

where (z − a1)α1/2 is the principle branch. It clearly holds that

(z − a1)α1 = e±πiα1(a1 − z)α1 , z ∈ U±1 ,

where U±1 := U1 ∩ {±Im(z) > 0}. Then{
ra1+(s)ra1−(s) = ρ(s), s ∈ ∆1 ∩ U1,

r2
a1(z) = ρ(z)e±πiα1 , z ∈ U±1 .

The above relations and RHP-Ψα(a,b,c) imply that

P a1(z) := Ea1(z)σ3Ψα1

(
n2ζa1(z)

)
σ3r
−σ3
a1 (z) (6.10)

satisfies RHP-P a1(a,b,c) for any holomorphic matrix Ea1(z).

6.4.4. MatrixEa1 . Now we chooseEa1(z) so that RHP-P a1(d) is fulfilled. To
this end, denote by V1, V2, V3 the sectors within U1 delimited by π(α)∪π(β),
π(β)∪∆1, and ∆1∪π(α), respectively, see Figure 1. Let γ ⊂ C\∆ be a path
from a3 to a1 that does not intersect π(α), π(β). Further, let γ := π−1(γ) be

a cycle oriented so that γ(0) := γ ∩R(0) proceeds from a3 to a1. Define

Ka1(z) :=


exp

{ ∫
γ(0) G

}
= exp{πi (τ − ω)} = 1, z ∈ V1,

exp
{ ∫

γ(0)−αG
}

= exp{−πi(τ + ω)} = −1, z ∈ V2,

exp
{ ∫

γ(0)−βG
}

= exp{πi(τ + ω)} = −1, z ∈ V3,

where we used the symmetry G(z∗) = −G(z), the fact that γ is homologous
to α + β, see Figure 2, and (2.4)–(2.5). Recalling the definition of Φ(z) in
(2.6) (the path of integration must lie in Rα,β), one can see that

Φ
(
z(0)
)

= Ka1(z) exp
{

2ζ1/2
a1 (z)

}
, z ∈ V1 ∪ V2 ∪ V3.

Clearly, |Ka1(z)| = 1. It now follows from RHP-Ψα(d) that

P a1(s) = Ea1(s)σ3S
(
n2ζa1(s)

)
σ3r
−σ3
a1 (s)K−nσ3

a1 (s)
(
I + O(1/n)

)
D(s)

for s ∈ ∂U1. Thus, if the matrix

Ea1(z) := M(z)Knσ3
a1 (z)rσ3

a1 (z)σ3S
−1
(
n2ζa1(z)

)
σ3

is holomorphic in U1, RHP-P a1(d) is clearly fulfilled. The fact that it has
no jumps on ∆1, π(α), π(β) follows from RHP-N(b), (6.8), (2.7), and the
definition of Ka1(z). Thus, it is holomorphic in U1 \ {a1}. Since |ra1(z)| ∼
|z − a1|α1/2, S−1

(
n2ζa1(z)

)
∼ |z − a1|σ3/4, and M(z) satisfies RHP-N(c)

around a1, the desired claim follows.
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6.5. Approximate Local Parametrix around the Origin

Let 0 < δ ≤ δ0, see Section 6.2. We can assume that the closure of Uδ :=
{|z| < δ} is disjoint from π(α), π(β). In this section we construct an approxi-
mate solution of RHP-X in Uδ when ` <∞ and an exact solution of RHP-X
in Uδ when ` =∞.

