CONVERGENCE OF TWO-POINT PADÉ APPROXIMANTS TO PIECEWISE
HOLOMORPHIC FUNCTIONS

MAXIM L. YATTSELEV

Abstract. Let \(f_0 \) and \(f_\infty \) be formal power series at the origin and infinity, and \(P_n/Q_n \), with \(\deg(P_n), \deg(Q_n) \leq n \), be a rational function that simultaneously interpolates \(f_0 \) at the origin with order \(n \) and \(f_\infty \) at infinity with order \(n + 1 \). When germs \(f_0, f_\infty \) represent multi-valued functions with finitely many branch points, it was shown by Buslaev [5] that there exists a unique compact set \(F \) in the complement of which the approximants converge in capacity to the approximated functions. The set \(F \) might or might not separate the plane.

We study uniform convergence of the approximants for the geometrically simplest sets \(F \) that do separate the plane.

1. Introduction

Let \(f(z) = \sum_{k=0}^{\infty} f_k z^{-k} \) be a formal power series at infinity and \(M_n/N_n \) be a rational function such that \(\deg(M_n), \deg(N_n) \leq n \) and

\[
(N_n f - M_n)(z) = O(z^{-n-1}) \quad \text{as} \quad z \to \infty.
\]

It is known that such a rational function is unique and is called the classical diagonal Padé approximant to \(f \) at infinity. The following theorem\(^1\) summarizes one of the most fundamental contributions of Herbert Stahl to complex approximation theory [18, 19, 20, 21].

Theorem (Stahl). Assume that the germ at infinity \(f \) can be analytically continued along any path in \(\mathbb{C} \) that avoids a fixed polar set\(^2\) and there is at least one point outside of this set with at least two distinct continuations. Then there exists a compact set \(F \) such that

(i) \(F \) does not separate the plane and \(f \) has a holomorphic and single-valued extension into the domain \(D := \mathbb{C} \setminus F \);

(ii) \(F \) consists of open non-intersecting analytic arcs \(J_i \), their endpoints, and a subset of the singular set of \(f \), and\(^3\)

\[
\frac{\partial g_F(z, \infty)}{\partial n_+} = \frac{\partial g_F(z, \infty)}{\partial n_-}
\]

at each point \(z \in \bigcup J_i \), where \(g_F(\cdot, \infty) \) is the Green function for \(D \) with pole at infinity and \(\partial/\partial n \) are the one-sided normal derivatives;

(iii) it holds for any compact set \(V \subset D \) that

\[
\lim_{n \to \infty} \text{cp} \left\{ z \in V : \left| (f - M_n/N_n)(z) \right|^{1/2n} \geq e^{-g_F(z, \infty) + \epsilon} \right\} = 0
\]

for any \(\epsilon > 0 \), where \(\text{cp}(\cdot) \) is the logarithmic capacity.

2000 Mathematics Subject Classification. 42C05, 41A20, 41A21.

Key words and phrases. two-point Padé approximation, orthogonal polynomials, non-Hermitian orthogonality, strong asymptotics, S-contours, matrix Riemann-Hilbert approach.

The research was supported in part by a grant from the Simons Foundation, CGM-354538.

\(^1\)In introduction, only abridged statements of the theorems that suit our needs are stated.

\(^2\)See [17] for notions of potential theory.

\(^3\)Such sets \(F \) are now called symmetric contours or \(S \)-curves.
More generally, if we select a branch of f which is holomorphic in a neighborhood of a certain closed set as well as a collection of $2n + 1$ not necessarily distinct points in this set, one can define a multipoint Padé approximant interpolating f at these points. An analog of Stahl’s theorem for multipoint Padé approximants was proven by Gonchar and Rakhmanov [13]. However, the existence of the set F satisfying (i) and an appropriate generalization of (ii) was not shown but assumed in [13], from which the conclusion (iii) was then obtained (see [16, 2, 23] for results on existence of such weighted symmetric contours).

Weighted symmetric contours are characterized as contours minimizing a certain weighted logarithmic capacity. One of the major obstructions in proving a general theorem on their existence lies in the fact that a minimizer can separate the plane. In [5], Buslaev treated this possibility not as a hindrance but as an important feature. More precisely, let f_0 and $f_∞$ be formal power series at the origin and infinity, respectively, that is,

\begin{equation}
 f_0(z) := \sum_{k=0}^{∞} f_{k,0} z^k \quad \text{and} \quad f_∞(z) := \sum_{k=0}^{∞} f_{k,∞} z^{-k}.
 \end{equation}

A rational function P_n/Q_n is a two-point Padé approximant of type (n_1, n_2), $n_1 + n_2 = 2n + 1$, to the pair $(f_0, f_∞)$ if $\deg(P_n), \deg(Q_n) \leq n$ and

\begin{equation}
 \begin{cases}
 (Q_n f_0 - P_n)(z) = O(z^{n_1}), & z \to 0, \\
 (Q_n f_∞ - P_n)(z) = O(z^{-n_2}), & z \to ∞.
 \end{cases}
 \end{equation}

As in the case of the classical Padé approximants, the ratio P_n/Q_n is always unique. In [5, Theorem 1], see also [6] for a generalization to m-point Padé approximants, Buslaev proved the following.

Theorem (Buslaev). Assume that the germs f_0 and $f_∞$ in (1) can be analytically continued along any path in \mathbb{C} that avoids finitely many fixed points one of which is a branch point of f_0 and another is a branch point of $f_∞$. Then there exists a compact set F such that

(i) $\mathbb{C} \setminus F = D_0 \cup D_∞$, where the domains $D_0 \ni 0$ and $D_∞ \ni ∞$ either do not intersect or coincide, and f_e has a holomorphic and single-valued extension into D_e, $e \in \{0, ∞\}$ (if $D_0 = D_∞ = D$, then $f_0, f_∞$ are analytic continuations of each other within D);

(ii) F consists of open analytic arcs and their endpoints and at each point of these arcs it holds that

\[\frac{∂(g_F(z, 0) + g_F(z, ∞))}{∂n_+} = \frac{∂(g_F(z, 0) + g_F(z, ∞))}{∂n_-}, \]

where $g_F(z, 0)$ is the Green function for D_0 with pole at 0 and $g_F(z, ∞)$ is the Green function for $D_∞$ with pole at infinity;

(iii) if indices $n_1 + n_2 = 2n + 1$ in (2) are such that $\lim_{n→∞} n_i/n = 1$, $i \in \{1, 2\}$, and $∂D_0 \not\subset ∂D_∞$ together with $∂D_∞ \not\subset ∂D_0$, then it holds on any compact set $V ⊂ \mathbb{C} \setminus F$

\[\lim_{n→∞} \operatorname{cp} \left\{ z \in V : |(f - P_n/Q_n)(z)|^{1/n} ≥ e^{-g_F(z, 0) - g_F(z, ∞) + ε} \right\} = 0 \]

for any $ε > 0$, where $\operatorname{cp}(\cdot)$ is the logarithmic capacity and $f = f_e$ in D_e, $e \in \{0, ∞\}$.

Let f be a germ at infinity that can be continued analytically along any path in \mathbb{C} avoiding finitely many points one of which is a branch point for some continuation. Set $f_∞ = f$ and f_0 to be one of the function elements of f at the origin. Buslaev’s result tells us that independently of the choice of f_0, the two-point Padé approximants always converge to the approximated pair of germs. However, the region of the convergence can consist of either one or two components.

The conclusion (iii) of Buslaev’s theorem describes the so-called weak or n-th root asymptotics of Padé approximants. The goal of the present work is to establish strong asymptotic formulae. In the case where F does not separate the plane such results were obtained in [15, 22, 3, 4, 23] under various assumptions on the approximated function. Below, we study the case of distinct germs in the simplest geometrical setting, see Figure 1.
2. Main Results

Given \(a \in \mathbb{D} \setminus \{0\} \), denote by \(K \) the Chebotarëv compact for \(\{-1,1,\} \), where \(j(z) := (z + z^{-1})/2 \) is the Jukovski map. \(K \) consists of the critical trajectories of the quadratic differential

\[
\frac{(z - j(b))dz^2}{(z^2 - 1)(z - j(a))},
\]

where \(b \in \mathbb{D} \) is the uniquely determined point (\(j(b) \) is called Chebotarëv’s center). When \(\text{Im}(a) \neq 0 \), \(K \) consists of three analytic arcs emanating from \(j(b) \) and terminating at each of the points \(-1, 1, j(a)\). When \(a \in (-1, 0) \), it holds that \(b = -1 \) and \(K = [-j(a), 1] \) while \(b = 1 \) and \(K = [-1, j(a)] \) for \(a \in (0, 1) \). Buslaev’s compact \(F \) corresponding to \(a \) in this case is given by

\[
F := \{ z : j(z) \in K \},
\]

see Figures 1, 2, and 3. Clearly, \(F \) separates the plane into two simply connected components, one containing the origin and one containing the point at infinity, which we label by \(D_0 \) and \(D_\infty \). We shall write

\[
F := F^o \cup E, \quad E := \{ a, a^{-1}, b, b^{-1} \},
\]

where \(F^o \) consists of four (three when \(a \) is real) open disjoint Jordan arcs, see Figure 1. We let \(F_{a1} \) (resp. \(F_{a1}^o \)) to be closed (resp. open) Jordan arcs connecting \(b \) to \(b^{-1} \) and containing \(\pm 1 \), and \(F_{a^1} \) (resp. \(F_{a^1}^o \)) to be closed (resp. open) Jordan arcs connecting \(a^1 \) to \(b^1 \) (we have that \(F_{-1} = \emptyset \) when \(a \in (-1,0) \) and \(F_1 = \emptyset \) when \(a \in (0,1) \)). We choose their orientation so that \(F_1 \cup F_{-1} \) is a counterclockwise oriented Jordan curve and \(F_{a^1} \cup F_1 \cup F_{a} \) is a Jordan arc oriented from \(a^{-1} \) to \(a \), see Figure 1. It is a matter of a simple substitution to see that the set \(F^o \) is comprised of the critical trajectories of the quadratic differential

\[
\frac{(z - b)(z - b^{-1})}{(z - a)(z - a^{-1})} dz^2.
\]

From now on we fix \(a \in \mathbb{D} \setminus \{0\} \) and the corresponding Buslaev’s compact \(F \). In this work we shall be interested in approximating pairs (1) of the form

\[
(f_{\rho}|_{D_0}, f_{\rho}|_{D_\infty}), \quad f_{\rho}(z) := \frac{1}{2\pi i} \int_{F} \frac{\rho(s)ds}{s - z},
\]

for some classes of weights \(\rho \) to be specified later. Thus, depending on a situation we shall speak about approximants (2) to either a pair of functions or a single function, in both cases referring to (4). As one can clearly see from Figure 1, the structure of the set \(F \) is

Figure 1. Buslaev’s compact \(F \) for a point \(a \) on (a) the imaginary axis (b) the real axis.
consider. To this end, define

\(w(z) = w(z; a) := \sqrt{(z-a)(z-a^{-1})} \)

(5)

to be the branch holomorphic off \([a^{-1}, a]\) such that \(w(z) = z + O(1)\) as \(z \to \infty\). Given a function \(\rho\) on \(F\) it will be convenient for us to set

\(h(s) := \rho(s) \left\{ \begin{array}{ll} w_a(s), & s \in F_{a^+}, \\ w_s(s), & s \in F_{-b}, \end{array} \right. \)

(6)

where \(h := a/|a|\). We shall say that \(\rho \in \mathcal{W}_1\) if \(h\) extends to a holomorphic and non-vanishing function in some neighborhood of \(F \setminus [a, a^{-1}]\) with zero winding number on the unit circle and there exist real constants \(a, \beta > -1\) such that

\(h_{|a^{-1}, a|}(s) = \tilde{h}(s)(s-a)^{a+1/2}(s-a^{-1})^{\beta+1/2}, \)

(7)

where \(\tilde{h}\) is holomorphic and non-vanishing in some neighborhood of \([a^{-1}, a]\) and the branches of the power functions are holomorphic across \((a^{-1}, a)\). It will also be convenient to single out the following subclass of \(\mathcal{W}_1\): we shall say that \(\rho \in \mathcal{W}_2 < \mathcal{W}_1\) if \(a = \beta = -1/2\), that is, if \(h\) extends to a holomorphic and non-vanishing function in some neighborhood of \(F\). In particular, if we define \(\rho\) by (6) with \(h(s) \equiv 2\), we get that the approximated pair of functions is given by \((1/w, -1/w)\).

