
TOPOLOGICAL EXPANSION IN THE COMPLEX CUBIC LOG-GAS

MODEL. ONE-CUT CASE

PAVEL BLEHER, ALFREDO DEAÑO, AND MAXIM YATTSELEV
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Abstract. We prove the topological expansion for the cubic log-gas partition function

ZN (t) =

∫
Γ
· · ·

∫
Γ

∏
1≤j<k≤N

(zj − zk)2
N∏
k=1

e
−N

(
− z

3

3
+tz

)
dz1 · · · dzN ,

where t is a complex parameter and Γ is an unbounded contour on the complex plane

extending from eπi∞ to eπi/3∞. The complex cubic log-gas model exhibits two phase
regions on the complex t-plane, with one cut and two cuts, separated by analytic critical

arcs of the two types of phase transition: split of a cut and birth of a cut. The common

point of the critical arcs is a tricritical point of the Painlevé I type. In the present paper
we prove the topological expansion for logZN (t) in the one-cut phase region. The proof

is based on the Riemann–Hilbert approach to semiclassical asymptotic expansions for the

associated orthogonal polynomials and the theory of S-curves and quadratic differentials.

1. Introduction

The main goal of this work is to analyze the topological expansion in the cubic log-gas
model with a general complex coupling constant and semiclassical asymptotics of related
orthogonal polynomials. The partition function of the cubic log-gas model is given as

(1.1) ZN (u) =

∫
Γ

. . .

∫
Γ

∏
1≤j<k≤N

(zj − zk)2
N∏
j=1

e
−N

(
z2j
2 −uz

3
j

)
dz1 . . . dzN ,

where u > 0 is a coupling constant and the contour of integration Γ goes from eπi∞ to
eπi/3∞. This work is a continuation of the works of Bleher and Deaño [6, 7].

Γ

Figure 1. The contour Γ of integration.
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As proven in [6], the free energy of the cubic log-gas model,

(1.2) FN (u) :=
1

N2
ln
ZN (u)

ZN (0)
,

admits an asymptotic expansion as N →∞ in powers of 1
N2 ,

(1.3) FN (u) ∼
∞∑
g=0

F (2g)(u)

N2g
,

for any u in the interval 0 ≤ u < uc, where

(1.4) uc =
31/4

18

is a critical point. In addition, the functions F (2g)(u) admit an analytic continuation to the
disk |u| < uc on the complex plane, and if we expand them in powers of u,

(1.5) F (2g)(u) =

∞∑
j=1

f
(2g)
2j u2j

(2j)!
,

then the coefficient f
(2g)
2j is a positive integer number that counts the number of 3-valent

connected graphs with 2j vertices on a Riemann surface of genus g. Asymptotic expansion
(1.3) is called the topological expansion. For more details on this aspect of the theory, we
refer the reader to the classical papers of Bessis, Itzykson and Zuber [4], Brézin, Itzykson,
Parisi and Zuber [5], the monograph of Forrester [25, Section 1.6], the works of Mulase [31],
Di Francesco [17], Ercolani and McLaughlin [22, 23], and references therein, or the very
readable introduction by Zvonkin [39].

As shown in [6], the coefficients f
(2g)
2j /(2j)! of power series (1.5) behave, when j →∞, as

(1.6)
f

(2g)
2j

(2j)!
=
K2gj

5g−7
2

u2j
c

(
1 +O(j−1/2)

)
, K2g > 0.

This implies that uc is the radius of convergence of power series (1.5). In fact, u = uc is a
singular point of the functions (1.5). The topological expansion in a neighborhood of the
critical point uc has been obtain in the work of Bleher and Deaño [7]. This topological ex-
pansion is closely related to the Painlevé I equation. The relation to the Painlevé I equation
can be already seen in asymptotic formula (1.6). Namely, if we rescale the coefficients K2g

in (1.6), by introducing the coefficients

(1.7) C2g =
Γ
(

5g−1
2

)
ugcK2g

6 · 31/4
,

and consider the following generating function:

(1.8) y(t) =

∞∑
g=0

C2gt
1−5g

2 ,

then y(t) solves the Painlevé I differential equation,

(1.9) y′′(t) = a0y
2(t)− a1t,

with a0 = 2
5
2 3

9
4 , a1 = 2

3
2 3−

5
4 (see [3, 21, 6]).

It is noteworthy that the key ingredient in the proof of topological expansion (1.3) in [6]
is the derivation of semiclassical asymptotic formulae for the recurrence coefficients γ2

n, βn
of the corresponding monic orthogonal polynomials Pn(z) = zn + . . .. The orthogonality
condition is stated on the contour Γ:

(1.10)

∫
Γ

Pn(z)zkw(z)dz = 0, k = 0, 1, . . . , n− 1; w(z) = e
−N

(
z2

2 +uz3
)

Namely, as proven in [6], for any u such that 0 ≤ u < uc, there exists ε > 0 such that
as N,n → ∞ with 1 − ε ≤ n

N ≤ 1 + ε, the recurrence coefficients γ2
n and βn admit the
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asymptotic expansions in powers of 1
N2 :

(1.11)


γ2
n ∼

∞∑
k=0

1

N2k
g2k

( n
N
, u
)
,

βn ∼
∞∑
k=0

1

N2k
b2k

(
n

N
+

1

2N
, u

)
,

where the functions g2k(s, u), b2k(s, u), k = 0, 1, . . ., do not depend on n and N and are
analytic in s at s = 1.

In the paper [7] this asymptotic expansion is extended to the double scaling asymptotic
expansion of the recurrence coefficients at the critical point uc. In the double scaling regime
we set

(1.12)
n

N
= 1 + vN−4/5.

where v ∈ R is a scaling variable. Then as proven in [7], at u = uc the recurrence coefficients
γ2
n and βn admit the asymptotic expansions in powers of N−2/5 as N →∞:

(1.13)


γ2
n ∼ γ2

c +

∞∑
k=1

1

N2k/5
p2k(v),

βn ∼ βc +

∞∑
k=1

1

N2k/5
q2k(ṽ),

where the functions p2k(v), q2k(ṽ) are expressed in terms of the Boutroux tritronquée so-

lution to Painlevé I and ṽ = v + N−1/5

2 . As shown in [7], expansions (1.11) and (1.13)

can be extended for large N to u in overlapping intervals, [0, uc − N−0.79] for (1.11) and
[uc − N−0.65, uc] for (1.13), and this can be used to obtain the double scaling asymptotic
formula for the partition function.

Namely, let u−uc = CλN−
4
5 , where C = 2−

12
5 3−

7
4 and λ is a complex scaling variable in

the double scaling regime. Then for λ outside of a neighborhood of the poles of the Boutroux
tritronquée solution to Painlevé I y(λ), the partition function ZN (u) can be written as

(1.14) ZN (u) = Zreg
N (u)Zsing

N (λ)
(
1 +O(N−ε)

)
, ε > 0,

where the regular factor is

(1.15) Zreg
N (u) = eN

2[a+b(u−uc)+c(u−uc)2]+d,

with some explicit constants a, b, c, d, and the singular factor is

(1.16) Zsing
N (λ) = e−Y (λ),

where Y (λ) is a solution of the differential equation

(1.17) Y ′′(λ) = y(λ),

with the boundary condition

(1.18) Y (λ) =
2
√

6

45
(−λ)5/2 − 1

48
log(−λ) +O((−λ)−5/2), λ→ −∞.

Asymptotic formula (1.14) is used in [7] to prove the conjecture of David [12, 13] that the
poles of y(λ) give rise to zeros of ZN (u).

This work is a continuation of [6, 7]. The main goal of it is to investigate the topological
expansion of the cubic log-gas model for complex values of u. Formula (1.1) is not very
convenient for this purpose because the contour of integration Γ should be rotated to secure
the convergence of the integral. Instead, let us make the change of variables in (1.1),

(1.19) zj = (3u)−1/3ζj +
1

6u
,

where we assume that u > 0 and (3u)−1/3 > 0. Then

(1.20)
z2
j

2
− uz3

j −
1

108u2
= −

ζ3
j

3
+ tζj ,
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where

(1.21) t =
1

4(3u)4/3
,

and with the help of the Cauchy theorem, formula (1.1) can be reduced to

(1.22) ZN (u) = CN

∫
Γ

· · ·
∫

Γ

∏
1≤j<k≤N

(ζj − ζk)2
N∏
k=1

e
−N

(
− ζ

3
k
3 +tζk

)
dζ1 · · · dζN ,

where CN is an explicit constant. Now the integral converges for any complex t.
The primary interest of the present study is the asymptotic analysis of the partition

function

(1.23) ZN (t) :=

∫
Γ

· · ·
∫

Γ

∏
1≤j<k≤N

(zj − zk)2
N∏
k=1

e−NV (z;t)dz1 · · · dzN ,

with respect to the parameter t ∈ C for the case when

(1.24) V (z; t) = −z
3

3
+ tz, t ∈ C,

where Γ is an unbounded smooth contour such that for any parametrization z(s), s ∈ R, of
Γ there exists ε ∈ (0, π/6) and s0 > 0 for which

(1.25)

{
|arg(z(s))− π/3| ≤ π/6− ε, s ≥ s0,

|arg(z(s))− π| ≤ π/6− ε, s ≤ −s0,

where arg(z(s)) ∈ [0, 2π). The above conditions ensure that the partition function ZN (t) is
finite and due to analyticity of the integrand does not depend on a particular Γ satisfying
(1.25). Hence, we shall denote by T the collection of all such contours.

We analyze the partition function via the corresponding monic orthogonal polynomials

(1.26)

∫
Γ

zkPn(z; t,N)e−NV (z;t)dz = 0, k ∈ {0, . . . , n− 1}.

Due to the non-Hermitian character of the above relations, it might happen that polynomial
satisfying (1.26) is non-unique. In this case we understand by Pn(z; t,N) the monic poly-
nomial of the smallest degree (such a polynomial is always unique). One way of connecting
ZN (t) to Pn(z; t,N) is via three term recurrence relation. More precisely, it is known that

(1.27) zPn(z; t,N) = Pn+1(z; t,N) + βn(t,N)Pn(z; t,N) + γ2
n(t,N)Pn−1(z; t,N),

granted all the polynomials in (1.27) have prescribed degrees, where

(1.28)


γ2
n(t,N) = hn(t,N)/hn−1(t,N),

hn(t,N) =

∫
Γ

P 2
n(z; t,N)e−NV (z;t)dz.

Observe that if Pn(z; t,N) = Pn+1(z; t,N) with both polynomials having degree n, then
hn(t,N) = 0 and hn+1(t,N) =∞. More generally, it holds that hn(t,N) is a meromorphic
function of t and so is γ2

n(t,N). It is further known that the recurrence coefficients γ2
N (t,N)

satisfy the Toda equation,

(1.29)
∂2FN (t)

∂t2
= γ2

N (t,N), FN (t) =
1

N2
logZN (t).

Another way of connecting ZN (t) to orthogonal polynomials is through the formula

ZN (t) = N !

N−1∏
n=0

hn(t,N),

where hn(t,N) are given in (1.28). However, we shall not elaborate on this approach.
The structure of the paper is as follows:

• In Sections 2 and 3 we describe equilibrium measures and corresponding S-curves
for the cubic model under consideration. This leads us to a precise description of
the phase diagram of the cubic model on the complex t-plane.
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• In Section 4 we present the main results of the paper: the topological expansion in
the one-cut phase region and the asymptotic expansion of the orthogonal polynomi-
als and their recurrence coefficients.
• In Section 5 we obtain various results about the detailed structure of the S-curves

and critical graphs of the quadratic differential.
• In Section 6 we evaluate the g-function and its asymptotic behavior at singular

points.
• In Section 7 we apply the Riemann–Hilbert approach to derive the asymptotic be-

havior of the orthogonal polynomials and their recurrence coefficients.
• And finally, in Section 8 we prove the topological expansion in the one-cut phase

region.

2. Equilibrium Measures and S-Property

It is well understood that the zeros of polynomials satisfying (1.26) asymptotically dis-
tribute as a certain weighted equilibrium measure on an S-contour corresponding to the
weight function (1.24). In this section we discuss these notions in greater detail. Our con-
sideration will use the recent works of Huybrechs, Kuijlaars, and Lejon [27] and Kuijlaars
and Silva [30]. Let us start with some definitions.

Definition 2.1. Let V be an entire function. The logarithmic energy in the external field
ReV of a measure ν in the complex plane is defined as

EV (ν) =

∫∫
log

1

|s− t|
dν(s)dν(t) +

∫
ReV (s)dν(s).

The equilibrium energy of a contour Γ in the external field ReV is equal to

(2.1) EV (Γ) = inf
ν∈M(Γ)

EV (ν),

where M(Γ) denotes the space of Borel probability measures on Γ.

When ReV (s)− log |s| → +∞ as Γ 3 s→∞, there exists a unique minimizing measure
for (2.1), which is called the weighted equilibrium measure of Γ, say µΓ, in the external field
ReV , see [34, Theorem I.1.3] or [27]. We shall use this definition in the case of the cubic
polynomial (1.24) and Γ ∈ T . The support of µΓ, say JΓ, is a compact subset of Γ. The
equilibrium measure µ = µΓ is characterized by the Euler–Lagrange variational conditions:

(2.2) 2Uµ(z) + ReV (z)

{
= `, z ∈ JΓ,

≥ `, z ∈ Γ \ JΓ,

where ` = `Γ is a constant, the Lagrange multiplier, and

Uµ(z) = −
∫

log |z − s|dµ(s)

is the logarithmic potential of µ, see [34, Theorem I.3.3]. Any Γ ∈ T can be used to define
ZN (t) in (1.23), nevertheless, it is well understood in the theory of non-Hermitian orthogonal
polynomials, starting with the works of Stahl [35, 36, 37] and Gonchar and Rakhmanov [26]
that one should use the contour whose equilibrium measure has support symmetric (with the
S-property) in the external field ReV . We make this idea precise in the following definition.

Definition 2.2. The support JΓ has the S-property in the external field ReV , if it consists
of a finite number of open analytic arcs and their endpoints, and on each arc it holds that

(2.3)
∂

∂n+

(
2UµΓ + ReV

)
=

∂

∂n−

(
2UµΓ + ReV

)
,

where ∂
∂n+

and ∂
∂n−

are the normal derivatives from the (+)- and (−)-side of Γ. We shall

say that a curve Γ ∈ T is an S-curve in the field ReV , if JΓ has the S-property in this field.

