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Abstract

Let {ϕi}
∞
i=0 be a sequence of orthonormal polynomials on the unit circle with respect

to a positive Borel measure µ that is symmetric with respect to conjugation. We study
asymptotic behavior of the expected number of real zeros, say En(µ), of random poly-
nomials

Pn(z) :=
n∑

i=0

ηiϕi(z),

where η0, . . . , ηn are i.i.d. standard Gaussian random variables. When µ is the acrlength
measure such polynomials are called Kac polynomials and it was shown by Wilkins
that En(|dξ|) admits an asymptotic expansion of the form

En(|dξ|) ∼
2
π

log(n + 1) +

∞∑
p=0

Ap(n + 1)−p

(Kac himself obtained the leading term of this expansion). In this work we general-
ize the result of Wilkins to the case where µ is absolutely continuous with respect to
arclength measure and its Radon-Nikodym derivative extends to a holomorphic non-
vanishing function in some neighborhood of the unit circle. In this case En(µ) admits
an analogous expansion with coefficients the Ap depending on the measure µ for p ≥ 1
(the leading order term and A0 remain the same).
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1. Introduction and Main Results

In [2], Kac considered random polynomials

Pn(z) = η0 + η1z + · · · + ηnzn,

where ηi are i.i.d. standard real Gaussian random variables. He has shown that En(Ω),
the expected number of zeros of Pn(z) on a measurable set Ω ⊂ R, is equal to

En(Ω) =
1
π

∫
Ω

√
1 − h2

n+1(x)

|1 − x2|
dx, hn+1(x) =

(n + 1)xn(1 − x2)
1 − x2n+2 , (1)

from which he proceeded with an estimate

En(R) =
2 + o(1)

π
log(n + 1) as n→ ∞.

It was shown by Wilkins [7], after some intermediate results cited in [7], that there exist
constants Ap, p ≥ 0, such that En(R) has an asymptotic expansion of the form

En(R) ∼
2
π

log(n + 1) +

∞∑
p=0

Ap(n + 1)−p. (2)

In another connection, Edelman and Kostlan [1] considered random functions of
the form

Pn(z) = η0 f0(z) + η1 f1(z) + · · · + ηn fn(z), (3)

where ηi are certain real random variables and fi(z) are arbitrary functions on the com-
plex plane that are real on the real line. Using beautiful and simple geometrical ar-
gument they have shown1 that if η0, . . . , ηn are elements of a multivariate real normal
distribution with mean zero and covariance matrix C and the functions fi(x) are differ-
entiable on the real line, then

En(Ω) =

∫
Ω

ρn(x)dx, ρn(x) =
1
π

∂2

∂s∂t
log

(
v(s)TCv(t)

)∣∣∣∣∣∣
t=s=x

,

where v(x) =
(
f0(x), . . . , fn(x)

)T. If random variables ηi in (3) are again i.i.d. standard
real Gaussians, then the above expression for ρn(x) specializes to

ρn(x) =
1
π

√
Kn+1(x, x)K(1,1)

n+1 (x, x) − K(1,0)
n+1 (x, x)2

Kn+1(x, x)
(4)

(this formula was also independently rederived in [3, Proposition 1.1] and [6, Theo-

1In fact, Edelman and Kostlan derive an expression for the real intensity function for any random vector
(η0, . . . , ηn) in terms of its joint probability density function and of v(x).
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rem 1.2]), where 
Kn+1(z,w) :=

∑n
i=0 fi(z) fi(w),

K(1,0)
n+1 (z,w) :=

∑n
i=0 f ′i (z) fi(w),

K(1,1)
n+1 (z,w) :=

∑n
i=0 f ′i (z) f ′i (w).

In this work we concentrate on a particular subfamily of random functions (3),
namely random polynomials of the form

Pn(z) = η0ϕ0(z) + η1ϕ1(z) + · · · + ηnϕn(z), (5)

where ηi are i.i.d. standard real Gaussian random variables and ϕi(z) are orthonormal
polynomials on the unit circle with real coefficients. That is, for some probability Borel
measure µ on the unit circle that is symmetric with respect to conjugation, it holds that∫

T
ϕi(ξ)ϕ j(ξ)dµ(ξ) = δi j, (6)

where δi j is the usual Kronecker symbol. In this case it can be easily shown using
Christoffel-Darboux formula, see [8, Theorem 1.1], that (4) can be rewritten as

ρn(x) =
1
π

√
1 − h2

n+1(x)

|1 − x2|
, hn+1(x) :=

(1 − x2)b′n+1(x)

1 − b2
n+1(x)

, bn+1(x) :=
ϕn+1(x)
ϕ∗n+1(x)

, (7)

where ϕ∗n+1(x) := xn+1ϕn+1(1/x) is the reciprocal polynomial (there is no need for con-
jugation as all the coefficients are real). When µ is the normalized arclength measure
on the unit circle, it is elementary to see that ϕm(z) = zm and therefore (7) recovers (1).

Theorem 1. Let Pn(z) be given by (5)–(6), where µ is absolutely continuous with re-
spect to the arclength measure and µ′(ξ), the respective Radon-Nikodym derivative,
extends to a holomorphic non-vanishing function in some neighborhood of the unit
circle. Then En(µ), the expected number of real zeros of Pn(z), satisfies

En(µ) =
2
π

log(n + 1) + A0 +

N−1∑
p=1

Aµ
p(n + 1)−p + ON

(
(n + 1)−N

)
for any integer N and all n large, where ON(·) depends on N, but is independent of n,

A0 =
2
π

(
log 2 +

∫ 1

0
t−1 f (t)dt +

∫ ∞

1
t−1( f (t) − 1)dt

)
,

f (t) :=
√

1 − t2csch2t, and Aµ
p, p ≥ 1, are some constants that do depend on µ.