To this end, let the functions bi(z), i ∈ {1, 2, 3, 4}, be defined in U δ0 by

b1 :=
ρ1 + ρ2

ρ2
, b2 := −ρ2 + ρ3

ρ4
, b3 := −ρ3 + ρ4

ρ2
, and b4 :=

ρ1 + ρ4

ρ4
, (6.11)

which are holomorphic and non-vanishing on Uδ. It follows from item (iv) in
the definition of class Wl that

bi(0)

bi(z)
− 1 = O

(
z`
)

as z → 0, i ∈ {1, 2, 3, 4}. (6.12)

Notice that bi(z) ≡ bi(0) when ` = ∞. Observe also that b1(0) = b3(0) and
b2(0) = b4(0) by item (ii) in the definition of class Wl. We seeking a solution
of the following local Riemann-Hilbert problem (RHP-P 0):

(a) P 0(z) satisfies RHP-X(a) within Uδ;
(b) P 0(z) satisfies RHP-X(b) within Uδ, where the jump matrix on each

∆̃◦i needs to be replaced by 1 0

bi(0)

bi(s)

(
1

ρi(s)
+

1

ρi+1(s)

)
1

 ;

(c) P 0(s) = M(s)
(
I + O

(
(nδ2)−1/2−|Re(ν)|))D(s) uniformly for s ∈ ∂Uδ

and δ ≤ δ0.

6.5.1. Model Problem. Let s1, s2 ∈ C be independent parameters and let
ν ∈ C, Re(ν) ∈

(
− 1

2 ,
1
2

]
be given by

e−2πiν := 1− s1s2 (6.13)

(we slightly abuse the notation here as the parameter ν has already been
fixed in (2.10); however, we shall use the construction below with parameters
s1, s2 such that (6.13) holds with ν from (2.10)). Define constants d1, d2 by

d1 := −s1
Γ(1 + ν)√

2π
and d2 := −s2e

πiν Γ(1− ν)√
2π

, (6.14)

where Γ(z) is the standard Gamma function. It follows from the well-known
Gamma function identities that

d1d2 = iν. (6.15)

Denote by Dµ(ζ) the parabolic cylinder function in Whittaker’s notations,
see [4, Section 12.2]. It is an entire function with the asymptotic expansion

Dµ(ζ) ∼ e−ζ
2/4ζµ

∞∑
k=0

(−1)k

Γ(k + 1)

Γ(µ+ 1)

Γ(µ+ 1− 2k)

1

(2ζ2)k
(6.16)

valid uniformly in each |arg(ζ)| ≤ 3π/4− ε, ε > 0, see [4, Equation (12.9.1)].
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Let the matrix function Ψs1,s2(ζ) be given by(
Dν(2ζ) d1D−ν−1(−2iζ)

d2Dν−1(2ζ) D−ν(−2iζ)

)(
1 0

0 e−πiν/2

)
, arg(ζ) ∈

(
0, π2

)
,

(
Dν(−2ζ) d1D−ν−1(−2iζ)

−d2Dν−1(−2ζ) D−ν(−2iζ)

)(
eπiν 0

0 e−πiν/2

)
, arg(ζ) ∈

(
π
2 , π

)
,

(
Dν(−2ζ) −d1D−ν−1(2iζ)

−d2Dν−1(−2ζ) D−ν(2iζ)

)(
e−πiν 0

0 eπiν/2

)
, arg(ζ) ∈

(
−π2 ,−π

)
,

(
Dν(2ζ) −d1D−ν−1(2iζ)

d2Dν−1(2ζ) D−ν(2iζ)

)(
1 0

0 eπiν/2

)
, arg(ζ) ∈

(
0,−π2

)
.

Then, Ψs1,s2(ζ) satisfies the following RH problem (RHP-Ψs1,s2):

< (
1 0
s2 1

)

<

(
1 0

e2πiνs2 1

)

>

(
1 s1

0 1

)
>(

e2πiν s1

0 e−2πiν

)

Figure 4. Matrices Ψ−1
s1,s2−Ψs1,s2+ on the corresponding rays.

