An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC

Hanan Aljubran ${ }^{\text {a }}$, Maxim L. Yattselev ${ }^{\mathrm{a}, *}$
${ }^{a}$ Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA

Abstract

Let $\left\{\varphi_{i}\right\}_{i=0}^{\infty}$ be a sequence of orthonormal polynomials on the unit circle with respect to a positive Borel measure μ that is symmetric with respect to conjugation. We study asymptotic behavior of the expected number of real zeros, say $\mathbb{E}_{n}(\mu)$, of random polynomials $$
P_{n}(z):=\sum_{i=0}^{n} \eta_{i} \varphi_{i}(z),
$$

where $\eta_{0}, \ldots, \eta_{n}$ are i.i.d. standard Gaussian random variables. When μ is the acrlength measure such polynomials are called Kac polynomials and it was shown by Wilkins that $\mathbb{E}_{n}(|\mathrm{~d} \xi|)$ admits an asymptotic expansion of the form

$$
\mathbb{E}_{n}(|\mathrm{~d} \xi|) \sim \frac{2}{\pi} \log (n+1)+\sum_{p=0}^{\infty} A_{p}(n+1)^{-p}
$$

(Kac himself obtained the leading term of this expansion). In this work we generalize the result of Wilkins to the case where μ is absolutely continuous with respect to arclength measure and its Radon-Nikodym derivative extends to a holomorphic nonvanishing function in some neighborhood of the unit circle. In this case $\mathbb{E}_{n}(\mu)$ admits an analogous expansion with coefficients the A_{p} depending on the measure μ for $p \geq 1$ (the leading order term and A_{0} remain the same).

Key words: random polynomials, orthogonal polynomials on the unit circle, expected number of real zeros, asymptotic expansion

[^0]
1. Introduction and Main Results

In [2], Kac considered random polynomials

$$
P_{n}(z)=\eta_{0}+\eta_{1} z+\cdots+\eta_{n} z^{n}
$$

where η_{i} are i.i.d. standard real Gaussian random variables. He has shown that $\mathbb{E}_{n}(\Omega)$, the expected number of zeros of $P_{n}(z)$ on a measurable set $\Omega \subset \mathbb{R}$, is equal to

$$
\begin{equation*}
\mathbb{E}_{n}(\Omega)=\frac{1}{\pi} \int_{\Omega} \frac{\sqrt{1-h_{n+1}^{2}(x)}}{\left|1-x^{2}\right|} \mathrm{d} x, \quad h_{n+1}(x)=\frac{(n+1) x^{n}\left(1-x^{2}\right)}{1-x^{2 n+2}} \tag{1}
\end{equation*}
$$

from which he proceeded with an estimate

$$
\mathbb{E}_{n}(\mathbb{R})=\frac{2+o(1)}{\pi} \log (n+1) \quad \text { as } \quad n \rightarrow \infty
$$

It was shown by Wilkins [7], after some intermediate results cited in [7], that there exist constants $A_{p}, p \geq 0$, such that $\mathbb{E}_{n}(\mathbb{R})$ has an asymptotic expansion of the form

$$
\begin{equation*}
\mathbb{E}_{n}(\mathbb{R}) \sim \frac{2}{\pi} \log (n+1)+\sum_{p=0}^{\infty} A_{p}(n+1)^{-p} \tag{2}
\end{equation*}
$$

In another connection, Edelman and Kostlan [1] considered random functions of the form

$$
\begin{equation*}
P_{n}(z)=\eta_{0} f_{0}(z)+\eta_{1} f_{1}(z)+\cdots+\eta_{n} f_{n}(z) \tag{3}
\end{equation*}
$$

where η_{i} are certain real random variables and $f_{i}(z)$ are arbitrary functions on the complex plane that are real on the real line. Using beautiful and simple geometrical argument they have shown ${ }^{1}$ that if $\eta_{0}, \ldots, \eta_{n}$ are elements of a multivariate real normal distribution with mean zero and covariance matrix C and the functions $f_{i}(x)$ are differentiable on the real line, then

$$
\mathbb{E}_{n}(\Omega)=\int_{\Omega} \rho_{n}(x) \mathrm{d} x, \quad \rho_{n}(x)=\left.\frac{1}{\pi} \frac{\partial^{2}}{\partial s \partial t} \log \left(v(s)^{\top} C v(t)\right)\right|_{t=s=x},
$$

where $v(x)=\left(f_{0}(x), \ldots, f_{n}(x)\right)^{\top}$. If random variables η_{i} in (3) are again i.i.d. standard real Gaussians, then the above expression for $\rho_{n}(x)$ specializes to

$$
\begin{equation*}
\rho_{n}(x)=\frac{1}{\pi} \frac{\sqrt{K_{n+1}(x, x) K_{n+1}^{(1,1)}(x, x)-K_{n+1}^{(1,0)}(x, x)^{2}}}{K_{n+1}(x, x)} \tag{4}
\end{equation*}
$$

(this formula was also independently rederived in [3, Proposition 1.1] and [6, Theo-

[^1]rem 1.2]), where
\[

\left\{$$
\begin{aligned}
K_{n+1}(z, w) & :=\sum_{i=0}^{n} f_{i}(z) \overline{f_{i}(w)}, \\
K_{n+1}^{(1,0)}(z, w) & :=\quad \sum_{i=0}^{n} f_{i}^{\prime}(z) \overline{f_{i}(w)}, \\
K_{n+1}^{(1,1)}(z, w) & :=\sum_{i=0}^{n} f_{i}^{\prime}(z) \overline{f_{i}^{\prime}(w)}
\end{aligned}
$$\right.
\]

In this work we concentrate on a particular subfamily of random functions (3), namely random polynomials of the form

$$
\begin{equation*}
P_{n}(z)=\eta_{0} \varphi_{0}(z)+\eta_{1} \varphi_{1}(z)+\cdots+\eta_{n} \varphi_{n}(z) \tag{5}
\end{equation*}
$$

where η_{i} are i.i.d. standard real Gaussian random variables and $\varphi_{i}(z)$ are orthonormal polynomials on the unit circle with real coefficients. That is, for some probability Borel measure μ on the unit circle that is symmetric with respect to conjugation, it holds that

$$
\begin{equation*}
\int_{\mathbb{T}} \varphi_{i}(\xi) \overline{\varphi_{j}(\xi)} \mathrm{d} \mu(\xi)=\delta_{i j} \tag{6}
\end{equation*}
$$

where $\delta_{i j}$ is the usual Kronecker symbol. In this case it can be easily shown using Christoffel-Darboux formula, see [8, Theorem 1.1], that (4) can be rewritten as

$$
\begin{equation*}
\rho_{n}(x)=\frac{1}{\pi} \frac{\sqrt{1-h_{n+1}^{2}(x)}}{\left|1-x^{2}\right|}, \quad h_{n+1}(x):=\frac{\left(1-x^{2}\right) b_{n+1}^{\prime}(x)}{1-b_{n+1}^{2}(x)}, \quad b_{n+1}(x):=\frac{\varphi_{n+1}(x)}{\varphi_{n+1}^{*}(x)}, \tag{7}
\end{equation*}
$$

where $\varphi_{n+1}^{*}(x):=x^{n+1} \varphi_{n+1}(1 / x)$ is the reciprocal polynomial (there is no need for conjugation as all the coefficients are real). When μ is the normalized arclength measure on the unit circle, it is elementary to see that $\varphi_{m}(z)=z^{m}$ and therefore (7) recovers (1).

Theorem 1. Let $P_{n}(z)$ be given by (5)-(6), where μ is absolutely continuous with respect to the arclength measure and $\mu^{\prime}(\xi)$, the respective Radon-Nikodym derivative, extends to a holomorphic non-vanishing function in some neighborhood of the unit circle. Then $\mathbb{E}_{n}(\mu)$, the expected number of real zeros of $P_{n}(z)$, satisfies

$$
\mathbb{E}_{n}(\mu)=\frac{2}{\pi} \log (n+1)+A_{0}+\sum_{p=1}^{N-1} A_{p}^{\mu}(n+1)^{-p}+O_{N}\left((n+1)^{-N}\right)
$$

for any integer N and all n large, where $O_{N}(\cdot)$ depends on N, but is independent of n,

$$
A_{0}=\frac{2}{\pi}\left(\log 2+\int_{0}^{1} t^{-1} f(t) \mathrm{d} t+\int_{1}^{\infty} t^{-1}(f(t)-1) \mathrm{d} t\right),
$$

$f(t):=\sqrt{1-t^{2} \operatorname{csch}^{2} t}$, and $A_{p}^{\mu}, p \geq 1$, are some constants that do depend on μ.
Clearly, the above result generalizes (2), where $\mathrm{d} \mu(\xi)=|\mathrm{d} \xi| /(2 \pi)$.