Clearly, the above result generalizes (2), where dµ(ξ) = |dξ|/(2π).
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2. Auxiliary Estimates

In this section we gather some auxiliary estimates of quantities involving orthonor-
mal polynomials ϕm(z). First of all, recall [5, Theorem 1.5.2] that monic orthogonal
polynomials, say Φm(z), satisfy the recurrence relations Φm+1(z) = zΦm(z) − αmΦ∗m(z),

Φ∗m+1(z) = Φ∗m(z) − αmzΦm(z),

where the recurrence coefficients {αm} belong to the interval (−1, 1) due to conjugate
symmetry of the measure µ. In what follows we denote by ρ < 1 the smallest number
such that µ′(ξ) is non-vanishing and holomorphic in the annulus {ρ < |z| < 1/ρ}.

With a slight abuse of notation we shall denote various constant that depend on µ
and possibly additional parameters r, s by the same symbol Cµ,r,s understanding that the
actual value of Cµ,r,s might be different for different occurrences, but it never depends
on z or n.

Lemma 2. It holds that

|hn+1(x)| ≤ Cµ(n + 1)e−
√

n+1, |x| ≤ 1 − (n + 1)−1/2.

Proof. It was shown in [8, Section 3.3] that

|hn+1(x)| ≤ Cµ|
(
xbn(x)

)′
|, |x| ≤ 1 − (n + 1)−1/2.

It was also shown in [8, Section 3.3] that

|
(
zbn(z)

)′
| ≤ Cµ(n + 1)

rn−m +

∞∑
i=m

|αi|

 , |z| ≤ r < 1.

It is further known, see [4, Corollary 2], that the recurrence coefficients αi satisfy

|αi| ≤ Cµ,ρ−ssi+1 ⇒

∞∑
i=m

|αi| ≤
Cµ,s−ρsm

1 − ρ
, ρ < s < 1,

where Cµ,s−ρ also depends on how close s is to ρ. Given a value of the parameter s, take
m to be the integer part of −

√
n + 1/ log s and r = 1 − 1/

√
n + 1. By combining the

above three estimates, we deduce the desired inequality with a constant that depends
on µ, s − ρ, and s. Optimizing the constant over s finishes the proof of the lemma. �

Denote by D(z) the Szegő function of µ, i.e.,

D(z) := exp
{

1
4π

∫
T

ξ + z
ξ − z

log µ′(ξ)|dξ|
}
, |z| , 1.

This function is piecewise analytic and non-vanishing. Denote by Dint(z) the restriction
of D(z) to |z| < 1 and by Dext(z) the restriction to |z| > 1. It is known that both Dint(z)
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and Dext(z) extend continuously to the unit circle and satisfy there

Dint(ξ)/Dext(ξ) = µ′(ξ), |ξ| = 1.

Moreover, since µ′(ξ) extends to a holomorphic and non-vanishing function in the an-
nulus ρ < |z| < 1/ρ, Dint(z) and Dext(z) extend to holomorphic and non-vanishing
functions in |z| < 1/ρ and |z| > ρ, respectively. Hence, the scattering function

S (z) := Dint(z)Dext(z), ρ < |z| < 1/ρ,

is well defined and non-vanishing in this annulus. Since the measure µ is conjugate
symmetric, it holds that D(z̄) = D(z) and Dext(1/z) = 1/Dint(z). Thus, |S (ξ)| = 1 for
|ξ| = 1 and S (1) = 1. For future use let us record the following straightforward facts.

Lemma 3. There exist real numbers sp, p ≥ 1, such that

S (z) = 1 +
∑M−1

p=1 sp(1 − z)p + EM(S ; z)

S ′(z) = −
∑M−1

p=0 (p + 1)sp+1(1 − z)p + EM(S ′; z)

log S (z) =
∑M−1

p=1 cp(1 − z)p + EM(log S ; z)

for |z − 1| < T < 1 − ρ and any integer M ≥ 1, where the error terms satisfy

∣∣∣EM(F; z)
∣∣∣ ≤ ‖F‖|z−1|≤T

1 − |1 − z|/T

(
|1 − z|

T

)M

and cp = sp +
∑p

k=2
(−1)k−1

k
∑

j1+···+ jk=p s j1 · · · s jk . Moreover, s2 = s1(s1 + 1)/2. In partic-
ular, c1 = s1 and c2 = s1/2.

Proof. Since c1 = s1 and c2 = s2 − s2
1/2, we only need to show that s2 = s1(s1 + 1)/2.

It holds that s1 = −S ′(1) and s2 = S ′′(1)/2. Using the symmetry 1 ≡ S (z)S (1/z), one
can check that S ′′(1) = S ′(1)2 − S ′(1), from which the desired claim easily follows. �

Set τ := Dext(∞). It has been shown in [4, Theorem 1] that

Φm(z) = τ−1zmDext(z)Em(z) −
τIm(z)
Dint(z)

, ρ < |z| < 1/ρ, (8)

for some recursively defined functions Em(z),Im(z) holomorphic in the annulus ρ <
|z| < 1/ρ that satisfy

∣∣∣Em(z) − 1
∣∣∣ ≤ Cµ,ss2m

1/s − |z|
and

∣∣∣Im(z)
∣∣∣ ≤ Cµ,ssm

|z| − s
, ρ < s < |z| < 1/s, (9)

for some explicitly defined constant Cµ,s, see [4, Equations (34)-(35)]. In particular, it
follows from (8) that

bn+1(z) = zn+1S (z)Hn(z), Hn(z) :=
En+1(z) − τ2z−(n+1)S −1(z)In+1(z)
En+1(1/z) − τ2zn+1S (z)In+1(1/z)

, (10)
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for ρ < |z| < 1/ρ. It can be checked that the conjugate symmetry of µ yields real-
valuedness of Hn(z) on the real line. Bounds (9) also imply that Hn(x) is close to 1 near
x = 1. More precisely, the following lemma holds.