(a) Ψs1,s2(ζ) is analytic in C \ (R ∪ iR);
(b) Ψs1,s2(ζ) has continuous traces on R ∪ iR outside of the origin that

satisfy the jump relations shown in Figure 4;
(c) Ψs1,s2(ζ) has the following asymptotic expansion as ζ →∞:(

I +
1

2ζ

(
0 id1

d2 0

)
+
ν(ν − 1)

8ζ2

(
−1 0
0 1

)
+ O

(
1

ζ3

))
(2ζ)νσ3e−ζ

2σ3 ,

which holds uniformly in C.

Indeed, RHP-Ψs1,s2(a) follows from the fact that Dν(ζ) is entire, while RHP-
Ψs1,s2(c) is a consequence of (6.16). The jump relations RHP-Ψs1,s2(b) can
be verified using the identities Γ(−ν)Γ(1 + ν) = −π/ sin(πν), (6.13), and

Dµ(2ξ) = e−µπiDµ(−2ξ) +

√
2π

Γ(−µ)
e−(µ+1)πi/2D−µ−1(2iξ),
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suitably applied with parameter values µ = −ν, ν − 1 and ξ = ζ,−ζ, iζ. For
later, it will be important for us to make the following observation. Define

dν :=


d2, Re(ν) > 0,

0, Re(ν) = 0,

id1, Re(ν) < 0

and Aν :=


(

0 0
1 0

)
, Re(ν) ≥ 0,(

0 1
0 0

)
, Re(ν) < 0,

(6.17)
Recall that we set ςν = 1, 0,−1 depending on whether Re(ν) > 0, Re(ν) = 0,
or Re(ν) < 0. Observe that(
I − (2ζ)−1dνAν

)
Ψs1,s2(ζ)

= (2ζ)νσ3

(
I + (2ζ)−1−2ςννd−νA−ν + O

(
ζ−1−|ςν |

))
e−ζ

2σ3 . (6.18)

6.5.2. Conformal Map. Let, as before, Qj stand for the j-th quadrant, j ∈
{1, 2, 3, 4}. Set

ζ0(z) :=

(
(−1)j−1

∫ z

0

sds

w(s)

)1/2

, z ∈ Uδ ∩Qj . (6.19)

Since w(z) is bounded at 0 and satisfies w+(s) = −w−(s), s ∈ ∆, the branch
of the square root can be chosen so that the function ζ0(z) is in fact holo-
morphic in Uδ with a simple zero at the origin. Without loss of generality we
can assume that δ is small enough for ζ0(z) to be conformal on Uδ.

Since the integrand (−1)j−1sds/w(s) becomes negative purely imagi-
nary on ∆1∪∆3, the square root in (6.19) can be chosen so that arg

(
ζ0(z)

)
=

−π/4, z ∈ ∆◦3. As we have had some freedom in selecting the arcs ∆̃i, we

shall choose them so that ∆̃◦3 and ∆̃◦1 are mapped by ζ0(z) into positive and

negative reals, respectively, while ∆̃◦4 and ∆̃◦2 are mapped into positive and
negative purely imaginary numbers.

6.5.3. Matrix P 0. Define the function r(z) := rj(z), z ∈ Qj , where we let

r1 := ieπiν√ρ1, r2 := ie−πiν ρ2√
ρ1
, r3 := −ie−πiν ρ4√

ρ1
, r4 := −ie−πiν√ρ1

(6.20)

for a fixed determination of
√
ρ1(z). Furthermore, let

J(z) :=



e2πiνσ3 , arg z ∈
(
−π2 , 0

)
,(

0 1
−1 0

)
e2πiνσ3 , arg z ∈

(
0, π4

)
,(

0 1
−1 0

)
, arg z ∈

(
π
4 ,

π
2

)
∪
(
−π2 ,−π

)
,

I, arg z ∈
(
π
2 , π

)
.