For brevity, let us set \(\sqrt{x} := i\sqrt{|x|}\) when \(x < 0\). As we shall see below, the \(n\)-th root behavior of the approximants is described by the following function:

\(\varphi(z) := \frac{z + b + w(z)}{\sqrt{a + a^{-1}}}, \)

(8)

which is holomorphic off \([a^{-1}, a]\), vanishes at the origin, and has a simple pole at infinity. Moreover, since \(w\) has purely imaginary traces on the interval \([a^{-1}, a]\) and \(w^2(e^{it}) = 2e^{it}(\cos(t) - i|a|)\), it can be easily checked that

\[\begin{cases} \varphi_+(s)\varphi_-(s) = s, & s \in [a^{-1}, a], \\ |\varphi(s)| = 1, & s \in F_{-b}. \end{cases} \]

(9)

To describe the finer behavior of the approximants let us define the following functions.

Let \(\log h\) be any smooth continuous branch of the logarithm on the unit circle (recall that \(h\) is continuous on \(\mathbb{T}\) and has zero winding number there). Set

\[D(z) := \exp \left\{ \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\log h(s) ds}{s - z} \right\}, \]

(10)

which is a holomorphic and non-vanishing function on \(\mathbb{T}\), that is smooth in the entire plane, and satisfies \(D_+(s) = D_-(s)h(s)\) on the unit circle, see [12, Chapter I]. Therefore, the function

\[\tilde{h}(s) := D^2(s)\tilde{h^*}(s), \quad s \in F_{a^+}, \]

(10)
is non-vanishing and smooth on the interval \((a^{-1}, a)\) and admits a continuous determination of its logarithm. Thus, the function

\[
S(z) := \exp \left\{ \frac{w(z)}{2\pi i} \int_{[a^{-1},a]} \log \frac{h(s)}{s - z} \, ds \right\}
\]

is a holomorphic and non-vanishing function off \([a^{-1}, a]\) with traces satisfying \(S_+(s)S_-(s) = \hat{h}(s)\). Given (8), (10), and (11), let us put

\[
Q_n(z) := \begin{cases}
(z/\varphi(z))^n S(z)/D(z), & z \in D_0, \\
\varphi(z)^n D(z)/S(z), & z \in D_\infty,
\end{cases}
\]

which is a holomorphic and non-vanishing function in \(\mathbb{C} \setminus F\) with a pole of order \(n\) at infinity and

\[
R_n(z) := \begin{cases}
(\varphi(z)/z)^n D(z)/S(z), & z \in D_0, \\
-(1/\varphi(z))^n S(z)/D(z), & z \in D_\infty,
\end{cases}
\]

which is a holomorphic and non-vanishing function in \(\mathbb{C} \setminus F\) with a zero of multiplicity \(n\) at infinity (one can clearly see that \(R_n\) is essentially a reciprocal of \(Q_n\) and therefore this definition might appear superfluous, however, for not real \(a\) the relation between these two functions will not be as straightforward and we prefer to present the cases of real and non-real parameters in a uniform fashion).

Theorem 1. Denote by \(P_n/Q_n\) the two-point Padé approximant of type \((n, n+1)\) to (4) with \(\rho \in \mathcal{W}_1\). Set

\[
R_n(z) := z^{-n}(Q_n f_\rho - P_n)(z), \quad z \in \overline{\mathbb{C}} \setminus F.
\]

Then for all \(n\) large enough the polynomial \(Q_n\) has degree \(n\) and can be normalized to be monic. In this case, it holds that

\[
\frac{Q_n}{w R_n} = \gamma_n (1 + \nu Q_n) Q_n, \quad \gamma_n (1 + \nu R_n) R_n
\]

locally uniformly in \(\overline{\mathbb{C}} \setminus F\), where the error rate functions \(\nu = \nu Q_n, \nu R_n\) satisfy

\[
|\nu(z)| \leq C \begin{cases}
1/n, & \rho \in \mathcal{W}_1, \\
c^n, & \rho \in \mathcal{W}_2,
\end{cases}
\]

for some constants \(C\) and \(c < 1\), and \(\gamma_n\) is a constant such that \(\lim_{z \to 1} \gamma_n Q_n(z) z^{-n} = 1\).

We can immediately see from (12), (13), and (15) that

\[
(f_\rho - P_n/Q_n)(z) = \frac{1 + o(1)}{w(z)} \begin{cases}
(\varphi^2(z)/z)^n (SD)^3(z), & z \in D_0, \\
-(\varphi^2(z)/z)^n/(SD)^2(z), & z \in D_\infty.
\end{cases}
\]

It further can be deduced from (9) that the right hand side of the above equality is geometrically small in \(\overline{\mathbb{C}} \setminus F\).

2.2. Asymptotics of the Approximants: \(a \in \mathbb{D} \setminus (-1, 1)\)

As in the previous subsection, we start by defining the classes of weights \(\rho\) we shall consider. We shall say that \(\rho \in \mathcal{W}_1\) if the restriction of \(\rho\) to the arcs \(F_1, F_{-1}\) extends to a holomorphic and non-vanishing function around \(F_1, F_{-1}\); there exist constants \(\alpha, \beta > -1\) such that the restriction of \(\rho\) to \(F_\alpha, F_{\alpha-1}\) is of the form

\[
\tilde{\rho}(s)(s-a)^\alpha (s-a^{-1})^\beta
\]
\[z \in (z,w) : w^2 = (z - a)(z - a^{-1})(z - b)(z - b^{-1}) \]

which has genus 1. Moreover, these functions by themselves are not sufficient to define analogs of \(Q_n, \mathcal{R}_n \). Hence, we opt for a different approach.

The surface \(\mathfrak{R} \) can be realized as two copies of \(\mathbb{C} \) cut along \(F_{a^{-1}} \cup F_a \) and then glued crosswise along the corresponding arcs. We shall denote these copies by \(\mathfrak{R}^{(0)} \) and \(\mathfrak{R}^{(1)} \). Denote by \(\pi : \mathfrak{R} \to \mathbb{C} \) the natural projection \(\pi(z) = z \). For a point \(z \notin F_{a^{-1}} \cup F_a \) we also let \(z^{(i)} \) stand for the pull back of \(z \) to \(\mathfrak{R}^{(i)} \). We put

\[\Delta := \pi^{-1}(F) = a \cup b \cup \gamma \cup \delta, \]
where $\beta := \pi^{-1}(F_{a-1})$ is oriented so that $\mathfrak{R}^{(0)} \setminus \Lambda$ remains on the right when it is traversed in the positive direction, $\delta := \pi^{-1}(F_a)$ is oriented so that $\mathfrak{R}^{(0)} \setminus \Lambda$ remains on the left when it is traversed in the positive direction, and $\alpha := \pi^{-1}(F_1)$, $\gamma := \pi^{-1}(F_{-1})$ are oriented so that their positive directions in $\mathfrak{R}^{(0)}$ coincide with the positive directions of F_1, F_{-1}.

Theorem 2. Let $h(s)$ be a function on F for which there exist real constants $\alpha(e), e \in E = F \setminus F^0$, and the branches of $(z - e)^{\alpha(e)}$ such that the product

$$h(s) \prod_{e \in E} (s - e)^{-\alpha(e)}$$

extends to a Hölder continuous and non-vanishing function on F. Then for each $n \in \mathbb{N}$ there exist a meromorphic function Ψ_n on $\mathfrak{R} \setminus \Lambda$ and a point $z_n \in \mathfrak{R}$ such that Ψ_n has continuous traces on $\pi^{-1}(F^n)$ that satisfy

$$\Psi_{n-}(s) = \Psi_{n+}(s)h(s), \quad s \in \Lambda;$$

it has a pole of order n at ∞, a simple pole at ∞, a zero of multiplicity n at 0, a simple zero at z_n, and otherwise is non-vanishing and finite; it holds that

$$|\Psi_n(z^{(k)})| \sim \begin{cases} |z - e|^{(1-k)\alpha(e) + m_n(e)} & \text{as } z \to e \in [a, a^{-1}], \\ |z - e|^{1-k\alpha(e) + m_n(e)} & \text{as } D_0 \ni z \to e \in [b, b^{-1}], \\ |z - e|^{(1-k)\alpha(e) + m_n(e)} & \text{as } D_\infty \ni z \to e \in [h, h^{-1}], \end{cases}$$

for $k \in [0, 1]$, where $m_n(e) := 1$ when $\pi(z_n) = e$ and $m_n(e) := 0$ otherwise (a simple zero at $z_n \in \Lambda$ means that (23) remains true if Ψ_n is replaced by $\Psi_n|_H$ for any H holomorphic around Λ except for a simple pole at z_n).

Conversely, if Ψ is a function with a zero of multiplicity n at 0, a pole of order n at ∞, a simple pole at ∞, and no other poles, and if it satisfies (23) and (24), then Ψ a constant multiple of Ψ_n.

As mentioned before, the functions Ψ_n can be explicitly expressed via various differential on \mathfrak{R} as well as Riemann’s theta functions, see (48) further below.

In our asymptotic analysis we shall be interested only in the indices n for which points z_n stay away from ∞. As stated in the following proposition, there are infinitely many such indices.

Proposition 3. Given $\varepsilon > 0$, let $D_\varepsilon(z)$ be a disk of radius ε in the spherical metric around $z \in \mathbb{C}$ and $D_\varepsilon(z)$ be the connected component of $\pi^{-1}(D_\varepsilon(z))$ containing z. Define

$$N_\varepsilon := \left\{ n \in \mathbb{N} : z_n \notin D_\varepsilon(\infty) \right\}.$$

Then for all ε small enough either n or $n - 1$ belongs to N_ε.

In accordance with our notation, let us put $B^{(i)} := \pi^{-1}(B) \cap \mathfrak{R}^{(i)}$ for any set B. Now we are ready to define the analogues of (12) and (13) for non-real a. Set

$$Q \Psi_n(z) := \begin{cases} \Psi_n|_{D_0^{(m)}}(z), & z \in D_0, \\ \Psi_n|_{D_\infty^{(m)}}(z), & z \in D_\infty, \end{cases}$$

which is a sectionally holomorphic function in $\mathbb{C} \setminus F$ with a pole of order n at infinity, and put

$$R_n(z) := \frac{1}{z^n} \begin{cases} \Psi_n|_{D_0^{(m)}}(z), & z \in D_0, \\ -\Psi_n|_{D_\infty^{(m)}}(z), & z \in D_\infty, \end{cases}$$

The notation $|g_1(z)| - |g_2(z)|$ as $z \to z_0$ means that there exists a constant $C > 1$ such that $C^{-1} \leq |g_1|, g_2(z) z_0 \leq C$ in some neighborhood of z_0.

which is also a sectionally holomorphic function in $\mathbb{C} \setminus F$ with a zero of multiplicity $n - 1$ at infinity\(^*\). Due to the specifics of the Riemann-Hilbert analysis we use to study the behavior of the Padé approximants, we shall also need the following functions. Let Υ_n be a rational function on \mathfrak{M} that is finite except for two simple poles at $\infty^{(0)}$ and z_n, and has a simple zero at $0^{(1)}$ (such a function is unique up to a scalar factor). Set

$$\Psi_n^* := \Psi_n \Upsilon_n$$

and define Q_n^* and R_n^* via (26) and (27), respectively, with Ψ_n replaced by Ψ_n^* and z^n replaced by z^{n+1} in (27). These functions are holomorphic in $\mathbb{C} \setminus F$, Q_n^* has a pole of order n at infinity while R_n^* has a zero of multiplicity $n - 1$ there.

Theorem 4. Denote by P_n/Q_n the two-point Padé approximant of type $(n, n + 1)$ to (4) with $\rho \in \mathcal{W}_1 \cup \mathcal{W}_2$ and let R_n be given by (14). Further, let Q_n and R_n be given by (26) and (27) for Ψ_n defined as in Theorem 2 with h given by (21). $\text{Then for any } \varepsilon > 0$ and all $n \in \mathbb{N}$, large enough the polynomial Q_n has degree n and can be normalized to be monic. In this case, it holds that

$$Q_n = \gamma_n \left[(1 + \nu_1)Q_n + \nu_2 Q_{n-1}^* \right],$$

$$wR_n = \gamma_n \left[(1 + \nu_1)R_n + \nu_2 R_{n-1}^* \right],$$

locally uniformly in $\mathbb{C} \setminus F$, where γ_n is a constant such that $\lim_{n \to \infty} \gamma_n Q_n(z)z^{-n} = 1$ and the functions $\nu = \nu_{nj}$ satisfy (16).

Similarly to (17) we have that

$$f_\rho - \frac{P_n}{Q_n} = \frac{z^nR_n}{wQ_n} \frac{1 + \nu_{n+1} + \nu_{n+2}(R_{n-1}^*/Q_n)}{1 + \nu_{n+1} + \nu_{n+2}(Q_{n-1}^*/Q_n)}.$$

Due to the presence of a floating zero z_n, the above formula does not immediately imply the locally uniform convergence of the approximants to f_ρ. Indeed, when $z_n \in D_{\mathbb{R}} := D_0^{(1)} \cup D_\infty^{(0)}$, it holds that $R_n(z_n) = 0$, which yields that the approximant has an additional interpolation point near z_n. However, when $z_n \in D_{\mathbb{Q}} := D_0^{(0)} \cup D_\infty^{(1)}$, it holds that $Q_n(z_n) = 0$ and therefore the approximant has pole in a vicinity of z_n. The following results help us further elucidate the situation.