Lemma 4. It holds for any ρ < ρ∗ < 1 that

|Hn(x) − 1|, | log Hn(x)| ≤ (1 − x)Cµ,ρ∗e
−
√

n+1, ρ∗ ≤ x ≤ 1.

Moreover, it also holds that |H′n(x)| ≤ Cµ,ρ∗e
−
√

n+1 on the same interval.

Proof. Define Wn(z) := En+1(z) − 1 − τ2z−(n+1)S −1(z)In+1(z) and choose ρ < s <
s∗ < ρ∗ < 1. Since S (z) is a fixed non-vanishing holomorphic function in the annulus
ρ < |z| < 1/ρ, it follows from (9) that

|Wn(z)| ≤ Cµ,s,s∗
(
s/s∗

)n
, s∗ ≤ |z| ≤ 1/s∗.

It further follows from the maximum modulus principle that

|Wn(z) −Wn(1/z)| ≤ |1 − z|Cµ,s,s∗
(
s/s∗

)n
, s∗ ≤ |z| ≤ 1/s∗,

where, as agreed before, the actual constants in the last two inequalities are not neces-
sarily the same. Since | log(1 + ζ)| ≤ 2|ζ | for |ζ | ≤ 1/2, there exists a constant Aµ,s,s∗
such that

|Hn(z) − 1|, | log Hn(z)| ≤ |1 − z|Aµ,s,s∗
(
s/s∗

)n
, s∗ ≤ |z| ≤ 1/s∗.

Observe that the constants Aµ,s,s∗e
√

n+1(s/s∗
)n are uniformly bounded above. Then the

first claim of the lemma follows by minimizing these constants over all parameters
s < s∗ between ρ and ρ∗. Further, it follows from Cauchy’s formula that

H′n(z) =

(∫
|ζ |=1/s∗

−

∫
|ζ |=s∗

)
Hn(ζ) − 1
(ζ − z)2

dζ
2πi

for ρ∗ ≤ |z| ≤ 1/ρ∗ and therefore it holds in this annulus that

|H′n(z)| ≤ Cµ,s,s∗,ρ∗
(
s/s∗

)n
.

The last claim of the lemma is now deduced in the same manner as the first one. �

3. Proof of Theorem 1

Using (7), it is easy to show that

En(µ) =
2
π

∫ 1

−1

√
1 − h2

n+1(x)

1 − x2 dx.
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Furthermore, if we define dσ(ξ) := µ′(−ξ)|dξ|, then σ′(ξ) = µ′(−ξ) is still holomorphic
and positive on the unit circle. Moreover, bn(z;σ) = bn(−z; µ). Therefore,

En(µ) = Ên(µ) + Ên(σ), Ên(ν) :=
2
π

∫ 1

0

√
1 − h2

n+1(x; ν)

1 − x2 dx, (11)

for ν ∈ {µ, σ}. Thus, it is enough to investigate the asymptotic behavior of Ên(µ). To
this end, let

a := (n + 1)1/2 and x =: 1 − t/(n + 1), 0 ≤ t ≤ a. (12)

We shall also write
1 − h2

n+1(x) =: f 2(t)(1 + En(t)), (13)

for 1 − (n + 1)−1/2 ≤ x ≤ 1, where f (t) was defined in Theorem 1.

Lemma 5. Given an integer N ≥ 1, it holds that

Ên(µ) =
1
π

log(n + 1) +
1
2

A0 + Gn(t) −
1
2

N−1∑
p=1

Hp(n + 1)−p + ON

(
(n + 1)−N

)
for large n, where ON(·) is independent of n, but does depend on N,

Gn(t) :=
1
π

∫ a

0

(
t−1 +

(
2(n + 1) − t

)−1
)

f (t)
((

1 + En(t)
)1/2
− 1

)
dt,

and Hp :=
1

2p−1π

∫ ∞

0

(
1 − f (t)

)
tp−1dt for p ≥ 1.

Proof. Set δ := 1 − (n + 1)−1/2. It trivially holds that

Ên(µ) =
2
π

∫ δ

0

dx
1 − x2 −

2
π

∫ δ

0

1 −
√

1 − h2
n+1(x)

1 − x2 dx +
2
π

∫ 1

δ

√
1 − h2

n+1(x)

1 − x2 dx.

Denote the third integral above by Bn(t). The second integral above is positive and
equals to

2
π

∫ δ

0

h2
n+1(x)

1 +

√
1 − h2

n+1(x)

dx
1 − x2 ≤

2
π

∫ δ

0
h2

n+1(x)
dx

1 − δ2 = O
(
a5e−2a

)
,

where we used Lemma 2 for the last estimate. Therefore,

Ên(µ) =
1
π

log
(

1 + δ

1 − δ

)
+ Bn(t) + oN

(
(n + 1)−N

)
,

where oN(·) is independent of n, but does depend on N. Substituting x = 1 − t/(n + 1)
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into the expression for Bn(t) and recalling (13), we get that

Bn(t) =
1
π

∫ a

0
f (t)

(
1 + En(t)

)1/2 2(n + 1)
t(2(n + 1) − t)

dt

=
1
π

(
log 2 + log

1
1 + δ

)
+

1
π

∫ a

0

f (t)
t

dt −
1
π

∫ a

0

1 − f (t)
2(n + 1) − t

dt + Gn(t).

It was shown in [7, Lemma 8] that

1
π

∫ a

0

1 − f (t)
2(n + 1) − t

dt =
1
2

N−1∑
p=1

Hp(n + 1)−p + ON

(
(n + 1)−N

)
,

where ON(·) is independent of n, but does depend on N. Moreover, it holds that

1
π

log
(

1 + δ

1 − δ

)
+

1
π

(
log 2 + log

1
1 + δ

)
+

1
π

∫ a

0

f (t)
t

dt =

=
1
π

log
a

1 − δ
+

1
2

A0 +
1
π

∫ ∞

a

1 − f (t)
t

dt.