(6.21)

Finally, recalling (6.11), put

s1 := b1(0) = b3(0) and s2 := b2(0) = b4(0). (6.22)
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Notice that since (ρ1 + ρ2 + ρ3 + ρ4)(0) = 0, the parameters s1, s2 satisfy
(6.13) with ν given by (2.10). Then

P 0(z) := E0(z)Ψs1,s2

(
n1/2ζ0(z)

)
J−1(z)r−σ3(z) (6.23)

satisfies RHP-P 0(a,b) for any matrixE0(z) holomorphic in Uδ. Indeed, RHP-
P 0(a) is an immediate consequence of RHP-Ψs1,s2(a). It further follows from
RHP-Ψs1,s2(b) that the jumps of P 0(z) are as on Figure 5. To verify RHP-

>

(
0 r2r3

−1/r2r3 0

)
<

(
0 r1r4

−1/r1r4 0

)<

(
1 0

−s1e
2πiν/r2

1 1

)

>

(
1 0

s1/r
2
3 1

)

>

(
1 0

s2/r
2
2 1

)

<

(
1 0

−s2e
−2πiν/r2

4 1

)

>

e2πiνσ3

(
0 −r3r4

1/r3r4 0

)

<

(
0 −r1r2

1/r1r2 0

)

Figure 5. The jump matrices of P 0(z).

P 0(b), it remains to observe that

r1r4 = ρ1, −r1r2 = ρ2, r2r3 = e−2πiνρ2ρ4/ρ1 = ρ3, −r3r4e
2πiν = ρ4,

since e−2πiν = (ρ1ρ3)/(ρ2ρ4), and that

−e2πiν s1

r2
1

=
b1(0)

ρ1
=
b1(0)

b1

(
1

ρ1
+

1

ρ2

)
,

s2

r2
2

= −e2πiνb2(0)
ρ1

ρ2
2

= −b2(0)
ρ4

ρ2ρ3
=
b2(0)

b2

(
1

ρ2
+

1

ρ3

)
,

s1

r2
3

= −e2πiνb3(0)
ρ1

ρ2
4

= −b3(0)
ρ2

ρ3ρ4
=
b3(0)

b3

(
1

ρ3
+

1

ρ4

)
,

−e−2πiν s2

r2
4

=
b4(0)

ρ1
=
b4(0)

b4

(
1

ρ1
+

1

ρ4

)
.

Thus, it remains to choose E0(z) so that RHP-P 0(c) is fulfilled.

6.5.4. Matrix E0. Let γ be the part of ∆3 that proceeds from a3 to 0∗, see
Figures 1 and 2. Define

K0(z) :=

{
exp

{
−
∫
γ
G
}

= Φ (0) , z ∈ Q1 ∪Q3,

exp
{ ∫

γ
G
}

= Φ (0∗) , z ∈ Q2 ∪Q4.
(6.24)
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(2.25) immediately yields that |K0(z)| ≡ 1. Define

E?
0(z) := M?(z)rσ3(z)Knσ3

0 (z)J(z)ζ−νσ3
0 (z), (6.25)

see (6.6). From RHP-N(b), the definition of J(z), and the fact that ζ0(z)

maps ∆̃◦1 to the negative reals, it follows thatE?
0(z) is holomorphic in Uδ\{0}.

Furthermore, RHP-N(c) combined with the fact that ζ0(z) possesses a simple
zero at z = 0 imply that E?

0(z) is holomorphic in Uδ. Observe also that the
absolute values of the entries of E?(z) depend on only the parity of n.

Put for brevity εν,n := (4n)ςνν−1/2, where, as before, ςν is equal to
1, 0,−1 depending on whether Re(ν) is positive, zero, or negative. Set

Lν :=
dνεν,n
ζ ′0(0)Dn

E?(0)AνE
?−1(0), (6.26)

where dν ,Aν were defined in (6.17) and we assume that

0 6= Dn := 1− dνεν,n
(
ζ ′0(0)

)−1
Eν (6.27)

with

Eν :=

{ [
E?−1(0)E?′(0)

]
12

if Re(ν) ≥ 0,[
E?−1(0)E?′(0)

]
21

if Re(ν) < 0.