Theorem 5. The functions Ψ_n can be normalized so that for any closed set $B \subset \mathbb{C} \setminus F$ and any $\delta > 0$ there exist positive constants $C(B)$ and $C_\delta(B)$ such that

$$|Q_n(z)|e^{-ng(z)} \begin{cases} \leq C(B), & z \in B, \\ \geq C_\delta(B), & z \in B \setminus \pi(D_{\mathbb{Q}} \cap D_\delta(z_n)) \end{cases},$$

where $g(z)$ is a continuous function in \mathbb{C} that is harmonic in $\mathbb{C} \setminus F$ and satisfies

$$g(z) = \log |z| + O(1), \quad z \to \infty, \text{ and } 2g(s) = \log |s|, \quad s \in F$$

(it follows from the minimum principle for superharmonic functions that $2g(z) - \log |z| > 0$ in $\mathbb{C} \setminus F$). Moreover, the constants $C(B)$ and $C_\delta(B)$ can be adjusted so that

$$|R_n(z)|e^{(n-1)g(z)} \begin{cases} \leq C(B), & z \in B, \\ \geq C_\delta(B), & z \in B \setminus \pi(D_{\mathbb{R}} \cap D_\delta(z_n)) \end{cases}.$$

\(^*\)Again, these orders might change depending on the location of z_n.

The functions \(\Upsilon_n \) can be normalized so that inequalities (29) and (31) hold for \(Q^*_n \) and \(R^*_n \) as well. Moreover, for any \(\delta > 0 \) there exists a constant \(C_\delta \) such that

\[
C_\delta \geq \begin{cases}
\left| Q^*_{n-1} / Q_n \right| & \text{in } \overline{\mathbb{C}} \setminus \pi(D_Q \cap D_\delta(z_n)), \\
\left| R^*_{n-1} / R_n \right| & \text{in } \overline{\mathbb{C}} \setminus \left(D_\delta(\infty) \cup \pi(D_R \cap D_\delta(z_n))\right).
\end{cases}
\]

In view of Buslaev’s theorem, it should be clear that

\[
2^g(z) - \log|z| = g_F(z,0) + g_F(z,\infty).
\]

3. Proof of Theorems 2, 5 and Proposition 3

Let \(\mathcal{R} \) be the Riemann surface defined in (22). We consider each \(\mathcal{R}^{(i)} \) to be closed subsets of \(\mathcal{R} \), i.e., it does contain cycles \(\beta, \delta \). We define the conformal involution on \(\mathcal{R} \) by \(z = (z,w) \mapsto z^* = (z,-w) \). It is easy to see that the pair \((\alpha, \beta) \) forms a homology basis on \(\mathcal{R} \). In particular, \(\mathcal{R}_{\alpha, \beta} := \mathcal{R} \setminus (\alpha \cup \beta) \) is simply connected.

3.1. Nuttall’s Differential. Let \(w(z) := (-1)^i w(z) \), \(z \in \mathcal{R}^{(i)} \), where \(w(z) \) is the branch defined in (20). For convenience, set

\[
v(z) := \frac{(z-b)(z-b^{-1})}{w(z)}
\]

and \(v(z) := v(z) \) for \(z \in \mathcal{R}^{(0)} \setminus (\beta \cup \gamma \cup \delta) \). Notice that \(v(0) = v(\infty) = 1 \). The differential

\[
N(s) = \frac{1-v(s)}{2s} ds
\]

is holomorphic except for two simple poles at \(0^{(1)} \) and \(\infty^{(1)} \) with respective residues 1 and \(-1\). Moreover, one can readily check using (3) that all the periods of \(N(s) \) are purely imaginary and therefore we can define

\[
\omega := -\frac{1}{2\pi i} \oint_\beta N \quad \text{and} \quad \tau := \frac{1}{2\pi i} \oint_\alpha N,
\]

which are clearly real constants.
Lemma 6. Let be the principal value of the square root. Define

\[\Phi(z) := \sqrt{a} \exp \left(\int_a^z N \right), \quad z \in \mathbb{R}_{\alpha, \beta}. \]

where the path of integration belongs entirely to \(\mathbb{R}_{\alpha, \beta} \). The function \(\Phi(z) \) is holomorphic and non-vanishing in \(\mathbb{R}_{\alpha, \beta} \setminus \{\infty(1), 0(1)\} \) with a simple pole at \(0(1) \) and a simple zero at \(0(1) \in \mathbb{R}(1) \). It holds that \(\Phi(z) \Phi(z^*) = z \) and the traces of \(\Phi(z) \) satisfy

\[\Phi_+ = \Phi_- \begin{cases} \exp[2\pi i t] & \text{on } \beta, \\
\exp[2\pi i \omega] & \text{on } \alpha. \end{cases} \]

Moreover, \(|\Phi(z)|^2 < |z| \) for \(z \in D_R \) and \(|\Phi(z)|^2 > |z| \) for \(z \in D_Q \).

Proof. The holomorphy properties of \(\Phi \) follow immediately from the corresponding properties of \(N \). Since \(\nu(z) = -v(z) \) for \(z \in \mathbb{U}(1) \setminus \{\beta \cup \delta\} \), it holds that

\[\Phi(z) \Phi(z^*) = a \exp \left(\int_a^z \frac{(1 - v(t))}{2} + \int_a^z \frac{(1 + v(t))}{2} \right) = a \exp \left(\int_a^z \frac{v(t)}{t} \right) = z. \]

Furthermore, we get on \(\alpha \) and \(\beta \) that

\[\Phi_+ = \Phi_- \exp \left\{ \frac{1}{\beta} \int_a^z N \right\} \quad \text{and} \quad \Phi_+ = \Phi_- \exp \left\{ \frac{1}{\alpha} \int_a^z N \right\}, \]

respectively, which yields (36), see (34). Finally, recall that \(F \) consists of the critical trajectories of the quadratic differential \(-v(z)dz/z^2\), see (3). Hence, the integral of \(v(t)dt/t \) on any subarc of \(F \) is purely imaginary and therefore

\[|\Phi^2(s)| = |s| \exp \left\{ \pm \text{Re} \left(\int_a^s \frac{v(t)}{t} dt \right) \right\} = |s|, \quad s \in \Lambda, \]

where the sign – is used if \(s \in \mathbb{U}(0) \) and the sign + is used if \(s \in \mathbb{U}(1) \). The last conclusion of the lemma now follows from the maximum modulus principle. \(\square \)

3.2. Holomorphic Differentials. It can be readily checked that

\[\mathcal{H}(s) := \frac{C ds}{w(s)}, \quad C := \left(\int_\alpha^\beta \frac{dx}{w(s)} \right)^{-1}, \quad B := \int_\beta \mathcal{H}, \]

is a holomorphic differential on \(\mathbb{R} \) (unique up to a multiplicative constant). It is also known that \(\text{Im}(B) > 0 \). The proof of the following lemma is absolutely analogous to the proof of Lemma 6.

Lemma 7. Given a constant \(\sigma \in \mathbb{C} \), define

\[A_\sigma(z) := \exp \left\{ -2\pi i \sigma \int_a^z \mathcal{H} \right\}, \quad z \in \mathbb{R}_{\alpha, \beta}. \]

where the path of integration belongs entirely to \(\mathbb{R}_{\alpha, \beta} \). The function \(A_\sigma(z) \) is holomorphic and non-vanishing in \(\mathbb{R}_{\alpha, \beta} \). It holds that \(A_\sigma(z) A_\sigma(z^*) \equiv 1 \) and the traces of \(A_\sigma(z) \) on \(\alpha, \beta \) satisfy

\[A_{\sigma^+} = A_{\sigma^-} \begin{cases} \exp[-2\pi i \sigma] & \text{on } \beta, \\
\exp[2\pi i B \sigma] & \text{on } \alpha. \end{cases} \]
3.3. Cauchy’s Differential. Denote by C_ν the unique meromorphic differential that has two simple poles at z and z^* with residues 1 and -1, respectively, and whose α-period is zero. When $\pi(z) \in \mathbb{C}$, one can readily check that

$$
C_\nu(s) = \frac{w(z)}{s - z} \frac{ds}{w(s)} - \left(\oint_\alpha \frac{w(z)}{s - z} \frac{ds}{w(s)} \right) \mathcal{H}(s).
$$

Lemma 8. Let $h(z)$ be as in Theorem 2. Fix a smooth determination of

$$
\log h(s) = \sum_{e \in E} \alpha(e) \log(z - e)
$$
on each of the arcs $F_a, F_{a^{-1}}, F_\beta, F_{\beta^{-1}}$. Define $\lambda_h(s) := -\log h(s), s \in F^\circ$, and

$$
S_h(z) := \exp \left\{ \frac{1}{4\pi i} \oint_{\Delta} \lambda_h C_\nu \right\}, \quad z \in \mathbb{R} \setminus \Delta.
$$
The function $S_h(z)$ is holomorphic and non-vanishing in $\mathbb{R} \setminus \Delta$. It holds that $S_h(z)S_h(z^*) = 1$ and the traces of $S_h(z)$ satisfy

$$
S_h(s) = \frac{S_h(s)}{h(s)} \begin{cases}
1, & \text{on } \Delta \setminus \alpha, \\
\exp \left\{ -\frac{1}{2\pi} \lambda_h \mathcal{H} \right\}, & \text{on } \alpha,
\end{cases}
$$
where the points of self-intersection need to be excluded. Moreover, it holds that

$$
|S_h(z^{(k)})|^2 \sim \begin{cases}
|z - e|^{-1 - k} \alpha(e) & \text{as } z \to e \in \{a, a^{-1}\}, \\
|z - e|^{-1 - k} \alpha(e) & \text{as } D_0 \ni z \to e \in \{b, b^{-1}\}, \\
|z - e|^{-1 - k} \alpha(e) & \text{as } D_{\infty} \ni z \to e \in \{b, b^{-1}\}.
\end{cases}
$$

Proof. Let ν be an involution-symmetric cycle on \mathbb{R} passing through ramification points p_1, p_2 and Λ_ν be an involution-symmetric function on ν such that

$$
\lambda_\nu(z) + \alpha_1 \log(z - p_1) + \alpha_2 \log(z - p_2)
$$
is Hölder smooth on ν for some real constants α_1, α_2, where the determinations of the logarithms are holomorphic across $\pi(\nu) \setminus \{p_1, p_2\}$. Set

$$
\Lambda_\nu(z) := \frac{1}{4\pi i} \oint_\nu \lambda_\nu C_\nu.
$$
Since $C_{\nu^*} = -C_\nu$, it holds that $\Lambda_\nu(z) + \Lambda_\nu(z^*) = 0$. Moreover, it is known [24, Eq. (2.7)–(2.9)] that $\Lambda_\nu(z)$ is a holomorphic function in $\mathbb{R} \setminus (\nu \cup \alpha)$ with continuous traces on $(\nu \setminus \alpha) \setminus \{p_1, p_2\}$ and $(\alpha \setminus \nu) \setminus \{p_1, p_2\}$ that satisfy

$$
\Lambda_\nu(s) - \Lambda_\nu(-s) = \begin{cases}
\lambda_\nu(s), & s \in \nu \setminus \alpha, \\
-\oint_{\nu} \lambda_\nu \mathcal{H}, & s \in \alpha \setminus \nu.
\end{cases}
$$
where we used the fact that $\lambda_\nu(s) = \lambda_\nu(s^*)$ and the jumps need to be added up on subarcs of $\nu \cap \alpha$. In the absence of logarithmic singularities, i.e., when $\alpha(e) = 0$, the claims of the lemma now follow by summing up Λ_ν over all $\nu \in \{\alpha, \beta, \gamma, \delta\}$ while taking $\Lambda_\nu := \Lambda_{\nu|\nu}$.

Let $\Lambda := \sum_{\nu=\alpha, \beta, \gamma, \delta} \Lambda_\nu$. When a branch point p is such that $\pi(p) \in \{a, a^{-1}\}$, there is exactly one cycle from the chain Δ passing through p (either β or δ). Moreover, since β and δ separate \mathbb{R} into the sheets $\mathbb{R}^{(0)} \setminus \{\beta \cup \delta\}$ and $\mathbb{R}^{(1)} \setminus \{\beta \cup \delta\}$, the analysis of [1, Section 5.2] applies and yields that

$$
\Lambda(z^{(k)}) = (-1)^{1-k} \frac{\alpha(p)}{2} \log(p - z) + O(1) \quad \text{as} \quad z \to p \in \{a, a^{-1}\},
$$
for $k \in \{0, 1\}$, where $\log(p - \cdot)$ is holomorphic in some neighborhood of $p = a$ cut along F_p.