It is also understood that geometrically JΓ is comprised of critical trajectories of quadratic
differentials. Recall that if Q is a meromorphic function, a trajectory (resp. orthogonal
trajectory) of a quadratic differential −Q(z)dz2 is a maximal regular arc on which

−Q(z(s))
(
z′(s)

)2
> 0

(
resp. −Q(z(s))

(
z′(s)

)2
< 0
)
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for any local uniformizing parameter. A trajectory is called critical if it is incident with a
finite critical point (zero or a simple pole of −Q(z)dz2) and it is called short if it is incident
only with finite critical points. We designate the expression critical (orthogonal) graph of
−Q(z)dz2 for the totality of the critical (orthogonal) trajectories −Q(z)dz2.

The following theorem is a specialization to V (z; t) of [30, Theorem 2.3].

Theorem 2.3. Let V (z; t) be given by (1.24).

(1) There exists a contour Γt ∈ T such that

(2.4) EV (Γt) = sup
Γ∈T
EV (Γ).

(2) The equilibrium measure µt := µΓt is the same for every Γt satisfying (2.4). The
support Jt of µt has the S-property in the external field ReV (z; t).

(3) The function

(2.5) Q(z; t) =

(
V ′(z; t)

2
−
∫

dµt(s)

z − s

)2

, z ∈ C \ Jt,

is a polynomial of degree 4.
(4) The support Jt consists of short critical trajectories of the quadratic differential
−Q(z; t)dz2 that connect simple zeros of Q(z; t) and the equation

(2.6) dµt(z) = − 1

πi
Q

1/2
+ (z; t)dz, z ∈ Jt,

holds on each such critical trajectory, where Q1/2(z; t) = 1
2z

2 +O(z) as z →∞.

Much information on the structure of the critical graphs of a quadratic differential can
be found in the excellent monographs [28, 33, 38]. Since degQ(z) = 4, JΓt consists of one or
two arcs, corresponding (respectively) to the cases where Q(z) has two simple zeros and one
double zero, and the case where it has four simple zeros. In this paper we study the case of
a single arc and investigate the two-cut case in a later publication. In the next section we
discuss which values of t correspond to the one-cut case and describe the geometry of the
critical graphs in more detail.

3. Structure of Γt

The structure of Γt and its dependence on t has been heuristically described in [1, 2].
Our goal here is to provide rigorous mathematical justifications for this description, when
Jt consists of a single arc. Clearly, in this case Q(z; t) should be of the form

(3.1) Q(z; t) =
1

4
(z − a(t))(z − b(t))(z − c(t))2.

It follows from (2.5) in conjunction with (1.24) that

(3.2) Q(z; t) =

(
−z2 + t

2
− 1

z
+O(z−2)

)2

=
(z2 − t)2

4
+ z + C.

Thus, by equating the coefficients in (3.1) and (3.2), we obtain a system of equations

(3.3)


a+ b+ 2c = 0,

ab+ c2 + 2(a+ b)c = −2t ,

2abc+ (a+ b)c2 = −4.

By setting x := (a+b)/2 and eliminating the product ab from the second and third relations
in (3.3), we get that

(3.4) x3 − tx− 1 = 0.

To study the solutions of (3.4), denote by C the critical graph of an auxiliary quadratic
differential

(3.5) − (1 + 1/s)3ds2,

see Figure 2(a). We show in Section 5 that C consists of 5 critical trajectories emanating
from −1 at the angles 2πk/5, k ∈ {0, . . . , 4}, one of them being (−1, 0), other two forming
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a loop crossing the real line approximately at 0.635, and the last two approaching infinity
along the imaginary axis without changing the half-plane (upper or lower). Given C, define

(a)

0−1

(b)

− 3
√

1/2

∆a
birth

∆split

∆b
birth

Ωone−cut

Figure 2. schematic representation of (a) the critical graph C; (b) the set ∆
(solid lines) and the domain Ωone−cut (shaded region).

∆ :=
{
x : 2x3 ∈ C

}
.

Further, put Ωone−cut to be the shaded region on Figure 2(b) and set

∂Ωone−cut = ∆b
birth ∪

{
− 2−1/3

}
∪∆split ∪

{
eπi/32−1/3

}
∪∆a

birth,

where ∆split connects −2−1/3 and eπi/32−1/3, ∆b
birth extends to infinity in the direction of

the angle 7π/6 while ∆a
birth extends to infinity in the direction of the angle π/6. Finally, let

t(x) := (x3 − 1)/x and set

(3.6)


tcr := 3 · 2−2/3 = t

(
− 2−1/3

)
,

Oone−cut := t(Ωone−cut),

Csplit := t
(
∆split

)
, Cbbirth := t

(
∆b

birth

)
, Cabirth := t

(
∆a

birth

)
,

S := (tcr,∞), e2πi/3S :=
{
z : e−2πi/3z ∈ S

}
,

see Figure 3. The function t(x) is holomorphic in Ωone−cut with non-vanishing derivative

tcr

e2πi/3tcr
Cbbirth

Cabirth

Csplit

S

e2πi/3S

Oone−cut

Figure 3. Domain Oone−cut (shaded region); ∂Oone−cut consisting of the open
bounded arc Csplit, two open semi-unbounded arcs Cabirth and Cbbirth, and two points

tcr and e2πi/3tcr; the semi-unbounded open horizontal rays S and e2πi/3S (dashed

lines).

there. It maps Ωone−cut onto Oone−cut in a one-to-one fashion. Hence, the inverse map x(t)
exists and is holomorphic. Altogether, the following proposition holds.

Proposition 3.1. There exists a holomorphic branch x(t) of (3.4) that maps Oone−cut con-
formally onto Ωone−cut. The function x(t) possesses analytic continuations across each of



8 PAVEL BLEHER, ALFREDO DEAÑO, AND MAXIM YATTSELEV

the arcs Csplit, C
a
birth, and Cbbirth. The functions

(3.7)


a(t) := x(t)− i

√
2/
√
x(t),

b(t) := x(t) + i
√

2/
√
x(t),

c(t) := −x(t),

are holomorphic in Oone−cut, where
√
x(t) is the branch holomorphic in Oone−cut satisfying√

x(0) = eπi/3. It is a matter of a routine verification to check that they also satisfy (3.3).

Below, we adapt the following convention: Γ(z1, z2) (resp. Γ[z1, z2]) stands for the tra-
jectory or orthogonal trajectory (resp. the closure of) connecting z1 and z2, oriented from
z1 to z2, and Γ

(
z, eiθ∞

)
(resp. Γ

(
eiθ∞, z

)
) stands for the orthogonal trajectory ending at

z, approaching infinity at the angle θ, and oriented away from z (resp. oriented towards z).1

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. Schematic representation of the critical (solid) and critical orthogonal
(dashed) graphs of −Q(z; t)dz2 when t ∈ Oone−cut. The bold curves represent the

preferred S-curve Γt. Shaded region is the set where Re
(∫ z

b
Q1/2(z; t)dz

)
< 0.

Theorem 3.2. Let µt and Q(z; t) be as in Theorem 2.3, Jt = supp(µt). When t ∈ Oone−cut,
the polynomial Q(z; t) is of the form (3.1) with a(t), b(t), and c(t) as in Proposition 3.1 and
the set Jt consists of a single arc. Moreover,

(I) if t ∈ Oone−cut, then Jt = Γ[a, b] and an S-curve Γt ∈ T can be chosen as

(a) Γ
(
eπi∞, a

)
∪ Jt ∪ Γ

(
b, eπi/3∞

)
when t belongs to the connected component

bounded by S ∪ Ccrit ∪ e2πi/3S, see Figure 4(a–e);

(b) Γ
(
eπi∞, a

)
∪ Jt ∪ Γ(b, c) ∪ Γ

(
c, eπi/3∞

)
when t ∈ S, see Figure 4(f);

(c) Γ
(
eπi∞, c

)
∪ Γ(c, a) ∪ Jt ∪ Γ

(
b, eπi/3∞

)
when t ∈ e2πi/3S;

(d) Γ
(
eπi∞, a

)
∪ Jt ∪ Γ

(
b, e−πi/3∞

)
∪ Γ
(
e−πi/3∞, c

)
∪ Γ
(
c, eπi/3∞

)
when t belongs

to the connected component bounded by S ∪ Cbbirth, see Figure 4(g);

(e) Γ
(
eπi∞, c

)
∪Γ
(
c, e−πi/3

)
∪Γ
(
e−πi/3∞, a

)
∪ Jt ∪Γ

(
b, eπi/3∞

)
when t belongs to

the connected component bounded by e2πi/3S ∪ Cabirth.

(II) if t = tcr (resp. t = e2πi/3tcr), then Jt = Γ[a, b], c coincides with b (resp. a), and an
S-curve Γt ∈ T can be chosen as in Case I(a), see Figure 5(a).

(III) if t ∈ Csplit, then Jt = Γ[a, c] ∪ Γ[c, b] and an S-curve Γt ∈ T can be chosen as in
Case I(a), see Figure 5(b).

1This notation is unambiguous as the corresponding trajectories are unique for polynomial differentials as

follows from Teichmüller’s lemma, see (5.1) further below.
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(IV) if t ∈ Cbbirth (resp. t ∈ Cabirth), then Jt = Γ[a, b] and an S-curve Γt ∈ T can be chosen
as in Case I(d) (resp. Case I(e)), see Figure 5(c).

We prove Theorem 3.2 in Section 5.

(a) (b) (c)

Figure 5. This is a continuation of Figure 4 for the case t ∈ ∂Oone−cut.

Remark 3.3. Even though we shall not dwell on this point here, the reason for the nomen-
clature introduced above is the following. When t 6∈ Oone−cut, the double zero c(t) splits into
two simple zeros, say c1(t) and c2(t). When t crosses Csplit, the trajectory connecting a and
b will split into two, one connecting a and c1 and another connecting c2 and b. When t
crosses Cbirth := Cabirth ∪ Cbbirth, a critical trajectory connecting c1 and c2 will appear while a
and b will remain being connected by a trajectory.

Let us elaborate on all the configurations appearing on Figures 4 and 5. To this end,

(a)

S

(b)

∆crit

∆crit

∆⊥

(c)

Cbcrit

Cacrit
S

e2πi/3S

SbcritSacrit

Figure 6. Schematic representations of (a) the set S (dashed lines); (b) the
sets ∆⊥ (dashed lines) and ∆crit (solid curves within the shaded region); (c) the
images of ∆⊥ and ∆crit under t(x).

we need to introduce the totality of the orthogonal trajectories of the differential (3.5)
emanating out of −1, say S, see Figure 6(a), the sets

∆crit := ∆ ∩ Ωone−cut, ∆⊥ :=
{
x : 2x3 ∈ S

}
∩ Ωone−cut,

see Figure 6(b), as well as the sets

t(∆crit) =: Cacrit ∪ Cbcrit, t(∆⊥) =: Sacrit ∪ Sbcrit ∪ S ∪ e2πi/3S,

where Cbcrit, S
b
crit and Cacrit, S

a
crit are incident with tcr and e2πi/3tcr, respectively, see Figure 6(c).

Theorem 3.4. The critical and critical orthogonal graphs of −Q(z; t)dz2 have the structure
as on

• Figure 5(a,b,c) when t = tcr, t ∈ Csplit, and t ∈ Cbbirth, respectively;
• Figure 4(f,d,b) when t ∈ S, t ∈ Cbcrit, and t ∈ Sbcrit, respectively;
• Figure 4(g) when t belongs to the component of Oone−cut bounded by S ∪ Cbbirth;
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• Figure 4(e) when t belongs to the component of Oone−cut bounded by S ∪ Cbcrit; in
fact, Cbcrit is the reflection of Cbbirth across the real line and the structure is the same
as on Figure 4(g) reflected across the real line as well;
• Figure 4(c) when t belongs to the component of Oone−cut bounded by Cbcrit ∪ Sbcrit;
• Figure 4(a) when t belongs to the component of Oone−cut bounded by Sbcrit ∪ Sacrit.

In the rest of the cases one needs to pick the reflection of t across the line Lπ/3, where

(3.8) Lθ :=
{
reiθ : r ∈ (−∞,∞)

}
,

and then reflect the corresponding graph structures across the line L2π/3. This symmetry is
displayed on Figures 4(a) and 5(a).

We prove Theorem 3.4 in Section 5 as well.

4. Main Results

In what follows, we always assume that t ∈ Oone−cut while βn(t,N) and γn(t,N) are
recurrence coefficients (1.27) of the polynomials Pn(z; t,N) satisfying orthogonality relations
(1.26) with V (z; t) as in (1.24) on a contour Γ = Γt as in Theorem 3.2.

Henceforth, we use interval notation preceded by Γt to denote subarcs of Γt. For example,
Γt(u, v] stands for the subarc of Γt connecting u and v, not containing u and containing v,
and u precedes v according to the orientation of Γt.

Below, we prove existence of various expansions that depend on the parameter t. To
indicate the way of dependence, we introduce the following two notions.

Definition 4.1. Given an increasing sequence α(i)→∞ as i→∞, we say that an expan-
sion

AN (t) ∼
∞∑
i=0

A(i)(t)N−α(i)

holds t-locally uniformly if for any T ⊂ Oone−cut such that T ∩Oone−cut, T ∩Csplit, T ∩Cbirth

are compact, there exist constants CI(T ) <∞ for which

|AN (t)−
I−1∑
i=0

A(i)(t)N−α(i)| ≤ CI(T )N−α(I), t ∈ T.

Moreover, we say that an expansion is strongly t-locally uniform if CI(T ) <∞ exists as long
as T ∩ Csplit is compact, T ∩ Cbirth is closed, and there exists ε(T ) > 0 for which

(4.1) Re

(∫ c(t)

b(t)

Q1/2(z; t)dz

)
≤ −ε(T )

for all t ∈ T ∩Oone−cut large with arg(t) ∈ (0, π/2).

To understand (4.1) geometrically, notice that its left-hand side is equal to 0 when t ∈
∂Oone−cut ∪ Cacrit ∪ Cbcrit, see Figures 3 and 6(c), is positive when t belongs to the part of
Oone−cut bounded by Cacrit ∪Csplit ∪Cbcrit, and is negative otherwise. Thus, (4.1) describes the
way T is separated from Cbirth when it extends to the point at infinity.

For functions that depend both on the parameter t and variable z, we adopt the following
conventions.

Definition 4.2. We say that the equality fN (z; t) = O(N−α) holds (z, t)-locally uniformly
for z ∈ V as N →∞ if for each T such that T ∩Oone−cut, T ∩Csplit, T ∩Cbirth are compact,
and any collection of compact sets {Kt}t∈T such that Kt ⊂ V , there exists C(V ;T ) < ∞
for which ∣∣fN (z; t)

∣∣ ≤ C(V ;T )N−α, z ∈ Kt, t ∈ T,

for all N large. Similarly, the notion of a property holding strongly (z, t)-locally uniformly
for z ∈ V should be straightforward in the view of Definition 4.1.
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4.1. Asymptotic expansion of FN (t).