2. Auxiliary Estimates

In this section we gather some auxiliary estimates of quantities involving orthonormal polynomials $\varphi_{m}(z)$. First of all, recall [5, Theorem 1.5.2] that monic orthogonal polynomials, say $\Phi_{m}(z)$, satisfy the recurrence relations

$$
\left\{\begin{array}{l}
\Phi_{m+1}(z)=z \Phi_{m}(z)-\alpha_{m} \Phi_{m}^{*}(z) \\
\Phi_{m+1}^{*}(z)=\Phi_{m}^{*}(z)-\alpha_{m} z \Phi_{m}(z)
\end{array}\right.
$$

where the recurrence coefficients $\left\{\alpha_{m}\right\}$ belong to the interval $(-1,1)$ due to conjugate symmetry of the measure μ. In what follows we denote by $\rho<1$ the smallest number such that $\mu^{\prime}(\xi)$ is non-vanishing and holomorphic in the annulus $\{\rho<|z|<1 / \rho\}$.

With a slight abuse of notation we shall denote various constant that depend on μ and possibly additional parameters r, s by the same symbol $C_{\mu, r, s}$ understanding that the actual value of $C_{\mu, r, s}$ might be different for different occurrences, but it never depends on z or n.

Lemma 2. It holds that

$$
\left|h_{n+1}(x)\right| \leq C_{\mu}(n+1) e^{-\sqrt{n+1}}, \quad|x| \leq 1-(n+1)^{-1 / 2}
$$

Proof. It was shown in [8, Section 3.3] that

$$
\left|h_{n+1}(x)\right| \leq C_{\mu}\left|\left(x b_{n}(x)\right)^{\prime}\right|, \quad|x| \leq 1-(n+1)^{-1 / 2}
$$

It was also shown in [8, Section 3.3] that

$$
\left|\left(z b_{n}(z)\right)^{\prime}\right| \leq C_{\mu}(n+1)\left(r^{n-m}+\sum_{i=m}^{\infty}\left|\alpha_{i}\right|\right), \quad|z| \leq r<1
$$

It is further known, see [4, Corollary 2], that the recurrence coefficients α_{i} satisfy

$$
\left|\alpha_{i}\right| \leq C_{\mu, \rho-s} s^{i+1} \quad \Rightarrow \quad \sum_{i=m}^{\infty}\left|\alpha_{i}\right| \leq \frac{C_{\mu, s-\rho} s^{m}}{1-\rho}, \quad \rho<s<1,
$$

where $C_{\mu, s-\rho}$ also depends on how close s is to ρ. Given a value of the parameter s, take m to be the integer part of $-\sqrt{n+1} / \log s$ and $r=1-1 / \sqrt{n+1}$. By combining the above three estimates, we deduce the desired inequality with a constant that depends on $\mu, s-\rho$, and s. Optimizing the constant over s finishes the proof of the lemma.

Denote by $D(z)$ the Szegő function of μ, i.e.,

$$
D(z):=\exp \left\{\frac{1}{4 \pi} \int_{\mathbb{T}} \frac{\xi+z}{\xi-z} \log \mu^{\prime}(\xi)|\mathrm{d} \xi|\right\}, \quad|z| \neq 1
$$

This function is piecewise analytic and non-vanishing. Denote by $D_{\text {int }}(z)$ the restriction of $D(z)$ to $|z|<1$ and by $D_{\text {ext }}(z)$ the restriction to $|z|>1$. It is known that both $D_{\text {int }}(z)$
and $D_{\text {ext }}(z)$ extend continuously to the unit circle and satisfy there

$$
D_{\text {int }}(\xi) / D_{\text {ext }}(\xi)=\mu^{\prime}(\xi), \quad|\xi|=1
$$

Moreover, since $\mu^{\prime}(\xi)$ extends to a holomorphic and non-vanishing function in the annulus $\rho<|z|<1 / \rho, D_{\text {int }}(z)$ and $D_{\text {ext }}(z)$ extend to holomorphic and non-vanishing functions in $|z|<1 / \rho$ and $|z|>\rho$, respectively. Hence, the scattering function

$$
S(z):=D_{\text {int }}(z) D_{\text {ext }}(z), \quad \rho<|z|<1 / \rho,
$$

is well defined and non-vanishing in this annulus. Since the measure μ is conjugate symmetric, it holds that $D(\bar{z})=\overline{D(z)}$ and $D_{\text {ext }}(1 / z)=1 / D_{\text {int }}(z)$. Thus, $|S(\xi)|=1$ for $|\xi|=1$ and $S(1)=1$. For future use let us record the following straightforward facts.

Lemma 3. There exist real numbers $s_{p}, p \geq 1$, such that

$$
\begin{aligned}
S(z) & =1+\sum_{p=1}^{M-1} s_{p}(1-z)^{p}+E_{M}(S ; z) \\
S^{\prime}(z) & =-\sum_{p=0}^{M-1}(p+1) s_{p+1}(1-z)^{p}+E_{M}\left(S^{\prime} ; z\right) \\
\log S(z) & =\sum_{p=1}^{M-1} c_{p}(1-z)^{p}+E_{M}(\log S ; z)
\end{aligned}
$$

for $|z-1|<T<1-\rho$ and any integer $M \geq 1$, where the error terms satisfy

$$
\left|E_{M}(F ; z)\right| \leq \frac{\|F\|_{|z-1| \leq T}}{1-|1-z| / T}\left(\frac{|1-z|}{T}\right)^{M}
$$

and $c_{p}=s_{p}+\sum_{k=2}^{p} \frac{(-1)^{k-1}}{k} \sum_{j_{1}+\cdots+j_{k}=p} s_{j_{1}} \cdots s_{j_{k}}$. Moreover, $s_{2}=s_{1}\left(s_{1}+1\right) / 2$. In particular, $c_{1}=s_{1}$ and $c_{2}=s_{1} / 2$.

Proof. Since $c_{1}=s_{1}$ and $c_{2}=s_{2}-s_{1}^{2} / 2$, we only need to show that $s_{2}=s_{1}\left(s_{1}+1\right) / 2$. It holds that $s_{1}=-S^{\prime}(1)$ and $s_{2}=S^{\prime \prime}(1) / 2$. Using the symmetry $1 \equiv S(z) S(1 / z)$, one can check that $S^{\prime \prime}(1)=S^{\prime}(1)^{2}-S^{\prime}(1)$, from which the desired claim easily follows.

Set $\tau:=D_{\text {ext }}(\infty)$. It has been shown in [4, Theorem 1] that

$$
\begin{equation*}
\Phi_{m}(z)=\tau^{-1} z^{m} D_{\text {ext }}(z) \mathcal{E}_{m}(z)-\frac{\tau \mathcal{I}_{m}(z)}{D_{\text {int }}(z)}, \quad \rho<|z|<1 / \rho \tag{8}
\end{equation*}
$$

for some recursively defined functions $\mathcal{E}_{m}(z), \mathcal{I}_{m}(z)$ holomorphic in the annulus $\rho<$ $|z|<1 / \rho$ that satisfy

$$
\begin{equation*}
\left|\mathcal{E}_{m}(z)-1\right| \leq \frac{C_{\mu, s} s^{2 m}}{1 / s-|z|} \quad \text { and } \quad\left|I_{m}(z)\right| \leq \frac{C_{\mu, s} s^{m}}{|z|-s}, \quad \rho<s<|z|<1 / s \tag{9}
\end{equation*}
$$

for some explicitly defined constant $C_{\mu, s}$, see [4, Equations (34)-(35)]. In particular, it follows from (8) that

$$
\begin{equation*}
b_{n+1}(z)=z^{n+1} S(z) H_{n}(z), \quad H_{n}(z):=\frac{\mathcal{E}_{n+1}(z)-\tau^{2} z^{-(n+1)} S^{-1}(z) I_{n+1}(z)}{\mathcal{E}_{n+1}(1 / z)-\tau^{2} z^{n+1} S(z) \mathcal{I}_{n+1}(1 / z)} \tag{10}
\end{equation*}
$$

for $\rho<|z|<1 / \rho$. It can be checked that the conjugate symmetry of μ yields realvaluedness of $H_{n}(z)$ on the real line. Bounds (9) also imply that $H_{n}(x)$ is close to 1 near $x=1$. More precisely, the following lemma holds.