The situation when $p \in \{b, b^{-1}\}$ is again very similar to the one discussed in [1, Section 5.2]. Clearly, the singular behavior around p comes from the first term in (40). As explained in [12, Section 1.8.5], to understand this behavior it is enough to find a function that has
logarithmic singularity at \(p \) and the same jumps across the cycles comprising \(\Lambda \). Thus, it can be checked that

\[
\Lambda(z^{(k)}) = \pm (-1)^{k+1} \frac{\alpha(p)}{2} \log(z - p) + O(1) \quad \text{as} \quad z \to p \in \{b, b^{-1}\},
\]

where the sign + is used if \(z \in D_0 \) and the sign – is used if \(z \in D_{\infty} \), and \(\log(\cdot - p) \) has a jump along \(F_n \) when \(p = b \) and \(F_{n-1} \) when \(p = b^{-1} \).

3.4. Jacobi Inversion Problem. We define Abel’s map on \(\mathfrak{R} \) by

\[
a(z) := \int_{a}^{z} \mathcal{H}, \quad z \in \mathfrak{R}_{\alpha, \beta} \cup (\alpha \cup \beta),
\]

where the path of integration lies entirely in \(\mathfrak{R}_{\alpha, \beta} \), and set \(a(\zeta) := a(\zeta) \) when \(\zeta \in \alpha \cup \beta \). Since \(\mathfrak{R} \) has genus 1, any Jacobi inversion problem is uniquely solvable on \(\mathfrak{R} \). In particular, given a function \(h \) and an integer \(n \in \mathbb{N} \), there exist unique \(z_n = z_n(h) \in \mathfrak{R} \) and \(j_n, m_n \in \mathbb{Z} \) such that

\[
a(z_n) = a(\alpha^{(0)}) - \frac{1}{2\pi i} \oint_{\Lambda} \lambda_1 \mathcal{H} + n(\omega + B\tau) + j_n + Bm_n.
\]

Lemma 9. For \(\epsilon > 0 \), let \(\mathbb{N}_\epsilon \) be defined by (25). Then the conclusions of Proposition 3 hold true. Further, let \(z_n^* = z_n^*(h) \) be the solution of the following Jacobi inversion problem:

\[
a(z_n^* + 0^{(1)} - z_n - \alpha^{(0)}) \in \mathbb{Z} + B\mathbb{Z}.
\]

Then there exists a domain \(U_\epsilon \supset \alpha^{(0)} \) such that \(z_n^* \notin U_\epsilon \) for all \(n \in \mathbb{N}_\epsilon \).

Proof. According to Riemann’s relations, it holds that

\[
a(\alpha^{(1)}) - a(0^{(1)}) = \int_{\beta_{\alpha^{(1)}}} \mathcal{H} = \frac{1}{2\pi i} \oint_{\beta} \mathcal{M}_{\alpha^{(1)}, 0^{(1)}},
\]

where \(\mathcal{M}_{\alpha_1, \alpha_2} \) is a meromorphic differential having two simple poles at \(\alpha_1 \) and \(\alpha_2 \) with residues 1 and –1, respectively, and zero period on \(\alpha \). In fact,

\[
\mathcal{M}_{\alpha^{(1)}, 0^{(1)}} = -\mathcal{N} + 2\pi i \tau \mathcal{H}
\]

as one can see from (34). That is, it holds that

\[
a(\alpha^{(1)}) - a(0^{(1)}) = -\frac{1}{2\pi i} \oint_{\beta} \mathcal{N} + \tau \oint_{\beta} \mathcal{H} = \omega + B\tau.
\]

It also follows from (44) that

\[
a(z_n) - a(z_{n-1}) - (\omega + B\tau) \in \mathbb{Z} + B\mathbb{Z}.
\]

The continuity of \(a(z) \) and the unique solvability of the Jacobi inversion problem now yield that if \(z_n \to \alpha^{(1)} \) along some subsequence \(\mathbb{N}_\epsilon \), then \(z_{n-1} \to 0^{(1)} \) as \(\mathbb{N}_\epsilon \ni n \to \infty \), which proves unboundedness of \(\mathbb{N}_\epsilon \) as well as the fact that either \(n \) or \(n - 1 \) is in \(\mathbb{N}_\epsilon \) for all \(\epsilon \) small enough. The same argument proves the last claim of the lemma since \(z_n^* \) \(\to \alpha^{(0)} \) along some subsequence implies that \(z_{n-1} \to 0^{(1)} \) and respectively \(z_n \to \alpha^{(1)} \) along the same subsequence.

3.5. Riemann’s Theta Function. Recall that the theta function associated with \(B \) is an entire transcendental function defined by

\[
\theta(u) := \sum_{n \in \mathbb{Z}} \exp \left\{ \pi i B n_2 + 2\pi i n u \right\}, \quad u \in \mathbb{C}.
\]

Lemma 10. Let \(h \) and \(z_n \) be as above. Define

\[
\Theta_h(z) := \frac{\theta \left(a(z) - a(z_n) - \frac{1 + B}{2} \right)}{\theta \left(a(z) - a(\alpha^{(0)}) - \frac{1 + B}{2} \right)}.
\]
The function Θ_n is meromorphic in $\mathfrak{R}_{\alpha, \beta}$ with a simple zero at z_n, a simple pole at $\infty(0)$, and otherwise non-vanishing and finite. In fact, it is holomorphic across β and

$$
\Theta_{n+} = \Theta_{n-} \exp \left\{ \int_{\alpha} A \, d\mathcal{H} - 2\pi i n (\tau + B \omega) - 2\pi i B m \right\} \quad \text{on} \quad \alpha.
$$

Proof. It can be directly checked that

$$
\theta(u + j + B m) = \exp \left\{ -\pi i B m^2 - 2\pi i m \right\} \theta(u), \quad j, m \in \mathbb{Z}.
$$

Moreover, it is known that $\theta(u) = 0$ if and only if $u = (1 + B)/2 + j + B m, j, m \in \mathbb{Z}$. Further, recall that

$$
a_+ \rightarrow a_+ = \left\{ \begin{array}{ll} -\frac{\beta}{\alpha} \mathcal{H} & \text{on} \quad \alpha, \\ \frac{\alpha}{\beta} \mathcal{H} & \text{on} \quad \beta, \end{array} \right. \quad \text{on} \quad \beta.
$$

Therefore, it holds for $s \in \beta$ that

$$
\Theta_{n+}(s) = \frac{\theta \left(a_+(z) - a(\infty(0)) \right) - 1 + B}{\theta \left(a_- (z) - a(\infty(0)) \right) - 1 + B} = \frac{\theta \left(1 + a_- (z) - a(\infty(0)) \right) - 1 + B}{\theta \left(1 + a_+ (z) - a(\infty(0)) \right) - 1 + B} = \Theta_{n-}(s).
$$

That is, Θ_n is holomorphic across β as claimed. Similarly, we get on α that

$$
\Theta_{n+} = \Theta_{n-} \exp \left\{ 2\pi i \left(a(\infty(0)) - a(z_n) \right) \right\},
$$

which gives (46) by (44). \qed

3.6. Proof of Theorem 2 and Proposition 3. Proposition 3 has been proven as a part of Lemma 9. To prove Theorem 2, define

$$
\Psi_n := \Phi^\delta A_{n \tau + m_n} S_h \Theta_n
$$

using (35), (38), (41), and (45). The meromorphy properties follow straight from Lemmas 6, 7, 8, and 10 with (23) specifically being the combination of (36), (39), (42) and (46). The behavior (24) around the ramification points of \mathfrak{R} is a direct consequence of (43). Now, if Ψ is a function as described in the theorem, then Ψ / Ψ_n is a rational function on \mathfrak{R} with a single possible pole at z_n. As \mathfrak{R} has genus 1, there are no rational functions on \mathfrak{R} with a single pole. Hence, the ratio Ψ / Ψ_n must be a constant.

3.7. Proof of Theorem 5. It follows from Lemma 6 that the described function $g(z)$ is given by

$$
g(z) := \log |\Phi(z)| - \log |\Phi(z^*)|, \quad z \in D_{Q_h},
$$

where the second equality is a direct consequence of (37). Hence, (26), (27), and (48) yield that

$$
\begin{cases}
|Q_n(z)| = |(A_{n \tau + m_n} S_h \Theta_n)(z)| e^{n g(z)}, & z \in D_{Q_h} \\
|R_n(z)| = |(A_{n \tau + m_n} S_h \Theta_n)(z)| e^{-n g(z)}, & z \in D_{R_h}.
\end{cases}
$$

Notice that the range of Abel’s map $a(z)$ is bounded. Recall also that $\text{Im}(B) > 0$. Therefore, it follows from (44) that the sequence of numbers $\{n \tau + m_n\}$ is bounded. Hence, for any $\delta > 0$, there exists a constant $C_\delta > 1$ such that

$$
C_\delta^{-1} \leq |(A_{n \tau + m_n} S_h)(z)| \leq C_\delta
$$

for z outside of circular neighborhoods of “radius” δ around each ramification point. Further, compactness of \mathfrak{R} and continuity of the Abel’s map imply that the family of functions $\{\Theta(\cdot; p)\}$, where

$$
\Theta(z; p) := \frac{\theta \left(a(z) - a(p) - \frac{1-B}{2} \right)}{\theta \left(a(z) - a(\infty(0)) - \frac{1-B}{2} \right)},
$$

is also compact and therefore necessarily has uniformly bounded above moduli for z away from $\infty(0)$. Analogously, one can see that the family $\{\Theta(\cdot; p) / \Phi\}$ has uniformly bounded moduli away from $0^{(1)}$. The last two observations finish the proof of the upper bounds in
(29) and (31). Clearly, the lower bounds amount to estimating the moduli of $\Theta(z; p)$ and $\Theta(z; p)/\Phi$ from below outside of $D_\delta(p)$. The existence of a such a bound for each function is obvious, the fact the infimum of these bounds is positive follows again from compactness.

Further, observe that the other zero of \mathcal{T}_n is z_n^* by Lemma 9. Therefore, we get from (44) that
\begin{equation}
 a(z_n^*) = 2a(\infty(0)) - a(\infty(1)) - \frac{1}{2\pi i} \oint_\Lambda \lambda_n H + n(\omega + B\tau) + j_n^* + Bm_n^*
\end{equation}
for some $j_n^*, m_n^* \in \mathbb{Z}$. Hence, the function Ψ_n^* can be equivalently defined as
\begin{equation}
 \Psi_n^* = \Phi^n A_{n\tau + m}\delta_n \Theta (\cdot; 0(1)) \Theta (\cdot; z_n^*).
\end{equation}
From this representation we can obtain bounds (29) and (31) exactly as before. Lastly, notice that the ratio Ψ_{n-1}^*/Ψ_n is equal to Q_n/Q_{n-1} in D_Q and to R_{n-1}^*/R_n in D_R. Hence, we just need to estimate $|\Psi_{n-1}^*/\Psi_n|$ on \mathfrak{R}. It clearly follows from (45) and (50) that
\begin{equation}
 |\Psi_{n-1}^*/\Psi_n| = |A_{m_n^* - m_{n-1}^*}/|z_n^*|/|\Theta (\cdot; 0(1))|/|\Theta (\cdot; z_n^*)|/|\Theta_n|.
\end{equation}
Similarly to (49), we can argue that the first term in the above product is uniformly bounded above with n on the whole surface \mathfrak{R}. The middle term is a single function with a simple pole at z_0 and therefore is uniformly bounded above in $\mathfrak{R} \setminus D_\delta(z_n^*)$ for any $\delta > 0$ by the previous compactness argument.