Theorem 4.3. Let FN (t) be the free energy (1.29). Then it holds uniformly on subsets of
Oone−cut satisfying (4.1) that

(4.2) FN (t) ∼
∞∑
k=0

F (2k)(t)N−2k,

where the functions F (2k)(t) are holomorphic in Oone−cut and extend holomorphically across
each of the arcs Cbirth, Casplit, and Cbsplit. In particular, it holds that

(4.3) F (0)(t) = 1− 2

3
x3(t)− 1

2
log
(
−2x(t)

)
+

∫ t

∞

∫ τ

∞

(
− 1

2x(σ)
+

7x′(σ) + 2σx′′(σ)

6

)
dσdτ,

where x′(t) is the derivative of x(t) with respect to t and the integrals can be computed along
any path in Oone−cut.

Functions F (2k)(t) encode information on the number of certain graphs on a Riemann
surface of genus k.

Remark 4.4. If we relabel the functions F (2g) in (1.5) by F̂ (2g), then it holds that{
F̂ (0)(y) := 2

3 t
3/2 − 1

4 log(4t)− F (0)(t),

F̂ (2g)(y) := F (2g)(t), g ≥ 1,
y−1 = 3(4t)3/4.

We prove Theorem 4.3 in Section 8 using Toda equations (1.29) and the asymptotic
expansion of the recurrence coefficients.

4.2. Asymptotic expansion of γ2
n(t;N) and βn(t;N).

Theorem 4.5. Let x(t) be as in Proposition 3.1. Assuming that |n − N | ≤ N0 for some
absolute constant N0, it holds that

(4.4)


γ2
n(t,N) ∼ − 1

2x(t)
+

∞∑
k=1

Gαtk(t;n−N)N−αtk,

βn(t,N) ∼ x(t) +

∞∑
k=1

Bαtk(t;n−N)N−αtk,

for some explicitly computable Gαtk and Bαtk, where the expansions are t-locally uniform
and

(4.5) αt = 1, αt = 1/2, and αt = 1/5

for t ∈ Oone−cut, t ∈ Cbirth ∪ Csplit, and t ∈
{
tcr, e

2πi/3tcr
}

, respectively. Moreover, the

expansion of γ2
N (t,N) is strongly t-locally uniform. The functions Gk(t;n−N) and Bk(t;n−

N) are holomorphic in Oone−cut, can be holomorphically continued across each of the arcs
Csplit, C

a
birth, and Cbbirth, and

(4.6)

{
G(2j−1)/5(t; 0) = 0, t ∈

{
tcr, e

2πi/3tcr
}
,

G2j−1(t; 0) ≡ 0, t ∈ Oone−cut,
j ∈ N.

Using (4.4) we can deduce certain analyticity properties of γ2
N (t,N).

Remark 4.6. The partition function ZN (t) is an entire function of the parameter t. Hence,
it follows from Toda equation (1.29) that γ2

N (t,N) is a meromorphic function of t. Moreover,

γ2
N (t,N) = − 1

2x(t)
+O(N−1)

strongly t-locally uniformly in Oone−cut by (4.4). Hence, for any closed set T ⊂ Oone−cut
satisfying (4.1), there exists an integer N(T ) such that γ2

N (t,N) is holomorphic on T for all
N ≥ N(T ), i.e., on some neighborhood of T that belongs to Oone−cut.
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Observe that the recurrence coefficients for different parameters N are related. Indeed,
given N1 and N2, it holds that

(4.7)


Pn(z; t1, N1) = (N2/N1)n/3Pn(w; t2, N2),

γ2
n(t1, N1) = (N2/N1)2/3γ2

n(t2, N2),

βn(t1, N1) = (N2/N1)1/3βn(t2, N2),

where w := (N1/N2)1/3z and t2 := (N1/N2)2/3t1, as follows from (1.26) and (1.27). Hence,
given N and t ∈ Oone−cut, asymptotic expansions (4.4) can be expanded to a larger range of
indices n than those covered by Theorem 4.5.

Remark 4.7. Put N :=
{

(t, u) : t ∈ Oone−cut, u ∈ Nt
}

, where Nt is the largest open subset
of C \ (−∞, 0] such that ut ∈ Oone−cut for all u ∈ Nt (clearly, 1 ∈ Nt). Define{

Ĝ2k(t, u) := u3k−1G2k(ut; 0),

B̂k(t, u) := u(3k−1)/2Bk(ut; 0),
t ∈ Oone−cut and u ∈ Nt,

where we take the principal root of u(3k−1)/2, which are holomorphic functions in N . Then,
it follows from (4.4), (4.6), and (4.7), applied with N1 = N and N2 = n, that

(4.8)


γ2
n(t,N) ∼ −1

2ux(ut)
+

∞∑
k=1

Ĝ2k(t, u)N−2k,

βn(t,N) ∼ x(ut)√
u

+
∞∑
k=1

B̂k(t, u)N−k,

u =
( n
N

)−2/3

,

whenever (n/N)−2/3 ∈ Nt, where the expansions are locally uniform in t and u.

In fact, following [8, Section 5], we can improve on the expansion of βn(t,N).

Theorem 4.8. There exist holomorphic in N functions B̃2k(t, v) such that

(4.9) βn(t,N) ∼
∞∑
k=0

B̃2k(t, v)N−2k, v =

(
n+ 1/2

N

)−2/3

,

whenever ((n+ 1/2)/N)−2/3 ∈ Nt, where the expansion is locally uniform in t and v.

Theorems 4.5 and 4.8 are proven in Section 8.

4.3. Strong asymptotics of Pn(z; t,N). To describe the asymptotics of the orthogonal
polynomials themselves, we need to introduce complexified equilibrium potential

(4.10) g(z; t) :=

∫
log(z − s)dµt(s), z ∈ C \ Γt

(
eπi∞, b

]
,

where we take the principal branch of log(· − s) holomorphic outside of Γt
(
eπi∞, s

]
and µt

is the equilibrium measure defined in (2.6). Since µt is a probability measure, it holds that

(4.11) eg(z;t) = z +O(1) as z →∞

and this function is holomorphic in C \ Jt. In fact, the function eg can be written explicitly.

Proposition 4.9. Let, as before, a(t) and b(t) be the endpoints of Jt, see (3.7). In what
follows, we set √

(z − a(t))(z − b(t)) ∼ z as z →∞
to be the square root with the branch cut along Jt. Then the function

(4.12) D(z; t) := exp
{(

3V (z; t)− 2x3(t) +
(
z2 + zx(t)− 2t

)√
(z − a(t))(z − b(t))

)
/6
}

is holomorphic in C \ Jt. Moreover, it is non-vanishing there, D(∞; t) = 1, and it has
continuous traces on Jt that satisfy

(4.13) D+(s; t)D−(s; t) = exp
{
V (s; t)− 2x3(t)/3

}
, s ∈ Jt.
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That is, D(z; t) is the Szegő function of V (·; t)|Jt normalized to have value 1 at infinity.
Furthermore, it holds that

(4.14) eg(z;t) =
D(z; t)√

2x(t)

A(z; t)

B(z; t)
,

where the functions A and B are defined by

(4.15)


A(z; t) :=

1

2

((
z − b(t)
z − a(t)

)1/4

+

(
z − a(t)

z − b(t)

)1/4
)
,

B(z; t) :=
i

2

((
z − b(t)
z − a(t)

)1/4

−
(
z − a(t)

z − b(t)

)1/4
)
,

and the branches of the 1/4-roots are principal and have the branch cuts along Jt; in par-
ticular, A(∞; t) = 1 and B(∞; t) = 0. The function F (z; t) := −iA(z; t)/B(z; t) can be
equivalently written as

(4.16) F (z; t) =
2

b(t)− a(t)

(
z − b(t) + a(t)

2
+
√

(z − a(t))(z − b(t))
)

and is holomorphic and non-vanishing in C \ Jt, has a simple pole at infinity, and its traces
on Jt multiply to 1.

We prove Proposition 4.9 in Section 6.

Theorem 4.10. Let αt be as in Theorem 4.3 and |N −n| ≤ N0 for some fixed constant N0.
Then

(4.17) Pn(z; t,N) =
(
1 +O

(
N−αt

))
A(z; t)DN−n(z; t)eng(z;t),

(z, t)-locally uniformly for z ∈ C \ Jt (or z ∈ C \
(
Jt ∪ {c}

)
when t ∈ Cbirth), where O-term

vanishes at z =∞. In particular, deg(Pn(·; t,N)) = n for all N large. Moreover,

(4.18) Pn(s; t,N) =
(
1 +O

(
N−αt

))
A+(s; t)DN−n

+ (s; t)eng+(s;t)+

+
(
1 +O

(
N−αt

))
A−(s; t)DN−n

− (s; t)eng−(s;t),

(s, t)-locally uniformly for s ∈ Γt(a, b) (or s ∈ Γt(a, c) ∪ Γt(c, b) when t ∈ Csplit). When
n = N , O-terms in (4.17) and (4.18) are strongly (z, t)-locally uniform.

Theorem 4.10 is proven in Section 7. Combining Theorem 4.10 with observation (4.7),
we obtain the following corollary.

Corollary 4.11. Given t ∈ Oone−cut, assume that u := limN→∞(n/N)−2/3 exists and ut ∈
Oone−cut. Then it holds locally uniformly in C \ Jut that

un/2Pn
(
z/
√
u; t,N

)
=
(
1 + o(1)

)
A(z;ut)eng(z;ut).

5. S-curves

For brevity, we set $t := −Q(z; t)dz2.

5.1. Critical graphs: local structure. The differential $t has two critical points of order
1, namely a, b, a critical point of order 2, namely c, (unless c coincides with either a or b
in which case $t has critical points of orders 1 and 3), and a critical point of order −8 at
infinity. All other points are regular with respect to $t (order 0).

Through each regular point of $t passes exactly one trajectory and one orthogonal trajec-
tory, which are orthogonal to each other at the point. Two distinct (orthogonal) trajectories
meet only at critical points [38, Theorem 5.5].

As Q(z; t) is a polynomial, no finite union of (orthogonal) trajectories can form a closed
Jordan curve while a trajectory and an orthogonal trajectory can intersect at most once [33,
Lemmas 8.3]. Furthermore, (orthogonal) trajectories of $t cannot be recurrent (dense in
two-dimensional regions) [28, Theorem 3.6].

If z0 ∈ {a, b, c} has order m, there are m + 2 critical trajectories emanating from z0 at
angles (

(2k + 1)π − argQ(m)(z0; t)
)
/(m+ 2), k ∈ {0, . . . ,m+ 1},
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see [38, Theorem 7.1]. Thus, there are 3 critical trajectories of$t emanating from a, 3 critical
trajectories emanating from b, and 4 emanating from c (under the condition c 6= a, b). Since
the point at infinity is a pole of order 8, there are 6 distinguished directions, namely,

π/6 + kπ/3, k ∈ {0, . . . , 5},
in which the trajectories can approach it. Moreover, there is a neighborhood of infinity
such that every trajectory entering this neighborhood necessarily tends to infinity, [38, The-
orem 7.4]. The above discussion applies to the orthogonal trajectories as well. In particular,
they can approach infinity only at the angles kπ/3, k ∈ {0, . . . , 5}.

A geodesic polygon with respect to $t is a Jordan curve in C that consists of a finite
number of trajectories and orthogonal trajectories of $t. According to Teichmüller’s lemma
[38, Theorem 14.1], it holds that

(5.1)
∑
z∈P

(
1− θ(z)ord(z) + 2

2π

)
= 2 +

∑
z∈int(P )

ord(z),

where P is a geodesic polygon, ord(z) is order of z with respect to $t, and θ(z) ∈ [0, 2π],
z ∈ P , is the interior angle of P at z. Clearly, both sums in (5.1) are finite as only critical
points of $t and vertices of the polygon have a non-zero contribution.

To simplify the forthcoming discussion, let us observe that the differential $t possesses
several symmetries. Firstly, notice that when t belongs to the subregion of Oone−cut bounded
by Cbbirth and Cbcrit, see Figures 3 and 6(c),we have

(5.2) x(t) = x(t) ⇒ $t(z) = $t(z).

That is, for such t, the critical (orthogonal) graph coincides with the reflection across the
real axis of the critical (orthogonal) graph for t. Secondly, it holds that

(5.3) x
(
te2πi/3

)
= x(t)e4πi/3 ⇒ $t(z) = $te2πi/3

(
ze4πi/3

)
.

That is, the critical (orthogonal) graph for t coincides with the reflection across the line
L2π/3, see (3.8), of the critical (orthogonal) graph for te2πi/3 (which is the reflection of t
across the line Lπ/3). Symmetries (5.2) and (5.3) yield that we need to concern ourselves
only with the case

(5.4) x ∈ Ωone−cut and 2π/3 ≤ arg(x) ≤ π.
Notice also that (5.2) and (5.3) are precisely the symmetries described in Theorem 3.4.

5.2. Critical graphs via level lines. To continue, it will be convenient to observe the
following. Let R(z) :=

√
(z − a)(z − b) be the branch holomorphic outside of some arc, say

γab, joining a and b and such that R(z) = z + O(1) as z → ∞. Expressing a, b, and c
through x via (3.7), we have

(5.5) (z + x)R(z) = 2Q1/2(z; t) = z2 +
1

x
− x2 +

2

z
+O

(
z−2
)

as z →∞. Therefore, the function

Ix(z) :=

∫ z

b

(s+ x)R(s)ds = 2

∫ z

b

Q1/2(s; t)ds

=
1

3
R3(z) + x(z − x)R(z) + log

(
z − x+R(z)

z − x−R(z)

)
(5.6)

is defined up to an addition of an integer multiple of 4πi (depending on the path of inte-
gration) and is analytic (multi-valued) in C \ γab. From the previous subsection we know
that there are 3 trajectories emanating from a and the three from b. As there are only three
finite critical points, there always exists at least one trajectory out of a and at least one
trajectory out of b that extends to infinity. Pick one such trajectory for a, say γa. Then
Ix(z) is a well-defined holomorphic function in C \ (γa ∪ γab). Write,

Ux(z) := Re (Ix(z)) and Vx(z) := Im (Ix(z)).

Then we can see from (5.6) that Ux(z) is a harmonic function in C \ γab while Vx(z) can be
defined harmonically in C \ (γa ∪ γab). Since Ux(a) = Ux(b) = 0, the zero level set of Ux
contains the trajectories emanating from both a and b and is independent of the choice of
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γab (the analytic continuation of Ix(z) across γab is given by −Ix(z) that preserves the zero
level set of Ux). Similarly, the orthogonal trajectories out of b are part of the zero level set
of the selected branch of Vx while the orthogonal trajectories out of a are part of 2π and
−2π-level sets of Vx.