Since log a − log(1 − δ) = log(n + 1) and it was shown in [7, Lemma 7] that

1
π

∫ ∞

a

1 − f (t)
t

dt = O
(
ae−2a

)
= oN

(
(n + 1)−N

)
,

where as usual oN(·) is independent of n, but does depend on N, the claim of the lemma
follows. �

We continue by deriving a different representation for the functions En(t). To this
end, notice that t2csch2t = 1 − t2/3 + O

(
t4) as t → 0 and therefore f 2(t) = t2/3 + O

(
t4)

as t → 0. Hence, the function

χ(t) :=
(

t2cscht
f (t)

)2

(14)

is continuous and non-vanishing at zero. Once again, we use notation from (12).

Lemma 6. Set b2
n+1(x) =: e−µn(t)−2t and b′n+1(x) =: (n + 1)ewn(t)−t. Then it holds that

En(t) = t−2χ(t)

1 − (
1 −

t
2(n + 1)

)2 e2wn(t)

(1 + Dn(t))2

 , Dn(t) :=
1 − e−µn(t)

e2t − 1
.

Moreover, limt→0+ En(t) exists and is finite.

Proof. Since hn+1(1) = 1 and x = 1− t/(n+1), it follows from (13) and the L’Hôpital’s
rule that

lim
t→0+

En(t) =
6

(n + 1)2 lim
x→1−

1 − hn+1(x)
(1 − x)2 − 1 =

3
(n + 1)2 lim

x→1−

h′n+1(x)
1 − x

− 1.
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Since hn+1(z) is a holomorphic function around 1, the latter limit is finite if and only if
h′n+1(1) = 0. As Blaschke products bn+1(z) satisfy bn+1(x)bn+1(1/x) ≡ 1, it holds that
hn+1(x) = hn+1(1/x), which immediately yields the desired equality.

To derive the claimed representation of En(t), recall (7) and substitute x = 1− t/(n+

1) into (13) to get that

f 2(t)(1 + En(t)) = 1 −
(
1 −

t
2(n + 1)

)2 4t2e2wn(t)−2t(
1 − e−µn(t)−2t)2

= 1 −
(
1 −

t
2(n + 1)

)2 t2csch2te2wn(t)(
1 + Dn(t)

)2

= f 2(t)

1 + t−2χ(t)

1 − (
1 −

t
2(n + 1)

)2 e2wn(t)(
1 + Dn(t)

)2


from which the first claim of the lemma easily follows. �

In the next four lemmas we repeatedly use approximation by Taylor polynomials
with the Lagrange remainder:

F(y) =

M−1∑
k=0

F(k)(0)
k!

yK +
F(M)(θy)

M!
yM (15)

for some θ ∈ (0, 1) that dependents on both y and M.

Lemma 7. Put ω(t) := t/(e2t − 1). Given an integer N ≥ 1, it holds for all n large that

(
1 + Dn(t)

)−2
= 1 +

N−1∑
p=1

αp(t)(n + 1)−p + αn,N(t)(n + 1)−N ,

where the functions αp(t) are independent of n and N and are polynomials of degree
p in ω with coefficients that are polynomials in t of degree at most 2p − 1, and the
functions αn,N(t) are bounded in absolute value for 0 ≤ t ≤ a by a polynomial of degree
2N − 1 whose coefficients are independent of n. Moreover,

αp(t) = (p + 1)sp
1 − psp−1

1 (2s1 + 1)t + O
(
t2) as t → 0.

Proof. We start by deriving an asymptotic expansion of µn(t). It follows from Lemma 4
that log Hn(x) = tO(a−2e−a) = toN(1)(n + 1)−N uniformly for 0 ≤ t ≤ a. Fix T in
Lemma 3 and let nT be such that 1 <

√
nT + 1T . Then it holds for all n ≥ nT that

log(S Hn)(x) =

N−1∑
p=1

cptp(n + 1)−p + tĉN(t)(n + 1)−N ,

where |ĉN(t)| ≤ Cµ,T,N tN−1 + oN(1) uniformly for 0 ≤ t ≤ a and Cµ,T,N ≤ Cµ,T T−N .
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Hence, it follows from (10) and [7, Lemma 2] that

µn(t) = −2(n + 1) log x − 2t − 2 log(S Hn)(x)

=

N−1∑
p=1

tpmp(t)(n + 1)−p + tmn,N(t)(n + 1)−N , (16)

where

mp(t) :=
(
2(p + 1)−1t − 2cp

)
and mn,N(t) := 2m̂n,N(t)tN/(N + 1) − 2ĉN(t)

with 1 ≤ m̂n,N(t) ≤ (3/2)N+1. Assuming that T < 2/3, we have that

|mn,N(t)| ≤ Cµ,T,N tN−1(t + 1) + oN(1) (17)

uniformly for 0 ≤ t ≤ a and Cµ,T,N ≤ Cµ,T T−N . Using (16) with N = 1, we get that

|µn(t)| =
∣∣∣∣∣ tmn,1(t)

n + 1

∣∣∣∣∣ ≤ |mn,1(t)|
√

n + 1
≤ Cµ,T , 0 ≤ t ≤ a. (18)

Recalling the definition of Dn(t) in Lemma 6, we get from (15) that

Dn(t) = ω(t)
1 − e−µn(t)

t
= ω(t)

−1
t

N−1∑
k=1

(−1)k

k!
µk

n(t) −
1
t

e−θ1µn(t) (−1)N

N!
µN

n (t)


for some θ1 ∈ (0, 1) that depends on N and µn(t). Plugging (16) into the above formula
gives us

Dn(t) = ω(t)
N−1∑
p=1

tp−1dp(t)(n + 1)−p + ω(t)dn,N(t)(n + 1)−N , (19)

where dp(t) is a polynomial of degree p with coefficients independent of n and N given
by

dp(t) := −
p∑

k=1

(−1)k

k!