Lemma 4. It holds for any $\rho<\rho_{*}<1$ that

$$
\left|H_{n}(x)-1\right|,\left|\log H_{n}(x)\right| \leq(1-x) C_{\mu, \rho_{*}} e^{-\sqrt{n+1}}, \quad \rho_{*} \leq x \leq 1 .
$$

Moreover, it also holds that $\left|H_{n}^{\prime}(x)\right| \leq C_{\mu, \rho_{*}} e^{-\sqrt{n+1}}$ on the same interval.
Proof. Define $W_{n}(z):=\mathcal{E}_{n+1}(z)-1-\tau^{2} z^{-(n+1)} S^{-1}(z) I_{n+1}(z)$ and choose $\rho<s<$ $s_{*}<\rho_{*}<1$. Since $S(z)$ is a fixed non-vanishing holomorphic function in the annulus $\rho<|z|<1 / \rho$, it follows from (9) that

$$
\left|W_{n}(z)\right| \leq C_{\mu, s, s_{*}}\left(s / s_{*}\right)^{n}, \quad s_{*} \leq|z| \leq 1 / s_{*} .
$$

It further follows from the maximum modulus principle that

$$
\left|W_{n}(z)-W_{n}(1 / z)\right| \leq|1-z| C_{\mu, s, s_{*}}\left(s / s_{*}\right)^{n}, \quad s_{*} \leq|z| \leq 1 / s_{*},
$$

where, as agreed before, the actual constants in the last two inequalities are not necessarily the same. Since $|\log (1+\zeta)| \leq 2|\zeta|$ for $|\zeta| \leq 1 / 2$, there exists a constant $A_{\mu, s, s_{*}}$ such that

$$
\left|H_{n}(z)-1\right|,\left|\log H_{n}(z)\right| \leq|1-z| A_{\mu, s, s_{*}}\left(s / s_{*}\right)^{n}, \quad s_{*} \leq|z| \leq 1 / s_{*} .
$$

Observe that the constants $A_{\mu, s, s_{*}} e^{\sqrt{n+1}}\left(s / s_{*}\right)^{n}$ are uniformly bounded above. Then the first claim of the lemma follows by minimizing these constants over all parameters $s<s_{*}$ between ρ and ρ_{*}. Further, it follows from Cauchy's formula that

$$
H_{n}^{\prime}(z)=\left(\int_{|\zeta|=1 / s_{*}}-\int_{|\zeta|=s_{*}}\right) \frac{H_{n}(\zeta)-1}{(\zeta-z)^{2}} \frac{\mathrm{~d} \zeta}{2 \pi \mathrm{i}}
$$

for $\rho_{*} \leq|z| \leq 1 / \rho_{*}$ and therefore it holds in this annulus that

$$
\left|H_{n}^{\prime}(z)\right| \leq C_{\mu, s, s_{*}, \rho_{*}}\left(s / s_{*}\right)^{n} .
$$

The last claim of the lemma is now deduced in the same manner as the first one.

3. Proof of Theorem 1

Using (7), it is easy to show that

$$
\mathbb{E}_{n}(\mu)=\frac{2}{\pi} \int_{-1}^{1} \frac{\sqrt{1-h_{n+1}^{2}(x)}}{1-x^{2}} \mathrm{~d} x
$$

Furthermore, if we define $\mathrm{d} \sigma(\xi):=\mu^{\prime}(-\xi)|\mathrm{d} \xi|$, then $\sigma^{\prime}(\xi)=\mu^{\prime}(-\xi)$ is still holomorphic and positive on the unit circle. Moreover, $b_{n}(z ; \sigma)=b_{n}(-z ; \mu)$. Therefore,

$$
\begin{equation*}
\mathbb{E}_{n}(\mu)=\widehat{\mathbb{E}}_{n}(\mu)+\widehat{\mathbb{E}}_{n}(\sigma), \quad \widehat{\mathbb{E}}_{n}(v):=\frac{2}{\pi} \int_{0}^{1} \frac{\sqrt{1-h_{n+1}^{2}(x ; v)}}{1-x^{2}} \mathrm{~d} x \tag{11}
\end{equation*}
$$

for $v \in\{\mu, \sigma\}$. Thus, it is enough to investigate the asymptotic behavior of $\widehat{\mathbb{E}}_{n}(\mu)$. To this end, let

$$
\begin{equation*}
a:=(n+1)^{1 / 2} \quad \text { and } \quad x=: 1-t /(n+1), \quad 0 \leq t \leq a . \tag{12}
\end{equation*}
$$

We shall also write

$$
\begin{equation*}
1-h_{n+1}^{2}(x)=: f^{2}(t)\left(1+E_{n}(t)\right) \tag{13}
\end{equation*}
$$

for $1-(n+1)^{-1 / 2} \leq x \leq 1$, where $f(t)$ was defined in Theorem 1 .
Lemma 5. Given an integer $N \geq 1$, it holds that

$$
\widehat{\mathbb{E}}_{n}(\mu)=\frac{1}{\pi} \log (n+1)+\frac{1}{2} A_{0}+G_{n}(t)-\frac{1}{2} \sum_{p=1}^{N-1} H_{p}(n+1)^{-p}+O_{N}\left((n+1)^{-N}\right)
$$

for large n, where $O_{N}(\cdot)$ is independent of n, but does depend on N,

$$
G_{n}(t):=\frac{1}{\pi} \int_{0}^{a}\left(t^{-1}+(2(n+1)-t)^{-1}\right) f(t)\left(\left(1+E_{n}(t)\right)^{1 / 2}-1\right) \mathrm{d} t
$$

and $H_{p}:=\frac{1}{2^{p-1} \pi} \int_{0}^{\infty}(1-f(t)) t^{p-1} \mathrm{~d} t$ for $p \geq 1$.
Proof. Set $\delta:=1-(n+1)^{-1 / 2}$. It trivially holds that

$$
\widehat{\mathbb{E}}_{n}(\mu)=\frac{2}{\pi} \int_{0}^{\delta} \frac{\mathrm{d} x}{1-x^{2}}-\frac{2}{\pi} \int_{0}^{\delta} \frac{1-\sqrt{1-h_{n+1}^{2}(x)}}{1-x^{2}} \mathrm{~d} x+\frac{2}{\pi} \int_{\delta}^{1} \frac{\sqrt{1-h_{n+1}^{2}(x)}}{1-x^{2}} \mathrm{~d} x .
$$

Denote the third integral above by $B_{n}(t)$. The second integral above is positive and equals to

$$
\frac{2}{\pi} \int_{0}^{\delta} \frac{h_{n+1}^{2}(x)}{1+\sqrt{1-h_{n+1}^{2}(x)}} \frac{\mathrm{d} x}{1-x^{2}} \leq \frac{2}{\pi} \int_{0}^{\delta} h_{n+1}^{2}(x) \frac{\mathrm{d} x}{1-\delta^{2}}=O\left(a^{5} e^{-2 a}\right)
$$

where we used Lemma 2 for the last estimate. Therefore,

$$
\widehat{\mathbb{E}}_{n}(\mu)=\frac{1}{\pi} \log \left(\frac{1+\delta}{1-\delta}\right)+B_{n}(t)+o_{N}\left((n+1)^{-N}\right)
$$

where $o_{N}(\cdot)$ is independent of n, but does depend on N. Substituting $x=1-t /(n+1)$
into the expression for $B_{n}(t)$ and recalling (13), we get that

$$
\begin{aligned}
B_{n}(t) & =\frac{1}{\pi} \int_{0}^{a} f(t)\left(1+E_{n}(t)\right)^{1 / 2} \frac{2(n+1)}{t(2(n+1)-t)} \mathrm{d} t \\
& =\frac{1}{\pi}\left(\log 2+\log \frac{1}{1+\delta}\right)+\frac{1}{\pi} \int_{0}^{a} \frac{f(t)}{t} \mathrm{~d} t-\frac{1}{\pi} \int_{0}^{a} \frac{1-f(t)}{2(n+1)-t} \mathrm{~d} t+G_{n}(t) .
\end{aligned}
$$

It was shown in [7, Lemma 8] that

$$
\frac{1}{\pi} \int_{0}^{a} \frac{1-f(t)}{2(n+1)-t} \mathrm{~d} t=\frac{1}{2} \sum_{p=1}^{N-1} H_{p}(n+1)^{-p}+O_{N}\left((n+1)^{-N}\right)
$$

where $O_{N}(\cdot)$ is independent of n, but does depend on N. Moreover, it holds that

$$
\begin{aligned}
\frac{1}{\pi} \log \left(\frac{1+\delta}{1-\delta}\right)+\frac{1}{\pi}\left(\log 2+\log \frac{1}{1+\delta}\right) & +\frac{1}{\pi} \int_{0}^{a} \frac{f(t)}{t} \mathrm{~d} t= \\
& =\frac{1}{\pi} \log \frac{a}{1-\delta}+\frac{1}{2} A_{0}+\frac{1}{\pi} \int_{a}^{\infty} \frac{1-f(t)}{t} \mathrm{~d} t
\end{aligned}
$$

Since $\log a-\log (1-\delta)=\log (n+1)$ and it was shown in [7, Lemma 7] that

$$
\frac{1}{\pi} \int_{a}^{\infty} \frac{1-f(t)}{t} \mathrm{~d} t=O\left(a e^{-2 a}\right)=o_{N}\left((n+1)^{-N}\right)
$$

where as usual $o_{N}(\cdot)$ is independent of n, but does depend on N, the claim of the lemma follows.