It is obvious from their definition that the harmonic functions Ux continuously depend on
the parameter x. Hence, their corresponding level sets converge to each other in Hausdorff
metric on any compact subset of C (to see this around γab, recall that Ux can always be
harmonically continued across γab). Moreover, if we subtract from Ux the real part of the
polynomial part of the first two terms in (5.6) and log |z|, the obtained function will be
harmonic at infinity and will continuously depend on x. Therefore, we can control the
behavior of the level sets of Ux not only on compact subsets of C but around the point
at infinity as well. Thus, if for some fixed x0 all four critical trajectories out of c = −x0

approach infinity, then the critical trajectories out of c = −x will approach infinity in the
same directions for all x in a small neighborhood of x0. Hence, if x belongs to an open
connected set on which Ux(−x) 6= 0 (this necessarily implies that trajectories out of c
cannot end at a or b), then the trajectories out c approach infinity in the same directions
for each x on this set. Similar considerations hold for Vx as well.

5.3. Critical graphs: transitions. It follows from the previous subsection the structure
of the critical (orthogonal) graph can change only when Ux(c) = 0 (Vx(c) = 0,±2π). Let us
identify for which x these harmonic functions vanish at c. From the choice of the branch of
the square root we have that R(−x) = −2x

√
1 + 1/2x3, where the root is equal to 1 when

x = ∞. Moreover, we see from (5.4) that we are interested only in the values Im (x3) ≥ 0.
Hence,

Ix(−x) = −8x3

3

(
1 +

1

2x3

)3/2

+ 4x3

(
1 +

1

2x3

)1/2

+ log

(
1 +

√
1 + 1/2x3

1−
√

1 + 1/2x3

)

=
2

3

∫ 2x3

−1

(
1 +

1

s

)3/2

ds,(5.7)

where the path of integration lies in the upper half-plane. That is, we need to understand
the integral (5.7) of the quadratic differential (3.5) in the upper half plane. From the general
principles, we see that Ux(−x) = 0 (Vx(−x) = 0) if and only if 2x3 belongs to a (orthogonal)
trajectory emanating from −1.

Differential (3.5) has a zero of order 3 at −1, a pole of order 3 at the origin, and a pole
of order 4 at infinity. Thus, there are 5 trajectories emanating from −1, one of which is
clearly (−1, 0). There is one distinguished approach of the origin, which is necessarily along
the negative real axis since (−1, 0) is a trajectory. There are two distinguished directions at
infinity, which are along the imaginary axis. Moreover, according to the three pole theorem
[28, Theorem 3.6], this differential does not have any recurrent trajectories. The last fact
implies that the four trajectories out of −1 (excluding (−1, 0)) either approach infinity or
form loops. Going through the possible cases and using Teichmüller’s lemma, we see that
the trajectories emanating from −1 at the angles ±2π/5 form a loop2, and the other two
approach infinity (it is a simple calculus exercise to see that they cannot touch the real line).
Hence, Figure 2(a) is indeed correct.

On the other hand, the local structure of the critical orthogonal trajectories near critical
points must be the same. It is obvious that (−∞,−1) and (0,∞) are critical orthogonal
trajectories. Thus, by repeating the same analysis, we get that the critical orthogonal graph
is as on Figure 6(a) with the orthogonal trajectory (0,∞) not displayed.

Combining the above analysis with explicit computations and (5.7), we see that the values
of Ux(c) and Vx(c) are as displayed on Figure 7.

5.4. Critical graph: global structure. Let ∆split and ∆e
birth be as defined before (3.6),

while ∆crit as defined before Theorem 3.4. Write ∆crit = ∆a
crit ∪∆b

crit, where ∆e
crit and ∆e

birth

are incident with the same point, see Figure 8. Then it follows from the preceding subsection

2The loop crosses the real line approximately at 0.6349131623.
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Vx(c) = 0

Ux(c) < 0

Vx(c) > 0 Ux(c) = 0

Vx(c) = 0
Ux(c) > 0

Vx(c) = −π
Ux(c) > 0

Vx(c) < 0

Ux(c) = 0

Figure 7. The values Ux(c) and Vx(c) (c = −x) when 2x3 belongs to the dis-
played trajectories and orthogonal trajectories of (3.5).

that

Ux(c) = 0 ⇔ x ∈ ∆a
birth ∪∆b

birth ∪∆a
crit ∪∆b

crit ∪
{
− 21/3

}
∪
{

21/3eπi/3
}
.

Denote by Ωe the subdomain of Ωone−cut bounded by ∆e
birth and ∆e

crit, e ∈ {a, b}, and by Ωab
the subdomain bounded by ∆a

crit, ∆b
crit, and ∆split, see Figure 8. Recall that we only need to

study the cases when x satisfies (5.4).

Ωab Ωa

Ωb

Ω∗

∆split
∆a

birth

∆a
crit

∆b
birth

∆b
crit

Figure 8. Domains Ω∗, Ωa, Ωb, Ωab and their boundaries; the shaded region is
the one from (5.4).

Let x ∈ Ωab. From what precedes we know that the trajectories out of c approach infinity
in the same four directions. The case x ∈ L2π/3, see (3.8), has been worked out in [27]

(to obtain the setting of [27] one needs to perform the transformations z 7→ eπi/6z and
t 7→ eπi/3K in (1.24)). It was shown that there exists r∗ such that for x = re2π/3, r < r∗,
there are no critical trajectory of $t connecting a and b and for r > r∗ such a trajectory
exists and the critical (orthogonal) graph is as on Figure 4(a). Thus, the trajectories out of
c approach infinity at the angles

7π/6 + kπ/3, k ∈ {0, 1, 2, 3},
for each x ∈ Ωab. Now, if there always exists a trajectory connecting a and b, the other two
trajectories out of b must approach infinity at the angles π/6 and π/2 and the trajectories
out of a must approach infinity at the angles 5π/6 and 7π/6 by Teichmüller’s lemma (5.1),
which would finish the description of the critical graph in this case.

Assume to the contrary that such a trajectory does not exist. It follows from Teichmüller’s
lemma that both a and b must belong to the sector of opening π at infinity delimited by the
trajectories out of c. In this case two trajectories out one of the points a, b will approach
infinity in the directions 5π/6 and 7π/6, forming a sector say Xa, and two trajectories of the
other point will approach infinity in the directions π/6 and π/2, forming a sector say Xb, see
Figure 9. We further can choose the arc γab outside of Xa∪Xb, that is, belonging to geodesic
polygon with four corners a, b,∞,∞ and respective angles 2π/3, 2π/3, 0, 0, see the dashed
arc on Figure 9. Denote by X the region that does not contain c and is bounded by γab and
a part of ∂Xa ∪ ∂Xb. As trajectories cannot intersect, X contains one trajectory arc, say T .
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Recall that around each simple zero of $t, the differential can be written as (3/2)2ζdζ2 for
some local parameter ζ, [38, Theorem 6.1]. This means that Ux(z) has constant sign locally
in Xa and Xb, but it also is continuous and cannot vanish there. Hence, it has a constant
sign in each of these sectors. As we can always choose a branch of the logarithm in (5.6)
so that Ix(z) is holomorphic in the closure Xa ∪ X ∪ Xb, we have Ix(z) = z3(1/3 + o(1))
as z → ∞ uniformly in Xa ∪X ∪Xb. Thus, Ux(z) has the same sign in Xa and Xb. The
same local structure and continuity yield that Ux(z) has the opposite sign in X \ T and is
zero on T by construction. As Ux(z) is harmonic in X, the latter contradicts the maximum
principle and therefore our assumption is false. Therefore, when x ∈ Ωab the critical graph
of $t has indeed the structure as on Figure 4(a,b,c).

Xa

Xb

c

X

Figure 9. The dashed arc is γab, the shaded regions are part of the open set
{z : Ux(z) < 0}.

Let x ∈ Ωb, which is also connected. The case x ∈ Lπ ∩Ωone−cut has been investigated in
[6]. It was shown that the critical and critical orthogonal graphs are as on Figure 4(f) when
x ∈ Lπ ∩ Ωb and Figure 5(a) when x = −21/3. This fixes the behavior of the trajectories
out of c. Arguing as in the previous paragraph, we get that a and b must be connected by a
trajectory and therefore the behavior of the whole critical graph is fixed, see Figure 4(e,f,g).

Let now x ∈ ∆b
crit. Continuity with respect to parameter implies that the structure of the

critical graph should be obtained through the limiting process from within both Ωab and
Ωb, which necessarily yields that it must be as on Figure 4(d).

Finally, let x ∈ ∆split. Denote by Ω∗ a domain whose boundary contains ∆split that has
empty intersection with Ωone−cut and ∆ (defined after (3.4)), see Figure 8. It was shown
in [27] that the critical graph and critical orthogonal graphs for x ∈ L2π/3 ∩ Ω∗ are as in
Figure 10. Hence, the trajectories out of c approach infinity in the directions −π/6, π/2,

Figure 10. The critical graph of $t when t crosses ∆split.

5π/6, and 3π/2. It follows from Teichmüller’s lemma (5.1) that the points a and b must
be separated by the trajectories out of c. Hence, there are no trajectory joining a and b.
Continuity with respect to the parameter immediately yields that the critical graph of $t

is as on Figure 5(b) when x ∈ ∆split.

5.5. Critical orthogonal graph: global structure. In what follows we shall refer to the
key observation: given an unbounded domain whose boundary consists of critical trajectories
that are consecutive at each point of intersection (such intersections have zero contribution
to the left-hand side of (5.1) and the two trajectories extending to infinity necessarily form
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an angle of magnitude π/3 there), (5.1) implies that any orthogonal trajectory entering this
domain will remain inside. Recall further, that orthogonal trajectories cannot intersect.

Vx(c) = 0

Vx(c) > 0

Vx(c) = −π

Vx(c) = 0

Figure 11. The dashed lines are those where Vx(c) = 0, solid lines are those
where Ux(c) = 0, and Vx(c) = −π on the dashed-dotted line. The shaded region
is the one from (5.4).

Let x ∈ L2π/3 ∩ Ωone−cut. In this case the graphs must be symmetric with respect to the
line L2π/3 by (5.3). This symmetry, the global structure of the critical graph, and the key
observation yield that the orthogonal critical graph is as on Figure 4(a) or Figure 5(b).

When x ∈ ∆b
crit, the global structure of the critical graph and key observation along fix

the critical orthogonal graph to be as on Figure 4(d), see also Figure 4(c,e).
Consider x in the region bounded by L2π/3 and ∆b

crit. The critical graph is always the
same, see Figure 4(a,b,c). The key observation fixes three orthogonal trajectories out of
c except for the one, say Tx, that becomes Γ(c, e2πi/3∞) when x ∈ L2π/3 ∩ Ωone−cut, see

Figure 4(a), and becomes Γ(c, eπi/3∞) when x ∈ ∆b
crit, see Figure 4(d). Notice also that

fixing Tx fixes the entire critical orthogonal graph as orthogonal trajectories cannot intersect.
Observe also that besides becoming a short orthogonal trajectory Γ(c, b), those are the only
options for Tx. Indeed, it could have happened that Tx = Γ(c, eπi∞), but then it would
necessarily hold that Tx = Γ(c, a) for some x by continuity. In this case we would have
Vx(c) = −2π, which is impossible as Vx(c) ≥ −π in the considered region, see Figures 7
and 11. Thus, the critical graph is as on Figure 4(a,b,c) in the considered region. Since
Vx(c) < 0 when Tx = Γ(c, e2πi/3∞), Vx(c) = 0 when Tx = Γ(c, b), and Vx(c) > 0 when
Tx = Γ(c, eπi/3∞), the corresponding claims of Theorem 3.4 follow.

When x ∈ Lπ ∩ Ωone−cut, we know that the critical orthogonal graph must be symmetric
with respect to the real axis by (5.2). This symmetry, the global structure of the critical
graph, and the key observation imply that the critical orthogonal graph must be as on
Figure 4(f) or Figure 5(a).

Finally, let x belong to the region bounded by Lπ ∩ Ωone−cut and ∆b
crit. Since the critical

graph is always the same, the critical orthogonal graph can be only as on Figure 4(e,f,g).
Continuity considerations similar to the ones above imply that it is as on Figure 4(e) for the
considered x. This finishes the proof of Theorem 3.4 and therefore of Theorem 3.2.

6. g-Function

In this section we discuss properties of g(z; t) defined in (4.10). We consider the parameter
t ∈ Oone−cut to be fixed and stop indicating the dependence on t of the various quantities
appearing below whenever this does not introduce ambiguity.

6.1. Global properties. It follows directly from definition (4.10) that

∂zg(z; t) =

∫
dµt(s)

z − s
,

where ∂z := (∂x − i∂y)/2. Therefore, we can deduce from (2.2) and (2.5) that

(6.1) g(z; t) =
V (z; t)− `∗t

2
+

∫ z

b

Q1/2(s; t)ds,

where, as usual, we take the branch Q1/2(z; t) = 1
2z

2 +O(z), and `∗t is a constant such that
Re (`∗t ) = `t (the explicit expression for `∗t can be obtained from (5.6) and the fact that
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g(z; t) = log z +O(z−1) as z →∞). In the view of (6.1), define

(6.2) φe(z) := 2

∫ z

e

Q1/2(s; t)ds, e ∈ {a, b},

holomorphically in C\Γt
[
b, eπi/3∞

)
when e = b, and in C\Γt

(
eπi∞, a

]
when e = a (observe

that (5.6) provides an explicit formula for these functions). It follows from (2.6) and (6.2)
that

(6.3)

{
φb(z) = φa(z)± 2πi, z ∈ C \ Γt,

φb±(s) = ±2πiµt
(
Γt[s, b]

)
, s ∈ Γt(a, b),

where, in the first relation, the plus sign is used if z lies to the left of Γt and the minus sign
if z lies to the right of Γt. By combining (6.1) and (6.3) we get that

(6.4) g+(s; t)− g−(s; t) =


0, s ∈ Γt

(
b, eπi/3∞

)
,

±φb±(s), s ∈ Γt(a, b),

2πi, s ∈ Γt
(
eπi∞, a

)
,

and that

(6.5) g+(s; t) + g−(s; t)− V (s; t) + `∗t =


φb(s), s ∈ Γt

(
b, eπi/3∞

)
,

0, s ∈ Γt(a, b),

φa(s), s ∈ Γt
(
eπi∞, a

)
.

To control the error terms in Theorem 4.10, we need to have precise information on the
behavior of φe around a, b, and c, when the latter belongs to Γt. This is exactly the goal of
the following two subsections.