∑
j1+···+ jk=p

m j1 (t) · · ·m jk (t),

here, each index ji ∈ {1, . . . , p}, and dn,N(t) is given by

dn,N(t) := −
N−1∑
k=1

(−1)k

k!

∑
j1+···+ jk≥N

1
t

mn, j1,N(t) · · ·mn, jk ,N(t)
(n + 1) j1+···+ jk−N −

(−1)N

N!
(n + 1)N

eθ1µn(t)

µN
n (t)
t

with mn, j,N(t) := t jm j(t) when j < N and mn,N,N(t) := tmn,N(t). Recall that t2/(n+1) ≤ 1
on 0 ≤ t ≤ a since a =

√
n + 1. Hence, the first summand above is bounded in absolute

value for 0 ≤ t ≤ a by a polynomial of degree 2N − 1 whose coefficients depend on N
but are independent of n. We also get from (18) and (17) that∣∣∣e−θ1µn(t)(n + 1)NµN

n (t)/t
∣∣∣ ≤ eCµ,T tN−1|mn,1(t)|N ≤ C∗µ,T tN−1(t + 2)N

10



for 0 ≤ t ≤ a. Further, using (19) with N = 1 and (18) gives us

|Dn(t)| =
ω(t)

eθ1µn(t)

∣∣∣∣∣µn(t)
t

∣∣∣∣∣ ≤ eCµ,T

2
|mn,1(t)|
n + 1

≤
Cµ,T eCµ,T

2
√

n + 1
, 0 ≤ t ≤ a. (20)

Notice also that since c1 = s1 and c2 = s1/2 by Lemma 3, we have that

d1(t) = t − 2s1 and d2(t) = −(1/2)t2 + t(2s1 + 2/3) − s1(2s1 + 1).

It follows from (20) that for any −1 < D < 0, there exists an integer nD ≥ nT such
that D ≤ Dn(t) for 0 ≤ t ≤ a and n ≥ nD. Hence, we get from (15) that

(
1 + Dn(t)

)−2
= 1 +

N−1∑
k=1

(−1)k(k + 1)Dk
n(t) +

(−1)N(N + 1)DN
n (t)

(1 + θ2Dn(t))N+2

for all n ≥ nD and some θ2 ∈ (0, 1) that depends on N and Dn(t). Then the statement of
the lemma follows with

αp(t) :=
p∑

k=1

(−1)k(k + 1)ωk(t)tp−k
∑

j1+···+ jk=p

d j1 (t) · · · d jk (t)

here again, each index ji ∈ {1, . . . , p}, and

αn,N(t) :=
N−1∑
k=1

(−1)k(k+1)ωk(t)
∑

j1+···+ jk≥N

dn, j1,N(t) · · · dn, jk ,N(t)
(n + 1) j1+···+ jk−N +(n+1)N (−1)N(N + 1)DN

n (t)
(1 + θ2Dn(t))N+2

with dn, j,N(t) := t j−1d j(t) when j < N and dn,N,N(t) := dn,N(t). Reasoning as before lets
us conclude that the first summand in the definition of αn,N(t) is bounded in absolute
value for 0 ≤ t ≤ a by a polynomial of degree 2N − 1 whose coefficients depend on N
but are independent of n. Moreover, since∣∣∣∣∣∣ (n + 1)N DN

n (t)
(1 + θ2Dn(t))N+2

∣∣∣∣∣∣ ≤ eNCµ,T |mn,1(t)|N

2N(1 − D)N+2 ≤
C∗µ,T eNCµ,T (t + 2)N

2N(1 − D)N+2 , 0 ≤ t ≤ a,

by (20) and (17), the same is true for the second summand as well. Now, notice that

αp(t) =
(
− ω(t)d1(t)

)p−2
(
(p + 1)

(
ω(t)d1(t)

)2
− p(p − 1)tω(t)d2(t)

)
+ O

(
t2)

as t → 0. Since 2ω(t) = 1 − t + O
(
t2) as t → 0, the last claim of the lemma follows

after a straightforward computation. �

Lemma 8. Given N ≥ 1, it holds for all n large that

e2wn(t) = 1 +

N−1∑
p=1

βp(t)(n + 1)−p + βn,N(t)(n + 1)−N ,

11



where βp(t) is a polynomial of degree 2p whose coefficients are independent of n and N
and the functions βn,N(t) are bounded in absolute value when 0 ≤ t ≤ a by a polynomial
of degree 2N whose coefficients are independent of n. Moreover, as t → 0, it holds that

β1(t) = −2s1 + 2(s1 + 1)t − t2,

β2(t) = s2
1 − 4s1(s1 + 1)t + O

(
t2),

β3(t) = 2s2
1(s1 + 1)t + O

(
t2),

βp(t) = O
(
t2), p ≥ 4.

Proof. We start by deriving an asymptotic expansion for wn(t). It follows from the
very definition of wn(t) in Lemma 6, (10), and [7, Lemma 2] that

wn(t) = t + log
b′n+1(x)
n + 1

= t + n log x + log
(
(S Hn)(x) +

x(S Hn)′(x)
n + 1

)
=

N−1∑
p=1

tpφp(t)(n + 1)−p + φn,N(t)(n + 1)−N + log
(
(S Hn)(x) +

x(S Hn)′(x)
n + 1

)
,

where

φp(t) :=
p + 1 − pt
p(p + 1)

and φn,N(t) :=
(
N−1 −

nm̂n,N(t)t
(N + 1)(n + 1)

)
tN (21)

with some 1 ≤ m̂n,N(t) ≤ (3/2)N . Further, notice that

(S (i)Hn)(x) = S (i)(x) + oN(1)(n + 1)−N and (S H′n)(x) = oN(1)(n + 1)−N

uniformly for 0 ≤ t ≤ a, i ∈ {0, 1}, by Lemma 4 and since S (z) is a fixed holomorphic
function in a neighborhood of 1. Fix T in Lemma 3. Then it holds for all n ≥ nT that