Notice that Lν is the zero matrix when Re(ν) = 0 as dν = 0 by (6.17). Let

E0(z) := (I +Lν/z)E
?
0(z)(4n)−νσ3/2

(
I − dν

(
2n1/2ζ0(z)

)−1
Aν

)
. (6.28)

Let us show that thus defined matrix E0(z) is holomorphic at the origin.
Indeed, it has at most double pole there. It is quite simple to see that the
coefficient next to z−2 is equal to

−dνεν,n(4n)−ςνν/2
(
ζ ′0(0)

)−1
LνE

?
0(0)Aν ,

which is equal to the zero matrix since A2
ν is equal to the zero matrix. Using

this observation we also get the coefficient next to z−1 is equal to

LνE
?
0(0)(4n)−νσ3/2 − dνεν,n(4n)−ςνν/2

(
ζ ′0(0)

)−1(
E?

0(0) +LνE
?′
0 (0)

)
Aν ,

which simplifies to

dνεν,n(4n)−ςνν/2

ζ ′0(0)Dn

(
1− dνεν,n

ζ ′0(0)
Eν −Dn

)
E?

0(0)Aν

that is equal to the zero matrix by the very definition of Dn.
Now, recalling the definition of Φ(z) in (2.6) and of ζ0(z) in (6.19), one

can see that

exp
{
−ζ2

0 (z)
}

= e−
∫
γ
G

{
Φ
(
z(1)
)
, z ∈ Q1 ∪Q3,

Φ
(
z(0)
)
, z ∈ Q2 ∪Q4.

(6.29)

In particular, since D(z) = Φnσ3
(
z(0)
)

and Φ
(
z(0)
)
Φ
(
z(1)
)
≡ 1, it follows

that

exp
{
−nζ2

0 (z)σ3

}
J−1(z) = J−1(z)K−nσ3

0 (z)D(z).
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For brevity, let H(z) := rσ3(z)Knσ3
0 (z)J(z). Then we get from (6.18) and

the previous identity that

E0(s)Ψs1,s2

(
n1/2ζ0(s)

)
J−1(s)r−σ3(s) =

M(s)H(s)
(
I + O

((
nζ2

0 (s)
)−1/2−|Re(ν)|

))
H−1(s)D(s) =

M(s)
(
I + O

((
nδ2
)−1/2−|Re(ν)|

))
D(s).

It remains to show that (6.27) holds for all n ∈ Nρ,ε. It follows from
(2.24) that it is enough to show that

Aρ,n = dνεν,n
(
ζ ′0(0)

)−1
Eν . (6.30)

6.6. Existence of Lν

Assume that Re(ν) > 0. It can be readily verified that

Eν = γnγ
∗
n−1

(
[E?′

0 (0)]12[E?
0(0)]22 − [E?′

0 (0)]22[E?
0(0)]12

)
,

where we used the fact that det(E?
0(z)) = det(M?(z)) = (γnγ

∗
n−1)−1. Notice

that d2 6= 0 by (6.15). Using (6.25), (6.21), and (6.24) gives us that [E?
0(z)]i2

is equal to

ζν0 (z)Φn
(
0
)


e−2πiνr1(z)[M?(z)]i1, arg(z) ∈ (0, π/4),

r1(z)[M?(z)]i1, arg(z) ∈ (π/4, π/2),

[M?(z)]i2/r2(z), arg(z) ∈ (π/2, π),

r3(z)[M?(z)]i1, arg(z) ∈ (π, 3π/2),

e−2πiν [M?(z)]i2/r4(z), arg(z) ∈ (3π/2, 2π).