4. Proof of Theorem 1 when $\rho \in W_2$

To analyze the asymptotic behavior of the polynomials Q_n, and linearized error functions R_n, we use the matrix Riemann-Hilbert approach pioneered by Fokas, Its, and Kitaev [10, 11] and the non-linear steepest descent method developed by Deift and Zhou [9]. In what follows, it will be convenient to set
\begin{equation}
 \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\end{equation}

4.1. Orthogonality. To proceed, we shall also need the two-point Padé approximant to f_{ρ} of type $(n, n-1)$ that we denote by P_{n-1}^*/Q_{n-1}^*. Set
\begin{equation}
 R_{n-1}^*(z) := z^n (Q_{n-1}^* f_{\rho} - P_{n-1}^*) (z), \quad z \in \mathbb{C} \setminus F.
\end{equation}
According to (2) and (14), the functions R_n, R_{n-1}^* are holomorphic around the origin and it holds that
\begin{equation}
 R_n(z) = O(z^{-n-1}), \quad R_{n-1}^*(z) = O(z^n) \quad \text{as} \quad z \to \infty.
\end{equation}
Let Ω be a bounded annular domain containing F and not containing 0, whose boundary consists of two smooth Jordan curves. Assuming $\partial \Omega$ to be positively oriented, we get that
\begin{equation}
 0 = \int_{\partial \Omega} R_n(z) z^k dz = \int_{\partial \Omega} Q_n(z) f_{\rho} (z) z^k dz = - \int_F Q_n(s) s^k - n \rho(s) ds
\end{equation}
for any $k \in \{0, \ldots, n-1\}$, where the first equality follows from (52) and the Cauchy theorem applied outside of Ω, the second is obtained by applying Cauchy theorem inside of Ω, and the last is a consequence of (4), Fubini-Tonelli’s theorem, and the Cauchy integral formula. Analogously to (53) we get that
\begin{equation}
 0 = \int_F Q_{n-1}^* (s) s^k - n \rho(s) ds, \quad k \in \{0, \ldots, n-2\}.
\end{equation}
Moreover, similar computation also yields that
\begin{equation}
 R_{n-1}^*(z) = -z^n \int_F Q_{n-1}^*(s) s^{-1} \rho(s) \frac{ds}{2\pi i} + O(z^{-n-1}) =: \frac{1}{a_{n+1}} + O(z^{-n-1}).
\end{equation}
Hence, a_n is infinite if and only if Q_{n-1}^* satisfies (54) with $k = n-1$ as well. However, if the latter is true, then Q_{n-1}^* satisfies (53). Conversely, if there exists a polynomial of degree at
most \(n - 1 \) satisfying (53), it automatically satisfies (54) and therefore the coefficient next to \(z^{-n} \) in the expansion of \(R_{n-1}^* \) at infinity must be zero. Altogether, \(a_n \) is finite if and only if \(\text{deg}(Q_n) = n \), where \(Q_n \) is the smallest degree polynomials satisfying (53).

4.2. Initial RH Problem. Under the assumption \(\text{deg}(Q_n) = n \), define

\[
Y := \left(\begin{array}{cc}
Q_n & R_n \\
\frac{a_n}{a_n}Q_{n-1}^* & \frac{a_n}{a_n}R_{n-1}^*
\end{array} \right).
\]

Then this matrix solves the following Riemann-Hilbert problem (RHP-\(Y \)): find a \(2 \times 2 \) matrix-valued function \(Y \) such that

(a) \(Y \) is analytic in \(\mathbb{C} \setminus F \) and \(\lim_{z \to \infty} Y(z)z^{-n+3} = I \);

(b) \(Y \) has continuous traces on \(F^o \) that satisfy \(Y_+(s) = Y_-(s) \left(\begin{array}{cc} 1 & \rho(s)/s^n \\ 0 & 1 \end{array} \right) \);

(c) it holds that \(Y(z) = \mathcal{O} \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \) as \(z \to b \) and \(Y(z) = \mathcal{O} \left(\begin{array}{cc} 1 & \frac{1}{|z-e|^{-1/2}} \\ 0 & \frac{1}{|z-e|^{-1/2}} \end{array} \right) \) as \(z \to e \in \{a, a^{-1}\} \).

Indeed, it is straightforward that \(Y \) fulfills RHP-\(Y \) (a) given that \(\text{deg}(Q_n) = n \), which also implies that \(a_n \) is finite. Let \(Q \) be either \(Q_n \) or \(Q_{n-1}^* \), and \(R \) be either \(R_n \) or \(R_{n-1}^* \). Then we deduce from (14), (51), and the Sokhotski-Plemelj formulæ [12, Section I.4.2] that

\[
(R_+ - R_-)(x) = (Q\rho)(x)/x^n, \quad x \in F^o,
\]

and therefore \(Y \) fulfills RHP-\(Y \) (b). Finally, it follows from (6) that

\[
\rho|_{F_a}(b) - \rho|_{F_a^{-1}}(b) + \rho|_{F_b}(b) + \rho|_{F_b^{-1}}(b) = \frac{h(b)}{w_+(b)} - \frac{h(b)}{w_-(b)} + \frac{h(b)}{w_+(b)} - \frac{h(b)}{w_-(b)} = 0,
\]

where the limits \(\rho|_{F_b}(b) \) are evaluated in accordance with the orientation of \(F_b \) (also keep in mind that the segment \([a^{-1}, a] \) is always oriented from \(a^{-1} \) to \(a \)). Thus, RHP-\(Y \) (c) follows from the known behavior of Cauchy integrals near points of discontinuity of the weight [12, Sections I.8.1–4], where the fact that the second column does not have a logarithmic singularity around \(b \) is a direct consequence of (56). To show that a solution of RHP-\(Y \), if exists, must be of the form (55) is by now a standard exercise, see for instance, [14, Lemma 2.3] or [1, Lemma 1]. Thus, we proved the following lemma.

Lemma 11. If a solution of RHP-\(Y \) exists, then it is unique and is given by (55) where \(\text{deg}(Q_n) = n \). Conversely, if \(\text{deg}(Q_n) = n \), then (55) solves RHP-\(Y \).

4.3. Opening of Lenses. Let \(\Gamma_0 \) and \(\Gamma_\infty \) be two positively oriented Jordan curves that lie in \(D_0 \) and \(D_\infty \), respectively. Assume further that these curves are close enough to \(F \) so that \(h(z) \) is holomorphic and non-vanishing on the annular domain bounded by them. Denote by \(\Omega_0 \) and \(\Omega_\infty \) the intersection of this annular domain with \(D_0 \) and \(D_\infty \), respectively. Define

\[
X(z) := Y(z), \quad z \in \Omega_0
\]

\[
\left(\begin{array}{cc} 1 & 0 \\ -z^n/\rho(z) & 1 \end{array} \right), \quad z \in \Omega_\infty,
\]

\[
I, \quad z \in \mathbb{C} \setminus (\overline{\Omega_0} \cup \overline{\Omega_\infty}),
\]

where we set \(\rho(z) := h(z)/w(z) \) in \(\Omega_0 \cup \Omega_\infty \) for \(w(z) \) given by (5). Then the matrix \(X \) solves the following Riemann-Hilbert problem (RHP-\(X \)):

(a) \(X \) is analytic in \(\mathbb{C} \setminus (\Gamma_0 \cup F \cup \Gamma_\infty) \) and \(\lim_{z \to \infty} X(z)z^{-n+3} = I \);
where we also used (9). Further, set
\[Q(s) = \begin{cases} 1, & s \in \Gamma_0 \cup \Gamma_{\infty}, \\ 0, & s \in F_{\infty}; \end{cases} \]
and satisfies RHP. Lemma 12.

Similarly to where the convention concerning the roots of negative numbers is the same as in (8).

To solve RHP, recall the definition of \(Q_n, R_n \) in (12) and (13). Since \(D_+ = D_- h \) on \(\mathbb{T} \), \(S_+ S_- = D^2 h \) on \(F_\alpha \), and \(S_+ S_- = D^2 h \) on \(F_{\alpha^{-1}} \), it can be easily checked that
\[Q_n(s) = [s^n/h(s)]R_n(s) \begin{cases} 1, & s \in F_{\alpha}, \\ -1, & s \in F_{\alpha^{-1}}, \\ \mp 1, & s \in F_{\alpha^{-1}} \end{cases} \]
where we also used (9). Further, set
\[\phi(z) := \frac{z - b - w(z)}{\sqrt{a} - \sqrt{z}^{-1}}, \]
where the convention concerning the roots of negative numbers is the same as in (8).

Similarly to \(\varphi(z) \), one can see that \(\phi(z) \) is holomorphic off \([a^{-1}, a]\), has a simple zero at the origin, and satisfies \(\phi_-(s)\phi_+(s) = 1 \) for \(s \in [a^{-1}, a] \). Further, with (12) and (13) at hand, let us put
\[Q_{n-1}^+(z) := Q_{n-1}(z) \begin{cases} z/\phi(z), & z \in D_0, \\ \phi(z), & z \in D_{\infty}, \end{cases} \]
which is a holomorphic and non-vanishing function in \(\mathbb{C} \setminus F \) with a pole of order \(n - 1 \) at infinity and
\[R_{n-1}^+(z) := R_{n-1}(z) \begin{cases} \phi(z)/z, & z \in D_0, \\ 1/\phi(z), & z \in D_{\infty}, \end{cases} \]
which is a holomorphic and non-vanishing function in \(\mathbb{C} \setminus F \) with a zero of multiplicity \(n - 1 \) at infinity. Clearly, \(Q_{n-1}^+ \) and \(R_{n-1}^+ \) also satisfy (58). Then it can be readily checked that
\[N := CM, \quad C := \begin{pmatrix} \gamma_n & 0 \\ 0 & \gamma_{n-1}^* \end{pmatrix}, \quad M := \begin{pmatrix} Q_n & R_n/w \\ Q_{n-1}^* & R_{n-1}^*/w \end{pmatrix}, \]
solves RHP, where \(\gamma_{n-1}^* \) is a constant such that \(\lim_{z \to \infty} \gamma_{n-1}^* z^{n-1} R_{n-1}^*(z) = 1 \). Observe that \(M \) satisfies RHP-(c) and \(\det(N) \equiv 1 \) because \(\det(N)(z) \) is a holomorphic function outside \([a, a^{-1}]\), where it has at most square root singularities, and that has value 1 at infinity. It also holds that
\[\det(M) = (\gamma_n \gamma_{n-1}^*)^{-1} = -\frac{4}{2b + a + a^{-1}}. \]
4.5. RH Problem with Small Jumps. Consider the following Riemann-Hilbert problem (RHP-Z):

(a) \(Z \) is a holomorphic matrix function in \(\mathbb{C} \setminus (\Gamma_0 \cup \Gamma_\infty) \) and \(Z(\infty) = I \);
(b) \(Z \) has continuous traces on \(\Gamma_0 \cup \Gamma_\infty \) that satisfy

\[
Z_+(s) = Z_-(s)M(s) \begin{pmatrix} 1 & 0 \\ \rho(s) & 1 \end{pmatrix} M^{-1}(s).
\]

Then the following lemma takes place.

Lemma 13. For \(n \) large enough, a solution of RHP-Z exists and satisfies

\[
Z = I + O(c^n)
\]

for some constant \(c < 1 \) independent of \(\Gamma_0, \Gamma_\infty \), where \(O(\cdot) \) holds uniformly in \(\mathbb{C} \).

Proof. It follows from an explicit computation and (63) that the jump matrix for \(Z \) is equal to

\[
I + \gamma_n \gamma_n^{-1} \frac{s^n}{(\text{hw})(s)} \begin{pmatrix} (R_nR_n^{*-1})(s) & -R_n^2(s) \\ R_n^{*-2}(s) & -(R_nR_n^{*-1})(s) \end{pmatrix} = I + O(c^n (\Gamma_0, \Gamma_\infty)),
\]

where \(c(\Gamma_0, \Gamma_\infty) \in (0, 1) \) and the last equality is a consequence of (9) and the maximum modulus principle for holomorphic functions. The conclusion of the lemma now follows from the same argument as in [7, Corollary 7.108].

4.6. Asymptotics. Let \(Z \) be a solution of RHP-Z granted by Lemma 14 and \(C, M \) be defined by (62). Then it can be easily checked that \(X := CZM \) solves RHP-X and therefore the solution of RHP-Y is obtained from (57).

Given any closed set \(B \subset \mathbb{C} \setminus \mathcal{F} \), choose \(\Omega_0, \Omega_\infty \) so that \(B \subset \mathbb{C} \setminus (\overline{\Omega_0} \cup \overline{\Omega_\infty}) \). Then \(Y = CZM \) on \(B \). Hence, if the first row of \(Z \) is denoted by \((1 + \nu_1, \nu_2) \), we have that

\[
\begin{cases}
\mathcal{Q}_n = \gamma_n \left[(1 + \nu_{n1}) \mathcal{Q}_n + \nu_{n2} \mathcal{Q}_n^{*-1} \right], \\
\mathcal{W}_n = \gamma_n \left[(1 + \nu_{n1}) \mathcal{W}_n + \nu_{n2} \mathcal{W}_n^{*-1} \right],
\end{cases}
\]

by (55) and (62). Equations (15) now follow from (12) and (60) together with (13) and (61) since we know from Lemma 14 that \(|\nu_{nk}| \leq c^n \) uniformly in \(\mathbb{C} \) as \(\mathcal{Z}(\infty) = I \).