6.2. Local analysis at e ∈ {a, b}, e 6= c. Given e ∈ {a, b}, e 6= c, set

(6.6) Ue :=
{
z : |z − e| < δeρ(t)|a− b|

}
,

where δe ∈ (0, 1] to be adjusted later and we shall specify the function ρ(t) further below in
Section 6.4. Define

(6.7) Je := Ue ∩ Jt and Ie := Ue ∩ (Γt \ Jt),
where the arcs Je and Ie inherit their orientation from Γt. Since Ie is a subarc of the
orthogonal trajectory of $t = −Q(z; t)dz2, it holds that

(6.8) φe(s) < 0, s ∈ Ie.
Moreover, we get from (6.3) that

(6.9) φe±(s) = ±2πiεeµt(Js,e) = 2πe±εe
3π
2 iµt(Js,e),

where Js,e is the subarc of Je with endpoints e and s,

(6.10) εe :=

{
1, e = b,

−1, e = a,

and the second equality in (6.9) follows from (6.8) and the fact |φe(z)| ∼ |z − e|3/2. Thus,
we can define an analytic branch of (−φe)2/3(z) that is positive on Ie. Then (6.9) yields
that

(−φe)2/3
± (s) = −

(
2πµt(Js,e)

)2/3
, s ∈ Je,

that is, (−φe)2/3(z) is holomorphic across Je. Since (−φe)2/3(z) has a simple zero at e, it
is conformal in some region around e. It will be clear from the choice of ρ(t) in Section 6.4
that this region contains Ue. Thus, we get that (−φe)2/3(z) maps Ue conformally onto some
neighborhood of the origin and satisfies

(6.11)

{
(−φe)2/3(Je) ⊂ (−∞, 0),

(−φe)2/3(Ie) ⊂ (0,∞).

Furthermore, if we define (−φe)1/6(z) to be holomorphic in Ue \ Je and positive on Ie, then

(6.12) (−φe)1/6
+ (s) = εei(−φe)1/6

− (s), s ∈ Je.
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6.3. Local analysis at c. Assume that t ∈
{
tcrit, e

2πi/3tcrit
}

. Then either c = b or c = a.
In any case c is a triple zero of Q. Define εc by (6.10). Define Uc by (6.6) with

(6.13) ρ(tcr) := ρ(e2πi/3tcr) := 1/3,

where again δc ∈ (0, 1]. Let Ic and Jc be as in (6.7). It follows from (3.1) that φc(z) ∼
|z − c|5/2 as z → c. Since φc < 0 on Ic and the angle between Ic and Jc is 3π/5, we can

define a branch of φ
2/5
c that is conformal around c, in fact, in Uc (see the analysis in the next

section) and is negative on Jc. That is, φ
2/5
c maps Uc conformally onto some neighborhood

of the origin and satisfies

(6.14)

{
φ

2/5
c (Jc) ⊂

{
z : arg(z) = εcπ

}
,

φ
2/5
c (Ic) ⊂

{
z : arg(z) = εc2π/5

}
.

Moreover, (6.12) is replaced in this case by

(6.15) φ
1/10
c+ (s) = εciφ

1/10
c− (s), s ∈ Jc.

Let now t ∈ Csplit. Determining the left and right sides of Γt by its orientation, set

(6.16) ϕ(z) :=

{
−φb(z), z is to the left of Γt,

φb(z), z is to the right of Γt.

It follows from (6.3) that ϕ−ϕ(c) is holomorphic across Jt, vanishes at c, is negative purely
imaginary on Γt(a, c), and positive purely imaginary on Γt(c, b). Moreover, (3.1) yields that
|ϕ(z)− ϕ(c)| ∼ |z − c|2 as z → c. Therefore, we can define a branch of (ϕ− ϕ(c))1/2 that is
conformal around c and satisfies

(6.17)

{
(ϕ− ϕ(c))1/2 (Γt(c, b)) ⊂

{
z : arg(z) = π/4

}
,

(ϕ− ϕ(c))1/2 (Γt(a, c)) ⊂
{
z : arg(z) = 3π/4

}
.

As before, we attach a circular neighborhood to c of the form

(6.18) Uc :=
{
z : |z − c| < δcρ(t)|a− b|

}
,

where, as in (6.6), ρ(t) is a function that will be specified in the next section (in particular,
it will ensure conformality of (ϕ− ϕ(c))1/2 in Uc), and δc ∈ (0, 1].

Finally, let us consider the case t ∈ Cebirth, e ∈ {a, b}. Define φc := φe − φe(c). Notice
that φc has a double zero at c and it is real negative on Γt around c. Hence, we can select
a branch of (−φc)1/2 that is conformal in Uc of the form (6.18), satisfies

(6.19) (−φc)1/2
(
Γt ∩ Uc

)
⊂ R,

and preserves the orientation (positive direction on Γt is mapped into the positive direction
on R). As it will be important latter, let us also observe that φe(c) is purely imaginary.

6.4. Neighborhoods Ue. The goal of this section is to specify the function ρ(t) appearing
in the definition of the neighborhoods of Ue, e ∈ {a, b, c}, in (6.6) and (6.18). We would like
to show that this function can be chosen in such a fashion that the corresponding map is
conformal in Ue and the image of Ue under this map contains a disk

(6.20)
{
z : |z| < δeρ̃(t)/32

}
,

where ρ̃(t) is a continuous positive function in Oone−cut \
{
tcr, e

2πi/3tcr
}

that is separated
from zero when t→∞, and the constant 1/32 is introduced for convenience only.

The main tool in showing that the above requirement can be met is the Basic Structure
Theorem, see [28, Theorem 3.5]. It states in particular that the function φe(z), defined in
(6.2), is conformal in each connected component of the complement of the joint critical graph
(critical and critical orthogonal) of $t (see Figures 4 and 5 for the possible configurations
of this graph). Recall that Reφe(z) is constant on the critical trajectories and Imφe(z) is
constant on the critical orthogonal trajectories. Therefore, each connected component of
the complement of the joint critical graph is mapped by φe(z) into a quadrant, semi-infinite
strip, or a rectangle, see Figure 12. Moreover, if two such regions share a side that is the
image of the same part of the joint critical graph, then φe(z) extends conformally through
this side. As |φa(b)| = |φb(a)| = 2π for any t, the inverse of the restriction of φe to any
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Figure 12. (a) The critical graph of $t with some of the connected components
of its complement numbered; (b) The images of the numbered components from
part (a) under a certain branch of the map φb(z). The interior of the dashed
circle from panel (b) is mapped conformally by φ−1

b (z) onto the corresponding set
bounded by the dashed curve and joint critical graph on panel (a).

connected component is conformal in the intersection of the image of the component under
φe(z) and any disk of radius at most min

{
2π, |φe(c)|

}
. In particular, the inverse of (−φe)2/3

is conformal in a disk{
z : |z| < ρ̃e(t)/2

}
, ρ̃e(t) :=

(
min

{
2π, |φe(c)|

})2/3
.

It follows from a direct computation and (3.7) that

(6.21)

∣∣∣∣((−φe)2/3
)′

(e)

∣∣∣∣ =
3
√

96

|a− b|

∣∣∣∣1 +
iεe√
2x3/2

∣∣∣∣2/3
for any t 6= tct, e

2πi/3tcr. Koebe’s Quarter Theorem then yields that (−φe)2/3 is conformal
in any disk (6.6) with

ρ(t) := min

{
1

3
,
ρ̃(t)

8 3
√

96

∣∣∣∣1 +
iεe√
2x3/2

∣∣∣∣−2/3
}
, ρ̃(t) := min

{
ρ̃a(t), ρ̃b(t)

}
,

which, together with Koebe’s Quarter Theorem used once more, implies that (6.20) indeed
takes place (we bound ρ(t) by 1/3 for convenience only). Notice that the rate of decay to
zero of ρ̃(t) as t →

{
tct, e

2πi/3tcr
}

can be deduced from (5.7) as |φb(c)| = |Ix(−x)| and the
fact that an analogous formula holds for |φa(c)|.

It is not hard to see that the above argument can be applied to the conformal map around
c when t ∈ Csplit∪Cbirth to show that the conclusion (6.20) still holds for Uc as in (6.18) with
ρ̃(t) now defined as min

{
ρ̃a(t), ρ̃b(t), ρ̃c(t)

}
, where

ρ̃2
c(t) =

{
min

{
|φc(a)|, |φc(b)|

}
, t ∈ Cbirth,

min
{
|ϕ(a)− ϕ(c)|, |ϕ(b)− ϕ(c)|

}
, t ∈ Csplit.

6.5. Functions D(z; t), A(z; t), and B(z; t). Let D(z; t) be given by (4.12). As in (5.5) we
can compute that√

(z − a)(z − b) = z − x+
1

xz
+

1

z2
+

1

z3

(
x− 1

2x2

)
+

1

z4

(
x2 − 3

2x

)
+O

(
1

z5

)
and therefore

(6.22)
(
z2 + zx− 2t

)√
(z − a)(z − b) = z3 − 3zt+ 2x3 +

3

2x2z
+O

(
1

z3

)
,

from which the analyticity and normalization at infinity follow. The equality in (4.13) is a
trivial consequence of the behavior of the square root along the branch cut.
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Define F (z) as in (4.16). Since
(
s−b
s−a

)1/4

+
= i
(
s−b
s−a

)1/4

−
for s ∈ Jt, it holds that

(6.23) A±(s; t) = ±B∓(s; t) ⇒ F+(s)F−(s) ≡ 1, s ∈ Jt.

Notice also that neither A nor B is equal to zero in C. Indeed, denote by R the Riemann
surface realized as two copies of C \ Jt glued to each other crosswise along Jt. Lift A2 to
one of the sheets of R (a copy of C\ Jt) and B2 to another. It follows from (6.23) that thus
defined function is rational on R. As it only has two poles (at the places that project to a
and b), it has exactly two zeros. Since B2 has a double zero at infinity, the claim follows.

We further deduce from the previous paragraph that F (z) is non-vanishing and finite
in C \ Jt and has a simple pole at infinity. Hence, it follows from (6.23) that by lifting
F to one of the sheets of R and F−1 to another, we construct a rational function with a
single pole and a single zero, both projecting to the point at infinity. Clearly, a similar lift
of the right-hand side of (4.16) and its reciprocal to R produces a rational function with
the same properties. The normalization at infinity then gives (4.16). Observe also that the
above argument applied to the ratio of the right- and left-hand sides of (4.14) together with
(4.13), (6.5), (6.23), and the normalization at infinity implies the validity of (4.14) as well.

For further use, let us also record several estimates. By the very definition of Ua in (6.6)
and (6.13), we have that

(6.24)
2

3δaρ(t)
≤ 1

δaρ(t)
− 1 ≤

∣∣∣∣ s− bs− a

∣∣∣∣ ≤ 1 +
1

δaρ(t)
≤ 4

3δaρ(t)
, s ∈ ∂Ua,

where we used the estimate δaρ(t) ≤ 1/3 and our convention (6.13). Since an analogous
bound holds on ∂Ub, we get that

(6.25) |A(z; t)|, |B(z; t)| ≤
(

min{δa, δb}ρ(t)
)−1/4

, z ∈ C \
(
Ua ∪ Ub

)
,

where the bound extends outside of Ua ∪Ub by the maximum modulus principle applied on
the lift ∂Ua ∪ ∂Ub to R to the rational function on R comprised of the lifts of A2 and B2.
Similarly, we deduce from (6.24) that

(6.26) |A(s; t)|−1, |B(s; t)|−1 ≤ 8
(

max{δa, δb}ρ(t)
)1/4

, s ∈ ∂Ua ∪ ∂Ub,

and therefore it follows from the very definition of F (z) as the left-hand side of (4.16) that

(6.27) |F±1(z)| ≤ 8, z ∈ Ua ∪ U b,

independently of t, where we apply the argument with δa = δb = 1 on the corresponding
∂Ua∪∂Ub and then extend the bound inside by the maximum modulus principle applied on
R. In fact, it also holds that

(6.28) |F−1(z)| = O(1)

uniformly for z ∈ C \ Jt and t ∈ Oone−cut. Indeed, by the maximum modulus principle and
the analyticity of F−1(z) in C\Jt, we only need to prove (6.28) for the traces F−1

± (s), s ∈ Jt.
Moreover, the compactness argument shows that it is sufficient to consider only |t| large. As
explained in Section 6.4, in such situations the inverse of (−φe)2/3, e ∈ {a, b}, is conformal
in the disk of radius (2π)2/3. Moreover, (−φa)2/3(b) or (−φb)2/3(a), depending on whether
e = a or e = b, belongs to the boundary of this disk. Hence,

Jt ⊂
(

(−φa)2/3
)−1

(U) ∪
(

(−φb)2/3
)−1

(U), U :=
{
z : |z| < 2(2π)2/3/3

}
.

Then it follows from Koebe’s distortion theorem and (6.21) that

|s− e| ≤ const|a− b|, s ∈ Jt ∩
(

(−φe)2/3
)−1

(U),

for some absolute constant. Therefore, |s − e| ≤ const|a − b| for all s ∈ Jt and e ∈ {a, b}.
This estimate and the explicit expression

F−1(z) =
2

b− a

(
z − b+ a

2
−
√

(z − a)(z − b)
)

immediately imply the desired bound on Jt.
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7. Asymptotic Analysis

7.1. Initial Riemann-Hilbert problem. In what follows, it will be convenient to set

I :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, and σ3 :=

(
1 0
0 −1

)
.

We are seeking solutions of the following sequence of Riemann-Hilbert problems for 2 × 2
matrix-valued functions (RHP-Y ):

(a) Y is analytic in C \ Γt and limC\Γt3z→∞ Y (z)z−nσ3 = I;
(b) Y has continuous traces on Γt \ {a, b, c} that satisfy

Y +(s) = Y −(s)

(
1 e−NV (s;t)

0 1

)
.

The connection of RHP-Y to orthogonal polynomials was first demonstrated by Fokas,
Its, and Kitaev in [24] and lies in the following. If the solution of RHP-Y exists, then it is
necessarily of the form

(7.1) Y (z) =

(
Pn(z)

(
CPne−NV

)
(z)

− 2πi
hn−1

Pn−1(z) − 2πi
hn−1

(
CPn−1e

−NV )(z)
)
,

where Pn is the polynomial satisfying orthogonality relations (1.26), hk are constants defined
by (1.28), and Cf is the Cauchy transform of a function f given on Γt, i.e.,

(Cf)(z) =
1

2πi

∫
Γt

f(s)

s− z
ds.

Below, we show the solvability of RHP-Y for all |n − N | ≤ N0 and N large enough
following the framework of the steepest descent analysis introduced by Dieft and Zhou [19].
The latter lies in a series of transformations which reduce the initial problem to a problem
with jumps asymptotically close to the identity.