We continue by deriving a different representation for the functions $E_{n}(t)$. To this end, notice that $t^{2} \operatorname{csch}^{2} t=1-t^{2} / 3+O\left(t^{4}\right)$ as $t \rightarrow 0$ and therefore $f^{2}(t)=t^{2} / 3+O\left(t^{4}\right)$ as $t \rightarrow 0$. Hence, the function

$$
\begin{equation*}
\chi(t):=\left(\frac{t^{2} \operatorname{csch} t}{f(t)}\right)^{2} \tag{14}
\end{equation*}
$$

is continuous and non-vanishing at zero. Once again, we use notation from (12).
Lemma 6. Set $b_{n+1}^{2}(x)=: e^{-\mu_{n}(t)-2 t}$ and $b_{n+1}^{\prime}(x)=:(n+1) e^{w_{n}(t)-t}$. Then it holds that

$$
E_{n}(t)=t^{-2} \chi(t)\left[1-\left(1-\frac{t}{2(n+1)}\right)^{2} \frac{e^{2 w_{n}(t)}}{\left(1+D_{n}(t)\right)^{2}}\right], \quad D_{n}(t):=\frac{1-e^{-\mu_{n}(t)}}{e^{2 t}-1}
$$

Moreover, $\lim _{t \rightarrow 0^{+}} E_{n}(t)$ exists and is finite.
Proof. Since $h_{n+1}(1)=1$ and $x=1-t /(n+1)$, it follows from (13) and the L'Hôpital's rule that

$$
\lim _{t \rightarrow 0^{+}} E_{n}(t)=\frac{6}{(n+1)^{2}} \lim _{x \rightarrow 1^{-}} \frac{1-h_{n+1}(x)}{(1-x)^{2}}-1=\frac{3}{(n+1)^{2}} \lim _{x \rightarrow 1^{-}} \frac{h_{n+1}^{\prime}(x)}{1-x}-1
$$

Since $h_{n+1}(z)$ is a holomorphic function around 1, the latter limit is finite if and only if $h_{n+1}^{\prime}(1)=0$. As Blaschke products $b_{n+1}(z)$ satisfy $b_{n+1}(x) b_{n+1}(1 / x) \equiv 1$, it holds that $h_{n+1}(x)=h_{n+1}(1 / x)$, which immediately yields the desired equality.

To derive the claimed representation of $E_{n}(t)$, recall (7) and substitute $x=1-t /(n+$ 1) into (13) to get that

$$
\begin{aligned}
f^{2}(t)\left(1+E_{n}(t)\right) & =1-\left(1-\frac{t}{2(n+1)}\right)^{2} \frac{4 t^{2} e^{2 w_{n}(t)-2 t}}{\left(1-e^{-\mu_{n}(t)-2 t}\right)^{2}} \\
& =1-\left(1-\frac{t}{2(n+1)}\right)^{2} \frac{t^{2} \operatorname{csch}^{2} t e^{2 w_{n}(t)}}{\left(1+D_{n}(t)\right)^{2}} \\
& =f^{2}(t)\left[1+t^{-2} \chi(t)\left(1-\left(1-\frac{t}{2(n+1)}\right)^{2} \frac{e^{2 w_{n}(t)}}{\left(1+D_{n}(t)\right)^{2}}\right)\right]
\end{aligned}
$$

from which the first claim of the lemma easily follows.
In the next four lemmas we repeatedly use approximation by Taylor polynomials with the Lagrange remainder:

$$
\begin{equation*}
F(y)=\sum_{k=0}^{M-1} \frac{F^{(k)}(0)}{k!} y^{K}+\frac{F^{(M)}(\theta y)}{M!} y^{M} \tag{15}
\end{equation*}
$$

for some $\theta \in(0,1)$ that dependents on both y and M.
Lemma 7. Put $\omega(t):=t /\left(e^{2 t}-1\right)$. Given an integer $N \geq 1$, it holds for all n large that

$$
\left(1+D_{n}(t)\right)^{-2}=1+\sum_{p=1}^{N-1} \alpha_{p}(t)(n+1)^{-p}+\alpha_{n, N}(t)(n+1)^{-N}
$$

where the functions $\alpha_{p}(t)$ are independent of n and N and are polynomials of degree p in ω with coefficients that are polynomials in t of degree at most $2 p-1$, and the functions $\alpha_{n, N}(t)$ are bounded in absolute value for $0 \leq t \leq a$ by a polynomial of degree $2 N-1$ whose coefficients are independent of n. Moreover,

$$
\alpha_{p}(t)=(p+1) s_{1}^{p}-p s_{1}^{p-1}\left(2 s_{1}+1\right) t+O\left(t^{2}\right) \quad \text { as } \quad t \rightarrow 0 .
$$

Proof. We start by deriving an asymptotic expansion of $\mu_{n}(t)$. It follows from Lemma 4 that $\log H_{n}(x)=t O\left(a^{-2} e^{-a}\right)=t o_{N}(1)(n+1)^{-N}$ uniformly for $0 \leq t \leq a$. Fix T in Lemma 3 and let n_{T} be such that $1<\sqrt{n_{T}+1} T$. Then it holds for all $n \geq n_{T}$ that

$$
\log \left(S H_{n}\right)(x)=\sum_{p=1}^{N-1} c_{p} t^{p}(n+1)^{-p}+t \hat{c}_{N}(t)(n+1)^{-N},
$$

where $\left|\hat{c}_{N}(t)\right| \leq C_{\mu, T, N} t^{N-1}+o_{N}(1)$ uniformly for $0 \leq t \leq a$ and $C_{\mu, T, N} \leq C_{\mu, T} T^{-N}$.

Hence, it follows from (10) and [7, Lemma 2] that

$$
\begin{align*}
\mu_{n}(t) & =-2(n+1) \log x-2 t-2 \log \left(S H_{n}\right)(x) \\
& =\sum_{p=1}^{N-1} t^{p} m_{p}(t)(n+1)^{-p}+t m_{n, N}(t)(n+1)^{-N}, \tag{16}
\end{align*}
$$

where

$$
m_{p}(t):=\left(2(p+1)^{-1} t-2 c_{p}\right) \quad \text { and } \quad m_{n, N}(t):=2 \hat{m}_{n, N}(t) t^{N} /(N+1)-2 \hat{c}_{N}(t)
$$

with $1 \leq \hat{m}_{n, N}(t) \leq(3 / 2)^{N+1}$. Assuming that $T<2 / 3$, we have that

$$
\begin{equation*}
\left|m_{n, N}(t)\right| \leq C_{\mu, T, N} t^{N-1}(t+1)+o_{N}(1) \tag{17}
\end{equation*}
$$

uniformly for $0 \leq t \leq a$ and $C_{\mu, T, N} \leq C_{\mu, T} T^{-N}$. Using (16) with $N=1$, we get that

$$
\begin{equation*}
\left|\mu_{n}(t)\right|=\left|\frac{t m_{n, 1}(t)}{n+1}\right| \leq \frac{\left|m_{n, 1}(t)\right|}{\sqrt{n+1}} \leq C_{\mu, T}, \quad 0 \leq t \leq a . \tag{18}
\end{equation*}
$$

Recalling the definition of $D_{n}(t)$ in Lemma 6, we get from (15) that

$$
D_{n}(t)=\omega(t) \frac{1-e^{-\mu_{n}(t)}}{t}=\omega(t)\left(-\frac{1}{t} \sum_{k=1}^{N-1} \frac{(-1)^{k}}{k!} \mu_{n}^{k}(t)-\frac{1}{t} e^{-\theta_{1} \mu_{n}(t)} \frac{(-1)^{N}}{N!} \mu_{n}^{N}(t)\right)
$$

for some $\theta_{1} \in(0,1)$ that depends on N and $\mu_{n}(t)$. Plugging (16) into the above formula gives us

$$
\begin{equation*}
D_{n}(t)=\omega(t) \sum_{p=1}^{N-1} t^{p-1} d_{p}(t)(n+1)^{-p}+\omega(t) d_{n, N}(t)(n+1)^{-N} \tag{19}
\end{equation*}
$$

where $d_{p}(t)$ is a polynomial of degree p with coefficients independent of n and N given by

$$
d_{p}(t):=-\sum_{k=1}^{p} \frac{(-1)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p} m_{j_{1}}(t) \cdots m_{j_{k}}(t),
$$

here, each index $j_{i} \in\{1, \ldots, p\}$, and $d_{n, N}(t)$ is given by

$$
d_{n, N}(t):=-\sum_{k=1}^{N-1} \frac{(-1)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k} \geq N} \frac{1}{t} \frac{m_{n, j_{1}, N}(t) \cdots m_{n, j_{k}, N}(t)}{(n+1)^{j_{1}+\cdots+j_{k}-N}}-\frac{(-1)^{N}}{N!} \frac{(n+1)^{N}}{e^{\theta_{1} \mu_{n}(t)}} \frac{\mu_{n}^{N}(t)}{t}
$$