(S Hn)(x) = 1 +

N−1∑
j=1

s j
t j

(n + 1) j + ŝN(t)(n + 1)−N ,

and

(S Hn)′(x) = −

N−1∑
j=1

js j
t j−1

(n + 1) j−1 − f̂N(t)(n + 1)−N ,

where |ŝN(t)|, | f̂N(t)| ≤ Cµ(t/T )N + oN(1) uniformly for 0 ≤ t ≤ a. Therefore,

Ln(t) := (S Hn)(x) − 1 +
x(S Hn)′(x)

n + 1
=

N−1∑
j=1

t j−1l j(t)(n + 1)− j + ln,N(t)(n + 1)−N , (22)

where
l j(t) :=

(
s j(t − j) + ( j − 1)s j−1

)

12



and

ln,N(t) := (N − 1)sN−1tN−1 + ŝN(t) −
(
1 −

t
n + 1

) f̂N(t)
n + 1

.

In particular, it holds that

|ln,N(t)| ≤ 2Cµ(t/T )N + (N − 1)sN−1tN−1 + oN(1) (23)

and therefore

|Ln(t)| ≤
|ln,1(t)|
n + 1

≤
Cµ,T
√

n + 1
, 0 ≤ t ≤ a. (24)

Hence, given −1 < L < 0, there exists an integer nL ≥ nT such that L ≤ Ln(t) for
0 ≤ t ≤ a and n ≥ nL. Thus, we get from (15) that

log(1 + Ln(t)) =

N−1∑
k=1

(−1)k−1

k
Lk

n(t) +
(−1)N−1LN

n (t)
N(1 + θ3Ln(t))N

for some θ3 ∈ (0, 1) that depends on N and Ln(t). Therefore, we get from (22) that

log
(
(S Hn)(x) +

x(S Hn)′(x)
n + 1

)
=

N−1∑
p=1

ψp(t)(n + 1)−p + ψn,N(t)(n + 1)−N ,

where ψp(t) is a polynomial of degree p with coefficients independent of n and N given
by

ψp(t) :=
p∑

k=1

(−1)k−1

k

∑
j1+···+ jk=p

tp−kl j1 (t) · · · l jk (t), (25)

here, each index ji ∈ {1, . . . , p}, and ψn,N(t) is given by

ψn,N(t) :=
N−1∑
k=1

(−1)k−1

k

∑
j1+···+ jk≥N

ln, j1,N(t) · · · ln, jk ,N(t)
(n + 1) j1+···+ jk−N + (n + 1)N (−1)N−1LN

n (t)
N(1 + θ3Ln(t))N

with ln, j,N(t) := t j−1l j(t) when j < N and ln,N,N(t) := ln,N(t). As in the previous lemma,
since t2/(n + 1) ≤ 1 when 0 ≤ t ≤ a, the first summand above is bounded in absolute
value by a polynomial of degree N whose coefficients are independent of n. It also
follows from (24) and (23) that

(n + 1)N |LN
n (t)|

|1 + θ3Ln(t)|N
≤
|ln,1(t)|N

(1 − L)N ≤ Cµ,T
(t + 1)N

(1 − L)N , 0 ≤ t ≤ a,

for all n ≥ nL. Altogether, we have shown that

wn(t) =

N−1∑
p=1

(
tpφp(t) + ψp(t)

)
(n + 1)−p +

(
φn,N(t) + ψn,N(t)

)
(n + 1)−N (26)

with φp, ψp and φn,N , ψn,N as described above. We also can deduce from (21) and (25)

13



that tφ1(t) + ψ1(t) = −s1 + t(s1 + 1) − t2/2 and

tpφp(t) + ψp(t) =
(−1)p−1

p
lp
1 (t) + (−1)p−2tlp−2

1 (t)l2(t) + O
(
t2) = −

sp
1

p
+ O

(
t2) (27)

for p ≥ 2, where we used that 2s2 = s2
1 + s1, see Lemma 3. Since

∣∣∣ψn,1(t)
∣∣∣ ≤ (n + 1)

|Ln(t)|
1 − L

≤
√

n + 1
Cµ,T

1 − L
, 0 ≤ t ≤ a,

by (24) for n ≥ nL, we get from (26), applied with N = 1, and (21) that

|wn(t)| =
∣∣∣∣∣φn,1(t) + ψn,1(t)

n + 1

∣∣∣∣∣ ≤ Cµ,T,L, 0 ≤ t ≤ a, n ≥ nL. (28)

Now, using (15) once more, we get

e2wn(t) = 1 +

N−1∑
k=1

2k

k!
wk

n(t) + e2θ4wn(t) (2)N

N!
wN

n (t)

for some θ4 ∈ (0, 1) that depends on N and wn(t). Plugging (26) into the above formula
gives us the desired expansion with

βp(t) :=
p∑

k=1

2k

k!

∑
j1+···+ jk=p

(
t j1φ j1 (t) + ψ j1 (t)

)
· · ·

(
t jkφ jk (t) + ψ jk (t)

)
, (29)

which is a polynomial of degree 2p with coefficients independent of n and N, and

βn,N(t) :=
N−1∑
k=1

2k

k!

∑
j1+···+ jk≥N

∏k
i=1

(
φn, ji,N(t) + ψn, ji,N(t)

)
(n + 1) j1+···+ jk−N + e2θ4wn(t) 2N

N!
(n + 1)NwN

n (t)

with φn, j,N(t) := t jφ j(t), ψn, j,N(t) := ψ j(t) when j < N and φn,N,N(t) := φn,N(t), ψn,N,N(t) :=
ψn,N(t), which is bounded in absolute value when 0 ≤ t ≤ a by a polynomial of degree
2N whose coefficients are independent of n due to (28) and the same reasons as in the
similar previous computations. Thus, it only remains to compute the linear approxima-
tion to βp(t) at zero. Now, it follows from (27) and (29) that

βp(t) = sp
1

p∑
k=1

(−2)k

k!