Define

S(z) := ζν0 (z)



e−2πiνr1(z)Sρ
(
z(0)
)
, arg(z) ∈ (0, π/4),

r1(z)Sρ
(
z(0)
)
, arg(z) ∈ (π/4, π/2),

Sρ
(
z(1)
)
/(r2w)(z), arg(z) ∈ (π/2, π),

r3(z)Sρ
(
z(0)
)
, arg(z) ∈ (π, 3π/2),

e−2πiνSρ
(
z(1)
)
/(r4w)(z), arg(z) ∈ (3π/2, 2π),

which is a holomorphic and non-vanishing function around the origin. Then
we obtain from (6.6), (4.6), and (4.12) that

Eν = S2(0)Φ2n
(
0
)
YnX

−1
n . (6.31)

When |π(zk)| = ∞, the first condition in the definition of Nρ,ε implies

that we are looking only at those indices n for which zı(n) =∞(1). In this case
Aρ,n = 0 by its very definition in (2.24) and it also follows from Lemma 4.9
that Yn = 0 in this case. Hence, (6.30) does hold in this case.

Let now |π(zk)| <∞ and therefore the first condition in the definition
of Nρ,ε is void. It follows from (6.19) and (2.1) as well as the fact that ζ0(z)
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maps {arg(z) = 5π/4} into positive reals that

1/ζ ′0(0) = e5πi/4
√

2ab. (6.32)

Since e−2πiν = (ρ1ρ3)(0)/(ρ2ρ4)(0) by (2.10), we get from (6.20) that

S2(0) = −
(
ρ3ρ4/ρ2

)
(0)(2ab)−ν lim

z→0, arg(z)=5π/4
|z|2νS2

ρ

(
z(0)
)
. (6.33)

Observe also that

d2 = eπiν (ρ2 + ρ3)(0)

ρ4(0)

Γ(1− ν)√
2π

(6.34)

by (6.14), (6.22), and (6.11). Then it follows from (4.16) and the very defini-
tions of Aρ,n in (2.24) that (6.31)–(6.34) yield (6.30). The proof of (6.30) in
the case Re(ν) < 0 is similar.

Assume now that |π(zk)| <∞. Then the quantities Yn and Zn in (4.12)
and (4.14) are non-zero and equal to

W ′ı(n)(s)
T 2
ı(n−1)(s)

Φ(s)
, Wı(n)(z) :=

Tı(n)(z)

Tı(n−1)(z)
,

where s = 0 when Re(ν) > 0 and s = 0∗ when Re(ν) < 0. Hence, it follows
from (6.26), (6.30), (6.31), and a computation similar to the one carried out
at the beginning of this subsection that

Lν =
Aρ,n

1−Aρ,n
1

W ′ı(n)(s)

(
Wı(n)(s) −Φ(s)W 2

ı(n)(s)

1/Φ(s) −Wı(n)(s)

)
.

Moreover, since W1(z) = 1/W0(z) we can rewrite the first row of Lν as(
1 0

)
Lν = (−1)ı(n) Aρ,n

1−Aρ,n
W0(s)

W ′0(s)

(
1 −Φ(s)Wı(n)(s)

)
, (6.35)

where, as before, s = 0 when Re(ν) > 0 and s = 0∗ when Re(ν) < 0.

6.7. Final Riemann-Hilbert Problem

In what follows, we assume that δ = δn ≤ δ0 in Section 6.5 when ` < ∞
and shall specify the exact dependence on n later on in this section. When
` =∞, we simply take δ = δ0. Set U := ∪4

i=1Uai and define

Σn :=
(
∂U ∪ ∂Uδn

)
∪
(
∪4
i=1

(
Γi− ∪ Γi+ ∪ ∆̃i

)
\ U
)
,

see Figure 6. We are looking for a solution of the following Riemann-Hilbert
problem (RHP-Z):