with $m_{n, j, N}(t):=t^{j} m_{j}(t)$ when $j<N$ and $m_{n, N, N}(t):=t m_{n, N}(t)$. Recall that $t^{2} /(n+1) \leq 1$ on $0 \leq t \leq a$ since $a=\sqrt{n+1}$. Hence, the first summand above is bounded in absolute value for $0 \leq t \leq a$ by a polynomial of degree $2 N-1$ whose coefficients depend on N but are independent of n. We also get from (18) and (17) that

$$
\left|e^{-\theta_{1} \mu_{n}(t)}(n+1)^{N} \mu_{n}^{N}(t) / t\right| \leq e^{C_{\mu, T}} t^{N-1}\left|m_{n, 1}(t)\right|^{N} \leq C_{\mu, T}^{*} t^{N-1}(t+2)^{N}
$$

for $0 \leq t \leq a$. Further, using (19) with $N=1$ and (18) gives us

$$
\begin{equation*}
\left|D_{n}(t)\right|=\frac{\omega(t)}{e^{\theta_{1} \mu_{n}(t)}}\left|\frac{\mu_{n}(t)}{t}\right| \leq \frac{e^{C_{\mu, T}}}{2} \frac{\left|m_{n, 1}(t)\right|}{n+1} \leq \frac{C_{\mu, T} e^{C_{\mu, T}}}{2 \sqrt{n+1}}, \quad 0 \leq t \leq a . \tag{20}
\end{equation*}
$$

Notice also that since $c_{1}=s_{1}$ and $c_{2}=s_{1} / 2$ by Lemma 3, we have that

$$
d_{1}(t)=t-2 s_{1} \quad \text { and } \quad d_{2}(t)=-(1 / 2) t^{2}+t\left(2 s_{1}+2 / 3\right)-s_{1}\left(2 s_{1}+1\right) .
$$

It follows from (20) that for any $-1<D<0$, there exists an integer $n_{D} \geq n_{T}$ such that $D \leq D_{n}(t)$ for $0 \leq t \leq a$ and $n \geq n_{D}$. Hence, we get from (15) that

$$
\left(1+D_{n}(t)\right)^{-2}=1+\sum_{k=1}^{N-1}(-1)^{k}(k+1) D_{n}^{k}(t)+\frac{(-1)^{N}(N+1) D_{n}^{N}(t)}{\left(1+\theta_{2} D_{n}(t)\right)^{N+2}}
$$

for all $n \geq n_{D}$ and some $\theta_{2} \in(0,1)$ that depends on N and $D_{n}(t)$. Then the statement of the lemma follows with

$$
\alpha_{p}(t):=\sum_{k=1}^{p}(-1)^{k}(k+1) \omega^{k}(t) t^{p-k} \sum_{j_{1}+\cdots+j_{k}=p} d_{j_{1}}(t) \cdots d_{j_{k}}(t)
$$

here again, each index $j_{i} \in\{1, \ldots, p\}$, and
$\alpha_{n, N}(t):=\sum_{k=1}^{N-1}(-1)^{k}(k+1) \omega^{k}(t) \sum_{j_{1}+\cdots+j_{k} \geq N} \frac{d_{n, j_{1}, N}(t) \cdots d_{n, j_{k}, N}(t)}{(n+1)^{j_{1}+\cdots+j_{k}-N}}+(n+1)^{N} \frac{(-1)^{N}(N+1) D_{n}^{N}(t)}{\left(1+\theta_{2} D_{n}(t)\right)^{N+2}}$
with $d_{n, j, N}(t):=t^{j-1} d_{j}(t)$ when $j<N$ and $d_{n, N, N}(t):=d_{n, N}(t)$. Reasoning as before lets us conclude that the first summand in the definition of $\alpha_{n, N}(t)$ is bounded in absolute value for $0 \leq t \leq a$ by a polynomial of degree $2 N-1$ whose coefficients depend on N but are independent of n. Moreover, since

$$
\left|\frac{(n+1)^{N} D_{n}^{N}(t)}{\left(1+\theta_{2} D_{n}(t)\right)^{N+2}}\right| \leq \frac{e^{N C_{\mu, T}}\left|m_{n, 1}(t)\right|^{N}}{2^{N}(1-D)^{N+2}} \leq \frac{C_{\mu, T}^{*} e^{N C_{\mu, T}}(t+2)^{N}}{2^{N}(1-D)^{N+2}}, \quad 0 \leq t \leq a,
$$

by (20) and (17), the same is true for the second summand as well. Now, notice that

$$
\alpha_{p}(t)=\left(-\omega(t) d_{1}(t)\right)^{p-2}\left((p+1)\left(\omega(t) d_{1}(t)\right)^{2}-p(p-1) t \omega(t) d_{2}(t)\right)+O\left(t^{2}\right)
$$

as $t \rightarrow 0$. Since $2 \omega(t)=1-t+O\left(t^{2}\right)$ as $t \rightarrow 0$, the last claim of the lemma follows after a straightforward computation.

Lemma 8. Given $N \geq 1$, it holds for all n large that

$$
e^{2 w_{n}(t)}=1+\sum_{p=1}^{N-1} \beta_{p}(t)(n+1)^{-p}+\beta_{n, N}(t)(n+1)^{-N},
$$

where $\beta_{p}(t)$ is a polynomial of degree $2 p$ whose coefficients are independent of n and N and the functions $\beta_{n, N}(t)$ are bounded in absolute value when $0 \leq t \leq$ a by a polynomial of degree $2 N$ whose coefficients are independent of n. Moreover, as $t \rightarrow 0$, it holds that

$$
\left\{\begin{array}{l}
\beta_{1}(t)=-2 s_{1}+2\left(s_{1}+1\right) t-t^{2} \\
\beta_{2}(t)=s_{1}^{2}-4 s_{1}\left(s_{1}+1\right) t+O\left(t^{2}\right) \\
\beta_{3}(t)=2 s_{1}^{2}\left(s_{1}+1\right) t+O\left(t^{2}\right) \\
\beta_{p}(t)=O\left(t^{2}\right), \quad p \geq 4
\end{array}\right.
$$

Proof. We start by deriving an asymptotic expansion for $w_{n}(t)$. It follows from the very definition of $w_{n}(t)$ in Lemma 6, (10), and [7, Lemma 2] that

$$
\begin{aligned}
w_{n}(t) & =t+\log \frac{b_{n+1}^{\prime}(x)}{n+1}=t+n \log x+\log \left(\left(S H_{n}\right)(x)+\frac{x\left(S H_{n}\right)^{\prime}(x)}{n+1}\right) \\
& =\sum_{p=1}^{N-1} t^{p} \phi_{p}(t)(n+1)^{-p}+\phi_{n, N}(t)(n+1)^{-N}+\log \left(\left(S H_{n}\right)(x)+\frac{x\left(S H_{n}\right)^{\prime}(x)}{n+1}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\phi_{p}(t):=\frac{p+1-p t}{p(p+1)} \quad \text { and } \quad \phi_{n, N}(t):=\left(N^{-1}-\frac{n \hat{m}_{n, N}(t) t}{(N+1)(n+1)}\right) t^{N} \tag{21}
\end{equation*}
$$

with some $1 \leq \hat{m}_{n, N}(t) \leq(3 / 2)^{N}$. Further, notice that

$$
\left(S^{(i)} H_{n}\right)(x)=S^{(i)}(x)+o_{N}(1)(n+1)^{-N} \quad \text { and } \quad\left(S H_{n}^{\prime}\right)(x)=o_{N}(1)(n+1)^{-N}
$$

uniformly for $0 \leq t \leq a, i \in\{0,1\}$, by Lemma 4 and since $S(z)$ is a fixed holomorphic function in a neighborhood of 1. Fix T in Lemma 3. Then it holds for all $n \geq n_{T}$ that

$$
\left(S H_{n}\right)(x)=1+\sum_{j=1}^{N-1} s_{j} \frac{t^{j}}{(n+1)^{j}}+\hat{s}_{N}(t)(n+1)^{-N}
$$

and

$$
\left(S H_{n}\right)^{\prime}(x)=-\sum_{j=1}^{N-1} j s_{j} \frac{t^{j-1}}{(n+1)^{j-1}}-\hat{f}_{N}(t)(n+1)^{-N},
$$

where $\left|\hat{s}_{N}(t)\right|,\left|\hat{f}_{N}(t)\right| \leq C_{\mu}(t / T)^{N}+o_{N}(1)$ uniformly for $0 \leq t \leq a$. Therefore,

$$
\begin{equation*}
L_{n}(t):=\left(S H_{n}\right)(x)-1+\frac{x\left(S H_{n}\right)^{\prime}(x)}{n+1}=\sum_{j=1}^{N-1} t^{j-1} l_{j}(t)(n+1)^{-j}+l_{n, N}(t)(n+1)^{-N} \tag{22}
\end{equation*}
$$

where

$$
l_{j}(t):=\left(s_{j}(t-j)+(j-1) s_{j-1}\right)
$$

and

$$
l_{n, N}(t):=(N-1) s_{N-1} t^{N-1}+\hat{s}_{N}(t)-\left(1-\frac{t}{n+1}\right) \frac{\hat{f}_{N}(t)}{n+1}
$$