∑
j1+···+ jk=p

1
j1 · · · jk

−

sp−1
1 (s1 + 1)

p∑
k=1

(−2)k

k!

∑
j1+···+ jk=p

n( j1, . . . , jk)
j1 · · · jk

 t + O
(
t2)

where n( j1, . . . , jk) is the number of 1’s in the partition { j1, . . . , jk} of p. To simplify

14



this expression observe that

(1 − x)2e−2yx = e2 log (1−x)−2yx = 1 +

∞∑
k=1

(−2)k

k!
(
yx − ln (1 − x)

)k

= 1 +

∞∑
k=1

(−2)k

k!

(1 + y)x +

∞∑
j=2

x j

j

k

= 1 +

∞∑
p=1

 p∑
k=1

(−2)k

k!

∑
j1+···+ jk=p

(1 + y)n( j1,..., jk)

j1 · · · jk

 xp,

(30)

where y is a free parameter. By putting y = 0 in this expression, we get that

p∑
k=1

(−2)k

k!

∑
j1+···+ jk=p

1
j1 · · · jk

=


−2 if p = 1,

1 if p = 2,
0 if p ≥ 3.

Moreover, by differentiating (30) with respect to y and then putting y = 0, we get

p∑
k=1

(−2)k

k!

∑
j1+···+ jk=p

n( j1, . . . , jk)
j1 · · · jk

=


−2 if p = 1,

4 if p = 2,
−2 if p = 3,

0 if p ≥ 4,

which clearly finishes the proof of the last claim of the lemma. �

Lemma 9. Let χ(t) be given by (14). For any integer N ≥ 1, it holds that

(
1 + En(t)

)1/2
− 1 = χ(t)

N−1∑
p=1

up(t)(n + 1)−p + χ(t)un,N(t)(n + 1)−N ,

where up(t) is bounded in absolute value2 on 0 ≤ t < ∞ by a polynomial of degree
2p − 2 whose coefficients are independent of n and N and the functions un,N(t) are
bounded in absolute value when 0 ≤ t ≤ a by a polynomial of degree 2N − 2 whose
coefficients are independent of n.

Proof. Set

Rn(t) :=
(
1 −

t
2(n + 1)

)2 e2wn(t)

(1 + Dn(t))2 .

Lemmas 7 and 8 yield that Rn(t) has the following asymptotic expansion:

Rn(t) = 1 +

N−1∑
p=1

rp(t)(n + 1)−p + rn,N(t)(n + 1)−N ,

2In fact, up(t) is a multivariate polynomial in ω, χ, and t.
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where

rp(t) :=
p∑

j=0

β j(t)αp− j(t) −
p−1∑
j=0

tβ j(t)αp−1− j(t) +

p−2∑
j=0

t2β j(t)αp−2− j(t)/4

with α0(t) = β0(t) :≡ 1, and rn,N(t) given by

2N+2∑
k=N

 k∑
j=0

βn, j,N(t)αn,k− j,N(t)
(n + 1)k−N −

k−1∑
j=0

tβn, j,N(t)αn,k−1− j,N(t)
(n + 1)k−N +

k−2∑
j=0

t2βn, j,N(t)αn,k−2− j,N(t)/4
(n + 1)k−N


with αn, j,N(t) := α j(t), βn, j,N(t) := β j(t) when j < N, αn,N,N(t) := αn,N(t), βn,N,N(t) :=
βn,N(t), and αn, j,N(t) = βn, j,N(t) :≡ 0 when j > N. It also follows from Lemmas 7 and 8
that the functions rp(t) are independent of n and N and are polynomials in ω of degree
p with coefficients that are polynomials in t of degree at most 2p, while the functions
rn,N(t) are bounded in absolute value for 0 ≤ t ≤ a by a polynomial of degree 2N whose
coefficients are independent of n. Finally, we get from Lemmas 7 and 8 that

1∑
j=0

β j(t)α1− j(t) = t + O
(
t2) and

k∑
j=0

β j(t)αk− j(t) = O
(
t2)

for all k ≥ 2. Therefore, it holds that rp(t) = O
(
t2) as t → 0 for all p ≥ 1.

It follows from Lemma 6 that En(t) = t−2χ(t)[1 − Rn(t)]. Hence, plugging the
expansion of Rn(t) into this formula gives us

En(t) = χ(t)

N−1∑
p=1

ep(t)(n + 1)−p + en,N(t)(n + 1)−N

 ,
where ep(t) := −t−2rp(t) for any p and en,N(t) := −t−2rn,N(t) for any n,N. It follows
from the properties of rp(t) that each ep(t) is a continuous function and is bounded in
absolute value on 0 ≤ t < ∞ by a polynomial of degree 2p − 2. Also, since χ(t) is a
continuous function as well and limt→0+ En(t) exists and is finite according to Lemma 6,
so must limt→0+ en,N(t) for all n,N. Then it follows from properties of rn,N(t) that en,N(t)
is bounded in absolute value when 0 ≤ t ≤ a by a polynomial of degree 2N − 2 whose
coefficients are independent of n.

From what precedes, we get that

|En(t)| ≤
χ(t)|en,1(t)|

n + 1
≤

Cµ,T

n + 1
, 0 ≤ t ≤ a.