(a) Z(z) is analytic in C \ Σn and limz→∞Z(z) = I;
(b) Z(z) has continuous traces outside of non-smooth points of Σn that

satisfy

Z+ = Z−


P ai(MD)−1, on ∂Uai ,

P 0(MD)−1, on ∂Uδ,

MD

(
1 0

1/ρi 1

)
(MD)−1, on

(
Γ◦i+ ∪ Γ◦i−

)
\ U,
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<

•
a2
<

•
a3> •

a1

<

•
a4>

Γ−4Γ+
4

< <
>>

<

<>

>

Figure 6. Contour Σn for RHP-Z (dashed circle represents
{|z| = δ0}).

and

Z+ = Z−


MD

(
1 0

ρi+ρi+1

ρiρi+1
1

)
(MD)−1, on ∆̃◦i \ Uδn ,

P 0−

(
1 0

ρi+ρi+1

ρiρi+1
1

)
P−1

0+, on ∆̃◦i ∩ Uδn

(notice that the second set of jumps is not present when ` = ∞ as
δn = δ0 and P 0(z) is an exact parametrix).

It follows from RHP-P ai(d) that the jump of Z on ∂Uai can be written
as

M(s)
(
I + O(1/n)

)
M−1(s) = I + Oε(1/n)

since the matrix M(z) is invertible (its determinant is equal to the reciprocal
of γnγ

∗
n−1), the matrix M?(z) depends only on the parity of n, see (6.6), and

the matrix Lν has trace and determinant zero as well as bounded entries
for all n ∈ Nρ,ε and each fixed ε > 0, see (6.26). Similarly, we get from
RHP-P 0(c) that the jump of Z on ∂Uδn can be written as

M(s)
(
I + O

((
nδ2
n

)−1/2−|Re(ν)|
))
M−1(s)

= I +
(
I +Lν/s

)
O
((
nδ2
n

)−1/2−|Re(ν)|
) (
I −Lν/s

)
,

where O(·) does not depend on n. Since Lν = Oε
(
n|Re(ν)|−1/2

)
by its very

definition in (6.26), we get that the jump of Z on ∂Uδn can further written
as

I + Oε

((
nδ2
n

)−1/2−|Reν|
max

{
1, n2|Re(ν)|/(nδ2

n)
})

.
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One can easily check with the help of (6.4) and (6.6) that the jump of
Z on

(
Γ◦i+ ∪ Γ◦i−

)
\ U is equal to

I+
γnγ

∗
n−1

(w2ρi)(s)

(
I+Lν/s

)((ΨnΨn−1)
(
s(1)
)

−Ψ2
n

(
s(1)
)

Ψ2
n−1

(
s(1)
)

−(ΨnΨn−1)
(
s(1)
)) (I−Lν/s)

= I + Oε(e
−cn)

for some constant c > 0 by (2.22) and since the maximum of |Φ(s(1))| on

Γi±\U is less than 1. The estimate of the jump of Z on ∆̃◦i \U δn is analogous
and yields

I + Oε

(
e−cnδ

2
n max

{
1, n2|Re(ν)|/(nδ2

n)
})

for an adjusted constant c > 0, where the rate estimate follows from (6.29)
as ∣∣Φ(s(1)

)∣∣ = exp
{

(−1)iRe
(
ζ2
0 (s)

)}
= O

(
e−cδ

2
n
)
, s ∈ ∆̃i \ Uδn ,

since ζ0(z) is real on ∆̃1 ∪ ∆̃3 and is purely imaginary on ∆̃2 ∪ ∆̃4.

Finally, it holds on ∆̃◦i ∩ Uδn that the jump of Z is equal to

I +

(
1− bi(0)

bi(z)

)
(ρi + ρi+1)(s)

(ρiρi+1)(s)
P 0+(s)

(
0 0
1 0

)
P−1

0+(s) =

I +O(δ`n)E0(s)

(
[Ψ+(s)]1j [Ψ+(s)]2j −[Ψ+(s)]21j

[Ψ+(s)]22j −[Ψ+(s)]1j [Ψ+(s)]2j

)
E−1

0 (s)

by (6.12) and (6.23), where j = 1 for s ∈ ∆̃1 ∪ ∆̃3 and j = 2 for s ∈
∆̃2∪ ∆̃4, and we set for brevity Ψ(z) := Ψs1,s2