7.2. Renormalized Riemann-Hilbert problem. Suppose that Y is a solution of RHP-
Y . Put

(7.2) T := eN`
∗
tσ3/2

(
4

b− a

)(n−N)σ3

Y (z)e−N
(
g+`∗t /2

)
σ3F (N−n)σ3 ,

where the function g is defined by (4.10), `∗t is introduced in (6.1), and F = −iA/B is a
function from (4.16). Then

T+ = T−

(
(F+/F−)N−ne−N(g+−g−) (F+F−)n−NeN(g++g−−V+`∗t )

0 (F−/F+)N−ne−N(g−−g+)

)
,

on Γt, and therefore we deduce from (4.11), (4.16), (6.4), (6.5), and (6.23) that T solves
RHP-T :

(a) T is analytic in C \ Γt and limC\Γt3z→∞ T (z) = I;
(b) T has continuous traces on Γt \ {a, b, c} that satisfy

T+ = T−



(
1 F 2(n−N)eNφb

0 1

)
, on Γt

(
b, eπi/3∞

)
,(

F
2(N−n)
+ e−Nφb+ 1

0 F
2(n−N)
− e−Nφb−

)
, on Γt(a, b),(

1 F 2(n−N)eNφa

0 1

)
, on Γt

(
eπi∞, a

)
.

Clearly, if RHP-T is solvable and T is the solution, then by inverting (7.2) one obtains a
matrix Y that solves RHP-Y .
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7.3. Lens opening. As usual in the steepest descent analysis of matrix Riemann-Hilbert
problems for orthogonal polynomials, the next step is based on the identity(

a+ 1
0 a−

)
=

(
1 0
a− 1

)(
0 1
−1 0

)(
1 0
a+ 1

)
, a+a− ≡ 1,

which is applicable by (6.3) and (6.23). To carry it out, we shall introduce two additional
arcs. Denote by J± smooth homotopic deformations of Jt within the region Re (φb(z)) > 0
such that J+ lies to the left and J− to the right of Jt, see Figure 13. Moreover, we shall

(a)

a

b

c

J+
J−

(b)

a

b

c

J+

J−

Figure 13. The thick arcs represent Γt and thiner arcs represent J±. Shaded
region is the set where Re

(
φb(z)

)
< 0.

fix the way these arcs emanate from e ∈ {a, b}. Namely, let Ue be a disk centered at e as
described in Sections 6.2–6.4. Assume first that we are in a generic situation when e 6= c.
Then we require that

(7.3) arg
(
(−φe)2/3(z)

)
= ±εe(2π/3), z ∈ Ue ∩ J±,

where εe is defined by (6.10). The latter is always possible due to (6.11). Suppose now that
e = c ∈ {a, b}. Then we require that

(7.4) arg
(
φ2/5
c (z)

)
= ±εc(4π/5), z ∈ Uc ∩ J±,

where εc is still defined by (6.10) and such a choice is possible according to (6.14). In
addition, when c ∈ Jt \ {a, b}, it necessarily holds that J− touches Jt at c. We shall choose
J− around c so that

(7.5) (ϕ− ϕ(c))1/2(Uc ∩ J−) ⊂ R,

where ϕ is defined by (6.16) and such a choice is possible due to (6.17).
Denote by O± the open sets delimited by J± and Jt. Set

(7.6) S(z) := T (z)


(

1 0
∓F 2(N−n)(z)e−Nφb(z) 1

)
, z ∈ O±,

I, otherwise.

Then, if T solves RHP-T , S solves RHP-S:

(a) S is analytic in C \ (Γt ∪ J+ ∪ J−) and limC\Γt3z→∞ S(z) = I;

(b) S has continuous traces on Γt \ {a, b, c} that satisfy RHP-T (b) on Γt
(
eπi∞, a

)
and

Γt
(
b, eπi/3∞

)
, as well as

S+(s) = S−(s)


(

0 1
−1 0

)
, s ∈ Jt,(

1 0
F 2(N−n)(s)e−Nφb(s) 1

)
, s ∈ J±.

As before, since transformation (7.6) is invertible, a solution of RHP-S yields a solution of
RHP-T .
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7.4. Model solution. The model Riemann-Hilbert problem RHP-M is obtained from
RHP-S by removing from the jump matrices in RHP-S(b) the quantities that are asymp-
totically zero. Thus, we are seeking the solution of RHP-M :

(a) M is analytic in C \ Jt and M(∞) = I;
(b) M has continuous traces on Γt(a, b) that satisfy

M+(s) = M−(s)

(
0 1
−1 0

)
, s ∈ Γt(a, b).

Using (6.23), one can easily verify that RHP-M is solved by

(7.7) M(z) :=

(
A(z; t) −B(z; t)
B(z; t) A(z; t)

)
,

where A(z; t) and B(z; t) are given by (4.15). Observe also that det(M) ≡ 1 in C.

7.5. Local parametrices. The jumps discarded in RHP-M are not uniformly close to the
identity around e ∈ {a, b, c} (the point e = c is included when t ∈ ∂Oone−cut). The goal
of this section is to solve RHP-S within the disks Ue introduced in Sections 6.2–6.4 with a
certain matching condition on ∂Ue. More precisely, given e ∈ {a, b, c}, we are looking for a
matrix-valued function P e that solves RHP-P e:

(a) P e has the same analyticity properties as S restricted to Ue, see RHP-S(a);
(b) P e satisfies the same jump relations as S restricted to Ue, see RHP-S(b);
(c) P e = M

(
I + O(N−αe)

)
holds uniformly on ∂Ue as N →∞ for some αe > 0.

7.5.1. Parametrix P e around e ∈ {a, b}, e 6= c. Let Ue, Je, and Ie be as in (6.7). In this
section we are looking for a matrix function P e that is holomorphic in Ue \ (Γt ∪ J+ ∪ J−),
fulfills RHP-P e(c), and whose traces satisfy

(7.8) P e+(s) = P e−(s)



(
0 1
−1 0

)
, s ∈ Je,(

1 0
F 2(N−n)(s)e−Nφe(s) 1

)
, s ∈ J± ∩ Ue,(

1 F 2(n−N)(s)eNφe(s)

0 1

)
, s ∈ Ie.

Notice that we replaced φb by φe as compared to RHP-S(b). Such a substitution is possible
due to the first relation in (6.3).

Let A be the Airy matrix [15, 16]. That is, it is analytic in C \
(
(−∞,∞) ∪ L− ∪ L+

)
,

L± :=
{
z : arg(z) = ±2π/3

}
, and satisfies

A+(s) = A−(s)



(
0 1
−1 0

)
, s ∈ (−∞, 0),(

1 0
1 1

)
, s ∈ L±,(

1 1
0 1

)
, s ∈ (0,∞),

where the real line is oriented from −∞ to ∞ and the rays L± are oriented towards the
origin. It is known that A has the following asymptotic expansion at infinity:

(7.9) A(ζ)e
2
3 ζ

3/2σ3 ∼ ζ−σ3/4

√
2

∞∑
k=0

(
sk 0
0 tk

)(
(−1)k i
(−1)ki 1

)(
2

3
ζ3/2

)−k
,

where the expansion holds uniformly in C \
(
(−∞,∞) ∪ L− ∪ L+

)
, and

s0 = t0 = 1, sk =
Γ(3k + 1/2)

54kk!Γ(k + 1/2)
, tk = −6k + 1

6k − 1
sk, k ≥ 1.

Set Ab := A and Aa := σ3Aσ3. It can be easily checked that σ3Aσ3 has the same
jumps as A only with the reversed orientation of the real line and the rays L±. Moreover,
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one needs to replace each occurrence of i by −i in (7.9) when describing the asymptotic
expansion σ3Aσ3. Then (6.3), (6.11), and (7.3) yield that the matrix function

(7.10) P e(z) = Ee(z)Ae

([
− (3/4)Nφe(z)

]2/3)
e−Nφe(z)σ3/2F (N−n)σ3(z)

satisfies RHP-P e(a) and RHP-P e(b) for any matrix function Ee holomorphic in Ue. Thus,
we only need to choose Ee so that RHP-P e(c) is fulfilled. Choose

Ee(z) := M(z)F (n−N)σ3(z)

(
1 −εei
−εei 1

) [− (3/4)Nφe(z)
]σ3/6

√
2

whose analyticity in Ue follows RHP-M(b), (6.23), and (6.12) with εe given by (6.10). Then
we deduce from (7.9) and (7.10) that

(7.11) P e(z) ∼M(z)F (n−N)σ3(z)

(
I +N−αe

∞∑
k=0

P e,k(z)N−k

)
F (N−n)σ3(z),

where the expansion inside the parenthesis holds uniformly on ∂Ue and locally uniformly
for t ∈ Oone−cut \

{
tcr, e

2πi/3tcr
}

by (6.20), the parameter αe = 1, and

(7.12) P e,k−1(z) =

(
1 −εei
−εei 1

)(
sk 0
0 tk

)(
(−1)k εei
εe(−1)ki 1

)(
−φe(z)

2

)−k
, k ≥ 1.

7.5.2. Parametrix P c around c ∈ {a, b}. The local problem at e = c is formulated exactly
as before with the jumps as in (7.8). However, the above solution does not apply because

(−φc)2/3 is no longer conformal (we shall replace it by φ
2/5
c ) and the arcs Ic and Jc no longer

form an angle π at c (it is 3π/5).
As in the previous subsection, we shall need an auxiliary matrix-valued function. This

time it depends on two parameters: α, λ ∈ C, and solves the following Riemann-Hilbert
problem (RHP-Ψ):

(a) Ψα is a holomorphic matrix function in C\
(
(−∞, 0]∪L1−∪L1+∪L2−∪L2+

)
, where

Lk± :=
{
z : arg(z) = ±2kπ/5

}
, the rays (−∞, 0) and L2± are oriented towards the

origin while L1± are oriented away from the origin;
(b) Ψα has continuous traces on (−∞, 0) ∪ L1− ∪ L1+ ∪ L2− ∪ L2+ that satisfy

Ψα+(s;λ) = Ψα−(s;λ)



(
0 1
−1 0

)
, s ∈ (−∞, 0),(

1 0
1 1

)
, s ∈ L2±,(

1 1− α
0 1

)
, s ∈ L1+,(

1 α
0 1

)
, s ∈ L1−;

(c) Ψα satisfies

Ψα(ζ;λ) =
ζ−σ3/4

√
2

(
1 −i
1 i

)(
I + O

(
ζ−1/2

))
e( 4

5 ζ
5/2+λζ1/2)σ3

uniformly in C \
(
(−∞, 0] ∪ L1− ∪ L1+ ∪ L2− ∪ L2+

)
.

RHP-Ψ characterizes tronquée solutions of Painlevé I equation [29]. That is, Ψα(ζ;λ)
satisfies the following system of linear ODEs:

(7.13)


∂ζ(Ψα(ζ;λ))Ψα(ζ;λ)−1 =

(
−∂λyα 2ζ2 + 2ζyα + λ+ 2y2

α

2ζ − 2yα ∂λyα

)

∂λ(Ψα(ζ;λ))Ψα(ζ;λ)−1 =

(
0 ζ + 2yα

1 0

)
with the functions yα(λ) forming a one parameter family of solutions to y′′(λ) = 6y2(λ) + λ

and satisfying yα(λ) =
√
−λ/6

(
1 +O

(
(−λ)−5/2

))
as |λ| → ∞, |arg(λ) − π| < 2π/5, where

the parameter α appears when describing the more detailed asymptotics of yα. In particular,
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each such solution is pole free in the sector |arg(λ) − π| < 2π/5 for |λ| large, and therefore
is a tronquée solution as designated by Boutroux [10]. Moreover, the functions y0(λ) and
y1(λ) are known to be tritronquée solutions as they are asymptotically pole free in sectors
|arg(λ)− 7π/5| < 4π/5 and |arg(λ)− 3π/5| < 4π/5, respectively.

It is known that RHP-Ψ is solvable if and only if λ is not a pole of the corresponding
solution yα [20, Section 4.6]. It is also known that tritronquée solutions are pole free in a
disk around the origin [11, Theorem 1]. Hence, the matrices Ψ0(·; 0) and Ψ1(·; 0) exist and
have the properties described by RHP-Ψ.

Set Bb := Ψ0(·; 0) and Ba := σ3Ψ1(·; 0)σ3. As before, one can check that σ3Ψασ3 has
the same jumps as Ψα only with the reversed orientation of the rays. Moreover, one needs
to replace the anti-diagonal elements in RHP-Ψ(c) by their negatives when describing the
behavior of σ3Ψασ3 at infinity. Then (6.3), (6.14), and (7.4) yield that the matrix function

(7.14) P c(z) = Ec(z)Bc

([
(5/8)Nφc(z)

]2/5)
e−Nφc(z)σ3/2F (N−n)σ3(z)

satisfies RHP-P c(a) and RHP-P c(b) for any matrix function Ec holomorphic in Uc. Thus,
we only need to choose Ec so that RHP-P c(c) is fulfilled. Choose

Ec(z) := M(z)F (n−N)σ3(z)

(
1 εc
εci −i

) [
(5/8)Nφc(z)

]σ3/10

√
2

,

whose analyticity in Uc follows (6.15), (6.23), and RHP-M(b). It can be readily verified
that (7.14) satisfies (7.11) uniformly on ∂Uc with αc = 1/5 and

(7.15) P c,k(z) =

(
1 0
0 εc

)
Ψk

(
1 0
0 εc

)[
5

8
φc(z)

]σ3/5

where the O
(
ζ−1/2

)
∼
∑∞
k=1 Ψkζ

−k/2 is the error term from RHP-Ψ(c) and the matrices
Ψk can be found recursively using (7.13).

7.5.3. Parametrix P c around c ∈ Γt(a, b). Recall that Uc is given by (6.18). We always can
adjust the constant δc so that J+ ∩ Uc = ∅. In this case P c is a holomorphic matrix in
Uc \ (JΓ ∪ J−) that fulfills RHP-P e(c) and whose traces satisfy

(7.16) P c+(s) = P c−(s)


(

0 1
−1 0

)
, s ∈ (Uc ∩ Jt) \ {c},(

1 0
F 2(N−n)(s)e−Nφb(s) 1

)
, s ∈ (Uc ∩ J−) \ {c}.

Let C be the following matrix-valued function:

(7.17) C(ζ) :=

(
eζ

2

0

b(ζ) e−ζ
2

)
, b(ζ) :=

1

2
e−ζ

2

{
erfc

(
− i
√

2ζ
)
, Im (ζ) > 0,

−erfc
(
i
√

2ζ
)
, Im (ζ) < 0.

Equivalently, we could have defined b(ζ) as ±(2π)−1/2U(1/2;∓2iζ), ±Im (ζ) > 0, see [18, Eq.
(12.7.5)], where U(a; z) is a parabolic cylinder function solving [18, Eq. (12.2.2)]. Observe
that

b+(x)− b−(x) =
1

2
e−x

2
(

erfc
(
− i
√

2x
)

+ erfc
(
i
√

2x
))

= e−x
2

,

for x ∈ R and therefore

(7.18) C+ = C−

(
1 0
1 1

)
on R.