5. Proof of Theorem 4 when \(\rho \in \mathcal{W}_2 \)

It is straightforward to check that everything written in Sections 4.1-4.3 remains valid except for RHP-Y(c) which now simply reads

\[
Y(z) = O \begin{pmatrix} 1 & |z - e|^{-1/2} \\ 1 & |z - e|^{-1/2} \end{pmatrix} \quad \text{as} \quad z \to e \in E = \{a, b, a^{-1}, b^{-1}\}.
\]

Furthermore, the formulation of RHP-N remains the same as well. To solve it, observe that (58) still holds (one needs to replace \(F_\beta \) with \(F_{\beta^{-1}} \cup F_{\gamma} \)), where the functions \(Q_n, R_n \) are now defined by (26) and (27). Indeed, for \(s \in F_{\alpha} \), it holds that

\[
Q_n(s) = \Psi_n(s) = h^{-1}(s)\Psi_{n-1}(s) = [s^n/h(s)]\mathcal{R}_{n}^{*}(s)
\]

as claimed. The proof of (58) on the rest of the arcs is absolutely analogous (one just needs to pay attention to the chosen orientations of the cycles \(a, \beta, \gamma, \delta \)). Moreover, the functions \(Q_{n} \) and \(R_{n}^{*-1} \), defined just before Theorem 4, satisfy (58) as well, which can be shown in a similar fashion since \(\Psi_{n}^{*-1} \) obviously satisfies (23). Hence, it is easy to check using (58) that RHP-N is solved for each \(n \) such that \(z_n \neq \infty^{(1)} \) by (62), where the constants \(\gamma_n \) and \(\gamma_{n}^{*-1} \) are again defined by

\[
\lim_{z \to \infty} \gamma_n Q_n(z)z^{-n} = 1 \quad \text{and} \quad \lim_{z \to \infty} \gamma_{n-1}^{*-1} R_{n-1}^{*}(z)z^{n-2} = 1.
\]
These constants are well defined by the very definition of \(\mathbb{N}_x \) and Lemma 9. Notice again that \(M \) has the same behavior near \(E \) as \(Y \). Moreover, \(\det(N) \equiv 1 \) due to the same reasons as before, and therefore \(\det(M) = (y_n y_{n-1}^*)^{-1} \). Given the solution of RHP-N, we again can formulate RHP-Z. Obviously, the jump of \(Z \) is equal to the left-hand side of (65). Since

\[
y_n y_{n-1}^* = \lim_{z \to \infty} \frac{z^2}{Q_m(z)R_{n-1}^*(z)} = \lim_{z \to \infty} \frac{z^3 A_{m_n - m_{n-1}}(z^*)}{\Theta(z)\Theta_n(z)\Theta(z^*)\Theta(z^*; 0(1))\Theta(z^*; z_{n-1}^*)}.
\]

it follows from the very definition of \(\mathbb{N}_x \), Lemma 9, and the compactness argument from the proof of Theorem 5 that the sequence \(\{y_n y_{n-1}^*\}_{n \in \mathbb{N}_x} \) is bounded above (the constant does depend on \(\varepsilon \)). Therefore, the conclusion of Lemma 14 still holds, but only for all \(n \in \mathbb{N}_x \) large enough and with constant \(c = c_x \), where we need to use (31) and (30) coupled with the maximum principle for harmonic functions to show the equality in (65). Finally, the proof of (28) is now absolutely the same as in the case of Theorem 1.

6. Proof of Theorem 1 when \(\rho \in \mathcal{W}_1 \)

6.1. Initial RH Problem. The material of Section 4.1 remains valid. The only change in Section 4.2 needs to be made in RHP-Y(c) that is replaced by

\[
Y(z) = \begin{cases}
O\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) & \text{as } z \to h, h^{-1}, \\
O\left(\begin{array}{c}
1 \\
\psi_a(z-a) \\
\psi_a(z-a)
\end{array}\right) & \text{as } z \to a, \\
O\left(\begin{array}{c}
1 \\
\psi_b(z-a_1) \\
\psi_b(z-a_1)
\end{array}\right) & \text{as } z \to a^{-1},
\end{cases}
\]

(66)

where

\[
\psi_a(z) := \begin{cases}
|z|^\alpha, & \text{if } \alpha < 0, \\
\log |z|, & \text{if } \alpha = 0, \\
1, & \text{if } \alpha > 0.
\end{cases}
\]

6.2. Opening of Lenses. Here, we choose \(\Gamma_0, \Gamma_\infty \) as in Section 4.3 with the exception of requiring \(\Gamma_0 \) to touch \(F \) at \(a \) and \(\Gamma_\infty \) to touch \(F \) at \(a^{-1} \). We define \(\Omega_0, \Omega_\infty \) again as in Section 4.3, however, now they are no longer annular domains. Further, we still define \(X \) by (57) with \(p(x) \) extended to \(\Omega_0 \cup \Omega_\infty \) by \(h(z)/w(z) \) (we assume that the branch cuts of \((z-a)^{\alpha+1/2} \) and \((z-a^{-1})^{\beta+1/2} \) in (7) lie outside of some neighborhoods of \(a \) and \(a^{-1} \) intersected with \(\overline{\Omega_0} \cup \overline{\Omega_\infty} \)). The Riemann-Hilbert problem RHP-X remains the same except for RHP-X(c), which needs to be modified within \(\Omega_0 \cup \Omega_\infty \) as follows:

\[
X(z) = \begin{cases}
O\left(\begin{array}{c}
|z-a|^\alpha \\
1 \\
|z-a|^\alpha
\end{array}\right), & \text{if } \alpha < 0, \\
O\left(\begin{array}{c}
\log |z-a| \\
\log |z-a| \\
\log |z-a|
\end{array}\right), & \text{if } \alpha = 0, \\
O\left(\begin{array}{c}
|z-a|^{-\alpha} \\
|z-a|^{-\alpha} \\
1
\end{array}\right), & \text{if } \alpha > 0,
\end{cases}
\]

(67)

as \(\Omega_0 \cup \Omega_\infty \ni z \to a \), and an analogous change should be made around \(a^{-1} \). With the above changes, Lemma 12 still holds.

6.3. Model and Local RH Problems. Model Riemann-Hilbert problem RHP-N is formulated and solved exactly as in the case \(\rho \in \mathcal{W}_2 \). Moreover, it is still true that \(\det(N) \equiv 1 \)
(the singular behavior of the entries of N around a, a^{-1} gets canceled when determinant is evaluated). Let now $U_a, U_{a^{-1}}$ be open sets around a, a^{-1}. Define

$$D(z) := \begin{cases} \frac{(z\varphi(z))^n}{\varphi(z)}, & z \in D_0, \\ \varphi(z)^n, & z \in D_\infty \end{cases}$$

where φ is given by (8). We shall need to solve the following local Riemann-Hilbert problems (RHP-P_ϵ, $e \in \{a, a^{-1}\}$):

(a,b,c) P_e satisfies RHP-X(a,b,c) within U_e;

(d) $P_e = MD^{-1}(I + O(1/n))D$ uniformly on ∂U_e.

Since the construction of P_e is rather lengthy, we postpone it until the end of the section.

6.4. RH Problem with Small Jumps. Let

$$\Sigma = (\partial U_a \cup \partial U_{a^{-1}}) \cup (\Gamma_0 \cup \Gamma_\infty) \setminus (\overline{U}_a \cup \overline{U}_{a^{-1}}).$$

The Riemann-Hilbert problem RHP-Z now needs to be formulated as follows:

(a) Z is a holomorphic matrix function in $\overline{\mathbb{C}} \setminus \Sigma$ and $Z(\infty) = I$;

(b) Z has continuous traces at the smooth points of Σ that satisfy

$$Z_+(s) = Z_-(s) \begin{pmatrix} M(s) & 0 \\ s^{n} \rho(s) & 1 \end{pmatrix}^{-1} M^{-1}(s), \quad s \in (\Gamma_0 \cup \Gamma_\infty) \setminus (\overline{U}_a \cup \overline{U}_{a^{-1}}),$$

$$Z_+(s) = Z_-(s) \begin{pmatrix} P_e M^{-1} \end{pmatrix}(s), \quad s \in \partial U_e \setminus (\Gamma_0 \cup F \cup \Gamma_\infty), \quad e \in \{a, a^{-1}\}.$$

Then the following lemma takes place.

Lemma 14. For all n large enough, a solution of RHP-Z exists and satisfies $Z = I + O(1/n)$ uniformly in $\overline{\mathbb{C}}$.

Proof. The proof of the fact that the jump of Z is geometrically small on $(\Gamma_0 \cup \Gamma_\infty) \setminus (\overline{U}_a \cup \overline{U}_{a^{-1}})$ is the same as in the case $\rho \in \mathcal{W}_2$. Furthermore, we have that

$$P_e M^{-1} = I + MD^{-1}O(1/n)D M^{-1}$$

on ∂U_e. It follows from (12), (13), (60), (61), and (62) that

$$MD^{-1} = \begin{pmatrix} 1 & 1 \\ \varphi/\phi & \phi/\varphi \end{pmatrix} \begin{pmatrix} S \end{pmatrix}^\sigma$$

on ∂U_a and a similar formula holds on $\partial U_{a^{-1}}$. In any case it is a fixed matrix independent of n. Hence, the jump of Z is of order $O(1/n)$ on $\partial U_a \cup \partial U_{a^{-1}}$. The conclusion of the lemma now follows as in the case $\rho \in \mathcal{W}_2$. \qed

6.5. Asymptotics. Formulae (15) follow now exactly as in the case $\rho \in \mathcal{W}_2$.

6.6. Solution of RHP-P_e, $e \in \{a, a^{-1}\}$. We shall construct the matrix P_a only as the construction of $P_{a^{-1}}$ is completely similar.

6.6.1. Model Problem. Below, we always assume that the real line as well as its subintervals are oriented from left to right. Further, we set

$$I_{\pm} := \{z : \arg(z) = \pm 2\pi/3\},$$

where the rays I_{\pm} are oriented towards the origin. Given $\alpha > -1$, let Ψ_α be a matrix-valued function such that

(a) Ψ_α is holomorphic in $\mathbb{C} \setminus (I_+ \cup I_- \cup (-\infty, 0))$;

(b) Ψ_α has continuous traces on $I_+ \cup I_- \cup (-\infty, 0)$ that satisfy

$$\Psi_{\alpha+} = \Psi_{\alpha-} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{on} \quad (-\infty, 0),$$

$$\Psi_{\alpha+} = \Psi_{\alpha-} \begin{pmatrix} 1 & 0 \\ e^{\pm \pi i \alpha} & 1 \end{pmatrix} \quad \text{on} \quad I_{\pm};$$
as \(\zeta \to 0 \) it holds that

\[
\Psi_{a}(\zeta) = O\left(\frac{1/2}{|\zeta|^{1/2}}\right) \quad \text{and} \quad \Psi_{a}(\zeta) = O\left(\frac{1/2}{|\zeta|^{1/2}}\right)
\]

when \(\alpha < 0 \) and \(\alpha = 0 \), respectively, and

\[
\Psi_{a}(\zeta) = O\left(\frac{1/2}{|\zeta|^{1/2}}\right) \quad \text{and} \quad \Psi_{a}(\zeta) = O\left(\frac{1/2}{|\zeta|^{1/2}}\right)
\]

when \(\alpha > 0 \), for \(|\arg(\zeta)| < 2\pi/3 \) and \(2\pi/3 < |\arg(\zeta)| < \pi \), respectively.

(d) it holds uniformly in \(\mathbb{C} \setminus (I_{a} \cup I_{b} \cup (-\infty,0]) \) that

\[
\Psi_{a}(\zeta) = S(\zeta) \left(I + O\left(\zeta^{-1/2}\right) \right) \exp\left(2\zeta^{1/2}\sigma_{3}\right)
\]

where \(S(\zeta) := \frac{\zeta^{-1/4}}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \) and we take the principal branch of \(\zeta^{1/4} \).

Explicit construction of this matrix can be found in [14] (it uses modified Bessel and Hankel functions). Observe that

\[
S_{+}(\zeta) = S_{-}(\zeta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},
\]

since the principal branch of \(\zeta^{1/4} \) satisfies \(\zeta_{+}^{1/4} = i\zeta_{-}^{1/4} \).

6.6.2. Conformal Map

In this section we define a conformal map that will carry \(U_{a} \) into \(\zeta \)-plane. Set

\[
\zeta_{a}(z) := \left(\frac{1}{4} \log \left(\frac{z}{\varphi^{2}(z)}\right)\right)^{2}, \quad z \in U_{a},
\]

where the function \(\varphi \) is given by (8). It follows from (9) that \(\zeta_{a} \) is holomorphic across \(F_{a} \).