In particular, it holds that

$$
\begin{equation*}
\left|l_{n, N}(t)\right| \leq 2 C_{\mu}(t / T)^{N}+(N-1) s_{N-1} t^{N-1}+o_{N}(1) \tag{23}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left|L_{n}(t)\right| \leq \frac{\left|l_{n, 1}(t)\right|}{n+1} \leq \frac{C_{\mu, T}}{\sqrt{n+1}}, \quad 0 \leq t \leq a \tag{24}
\end{equation*}
$$

Hence, given $-1<L<0$, there exists an integer $n_{L} \geq n_{T}$ such that $L \leq L_{n}(t)$ for $0 \leq t \leq a$ and $n \geq n_{L}$. Thus, we get from (15) that

$$
\log \left(1+L_{n}(t)\right)=\sum_{k=1}^{N-1} \frac{(-1)^{k-1}}{k} L_{n}^{k}(t)+\frac{(-1)^{N-1} L_{n}^{N}(t)}{N\left(1+\theta_{3} L_{n}(t)\right)^{N}}
$$

for some $\theta_{3} \in(0,1)$ that depends on N and $L_{n}(t)$. Therefore, we get from (22) that

$$
\log \left(\left(S H_{n}\right)(x)+\frac{x\left(S H_{n}\right)^{\prime}(x)}{n+1}\right)=\sum_{p=1}^{N-1} \psi_{p}(t)(n+1)^{-p}+\psi_{n, N}(t)(n+1)^{-N}
$$

where $\psi_{p}(t)$ is a polynomial of degree p with coefficients independent of n and N given by

$$
\begin{equation*}
\psi_{p}(t):=\sum_{k=1}^{p} \frac{(-1)^{k-1}}{k} \sum_{j_{1}+\cdots+j_{k}=p} t^{p-k} l_{j_{1}}(t) \cdots l_{j_{k}}(t) \tag{25}
\end{equation*}
$$

here, each index $j_{i} \in\{1, \ldots, p\}$, and $\psi_{n, N}(t)$ is given by

$$
\psi_{n, N}(t):=\sum_{k=1}^{N-1} \frac{(-1)^{k-1}}{k} \sum_{j_{1}+\cdots+j_{k} \geq N} \frac{l_{n, j_{1}, N}(t) \cdots l_{n, j_{k}, N}(t)}{(n+1)^{j_{1}+\cdots+j_{k}-N}}+(n+1)^{N} \frac{(-1)^{N-1} L_{n}^{N}(t)}{N\left(1+\theta_{3} L_{n}(t)\right)^{N}}
$$

with $l_{n, j, N}(t):=t^{j-1} l_{j}(t)$ when $j<N$ and $l_{n, N, N}(t):=l_{n, N}(t)$. As in the previous lemma, since $t^{2} /(n+1) \leq 1$ when $0 \leq t \leq a$, the first summand above is bounded in absolute value by a polynomial of degree N whose coefficients are independent of n. It also follows from (24) and (23) that

$$
\frac{(n+1)^{N}\left|L_{n}^{N}(t)\right|}{\left|1+\theta_{3} L_{n}(t)\right|^{N}} \leq \frac{\left|l_{n, 1}(t)\right|^{N}}{(1-L)^{N}} \leq C_{\mu, T} \frac{(t+1)^{N}}{(1-L)^{N}}, \quad 0 \leq t \leq a
$$

for all $n \geq n_{L}$. Altogether, we have shown that

$$
\begin{equation*}
w_{n}(t)=\sum_{p=1}^{N-1}\left(t^{p} \phi_{p}(t)+\psi_{p}(t)\right)(n+1)^{-p}+\left(\phi_{n, N}(t)+\psi_{n, N}(t)\right)(n+1)^{-N} \tag{26}
\end{equation*}
$$

with ϕ_{p}, ψ_{p} and $\phi_{n, N}, \psi_{n, N}$ as described above. We also can deduce from (21) and (25)
that $t \phi_{1}(t)+\psi_{1}(t)=-s_{1}+t\left(s_{1}+1\right)-t^{2} / 2$ and

$$
\begin{equation*}
t^{p} \phi_{p}(t)+\psi_{p}(t)=\frac{(-1)^{p-1}}{p} l_{1}^{p}(t)+(-1)^{p-2} t l_{1}^{p-2}(t) l_{2}(t)+O\left(t^{2}\right)=-\frac{s_{1}^{p}}{p}+O\left(t^{2}\right) \tag{27}
\end{equation*}
$$

for $p \geq 2$, where we used that $2 s_{2}=s_{1}^{2}+s_{1}$, see Lemma 3. Since

$$
\left|\psi_{n, 1}(t)\right| \leq(n+1) \frac{\left|L_{n}(t)\right|}{1-L} \leq \sqrt{n+1} \frac{C_{\mu, T}}{1-L}, \quad 0 \leq t \leq a
$$

by (24) for $n \geq n_{L}$, we get from (26), applied with $N=1$, and (21) that

$$
\begin{equation*}
\left|w_{n}(t)\right|=\left|\frac{\phi_{n, 1}(t)+\psi_{n, 1}(t)}{n+1}\right| \leq C_{\mu, T, L}, \quad 0 \leq t \leq a, \quad n \geq n_{L} \tag{28}
\end{equation*}
$$

Now, using (15) once more, we get

$$
e^{2 w_{n}(t)}=1+\sum_{k=1}^{N-1} \frac{2^{k}}{k!} w_{n}^{k}(t)+e^{2 \theta_{4} w_{n}(t)} \frac{(2)^{N}}{N!} w_{n}^{N}(t)
$$

for some $\theta_{4} \in(0,1)$ that depends on N and $w_{n}(t)$. Plugging (26) into the above formula gives us the desired expansion with

$$
\begin{equation*}
\beta_{p}(t):=\sum_{k=1}^{p} \frac{2^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p}\left(t^{j_{1}} \phi_{j_{1}}(t)+\psi_{j_{1}}(t)\right) \cdots\left(t^{j_{k}} \phi_{j_{k}}(t)+\psi_{j_{k}}(t)\right) \tag{29}
\end{equation*}
$$

which is a polynomial of degree $2 p$ with coefficients independent of n and N, and

$$
\beta_{n, N}(t):=\sum_{k=1}^{N-1} \frac{2^{k}}{k!} \sum_{j_{1}+\cdots+j_{k} \geq N} \frac{\prod_{i=1}^{k}\left(\phi_{n, j_{i}, N}(t)+\psi_{n, j_{i}, N}(t)\right)}{(n+1)^{j_{1}+\cdots+j_{k}-N}}+e^{2 \theta_{4} w_{n}(t)} \frac{2^{N}}{N!}(n+1)^{N} w_{n}^{N}(t)
$$

with $\phi_{n, j, N}(t):=t^{j} \phi_{j}(t), \psi_{n, j, N}(t):=\psi_{j}(t)$ when $j<N$ and $\phi_{n, N, N}(t):=\phi_{n, N}(t), \psi_{n, N, N}(t):=$ $\psi_{n, N}(t)$, which is bounded in absolute value when $0 \leq t \leq a$ by a polynomial of degree $2 N$ whose coefficients are independent of n due to (28) and the same reasons as in the similar previous computations. Thus, it only remains to compute the linear approximation to $\beta_{p}(t)$ at zero. Now, it follows from (27) and (29) that

$$
\begin{aligned}
\beta_{p}(t)=s_{1}^{p} \sum_{k=1}^{p} \frac{(-2)^{k}}{k!} & \sum_{j_{1}+\cdots+j_{k}=p} \frac{1}{j_{1} \cdots j_{k}} \\
& -\left(s_{1}^{p-1}\left(s_{1}+1\right) \sum_{k=1}^{p} \frac{(-2)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p} \frac{n\left(j_{1}, \ldots, j_{k}\right)}{j_{1} \cdots j_{k}}\right) t+O\left(t^{2}\right)
\end{aligned}
$$

where $n\left(j_{1}, \ldots, j_{k}\right)$ is the number of 1 's in the partition $\left\{j_{1}, \ldots, j_{k}\right\}$ of p. To simplify
this expression observe that

$$
\begin{align*}
(1-x)^{2} e^{-2 y x} & =e^{2 \log (1-x)-2 y x}=1+\sum_{k=1}^{\infty} \frac{(-2)^{k}}{k!}(y x-\ln (1-x))^{k} \\
& =1+\sum_{k=1}^{\infty} \frac{(-2)^{k}}{k!}\left((1+y) x+\sum_{j=2}^{\infty} \frac{x^{j}}{j}\right)^{k} \tag{30}\\
& =1+\sum_{p=1}^{\infty}\left(\sum_{k=1}^{p} \frac{(-2)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p} \frac{(1+y)^{n\left(j_{1}, \ldots, j_{k}\right)}}{j_{1} \cdots j_{k}}\right) x^{p},
\end{align*}
$$

where y is a free parameter. By putting $y=0$ in this expression, we get that

$$
\sum_{k=1}^{p} \frac{(-2)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p} \frac{1}{j_{1} \cdots j_{k}}=\left\{\begin{array}{rll}
-2 & \text { if } & p=1 \\
1 & \text { if } & p=2 \\
0 & \text { if } & p \geq 3
\end{array}\right.
$$