Moreover, since Re (−iζ) > 0 when Im (ζ) > 0 and Re (iζ) > 0 when Im (ζ) < 0, it holds that

b(ζ) ∼ ieζ
2

√
2π

∞∑
k=0

Γ(k + 1/2)

2k+1Γ(1/2)
ζ−(2k+1) =: eζ

2
∞∑
k=0

bkζ
−(2k+1)

uniformly in the upper and lower half-planes by [18, Eq. (7.12.1) or Eq. (12.9.1)]. Thus, we
deduce that

(7.19) C(ζ) =

(
1 0

e−ζ
2

b(ζ) 1

)
eζ

2σ3 ∼

(
I +

∞∑
k=0

(
0 0
bk 0

)
ζ−(2k+1)

)
eζ

2σ3 as ζ →∞,
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where the expansion is uniform in the lower and upper half-planes. Set

J(z) :=


(

0 −1
1 0

)
, z ∈ U+

c ,

I, z ∈ U−c ,

where U+
c is the part of Uc that lies to the left of Jt and U−c that lies to the right of it. We

claim that RHP-P c is solved by

(7.20) P c(z) = M(z)F (n−N)σ3(z)J(z)eNϕ(c)σ3/2C
(√

N/2
[
ϕ− ϕ(c)

]1/2
(z)
)
×

× J−1(z)e−Nφb(z)σ3/2F (N−n)σ3(z).

Indeed, RHP-P c(a) is satisfied due to the choice of the branch of (ϕ− ϕ(c))1/2, see (6.17),
and the choice of J−, see (7.5). Further, since J = I in U−c , analyticity of M , φb, and F
across J− \ {c} as well as (7.5) and (7.18) imply that P c has the jump there as in (7.16).
Moreover, observe that

M(z)F (n−N)σ3(z)J(z) and eNϕ(c)σ3/2C
(√

N/2
[
ϕ− ϕ(c)

]1/2
(z)
)

are analytic across Jt by RHP-M(b), (6.23), and the choice of J . Hence, since φb++φb− ≡ 0
on Jt by (6.3), it follows from the definition of J that P c has the jumps across Jt \ {c} as in
(7.16). That is, RHP-P c(b) is fulfilled as well. Finally, we get from (6.16), (6.20), and (7.19)
that (7.20) satisfies (7.11) uniformly on ∂Uc and locally uniformly on Csplit with αc = 1/2
and P c,k given by

(7.21)
2k+1/2e−Nϕ(c)

(ϕ(z)− ϕ(c))k+1/2

(
0 −bk
0 0

)
and

2k+1/2e−Nϕ(c)

(ϕ(z)− ϕ(c))k+1/2

(
0 0
bk 0

)
in U+

c and U−c , respectively (recall also that |eϕ(c)| = 1).

7.5.4. Parametrix P c around c ∈ Γt
(
eπi∞, a

)
∪ Γt

(
b, eπi/3∞

)
. Put e = a if c ∈ Γt

(
eπi∞, a

)
and e = b if c ∈ Γt

(
b, eπi/3∞

)
. We are seeking a matrix function holomorphic in Uc \Γt that

fulfills RHP-P c(c) and whose traces satisfy

P c+(s) = P c−(s)

(
1 F 2(n−N)(s)eNφe(s)

0 1

)
, s ∈ Γt ∩ Uc.

The Riemann-Hilbert problem RHP-P c is solved by

(7.22) P c(z) = M(z)F (n−N)σ3(z)eNφe(c)σ3/2σ1C
([
− (N/2)φc(z)

]1/2)
σ1×

× e−Nφe(z)σ3/2F (N−n)σ3(z),

where C is defined by (7.17) and (−φc)1/2 is the branch chosen in (6.19). Indeed, it can be
readily verified using (7.18) that

(7.23) (σ1Cσ1)+ = (σ1Cσ1)−

(
1 1
0 1

)
on R.

As M and F are holomorphic in Uc, (−φc)1/2 is conformal there, satisfies (6.19), and
preserves the orientation, we see that RHP-P c(a) is fulfilled. The above properties and
(7.23) yield that RHP-P c(b) is fulfilled as well. Finally, we get from (7.19) that

σ1C(ζ)σ1 ∼

(
I +

∞∑
k=0

(
0 bk
0 0

)
ζ−(2k+1)

)
e−ζ

2σ3 as ζ →∞

uniformly in the lower and upper half-planes. Therefore, by (6.20) and since φc(z) = φe(z)−
φe(c), (7.22) satisfies (7.11) with the expansion in parenthesis being uniform on ∂Uc and
closed subsets of Cabirth ∪ Cbbirth, αc = 1/2, and

(7.24) P c,k(z) =
2k+1/2eNφe(c)

(−φc(z))k+1/2

(
0 bk
0 0

)
(again, notice that |eφe(c)| = 1).
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7.6. Riemann-Hilbert problem with small jumps. Set ΣR :=
[(

Γt
(
eπi∞, a

)
∪ J+ ∪

J− ∪Γt
(
b, eπi/3∞

))
∩D

]
∪
[
∪e ∂Ue

]
, D := C \ ∪eUe, where e runs over a and b as well as c

when t ∈ ∂Oone−cut (in what follows, we shall always understand the symbol ∪e this way),
see Figure 14. Consider RHP-R:

(a) R is holomorphic in C \ ΣR and limC\Γt3z→∞R(z) = I;
(b) R has continuous traces on Σ◦R that satisfy

R+(s) = R−(s)


P e(s)M

−1(s), s ∈ ∂Ue,

M(s)

(
1 0

F 2(N−n)(s)e−Nφb(s) 1

)
M−1(s), s ∈ J± ∩D,

where ∂Ue is oriented clockwise, M is given by (7.7), and P e is given by (7.10),
(7.14), (7.20), or (7.22) depending on e; as well as

R+(s) = R−(s)M(s)

(
1 F 2(n−N)(s)eNφe(s)

0 1

)
M−1(s),

for s ∈ Γt
(
b, eπi/3∞

)
∩D with e = b and for s ∈ Γt

(
eπi∞, a

)
∩D with e = a (observe

that M−1 is well defined since det(M) ≡ 1).

∂Ua

∂Ub

∂Uc

J+

J−

J−

Γt
(
b, eπi/3∞

)

Γt
(
eπi∞, a

)

Figure 14. The contour ΣR (continuous lines). The dashed lines represent the
part of Γt that does not belong to ΣR.

Let us show that the jump matrices in RHP-R(b) are uniformly close to I. To this end,
set

(7.25) ∆ := R−1
− R+ − I

to be the deviation of the jumps of R from the identity matrix.
Firstly, it follows from RHP-R(b) and (7.11) with P e,k given by (7.12), (7.15), (7.21), or

(7.24) that

(7.26) ∆ ∼ N−αe
∞∑
k=0

(
MF (n−N)σ3P e,kF

(N−n)σ3M−1
)
N−k on ∂Ue.

The above expansions of ∆(s) are uniform in s on each ∂Ue. Moreover, the expansions
on ∂Ua and ∂Ub are also locally uniform in Oone−cut \

{
tcr, e

2πi/3tcr
}

by (6.25) and (6.27).
Furthermore, the expansion on ∂Uc is uniform on compact subsets of Csplit, C

a
birth, and

Cbbirth by (6.25) and a compactness argument applied to maxs∈∂Uc |F±1(s)|. In addition,
the expansion on ∂Uc is uniform on closed subsets of Cabirth and Cbbirth when n = N because

the term F (n−N)σ3 is no longer present. Altogether, we get by looking at the first term in
expansion (7.26) that

(7.27) ‖∆‖L∞(∪e∂Ue) ≤ C0(t, δ)N−αt , αt = min
e
αe, δ := min

e
δe,

where the constants δe were introduced in (6.6) and (6.18), C0(t, δ) can be chosen to depend
continuously on t and δ with additional property of being bounded as t→∞ for each fixed
δ > 0 when n = N .
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Secondly, since Γt \Jt consists of orthogonal trajectories of −Q(z; t)dz2, it holds by (6.2)
that φe(s) < 0 on the corresponding part of (Γt \ Jt) ∩ D. More precisely, there exists a
constant 0 < C1(t, δ) < 1 such that

(7.28)
∣∣F 2(n−N)(s)eNφe(s)

∣∣ < CN1 (t, δ), s ∈
[
Γt \ Jt

]
∩D,

for all N large. Since the quantities on the left-hand side of (7.28) depend on t continuously,
one can clearly choose C1(t,N) to be a continuous function of t and δ. Hence, a simple
compactness argument shows that the estimate (7.28) is (s, t)-locally uniform. In addition,
notice that φe is monotone on each connected piece of Γt \ (Jt ∪ {c}). Therefore, |eNφe(s)|
achieves its largest value on (Γt \Jt)∩D either at c (when c belongs to Γt) or on ∂D. Then,
assuming n = N , it follows from the properties of the function ρ̃(t) in (6.20) and the way
we construct the conformal maps in (6.11) and (6.19) that C1(t,N) is bounded away from
1 on closed subsets of Cabirth and Cbbirth, and subsets T ⊂ Oone−cut satisfying (4.1). That is,
(7.28) is strongly (s, t)-locally uniform in the notation of Definition 4.2.

Lastly, recall also that the arcs J± were chosen so that Re (φb(s)) > 0 on J± ∩D. In fact,
we can choose them to be level lines of Re (φb). Clearly, the maximal level will depend on
the maximal value of Re (φb) on ∂Ua∪∂Ub (also on ∂Uc when t ∈ Csplit) as well as Re (φb(c)).
Therefore, there exists a constant 0 < C2(t, δ) < 1 such that

(7.29)
∣∣F 2(N−n)(s)e−Nφb(s)

∣∣ < CN2 (t, δ), s ∈ J± ∩D.

Again, it holds that C2(t, δ) depends on its parameters continuously and is bounded away
from 1 when t belongs to closed subsets of Oone−cut \

{
tct, e

2πi/3tcr
}

and n = N .
Summarizing, we get from (7.26), (6.25), (7.28), and (7.29) that

(7.30) ∆ = O
(
max

{
CN1 (t, δ), CN2 (t, δ)

})
on ΣR \

⋃
∂Ue.

Estimates (7.27) and (7.30) show that ∆ is uniformly close to zero on ΣR. Since the entries
of ∆ are geometrically small as Γt 3 s→∞, ∆ is close to zero in L2-norm as well. Then it
follows from the same analysis as in [14, Corollary 7.108] that R exists for all N large and

(7.31)
∣∣R− I

∣∣ ≤ c0(t, δ)N−αt

in any matrix norm, where c0(t, δ) continuously depends on t and δ, blows up as δ → 0
or t → ∞, but is bounded as t → ∞ along either Cabirth, C

b
birth, or subsets T ⊂ Oone−cut

satisfying (4.1) when n = N .

7.7. Solution of RHP-Y . Given R, the solution of RHP-R, it is straightforward to verify
that RHP-S is solved by

(7.32) S =

{
RM in D \

[
(Γt \ Jt) ∪ J+ ∪ J−

]
,

RP e in Ue.

Let Kt be a compact set in C \Γt. We can always adjust quantities δe in (6.6) and (6.18)
as well as the arcs J± so that Kt lies entirely within one of the unbounded components of
the complement of ΣR. Then it follows from (7.2), (7.6), and (7.32) that

(7.33) Y (z) =
(
(b− a)/4

)(n−N)σ3
e−N`

∗
tσ3/2R(z)M(z)eN(g(z;t)+`∗t /2)σ3F (n−N)σ3(z)

on Kt. Subsequently, by using (4.14), (7.7), and the definition of F , we see that

[Y ]11(z) =
(
[R]11(z)[M ]11(z) + [R]12(z)[M ]21(z)

)
DN−n(z; t)eng(z;t)

=
(
[R]11(z) + [R]12(z)F−1(z)

)
A(z; t)DN−n(z; t)eng(z;t).

Equation (4.17) now follows from (6.28) and (7.31). To handle compact sets Kt in C \
(Jt ∪ {c}), it is enough to consider only the sets belonging to sufficiently small Hausdorff
neighborhood of Γt. In this case the curve Γt can be deformed locally around K in such a
fashion that (7.28) still holds on a deformed curve, perhaps with a different constant. As
the rest of the analysis is the same, the full claim (4.17) follows. The (strongly) (z, t)-locally
uniform character of (4.17) follows from the continuity properties of c0(t, δ) in (7.31).
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Take now Kt ⊂ Γt(a, b) \ {c}. Then it follows from (7.2), (7.6), (7.32), and (4.14) that

[Y ]11 = [R]11

(
[M ]11± ± [M ]12±F

2(N−n)
± e−Nφb±

)
eng±DN−n

± +

+ [R]12

(
[M ]21± ± [M ]22±F

2(N−n)
± e−Nφb±

)
eng±DN−n

± .

Hence, we get from (7.7), (6.23), (6.4), (4.14), and some algebra that

[Y ]11 = [R]11

(
A+D

N−n
+ eng+ +A−D

N−n
− eng−

)
+

+ [R]12

(
B+D

N−n
+ eng+ +B−D

N−n
− eng−

)
.

Therefore, we deduce from the definition of F that

[Y ]11 =
(
[R]11 + [R]12F

−1
+

)
A+D

N−n
+ eng+ +

(
[R]11 + [R]12F

−1
−
)
A−D

N−n
− eng− .

Formula (4.18) now follows from (6.28) and (7.31).

8. Asymptotic Expansions

In this section, we first improve (7.31) to a full asymptotic expansion following the tech-
nique of [16, Theorem 7.8 and Theorem 7.10]. Then we show how recurrence coefficients
appear within the matrix Y and use (7.33) and the expansion of R to prove Theorem 4.5.
Next, we discuss the so-called string equations and prove Theorem 4.8 using them. Finally,
we employ Theorem 4.5 and Toda equation (1.29) to prove Theorem 4.3.

8.1. Error matrix R. Let us show that

(8.1) R(z) ∼ I +

∞∑
i=1

ri(z;n−N)N−αti,

(strongly when n = N) (z, t)-locally uniformly in C, see Definitions 4.1 and 4.2. Indeed, as
shown in [16, Theorem 7.8], it holds that

(8.2) R = I +

∞∑
k=0

C
(
Ck∆(I)∆

)
,

where, as before, C is the Cauchy transform, ∆ was defined in (7.25), and

(8.3) C∆(F ) := C−(∆F ), F ∈ L2(ΣR).