It also follows from the explicit representation of \(\varphi \) that \(\zeta_{a} \) vanishes at \(a \). Moreover, since

\[
\frac{z}{\varphi^{2}(z)} = 1 - \frac{2w(z)}{z + b + w(z)},
\]

the zero of \(\zeta_{a} \) at \(a \) is necessarily simple. Notice also that \(|\varphi_{+}| = |\varphi_{-}| \) on \([a^{-1}, a] \) and therefore \(|\varphi_{\pm}(s)| \equiv 1 \) there according to (9). Hence, \(\zeta_{a} \) maps \(F_{a} \) into the negative reals. It is also simple to check that the rest of the reals in \(U_{a} \) are mapped into the positive reals by \(\zeta_{a} \). Set

\[
U_{a}^{+} := U_{a} \cap \left\{ \begin{array}{ll} \{ \pm \text{Im}(z) > 0 \}, & a < 0, \\
\{ \pm \text{Im}(z) > 0 \}, & a > 0.
\end{array} \right\}
\]

It should be clear from the previous discussion that \(\zeta_{a}(U_{a}^{+}) \subset \{ \pm \text{Im}(z) > 0 \} \). Let \(\Gamma_{0}^{+} := \Gamma_{0} \cap U_{a}^{+} \). Notice that according to the chosen orientation of \(\Gamma_{0} \), \(\Gamma_{0}^{+} \) is oriented towards \(a \) and \(\Gamma_{0}^{-} \) is oriented away from \(a \). As we have had some freedom in choosing the curve \(\Gamma_{0} \), we shall choose it so that \(\zeta_{a}(\Gamma_{0}^{+}) \subset I_{a} \).

Finally, in what follows we understand under \(\zeta_{a}^{1/2} \) the branch given by the expression in parenthesis in (71) with the branch cut along \(F_{a} \). In particular, it holds that

\[
\exp\left(2a\zeta_{a}^{1/2}(z)\sigma_{3}\right) = z^{-a\zeta_{a}^{1/2}D(z)},
\]

where the matrix \(D \) was defined in (68). Similarly, we let \(\zeta_{a}^{1/4} \) to be the branch that maps \(U_{a} \) into the sector \(|\arg(z)| < \pi/4 \). For instance, it holds that \(\zeta_{a}^{1/4} = i\zeta_{a}^{1/4} \) on \(F_{a} \).
6.6.3. Matrix \(P_a \). Under the conditions placed on the class \(W_1 \), it holds that
\[
\rho(z) \equiv \frac{h_a(z)}{w(z)} \begin{cases} (a-z)^{\alpha/2}, & a < 0, \\ (z-a)^{\alpha/2}, & a > 0, \end{cases} \quad z \in U_a \setminus [-1,1],
\]
where \(h_a \) is non-vanishing and holomorphic in \(U_a \), \(\alpha > 1 \), and the \(\alpha \)-roots are principal. Recall also that \(\rho \) on \(F_a \) is defined as the trace of \(\rho |_{U_a} \) on \(F_a \). This can be equivalently stated as
\[
\rho(z) = \pm \rho_a(z) \begin{cases} (a-z)^{\alpha/2}, & a < 0, \\ (z-a)^{\alpha/2}, & a > 0, \end{cases} \quad z \in U_a^\pm,
\]
where \(\rho_a \) is non-vanishing and holomorphic in \(U_a \). Set
\[
\rho_a(z) \equiv \sqrt{\rho_a(z)} \begin{cases} (z-a)^{\alpha/2}, & a < 0, \\ (a-z)^{\alpha/2}, & a > 0, \end{cases} \quad z \in U_a^\pm,
\]
where the branches are again principal. Then \(\rho_a \) is a holomorphic and non-vanishing function in \(U_a \setminus F_a \) that satisfies
\[
\begin{align*}
\rho_a(s) & = \rho(s), & s & \in F_a \cap U_a, \\
\rho_a^+(z) & = \rho(z) e^{i\pi}, & z & \in \Gamma_0^+, \\
\rho_a^-(z) & = -\rho(z) e^{i\pi}, & z & \in \Gamma_0^-.
\end{align*}
\]
The above relations and RHP-\(\Psi_a \)(a,b,c) imply that
\[
P_a(z) := E_a(z) \Psi_a \left(n^2 \zeta_a(z) \right) z^{\alpha/2} \rho_a^+(z)
\]
satisfies RHP-\(P_a \)(a,b,c), where \(E_a \) is a holomorphic matrix function (notice that the orientation of \(\zeta_a(\Gamma_0^+) \) is opposite from the orientation of \(I_\ast \)). It further follows from RHP-N(b), (9), and (70) that
\[
E_a(z) \equiv (MD^{-1})(z) r_{a}^{+}(z) S^{-1}(n^2 \zeta_a(z))
\]
is holomorphic in \(U_a \setminus \{a\} \). Since \(|r_a(z)| \sim |z-a|^{\alpha/2}, S^{-1}(n^2 \zeta_a(z)) \sim |z-a|^{\tau/4} \), and
\[
M(z) = \begin{pmatrix} |z-a|^{\alpha/2-1/4} & |z-a|^{\alpha/2-1/4} \\ |z-a|^{-\alpha/2-1/4} & |z-a|^{-\alpha/2-1/4} \end{pmatrix},
\]
\(E_a \) is in fact holomorphic in \(U_a \). Finally, RHP-\(P_a \)(d) follows now from (72) and RHP-\(\Psi_a \)(d).

7. Proof of Theorem 4 when \(\rho \in W_1 \)

As usual, Sections 4.1–4.2 translate identically to the present case after RHP-\(Y \)(c) is replaced by (66).

7.1. Opening of Lenses. We choose \(\Gamma_0, \Gamma_\infty \) as in Section 4.3 except for requiring \(\Gamma_0 \) to touch \(F \) at \(a \) and \(\Gamma_\infty \) to touch \(F \) at \(a^{-1} \), see Figure 4. Moreover, we also introduce open oriented arcs \(\Gamma_{\mu,1}, \Gamma_{\nu,-1}, \Gamma_{\nu} \) connecting \(v \) to \(\Gamma_0 \cup \Gamma_\infty \), \(v \in \{b, b^{-1}\} \), as shown on Figure 4. Besides the interior domain of \(\Gamma_0 \) and the exterior domain of \(\Gamma_\infty \), the union of the introduced arcs, say \(\Gamma \), together with \(F \) delimits eight domains that we label on as Figure 4. Observe that \(\rho \) has holomorphic and non-vanishing extension to each of these eight domains (we can bring arcs \(\Gamma_0, \Gamma_\infty \) closer to \(F \) if necessary). We assume that all the introduced arcs are smooth. Define
\[
X(z) := Y(z) \begin{pmatrix} 1 \\ \pm z^n / \rho(z) \\ 0 \\ 1 \end{pmatrix}, \quad z \in \Omega_\pm,
\]
where \(\Omega_\pm := \Omega_{\pm,1} \cup \Omega_{\pm,0} \cup \Omega_{\pm,1} \cup \Omega_{\pm,1} \cup \Omega_{\pm,0} \cup \Omega_{\pm,1} \), and \(\Omega_{0} := \Omega_{0,1} \cup \Omega_{0,0} \cup \Omega_{0,1} \cup \Omega_{0,1} \), and then the Riemann-Hilbert problem for \(X \) can be formulated as follows:
\begin{enumerate}
\item \(X \) is analytic in \(C \setminus (F \cup \Gamma) \) and \(\lim_{z \to \infty} X(z) z^{-\alpha \tau/2} = I \).
\end{enumerate}
Model and Local RH Problems.

Define \(\Gamma \) these sets do not intersect and solved exactly as in the case of \(\Theta_2 \). As in Section 6.3 we shall need to solve RHP-

doing the section.

in the previous proof, we postpone the construction of these matrix-functions until the end of the section.

With the above changes, Lemma 12 holds with (57) replaced by (75).

7.2. Model and Local RH Problems. Model Riemann-Hilbert problem RHP-\(N \) is formulated and solved exactly as in the case \(\rho \in W^2 \) for \(n \in \mathbb{N} \).

Let now \(U_n \) be an open set around \(e \in E \). In the case of \(U_{\rho^e} \) we shall further assume that these sets do not intersect \(\Gamma_b \Ome \) and completely contain \(\Gamma_{b^1}, \Gamma_{b_1^1}, \Gamma_{b_1^2, b_2^1} \), see Figure 5. Define \(D(z) := \Phi(z)^{\alpha^e}, \ z \in D_Q \), where \(\Phi \) is given by (35) and the open set \(D_Q \) was defined just before Theorem 5. As in Section 6.3 we shall need to solve RHP-\(P_e \) for all \(e \in E \). As in the previous proof, we postpone the construction of these matrix-functions until the end of the section.

(b) \(X \) has continuous traces at the smooth points of \(F \cup \Gamma \) that satisfy

\[
X_+(s) = X_-(s) \begin{pmatrix} 0 & \rho(s) s^n \\ -s^n / \rho(s) & 0 \end{pmatrix},
\]

for \(s \in F^c \), as well as

\[
X_+(s) = X_-(s) \begin{pmatrix} 1 & 0 \\ \pm s^n / \rho(s) & 1 \end{pmatrix},
\]

for \(s \in (\Gamma_0 \cup \Gamma_\infty) \setminus \{a, a^{-1}\} \), where we need to use the sign \(- \) for the portion of \(\Gamma_0 \) bordering \(\Omega_{b^1} \) and the part of \(\Gamma_\infty \) bordering \(\Omega_{b_1^1, b_2^1} \), and

\[
X_+(s) = X_-(s) \begin{pmatrix} 1 & 0 \\ s^n R(s) & 1 \end{pmatrix},
\]

for \(s \in \bigcup_{e \in \{b, b^{-1}\}} (\Gamma_e \cup \Gamma_{b^1} \cup \Gamma_{b_1^1}) \), where we put \(\rho_e := \rho|_{F_e} \) for \(e \in \{a, a^{-1}, 1, -1\} \) and set

\[
R(s) := \begin{cases} -\rho_{a^1} \langle s \rangle / (\rho_1 \rho_{-1} \langle s \rangle), & s \in \Gamma_{b^1}, \\
\rho_1 \langle s \rangle / (\rho_{-1} \rho_{a^1} \langle s \rangle), & s \in \Gamma_{b_1^1, \Gamma_{b_1^1}^1}, \\
\rho_{-1} \langle s \rangle / (\rho_{a^1} \rho_1 \langle s \rangle), & s \in \Gamma_{b_1^1, \Gamma_{b_1^1}^1};
\end{cases}
\]

(c) \(X \) satisfies RHP-\(Y(c) \) except around \(a \) within \(\Omega_{b,1} \cup \Omega_{a,1} \) where it behaves like (67).

With the above changes, Lemma 12 holds with (57) replaced by (75).
7.3. RH Problem with Small Jumps. Let

\[\Sigma = \bigcup_{e \in E} \partial U_e \cup \left[(\Gamma_0 \cup \Gamma_\infty) \setminus \bigcup_{e \in E} \overline{U}_e \right]. \]

The Riemann-Hilbert problem RHP-\(Z \) now needs to be formulated as follows:

(a) \(Z \) is a holomorphic matrix function in \(\mathbb{C} \setminus \Sigma \) and \(Z(\infty) = I \);

(b) \(Z \) has continuous traces on \((\Gamma_0 \cup \Gamma_\infty) \setminus \bigcup_{e \in E} U_e \) that satisfy

\[Z_+(s) = Z_-(s) M(s) \begin{pmatrix} 1 & 0 \\ \pm s^n / \rho(s) & 1 \end{pmatrix} M^{-1}(s), \]

where the choice of the sign \(\pm \) is the same as in the second relation in RHP-\(X \)(b);

and

\[Z_+(s) = Z_-(s) (P_e M^{-1})(s) \]

on \(\partial U_e \) for each \(e \in E \).

Then the following lemma takes place.

Lemma 15. For \(n \in \mathbb{N}_e \) large enough, a solution of RHP-\(Z \) exists and satisfies \(Z = I + O(1/n) \) where \(O(\cdot) \) holds uniformly in \(\mathbb{C} \) and depends on \(\varepsilon \).