Moreover, by differentiating (30) with respect to y and then putting $y=0$, we get

$$
\sum_{k=1}^{p} \frac{(-2)^{k}}{k!} \sum_{j_{1}+\cdots+j_{k}=p} \frac{n\left(j_{1}, \ldots, j_{k}\right)}{j_{1} \cdots j_{k}}=\left\{\begin{array}{rll}
-2 & \text { if } & p=1 \\
4 & \text { if } & p=2 \\
-2 & \text { if } & p=3 \\
0 & \text { if } & p \geq 4
\end{array}\right.
$$

which clearly finishes the proof of the last claim of the lemma.
Lemma 9. Let $\chi(t)$ be given by (14). For any integer $N \geq 1$, it holds that

$$
\left(1+E_{n}(t)\right)^{1 / 2}-1=\chi(t) \sum_{p=1}^{N-1} u_{p}(t)(n+1)^{-p}+\chi(t) u_{n, N}(t)(n+1)^{-N}
$$

where $u_{p}(t)$ is bounded in absolute value ${ }^{2}$ on $0 \leq t<\infty$ by a polynomial of degree $2 p-2$ whose coefficients are independent of n and N and the functions $u_{n, N}(t)$ are bounded in absolute value when $0 \leq t \leq a$ by a polynomial of degree $2 N-2$ whose coefficients are independent of n.

Proof. Set

$$
R_{n}(t):=\left(1-\frac{t}{2(n+1)}\right)^{2} \frac{e^{2 w_{n}(t)}}{\left(1+D_{n}(t)\right)^{2}}
$$

Lemmas 7 and 8 yield that $R_{n}(t)$ has the following asymptotic expansion:

$$
R_{n}(t)=1+\sum_{p=1}^{N-1} r_{p}(t)(n+1)^{-p}+r_{n, N}(t)(n+1)^{-N}
$$

[^2]where
$$
r_{p}(t):=\sum_{j=0}^{p} \beta_{j}(t) \alpha_{p-j}(t)-\sum_{j=0}^{p-1} t \beta_{j}(t) \alpha_{p-1-j}(t)+\sum_{j=0}^{p-2} t^{2} \beta_{j}(t) \alpha_{p-2-j}(t) / 4
$$
with $\alpha_{0}(t)=\beta_{0}(t): \equiv 1$, and $r_{n, N}(t)$ given by
$$
\sum_{k=N}^{2 N+2}\left(\sum_{j=0}^{k} \frac{\beta_{n, j, N}(t) \alpha_{n, k-j, N}(t)}{(n+1)^{k-N}}-\sum_{j=0}^{k-1} \frac{t \beta_{n, j, N}(t) \alpha_{n, k-1-j, N}(t)}{(n+1)^{k-N}}+\sum_{j=0}^{k-2} \frac{t^{2} \beta_{n, j, N}(t) \alpha_{n, k-2-j, N}(t) / 4}{(n+1)^{k-N}}\right)
$$
with $\alpha_{n, j, N}(t):=\alpha_{j}(t), \beta_{n, j, N}(t):=\beta_{j}(t)$ when $j<N, \alpha_{n, N, N}(t):=\alpha_{n, N}(t), \beta_{n, N, N}(t):=$ $\beta_{n, N}(t)$, and $\alpha_{n, j, N}(t)=\beta_{n, j, N}(t): \equiv 0$ when $j>N$. It also follows from Lemmas 7 and 8 that the functions $r_{p}(t)$ are independent of n and N and are polynomials in ω of degree p with coefficients that are polynomials in t of degree at most $2 p$, while the functions $r_{n, N}(t)$ are bounded in absolute value for $0 \leq t \leq a$ by a polynomial of degree $2 N$ whose coefficients are independent of n. Finally, we get from Lemmas 7 and 8 that
$$
\sum_{j=0}^{1} \beta_{j}(t) \alpha_{1-j}(t)=t+O\left(t^{2}\right) \quad \text { and } \quad \sum_{j=0}^{k} \beta_{j}(t) \alpha_{k-j}(t)=O\left(t^{2}\right)
$$
for all $k \geq 2$. Therefore, it holds that $r_{p}(t)=O\left(t^{2}\right)$ as $t \rightarrow 0$ for all $p \geq 1$.
It follows from Lemma 6 that $E_{n}(t)=t^{-2} \chi(t)\left[1-R_{n}(t)\right]$. Hence, plugging the expansion of $R_{n}(t)$ into this formula gives us
$$
E_{n}(t)=\chi(t)\left[\sum_{p=1}^{N-1} e_{p}(t)(n+1)^{-p}+e_{n, N}(t)(n+1)^{-N}\right]
$$
where $e_{p}(t):=-t^{-2} r_{p}(t)$ for any p and $e_{n, N}(t):=-t^{-2} r_{n, N}(t)$ for any n, N. It follows from the properties of $r_{p}(t)$ that each $e_{p}(t)$ is a continuous function and is bounded in absolute value on $0 \leq t<\infty$ by a polynomial of degree $2 p-2$. Also, since $\chi(t)$ is a continuous function as well and $\lim _{t \rightarrow 0^{+}} E_{n}(t)$ exists and is finite according to Lemma 6, so must $\lim _{t \rightarrow 0^{+}} e_{n, N}(t)$ for all n, N. Then it follows from properties of $r_{n, N}(t)$ that $e_{n, N}(t)$ is bounded in absolute value when $0 \leq t \leq a$ by a polynomial of degree $2 N-2$ whose coefficients are independent of n.

From what precedes, we get that

$$
\left|E_{n}(t)\right| \leq \frac{\chi(t)\left|e_{n, 1}(t)\right|}{n+1} \leq \frac{C_{\mu, T}}{n+1}, \quad 0 \leq t \leq a
$$

Hence, for any $-1<E<0$ there exists an integer n_{E} such that $E \leq E_{n}(t)$ for all $0 \leq t \leq a$ and $n \geq n_{E}$. Thus, by applying (15) one more time, we get that

$$
\left(1+E_{n}(t)\right)^{1 / 2}-1=\sum_{k=1}^{N-1}\binom{1 / 2}{k} E_{n}^{k}(t)+\binom{1 / 2}{N} \frac{E_{n}^{N}(t)}{\left(1+\theta_{5} E_{n}(t)\right)^{N-1 / 2}}
$$

for some $\theta_{5} \in(0,1)$ that depends on N and $E_{n}(t)$. Therefore, the claim of the lemma follows with

$$
u_{p}(t):=\sum_{k=1}^{p}\binom{1 / 2}{k} \chi^{k-1}(t) \sum_{j_{1}+\cdots+j_{k}=p} e_{j_{1}}(t) \cdots e_{j_{k}}(t)
$$

which is bounded in absolute value on $0 \leq t<\infty$ by a polynomial of degree $2 p-2$ whose coefficients are independent of n and N, and

$$
u_{n, N}(t):=\sum_{k=1}^{N-1}\binom{1 / 2}{k} \chi^{k-1}(t) \sum_{j_{1}+\cdots+j_{k} \geq N} \frac{e_{n, j_{1}, N}(t) \cdots e_{n, j_{k}, N}(t)}{(n+1)^{j_{1}+\cdots+j_{k}-N}}+\binom{1 / 2}{N} \frac{(n+1)^{N} E_{n}^{N}(t)}{\left(1+\theta_{5} E_{n}(t)\right)^{N-1 / 2}}
$$

where $e_{n, j, N}(t):=e_{j}(t)$ when $j<N$ and $e_{n, N, N}(t):=e_{n, N}(t)$, which is bounded in absolute value on $0 \leq t \leq a$ by a polynomial of degree $2 N-2$ whose coefficients are independent of n due to the same reasoning as in two previous lemmas.