Hence, for any −1 < E < 0 there exists an integer nE such that E ≤ En(t) for all
0 ≤ t ≤ a and n ≥ nE . Thus, by applying (15) one more time, we get that

(1 + En(t))1/2 − 1 =

N−1∑
k=1

(
1/2
k

)
Ek

n(t) +

(
1/2
N

)
EN

n (t)
(1 + θ5En(t))N−1/2
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for some θ5 ∈ (0, 1) that depends on N and En(t). Therefore, the claim of the lemma
follows with

up(t) :=
p∑

k=1

(
1/2
k

)
χk−1(t)

∑
j1+···+ jk=p

e j1 (t) · · · e jk (t),

which is bounded in absolute value on 0 ≤ t < ∞ by a polynomial of degree 2p − 2
whose coefficients are independent of n and N, and

un,N(t) :=
N−1∑
k=1

(
1/2
k

)
χk−1(t)

∑
j1+···+ jk≥N

en, j1,N(t) · · · en, jk ,N(t)
(n + 1) j1+···+ jk−N +

(
1/2
N

)
(n + 1)N EN

n (t)
(1 + θ5En(t))N−1/2

where en, j,N(t) := e j(t) when j < N and en,N,N(t) := en,N(t), which is bounded in
absolute value on 0 ≤ t ≤ a by a polynomial of degree 2N − 2 whose coefficients are
independent of n due to the same reasoning as in two previous lemmas. �

Lemma 10. Given N ≥ 1, it holds that

(1 + En(t))1/2 − 1
2(n + 1) − t

= χ(t)
N−1∑
p=2

vp(t)(n + 1)−p + χ(t)vn,N(t)(n + 1)−N ,

where vp(t) is bounded in absolute value on 0 ≤ t < ∞ by a polynomial of degree 2p−4
whose coefficients are independent of n and N and the functions vn,N(t) is bounded in
absolute value when 0 ≤ t ≤ a by a polynomial of degree 2N − 4 whose coefficients are
independent of n.

Proof. Since 0 ≤ t ≤ a =
√

n + 1, we get from (15) that

1
2(n + 1) − t

=

N−1∑
p=1

zp(t)(n + 1)−p + zn,N(t)(n + 1)−N ,

where

zp(t) := 2−ptp−1 and zn,N(t) :=
2−N tN−1

(1 − θ6t/2(n + 1))N+1

for some θ6 ∈ (0, 1) that depends on N and t. Therefore, the claim of the lemma follows
from Lemma 9 with

vp(t) :=
p−1∑
j=1

z j(t)up− j(t) and vn,N(t) :=
2N∑

k=N

∑
j1+ j2=k

zn, j1,N(t)vn, j2,N(t)
(n + 1)k−N

where j1, j2 ∈ {1, . . . ,N}, zn, j,N(t) := z j(t), un, j,N(t) := u j(t) for j < N, and zn,n,N(t) :=
zn,N(t), un,N,N(t) := un,N(t). �

With the notation introduced in Lemmas 5, 9, and 10, the following lemma holds.
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Lemma 11. Given N ≥ 1, it holds that

Gn(t) = Iµ1 (n + 1)−1 +

N−1∑
p=2

(
Iµp + Jµp

)
(n + 1)−p + ON

(
(n + 1)−N

)
for all n large, where

Iµp :=
1
π

∫ ∞

0
t−1 f (t)χ(t)up(t)dt and Jµp :=

1
π

∫ ∞

0
f (t)χ(t)vp(t)dt

(observe that t−1 f (t) is a continuous and bounded function on 0 ≤ t < ∞, χ(t) decreases
exponentially at infinity, and the functions up(t), vp(t) are bounded by polynomials).

Proof. By the very definition of Gn(t) in Lemma 5 we have that Gn(t) = In(t) + Jn(t),
where

In(t) :=
1
π

∫ a

0
t−1 f (t)

(
(1 + En(t))1/2 − 1

)
dt

and

Jn(t) :=
1
π

∫ a

0
f (t)

(1 + En(t))1/2 − 1
2(n + 1) − t

dt.

Using Lemma 9, we can rewrite the first integral above as

In(t) =

N−1∑
p=1

Iµp(n + 1)−p − S n(t) + Tn(t),

where

S n(t) :=
1
π

N−1∑
p=1

(n + 1)−p
∫ ∞

a
t−1 f (t)χ(t)up(t)dt

and

Tn(t) :=
1
π

(n + 1)−N
∫ a

0
t−1 f (t)χ(t)un,N(t)dt.

Since up(t) = O
(
t2p−2), f (t) = O(1), and χ(t) = O

(
t4e−2t) as t → ∞, it holds that

S n(t) =

N−1∑
p=1

(n + 1)−p
∫ ∞

a
O
(
t2p+1e−2t)dt =

N−1∑
p=1

(n + 1)−pO
(
a2p+1e−2a) =

= ON

(
ae−2a

)
= oN

(
(n + 1)−N

)
.

Moreover, since un,N(t) is bounded by a polynomial of degree 2N − 2 for 0 ≤ t ≤ a, we
have that Tn(t) = ON

(
(n + 1)−N)

.
Similarly, we get from Lemma 10 that

Jn(t) =

N−1∑
p=2

Jµp(n + 1)−p − Un(t) + Vn(t),
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where

Un(t) :=
1
π

N−1∑
p=2

(n + 1)−p
∫ ∞

a
f (t)χ(t)vp(t)dt

and

Vn(t) :=
1
π

(n + 1)−N
∫ a

0
f (t)χ(t)vn,N(t)dt.

An argument as above argument shows that Un(t) = ON
(
e−2a) = oN

(
(n + 1)−N)

and
Vn(t) = ON

(
(n + 1)−N)

for large n, which finishes the proof of the lemma. �

Lemma 12. The claim of Theorem 1 holds.

Proof. It follows from Lemmas 5 and 11 that given an integer N ≥ 1, it holds that

Ên(µ) =
1
π

log(n + 1) +
1
2

A0 +

N−1∑
p=1

(
Iµp + Jµp − Hp/2

)
(n + 1)−p + ON

(
(n + 1)−N

)
,

where we set Jµ1 := 0. The claim of Theorem 1 now follows from (11) by taking
Aµ

p := Iµp + Iσp + Jµp + Jσp − Hp. �
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