Proof. The proof of the fact that the jump of \(Z \) is geometrically small on \((\Gamma_0 \cup \Gamma_\infty) \setminus \bigcup_{e \in E} \overline{U}_e \) is the same as in the case \(\rho \in W_2 \). Furthermore, we have that

\[P_e M^{-1} = I + M D^{-1} O(1/n) D M^{-1} \]

on \(\partial U_e \). It follows from (26), (27), (48), and the equality \(\Phi(z) \Phi(z^*) = z \), see Lemma 6, that the first row of \(M D^{-1} \) is equal to

\[\left((A_{n^2 + m_n} S_n \Theta_n)(z) \pm (A_{n^2 + m_n} S_n \Theta_n)(z^*) \right), \quad z \in D_Q. \]

It was shown in the course of the proof of Theorem 5 that these functions have uniformly bounded above moduli on compact subsets of \(\mathbb{C} \). Similarly, one can show that the same is true for the second row of \(M D^{-1} \) as well. Since

\[\det(M D^{-1}) = \det(M) = (\gamma_n \gamma_{n-1}^*)^{-1}, \]

and the constants \(|\gamma_n \gamma_{n-1}^*| \) are uniformly bounded above for all \(n \in \mathbb{N}_e \), we get that the jump of \(Z \) is of order \(I + O(1/n) \) on \(\partial U_e \) for each \(e \in E \). The conclusion of the lemma now follows as in the case \(\rho \in W_2 \). \(\square \)

7.4. Asymptotics. Formulae (28) follow now exactly as in the case \(\rho \in W_2 \).
7.5. Solution of RHP-P_a for $e \in [a, a^{-1}]$. As in Section 6.6, we shall only construct the matrix P_a. The construction is still based on the matrix function Ψ solving RHP-Ψ. Again, we start by defining a special conformal map around a.

7.5.1. Conformal Map. With the notation used in Section 3.1, define

$$\zeta_a(z) := \left(- \int_a^z \frac{v(s)}{4s} \, ds \right)^2, \quad z \in U_a.$$

Since $v_+ = -v_-$ on F_a^0, ζ_a is holomorphic in U_a. Moreover, since v has a square-root singularity at a, ζ_a has a simple zero at a. Thus, we can choose U_a small enough so that ζ_a is conformal in \overline{U}_a. Recall that $v(s)ds/s$ is purely imaginary on F_a^0, see the last part of the proof of Lemma 6. Therefore, ζ_a maps F_a into the negative reals. As we have had some freedom in choosing the curve Γ_0, we shall choose it within U_a so that the part of Γ_0 bordering $\Omega_{b,1}$, say Γ_0^+, is mapped into I_\ast and the part bordering $\Omega_{b,-1}$, say Γ_0^-, is mapped into I. Notice that the orientation of $\zeta_a(\Gamma_0^0)$ is the opposite from the one of I_\ast.

In what follows, we understand under $\zeta_a^{1/2}$ the branch given by the expression in parenthesis in (76). Equations (33) and (35) yield that

$$\zeta_a(z) = \left(\frac{1}{4} \log \left(\Phi(z^{(0)})/\Phi(z^{(1)}) \right) \right)^2, \quad z \in U_a.$$

As $\Phi(z)\Phi(z^*) \equiv z$, relation (72) remains valid for ζ_a as above and $D(z) = \Phi(z)^{\alpha\gamma}, z \in D_Q$. Finally, as in the case of real a, it still holds that $\zeta_a^{1/4} = i \zeta_a^{-1/4}$ on F_a.

7.5.2. Matrix P_a. Let J_a be the arc in U_a emanating from a such that $\zeta_a(J_a) \subset [0, \infty)$. According to the conditions placed on the class \mathcal{W}_1, it holds that

$$\rho(z) = \rho_a(z)(z-a)^{\alpha},$$

where ρ_a is non-vanishing and holomorphic in U_a and $(z-a)^{\alpha}$ is the branch holomorphic in $U_a \setminus J_a$. Set U_a^\ast to be connected components of $U_a \setminus (F_a \cup J_a)$ containing Γ_0^\ast. Define

$$r_a(z) := \sqrt{\rho_a(z)(a-z)^{\alpha/2}},$$

where the branch $(a-z)^{\alpha/2}$ is holomorphic in $U_a \setminus F_a$ and chosen so

$$(a-z)^{\alpha} = e^{\pi i \alpha} (z-a)^{\alpha}, \quad z \in U_a^\pm.$$

Then r_a is a holomorphic and non-vanishing function in $U_a \setminus F_a$ and satisfies

$$\begin{cases}
r_{a+}(s)r_{a-}(s) = \rho(s), & s \in F_a \cap U_a, \\
r_a^2(z) = \rho(z)e^{2\pi i \alpha}, & z \in \Gamma_0^{\ast}.
\end{cases}$$

It can be readily verified now that a solution of RHP-P_a for $e = a$ is given by (73), (74).

7.6. Solution of RHP-P_e for $e \in \{b, b^{-1}\}$. We shall construct $P_{b^{-1}}$ only as the construction of P_b is almost identical.

7.6.1. Model Problem. Recall (69). Let Ψ be a matrix-valued function such that

(a) Ψ is holomorphic in $\mathbb{C} \setminus (I_\ast \cup L \cup (-\infty, \infty))$;
(b) Ψ has continuous traces on $I_\ast \cup L \cup (-\infty, 0) \cup (0, \infty)$ that satisfy

$$\Psi_+ = \Psi_-, \quad \begin{cases}
0 & 1 & \text{on } (-\infty, 0), \\
-1 & 0 & \text{on } I_\ast, \\
1 & 0 & \text{on } (0, \infty);
\end{cases}$$

(c) $\Psi(\zeta) = O(1)$ as $\zeta \to 0$;
(d) Ψ has the following behavior near ∞:

$$\Psi(\zeta) = S(\zeta) \left(I + O(\zeta^{-3/2}) \right) \exp \left\{ \frac{2}{3} \zeta^{3/2} \zeta \right\}$$

uniformly in $\mathbb{C} \setminus (I_r \cup U \cup (-\infty, \infty))$, where $S(\zeta)$ was defined in RHP-Ψ_a.(d).

Such a matrix function was constructed in [8] with the help of Airy functions.

7.6.2. Conformal Map. With the notation used in Section 3.1, define

$$\zeta_{b^{-1}}(z) := \left(-\frac{3}{4} \int_{b^{-1}}^z \frac{v(s)}{s} \, ds \right)^{2/3}, \quad z \in U_{b^{-1}}.$$

Because $v_+ = -v_-$ on $F_{a^{-1}}^3$, $\zeta_{b^{-1}}$ is holomorphic in $U_{b^{-1}}$. Moreover, since v vanishes as a square root when $z \to b^{-1}$, $\zeta_{b^{-1}}$ has a cubic zero at b^{-1} and therefore $\zeta_{b^{-1}}$ is holomorphic in $U_{b^{-1}}$. The size of $U_{b^{-1}}$ can be adjusted so that $\zeta_{b^{-1}}$ is conformal in $U_{b^{-1}}$. Recall that the integral of $v(s)/s$ is purely imaginary on F. Hence, we can select such a branch in (77) that

$$\zeta_{b^{-1}}(F_{a^{-1}} \cap U_{b^{-1}}) \subset (-\infty, 0].$$

Moreover, we always can adjust the system of arcs Γ so that

$$\zeta_{b^{-1}}(\Gamma_{b^{-1}}) \subset \mathbb{R}, \quad \zeta_{b^{-1}}(\Gamma_{b^{-1}} \cup F_{b^{-1}}) \subset \mathbb{R}, \quad \text{and} \quad \zeta_{b^{-1}}(\Gamma_{b^{-1}}) \subset (0, \infty).$$

In what follows, we understand under $z^{3/2}$ the branch given by the expression in parenthesis in (77) and select the branch of $\zeta_{b^{-1}}^{1/4}$ with the cut along $F_{a^{-1}}$ satisfying $\zeta_{b^{-1}}^{1/4} = i \zeta_{b^{-1}}^{1/4}$.

Let $z \in U_{b^{-1}} \setminus (F_{a^{-1}} \cup F_1)$ belong to the component containing F_{-1}, say $U_{b^{-1}}^1$, see Figures 4 and 5. Let γ be a path from a to b^{-1} and γ_z be a path from b^{-1} to z that lie entirely in $U_{b^{-1}}^1$. As usual denote by $B^{(i)}$ the lift of the set B to $\mathbb{R}^{(i)}$. Then

$$\gamma^{(0)} \cup \gamma_z^{(0)} \quad \text{and} \quad \gamma^{(0)} \cup \alpha \cup \beta \cup \gamma_z^{(1)}$$

are paths from a to $z^{(0)}$ and $z^{(1)}$, respectively, that belong to $\mathcal{R}_{a, \beta}$ (technically, α, β in (78) need to be deformed into homologous cycles that belong to $\mathcal{R}_{a, \beta}$). Then by using (78) in (35) and recalling (34), we get that

$$\Phi(z^{(0)})/\Phi(z^{(1)}) = \exp \left\{ 2 \pi i (\omega - \tau) + \frac{4}{3} z^{3/2} \right\}.$$

Let now $z \in U_{b^{-1}} \setminus (F_{a^{-1}} \cup F_1)$ be in the component that does not contain F_{-1}, say $U_{b^{-1}}^2$. Choose γ_z to be a part of this component. Then

$$\gamma^{(0)} \cup \gamma_z^{(0)} \quad \text{and} \quad \gamma^{(0)} \cup \alpha \cup -\beta \cup \gamma_z^{(1)}$$

are paths from a to $z^{(0)}$ and $z^{(1)}$, respectively, that belong to $\mathcal{R}_{a, \beta}$ (with the same caveat as before). Thus, we get from (79), (35), and (34) that

$$\Phi(z^{(0)})/\Phi(z^{(1)}) = \exp \left\{ -2 \pi i (\omega + \tau) + \frac{4}{3} z^{3/2} \right\}.$$

Altogether, we get that

$$\exp \left\{ -\frac{2}{3} n z^{3/2} \right\} = (K J D)(z) z^{-n^2s/2} J^{-1}(z),$$

where

$$J(z) = \begin{cases} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, & z \in D_0 \cap U_{b^{-1}}, \\ I, & \text{otherwise}, \end{cases} \quad \text{and} \quad K(z) := \begin{cases} e^{\pi i (\omega - \tau)n s}, & z \in U_{b^{-1}}^1, \\ e^{-\pi i (\omega + \tau)n s}, & z \in U_{b^{-1}}^2. \end{cases}$$
7.6.3. Matrix $P_{b^{-1}}$. Set

$$
\begin{align*}
 r_{b^{-1}}(z) := \begin{cases}
 \sqrt{(p_1 p_{a^{-1}})}(z)/p_{-1}(z), & z \in U_{b^{-1}}^2, \\
 \sqrt{(p_1 p_{-1})}/p_{a^{-1}}(z), & z \in D_0 \cap U_{b^{-1}}^1, \\
 \sqrt{(p_{a^{-1}} p_{-1})}/p_1(z), & z \in D_m \cap U_{b^{-1}}^1.
 \end{cases}
\end{align*}
$$

Then it follows from RHP-$\Psi(a,b,c)$ that

$$
P_{b^{-1}}(z) := E_{b^{-1}}(z) \Psi \left(n^{2/3} \xi b^{-1}(z) J(z) e^{it/2} r_{b^{-1}}(z)\right)
$$

satisfies RHP-$\Psi(a,b,c)$ for $e = b^{-1}$, where $E_{b^{-1}}$ is a holomorphic matrix in $U_{b^{-1}}$. Thus, it only remains to choose $E_{b^{-1}}$ so that RHP-$P_\sigma(d)$ is fulfilled. Set

$$
E_{b^{-1}}(z) := M(z) D^{-1}(z) r_{b^{-1}}(z) J(z) K^{-1}(z) S^{-1} \left(n^{2/3} \xi b^{-1}(z)\right).
$$

Recall that $D(z) = \Phi^{a \sigma_1}(z)$ for $z \in D_Q$. Denote the $(1,1)$-entry of $D(z)$ by $d(z)$. Then

$$
d - d_+(s) = \begin{cases}
 \Phi^n(s^{(1)}) \Phi^n(s^{(0)}), & s \in F_{-1}, \\
 \Phi^n(s^{(1)}) \Phi^n(s^{(0)}), & s \in F_1, \\
 \Phi^n(s) \Phi^n(s^*), & s \in F_{a^{-1}},
\end{cases}
$$

by the property $\Phi(z) \Phi(z^*) = z$ and (36), where the traces of $d(z)$ are taken on the arcs in the complex plane and the traces of $\Phi(z)$ are taken on the cycles on \Re. Using RHP-$N(b)$, (70), (81), and the explicit definitions of $r_{b^{-1}}$, J, and K, it is tedious but straightforward to check that $E_{b^{-1}}$ is holomorphic in $U_{b^{-1}} \setminus \{b^{-1}\}$. It also follows from (24) and the behavior of S at zero that

$$
E_{b^{-1}}(z) = \begin{pmatrix} 1 & |z - b^{-1}|^{-1/2} \\ 1 & |z - b^{-1}|^{-1/2} \end{pmatrix}
$$

which yields that it is, in fact, holomorphic on the whole set $U_{b^{-1}}$. The relation RHP-$P_\sigma(d)$ now follows from RHP-$\Psi(d)$ and (80).

References

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202

E-mail address: maxyatts@iupui.edu