Lemma 10. Given $N \geq 1$, it holds that

$$
\frac{\left(1+E_{n}(t)\right)^{1 / 2}-1}{2(n+1)-t}=\chi(t) \sum_{p=2}^{N-1} v_{p}(t)(n+1)^{-p}+\chi(t) v_{n, N}(t)(n+1)^{-N},
$$

where $v_{p}(t)$ is bounded in absolute value on $0 \leq t<\infty$ by a polynomial of degree $2 p-4$ whose coefficients are independent of n and N and the functions $v_{n, N}(t)$ is bounded in absolute value when $0 \leq t \leq a$ by a polynomial of degree $2 N-4$ whose coefficients are independent of n.

Proof. Since $0 \leq t \leq a=\sqrt{n+1}$, we get from (15) that

$$
\frac{1}{2(n+1)-t}=\sum_{p=1}^{N-1} z_{p}(t)(n+1)^{-p}+z_{n, N}(t)(n+1)^{-N}
$$

where

$$
z_{p}(t):=2^{-p} t^{p-1} \quad \text { and } \quad z_{n, N}(t):=\frac{2^{-N} t^{N-1}}{\left(1-\theta_{6} t / 2(n+1)\right)^{N+1}}
$$

for some $\theta_{6} \in(0,1)$ that depends on N and t. Therefore, the claim of the lemma follows from Lemma 9 with

$$
v_{p}(t):=\sum_{j=1}^{p-1} z_{j}(t) u_{p-j}(t) \quad \text { and } \quad v_{n, N}(t):=\sum_{k=N}^{2 N} \sum_{j_{1}+j_{2}=k} \frac{z_{n, j_{1}, N}(t) v_{n, j_{2}, N}(t)}{(n+1)^{k-N}}
$$

where $j_{1}, j_{2} \in\{1, \ldots, N\}, z_{n, j, N}(t):=z_{j}(t), u_{n, j, N}(t):=u_{j}(t)$ for $j<N$, and $z_{n, n, N}(t):=$ $z_{n, N}(t), u_{n, N, N}(t):=u_{n, N}(t)$.

With the notation introduced in Lemmas 5, 9, and 10, the following lemma holds.

Lemma 11. Given $N \geq 1$, it holds that

$$
G_{n}(t)=I_{1}^{\mu}(n+1)^{-1}+\sum_{p=2}^{N-1}\left(I_{p}^{\mu}+J_{p}^{\mu}\right)(n+1)^{-p}+O_{N}\left((n+1)^{-N}\right)
$$

for all n large, where

$$
I_{p}^{\mu}:=\frac{1}{\pi} \int_{0}^{\infty} t^{-1} f(t) \chi(t) u_{p}(t) \mathrm{d} t \quad \text { and } \quad J_{p}^{\mu}:=\frac{1}{\pi} \int_{0}^{\infty} f(t) \chi(t) v_{p}(t) \mathrm{d} t
$$

(observe that $t^{-1} f(t)$ is a continuous and bounded function on $0 \leq t<\infty, \chi(t)$ decreases exponentially at infinity, and the functions $u_{p}(t), v_{p}(t)$ are bounded by polynomials).

Proof. By the very definition of $G_{n}(t)$ in Lemma 5 we have that $G_{n}(t)=I_{n}(t)+J_{n}(t)$, where

$$
I_{n}(t):=\frac{1}{\pi} \int_{0}^{a} t^{-1} f(t)\left(\left(1+E_{n}(t)\right)^{1 / 2}-1\right) \mathrm{d} t
$$

and

$$
J_{n}(t):=\frac{1}{\pi} \int_{0}^{a} f(t) \frac{\left(1+E_{n}(t)\right)^{1 / 2}-1}{2(n+1)-t} \mathrm{~d} t
$$

Using Lemma 9, we can rewrite the first integral above as

$$
I_{n}(t)=\sum_{p=1}^{N-1} I_{p}^{\mu}(n+1)^{-p}-S_{n}(t)+T_{n}(t)
$$

where

$$
S_{n}(t):=\frac{1}{\pi} \sum_{p=1}^{N-1}(n+1)^{-p} \int_{a}^{\infty} t^{-1} f(t) \chi(t) u_{p}(t) \mathrm{d} t
$$

and

$$
T_{n}(t):=\frac{1}{\pi}(n+1)^{-N} \int_{0}^{a} t^{-1} f(t) \chi(t) u_{n, N}(t) \mathrm{d} t
$$

Since $u_{p}(t)=O\left(t^{2 p-2}\right), f(t)=O(1)$, and $\chi(t)=O\left(t^{4} e^{-2 t}\right)$ as $t \rightarrow \infty$, it holds that

$$
\begin{aligned}
& S_{n}(t)=\sum_{p=1}^{N-1}(n+1)^{-p} \int_{a}^{\infty} O\left(t^{2 p+1} e^{-2 t}\right) \mathrm{d} t=\sum_{p=1}^{N-1}(n+1)^{-p} O\left(a^{2 p+1} e^{-2 a}\right)= \\
&=O_{N}\left(a e^{-2 a}\right)=o_{N}\left((n+1)^{-N}\right)
\end{aligned}
$$

Moreover, since $u_{n, N}(t)$ is bounded by a polynomial of degree $2 N-2$ for $0 \leq t \leq a$, we have that $T_{n}(t)=O_{N}\left((n+1)^{-N}\right)$.

Similarly, we get from Lemma 10 that

$$
J_{n}(t)=\sum_{p=2}^{N-1} J_{p}^{\mu}(n+1)^{-p}-U_{n}(t)+V_{n}(t)
$$

where

$$
U_{n}(t):=\frac{1}{\pi} \sum_{p=2}^{N-1}(n+1)^{-p} \int_{a}^{\infty} f(t) \chi(t) v_{p}(t) \mathrm{d} t
$$

and

$$
V_{n}(t):=\frac{1}{\pi}(n+1)^{-N} \int_{0}^{a} f(t) \chi(t) v_{n, N}(t) \mathrm{d} t .
$$

An argument as above argument shows that $U_{n}(t)=O_{N}\left(e^{-2 a}\right)=o_{N}\left((n+1)^{-N}\right)$ and $V_{n}(t)=O_{N}\left((n+1)^{-N}\right)$ for large n, which finishes the proof of the lemma.

Lemma 12. The claim of Theorem 1 holds.
Proof. It follows from Lemmas 5 and 11 that given an integer $N \geq 1$, it holds that

$$
\widehat{\mathbb{E}}_{n}(\mu)=\frac{1}{\pi} \log (n+1)+\frac{1}{2} A_{0}+\sum_{p=1}^{N-1}\left(I_{p}^{\mu}+J_{p}^{\mu}-H_{p} / 2\right)(n+1)^{-p}+O_{N}\left((n+1)^{-N}\right),
$$

where we set $J_{1}^{\mu}:=0$. The claim of Theorem 1 now follows from (11) by taking $A_{p}^{\mu}:=I_{p}^{\mu}+I_{p}^{\sigma}+J_{p}^{\mu}+J_{p}^{\sigma}-H_{p}$.

Acknowledgments

The work of the first author is done towards completion of her Ph.D. degree at Indiana University-Purdue University Indianapolis under the direction of the second author. The research of the second author was supported in part by a grant from the Simons Foundation, CGM-354538.

References

[1] A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc., 32(1): 1-37, 1995. 2
[2] M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314-320, 1943. 2
[3] D. Lubinsky, I. Pritsker, and X. Xie. Expected number of real zeros for random linear combinations of orthogonal polynomials. Proc. Amer. Math. Soc., 144:1631-1642, 2016. 2
[4] A. Martínez-Finkelshtein, K.T.-R. McLaughlin, and E.B. Saff. Szegő orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx., 24:319-363, 2006. 4, 5
[5] B. Simon. Orthogonal Polynomials on the Unit Circle. American Mathematical Society Colloquium Publications, Vol. 54, Parts I and II, Providence, RI, 2005. 4
[6] R.J. Vanderbei. The Complex zeros of random sums. Technical report, Princeton University, 2015. http://arxiv.org/abs/1508.05162v2. 2
[7] J.E. Wilkins. An asymptotic expansion for the expected number of real zeros of a random polynomial. Pros. Amer. Math. Soc., 103(4):1249-1258, 1988. 2, 8, 10, 12
[8] M.L. Yattselev, and A. Yeager. Zeros of real random polynomials spanned by OPUC. Accepted for publication in Indiana Univ. Math. J. 3, 4

[^0]: *Corresponding author.
 Email addresses: haljubra@umail.iu.edu (Hanan Aljubran), maxyatts@iupui.edu (Maxim L. Yattselev)

[^1]: ${ }^{1}$ In fact, Edelman and Kostlan derive an expression for the real intensity function for any random vector $\left(\eta_{0}, \ldots, \eta_{n}\right)$ in terms of its joint probability density function and of $v(x)$.

[^2]: ${ }^{2}$ In fact, $u_{p}(t)$ is a multivariate polynomial in ω, χ, and t.