(
n1/2ζ0(z)

)
(observe also that

det(Ψ(z)) ≡ 1). It follows from the asymptotic expansion (6.16) that Dµ(x)
is bounded for x ≥ 0. Thus, we deduce from the definition of Ψ(z) that the
above jump matrix can be estimated as

I +O(δ`n)E0(s)O(1)E−1
0 (s) = I + Oε

(
n|Re(ν)|δ`n

)
,

where the last equality follows from (6.25) and (6.28) as E0(z) is equal to
a bounded matrix that depends only on εν,n multiplied by (4n)νσ3/2 on the
right.

When ` ≥ 4|Re(ν)|(1 + |Re(ν)|)/(1− 2|Re(ν)|), choose

δn = δ0 exp

{
−1

2

1 + 4|Re(ν)|
`+ 1 + 2|Re(ν)|

lnn

}
.

Then it holds that n2|Re(ν)|/(nδ2
n) = O(1) and

n|Re(ν)|(δn/δ0)` =
(
n(δn/δ0)2

)−|Re(ν)|−1/2
= n−dν,`

with dν,` defined in (2.28). Otherwise, take

δn = δ0 exp

{
−1

2

3

`+ 3 + 2|Re(ν)|
lnn

}
.
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In this case n2|Re(ν)|/(nδ2
n)→∞ as n→∞ and

n|Re(ν)|(δn/δ0)` = n2|Re(ν)|(n(δn/δ0)2
)−|Re(ν)|−3/2

= n−dν,` .

Since dν,` < 1, it holds that the jumps of Z on Σn are of order I +
Oε(n

−dν,`), where Oε(·) does not depend on n. Then, by arguing as in [2,
Theorem 7.103 and Corollary 7.108] we obtain that the matrix Z exists for
all n ∈ Nρ,ε large enough and that

‖Z± − I‖2,Σn = Oε
(
n−dν,`

)
.

Since the jumps of Z on Σn are restrictions of holomorphic matrix functions,
the standard deformation of the contour technique and the above estimate
yield that

Z = I + Oε

(
n−dν,`

)
(6.36)

locally uniformly in C \ {0}.

6.8. Proofs of Theorems 2.3–2.4

Given Z(z), a solution of RHP-Z, P ai(z) and P 0(z), defined in (6.10) and
(6.23), respectively, and C(MD)(z) from (6.6) and (6.7), it can be readily
verified that

X(z) := CZ(z)


P ai(z), z ∈ Ui, i ∈ {1, 2, 3, 4},
P 0(z), z ∈ Uδ,
(MD)(z), otherwise,

solves RHP-X. Given a closed set K ⊂ C \ ∆, the contour Σn can always
be adjusted so that K lies in the exterior domain of Σn. Then it follows
from (6.3) that Y (z) = X(z) on K. Formulae (2.26) and (2.32) now follow
immediately from (6.2), (6.4), (6.6), and (6.7) since

wi−1(z)[(ZMD)(z)]1i = (1 + υn1(z))Ψn

(
z(i−1)

)
+ υn2(z)Ψn−1

(
z(i−1)

)
,

where υn1(z), υn2(z) are the first row entries of Z(z)(I + Lν/z). Estimates
(2.27) are direct consequence of (6.26) and (6.36). Relations (2.29) follow
from (6.35).
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appearance in quantum gravity. Comm. Math. Phys., 142(2):313–344, 1991. 19

[6] A.S. Fokas, A.R. Its, and A.V. Kitaev. The isomonodromy approach to matrix
models in 2D quantum gravitation. Comm. Math. Phys., 147(2):395–430, 1992.
19

[7] F.D. Gakhov. Boundary Value Problems. Dover Publications, Inc., New York,
1990. 18, 19
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