It follows from (7.27) and (7.30) that

(8.4) ‖C∆‖ = O
(
N−αt

)
(strongly when n = N) t-locally uniformly. Define

(8.5) ∆l(s) := N−αe
l−1∑
k=0

(
MF (n−N)σ3P e,kF

(N−n)σ3M−1
)

(s)N−k, s ∈ ∂Ue,

and set ∆l ≡ 0 on ΣR \
⋃
∂Ue. Observe that the coefficient next to N−k depends neither

on n nor N individually, but does depend on the difference n−N . Clearly, it follows from
(7.26) and (7.30) that ∆l approximate ∆, that is,

(8.6) ‖∆−∆l‖L1(ΣR) + ‖∆−∆l‖L2(ΣR) + ‖∆−∆l‖L∞(ΣR) = O
(
N−(αt+l)

)
(strongly when n = N) t-locally uniformly. Define C∆l

as in (8.3) with ∆ replaced by ∆l.
Clearly, C∆l

satisfies (8.4). Moreover, it holds that

(8.7) R− I −
l−1∑
k=0

C
(
Ck∆l

(I)∆l

)
= O

(
N−αt(l+1)

)
(strongly when n = N) (z, t)-locally uniformly in C. Indeed, similarly to (7.31), equations
(7.27), (8.4), and deformation of ΣR technique yield that

(8.8)

∞∑
k=l

C
(
Ck∆(I)∆

)
= O

(
N−αt(l+1)

)
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(strongly when n = N) t-locally uniformly. Furthermore, it holds by (8.6) and an analogous
argument that

(8.9)

l−1∑
k=0

C
(
Ck∆(I) (∆−∆l)

)
= O

(
N−(αt+l)

)
(strongly when n = N) t-locally uniformly. Finally, were deduce from (8.6) and deformation
of ΣR technique that

(8.10)

l−1∑
k=0

C
((
Ck∆(I)− Ck∆l

(I)
)
∆l

)
= O

(
N−(2αt+l)

)
(strongly when n = N) t-locally uniformly. Estimates (8.8)–(8.10) imply (8.7). Now, to
derive (8.1), it only remains to notice that Ck∆l

(I)∆l has an asymptotic expansion in powers

of N−αt whose coefficients up to the order l do not depend on l or n,N individually.

8.2. Recurrence coefficients. It follows from (1.27) and (1.28) that{
γ2
n(t,N) = hn(t,N)/hn−1(t,N),

βn(t,N) = (Pn)n−1 − (Pn+1)n,

where we write Pn(z; t,N) = zn +
∑n−1
k=0(Pn)kz

k. Hence, we get from (7.1) that

Y (z)z−nσ3 = I +
1

z

(
(Pn)n−1 − hn

2πi

− 2πi
hn−1

∗

)
+ O

(
1

z2

)
=: I +

Y 1(n; t,N)

z
+ O

(
1

z2

)
.

Therefore,

(8.11)

{
γ2
n(t,N) =

[
Y 1(n; t,N)

]
12

[
Y 1(n; t,N)

]
21
,

βn(t,N) =
[
Y 1(n; t,N)

]
11
−
[
Y 1(n+ 1; t,N)

]
11
.

We deduce from (7.33), (4.14), (3.7), and the definition of F that

Y (z)z−nσ3 =

(
b− a

4

)(n−N)σ3

e−N`
∗
tσ3/2

(
I +

R1(n; t,N) + M1(t)

z
+

+
nG1(t)σ3 + (N − n)D1(t)σ3

z
+ O

(
1

z2

))
eN`

∗
tσ3/2

(
b− a

4

)(N−n)σ3

,

where we write
eg(z;t) = z +G1(t) +O

(
z−1
)
,

D(z; t) = 1 + z−1D1(t) +O
(
z−2
)
,

K(z) = I + z−1K1(n; t,N) + O
(
z−2
)
, K ∈ {M ,R}.

In fact, it follows from (4.12) and (6.22) that D1(t) = 1/4x2(t), and analogously we deduce
from (4.14) and (4.16) that G1(t) = −x(t)+1/4x2(t). Further, using (7.7), (4.15), and (3.7)
we see that

M1(t) =

(
0 −1/

√
2x(t)

1/
√

2x(t) 0

)
.

Therefore (8.11) can be rewritten as

(8.12)

{
γ2
n(t,N) = −1/(2x(t)) +

(
[R1]12 − [R1]21

)
/
√

2x(t) + [R1]12[R1]21

βn(t,N) = x(t) +
[
R1(n; t,N)−R1(n+ 1; t,N)

]
11
.

Hence, (4.4) follows from (8.1) and (8.12). Moreover, as γ2
N (t,N) is expressed only through

R1(N ; t,N), its expansion is strongly t-locally uniform.
To see the analyticity of Gk(t;n−N) and Bk(t;n−N) in Oone−cut, we need to examine

the dependence of R1 on t. To this end, write

(8.13) R1 = − 1

2πi

∮
∪∂Ue

(
l−1∑
k=0

Ck∆l
(I)∆l

)
(s)ds+ O

(
N−(l+1)

)
,
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which we can do according to (8.7), where ∆l is given by (8.5). Notice that on each ∂Ue the
function ∆l is a trace on ∂Ue of a meromorphic matrix-valued function in Ue with a single
pole at e. Indeed, it is clear that ∆l is holomorphic in Ue \ Jt and on Jt it holds that

∆l+ = N−αeM−F
(n−N)σ3

−

(
0 1
−1 0

)( l−1∑
k=0

P e,k+N
−k

)
F

(N−n)σ3

+ M−1
+

= N−αeM−F
(n−N)σ3

−

(
l−1∑
k=0

P e,k−N
−k

)(
0 1
−1 0

)
F

(N−n)σ3

+ M−1
+ = ∆l−,

where the first and the last equalities follow from RHP-M(b) and (6.23) while the second
can be verified by using the explicit expressions (7.12) and (6.9), (7.15) and (6.14), (7.21)
and (6.17). Hence, ∆l is indeed meromorphic in each Ue with a pole at e. From this, it is
easy to see that Ck∆l

(I)∆l is a trace on ∂Ue of a meromorphic matrix-valued function in Ue
with a single pole at e. In particular, the integral in (8.13) does not depend on the radii of
the disks Ue. Thus, its t-dependence comes only from the points a, b, c and the conformal
maps constructed in (6.11), (6.14), (6.17), and (6.19). It follows from Proposition 3.1 that
a(t), b(t), c(t) are holomorphic functions of t ∈ Oone−cut with holomorphic continuations
across each of the arcs Csplit, C

a
birth, and Cbbirth. The conformal maps (−φa)2/3 and (−φb)2/3,

see (6.11) and (6.2), have the same type of dependence on t. Thus, we indeed see that the
functions R1 are analytic functions of t ∈ Oone−cut.

Let now n = N . The first claim of (4.6) was derived in [7, Corollary 4.2]. Observe that
to show the second claim, it is enough to prove that

(8.14) R1 =
∑

1≤2j+1≤l−1

(
−p2j+1 q2j+1

q2j+1 p2j+1

)
N−2j−1 +

∑
2≤2j≤l−1

(
p2j q2j

−q2j p2j

)
N−2j+

+ O
(
N−(l+1)

)
for some constants pk, qk, as then it obviously holds that [R1]12 − [R1]21 and [R1]12[R1]21

have asymptotic expansions only in even powers of N−1. Using (7.12) and (7.7), it is tedious
but straightforward to verify that the expansion for ∆l has exactly the same form as the
right-hand side of (8.14) (without O-term), where

p2j 7→
(
s2j + t2j

)
(−φe/2)−2j ,

q2j 7→ iεe
(
s2j − t2j

)
(−φe/2)−2j ,

p2j+1 7→ 2iAB
(
s2j+1 + t2j+1 + εe(s2j+1 − t2j+1)

)
(−φe/2)−2j−1,

q2j+1 7→ −2AB
(
εe(s2j+1 − t2j+1) + s2j+1 + t2j+1

)
(−φe/2)−2j−1,

on ∂Ue. Clearly, C∆l
(I) = C−(∆l) also has the same form as the right-hand side of (8.14).

Another boring computation shows that the product C∆l
(I)∆l has the same form as well.

By induction, we get that all the summands under the integral sign in (8.13) have this form,
from which (8.14) clearly follows.

8.3. String Equations. To prove Theorem 4.8, we need to introduce discrete string equa-
tions (see, e.g., [9]):  γn[V ′(Q)]n,n−1 =

n

N
,

[V ′(Q)]nn = 0,

where [A]nm is the (n,m)-th element of the matrix A,

Q =


β0 γ1 0 0 . . .
γ1 β1 γ2 0 . . .
0 γ2 β2 γ3 . . .
0 0 γ3 β3 . . .
...

...
...

...
. . .

 ,

and γn and βn are recurrence coefficients (1.27) for polynomials satisfying orthogonality
relations (1.26) with respect to a potential V . For the potential V as in (1.24), the discrete
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string equations become  γn
[
−Q2 + tI

]
nn−1

=
n

N
,[

−Q2 + tI
]
nn

= 0,

where, this time, I is the semi-infinite identity matrix. This gives the equations

(8.15)

 γ2
n(βn−1 + βn) = − n

N
,

γ2
n+1 + γ2

n + β2
n = t.

To prove (4.9) using (8.15), let us set

v :=

(
n+ 1/2

N

)−2/3

and u∗ :=
( n
N

)−2/3

= v

(
1− v3/2

2N

)−2/3

.

Then for all N large, the value B̂k(t, u∗) can be computed as a series

B̂k(t, u∗) =

∞∑
i=0

∂iBk
∂ui

(t, v)vi

((
1− v3/2

2N

)−2/3

− 1

)i
.

Using the Taylor expansion of (1−x)−2/3 at the origin, we can rewrite the above expression
as a series in powers of N with coefficients that are holomorphic in N functions. Thus, (4.8)
can be equivalently written as

βn(t,N) ∼
∞∑
k=0

B̃k(t, v)N−k,

where the functions B̃k(t, v) are holomorphic in N . Hence, to prove (4.9) we need to show

that B̃2j−1(t, v) ≡ 0 in N . To this end, let us represent each B̃k(t, v) as a series in powers
of N−1:

B̃k(t, v) =

∞∑
j=0

B̃k,j(t, u∗)N
−j , v =

(
n+ 1/2

N

)−2/3

= u∗

(
1 +

u
3/2
∗

2N

)−2/3

.

Notice also that

(8.16) B̃k,0(t, u) = B̃k(t, u) and B̃0,0(t, u) = x(tu)/
√
u.

Then it also holds that

B̃k(t, w) =

∞∑
j=0

B̃k,j(t, u∗)(−N)−j , w =

(
n− 1/2

N

)−2/3

= u∗

(
1− u

3/2
∗

2N

)−2/3

.

Hence, we get that

(8.17) βn(t,N) + βn−1(t,N) ∼ 2

∞∑
k=0

 ∞∑
j=0

B̃k,2j(t, u∗)N
−2j

N−k,

with the expansion valid locally uniformly in both variables. Then the constant term in the
expansion of γ2

n(βn−1 + βn) is equal to

−2B̃0,0(t, u∗)

2u∗x(u∗t)
= −u−3/2

∗ = − n
N

by (4.8) and (8.16). Thus, it follows from the first relation in (8.15) that the rest of the
terms in the expansion of γ2

n(βn−1 + βn) must be equal to zero. The N−1-term is given by

(8.18) − B̃2l+1,0(t, u∗)

u∗x(u∗t)
= − B̃2l+1(t, u∗)

u∗x(u∗t)
, l = 0,

by (4.8), (8.17), and (8.16). This implies that B̃1(t, u∗) = 0. As we can vary n and N , the

last equality holds on a set with a limit point in Nt. Hence, B̃1(t, ·) ≡ 0 by holomorphy in

the second variable. Assuming that B̃2l−1(t, ·) ≡ 0 for all l ≤ L, we get from (4.8), (8.17),
and (8.16) that the N−(2L+1)-term in the expansion of γ2

n(βn−1 +βn) is given by (8.18) with
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l = L. Previous argument yields that B̃2L+1(t, ·) ≡ 0 and the desired claim now follows
from the principle of mathematical induction.

8.4. Free energy. In [6, Proposition 5.1], it was shown that the free energy FN (t) and the
recurrence coefficient γN (t,N) satisfy Toda equation (1.29) for all real t > tcr. It was further
shown in [6] that

(8.19) FN (t) =
2

3
t3/2 − 1

4
log(4t) +

∫ t

∞

∫ τ

∞

(
γ2
N (σ,N)− 1

2
√
σ
− 1

4σ2

)
dσdτ,

where the integrals are taken along positive reals. It was also proved in [6] that an asymp-
totic expansion for FN (t) can be obtained by simply plugging the asymptotic expansion
for γ2

N (t,N) into (8.19) and integrating term by term; that is, (4.2) is valid uniformly on

closed subsets of (tcr,∞), where the functions F (2k)(t) can be computed via the following
equations:

(8.20)


F (0)(t) =

2

3
t3/2 − 1

4
log(4t) +

∫ t

∞

∫ τ

∞

(
− 1

2x(σ)
− 1

2
√
σ
− 1

4σ2

)
dσdτ,

F (2k)(t) =

∫ t

∞

∫ τ

∞
G2k(σ; 0)dσdτ, k ≥ 1,

(the integrals in (8.20) are well defined as it was shown that G2k(t; 0) = O
(
t−7/2

)
and

x(t) = −
√
t+ 1

2t +O
(
t−5/2

)
uniformly as Oone−cut 3 t→∞).

Since ZN (t) is an entire function of t, the free energy FN (t) is a meromorphic function
of the parameter t. Hence, Toda equation (1.29) extends to the entire parameter plane.
Recall that γ2

N (t,N) are holomorphic functions of the parameter t on each closed subsets
of Oone−cut satisfying (4.1) for all N large enough (depending on the subset). Hence, using
(3.4) and some algebra, we can rewrite (8.19) as

FN (t) = 1− 2

3
x3(t)− 1

2
log
(
− 2x(t)

)
+

∫ t

∞

∫ τ

∞

(
γ2
N (σ,N) +

7x′(σ) + 2σx′′(σ)

6

)
dσdτ,

where x′(t) is the derivative of x(t) with respect to t. Hence, for any closed subset T ⊂
Oone−cut satisfying (4.1) there exists a constant N(T ) such that the functions FN (t) are
holomorphic on T . Similarly, we see that the functions F (2k)(t) are in fact holomorphic
in Oone−cut and can be holomorphically extended across Csplit, C

a
birth, and Cbbirth. This, in

particular, gives formula (4.3). Thus,

FN (t)−
K−1∑
k=0

F (2k)(t)N−2k =

∫ t

∞

∫ τ

∞

(
γ2
N (σ,N)−

K−1∑
k=0

G2k(t; 0)N−2k

)
dσdτ = O

(
N−2K

)
uniformly on closed subsets of Oone−cut satisfying (4.1), which implies that asymptotic ex-
pansion (4.2) does indeed hold in Oone−cut as claimed.
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