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Abstract. A parametrization of a certain algebraic curve of genus 2, given by a cubic equa-
tion, is obtained. This curve appears in the study of Hermite-Padé approximants for a pair
of functions with overlapping branch points on the real line. The suggested method of
parametrization can be applied to other cubic curves as well.

1 introduction

In this note we find an explicit parametrization of the form (w(t), z(t)) of an algebraic
curve in C2 = Cw ×Cz given by

(1) w3 − 3A(z)w− 2B(z) = 0,

where

(2) A(z) :=
1

z2 − 1
, B(z) :=

z

(z2 − a2)(z2 − 1)
, a ∈ (0, 1).

Methods of deriving explicit uniformizations (or more generally, parametrizations) of al-
gebraic curves are of considerable independent interest as they simplify analysis of many
objects associated with the curve, for example, of abelian integrals. Our own interest in the
subject steams from Nuttall’s conjecture on asymptotics of Hermite-Padé approximants to
analytic vector-valued functions with branch points, see [6]. According to the conjecture,
the asymptotic distribution of the poles of the approximants for functions of the form

(3) fj(z) := log
(
z− aj
z− bj

)
, j = 1, 2,

is described with the help of the algebraic function (1), see [2] for details, for which

(4) A(z) :=
P2(z)

Π4(z)
, B(z) :=

P1(z)

Π4(z)
, Π4(z) :=

2∏
j=1

(z− aj)(z− bj),

and the unknown coefficients of Pk(z) = zk + · · · , k = 1, 2, are chosen so that the periods
of the abelian integral

∫
wdz are purely imaginary, that is,

Re

∮
Γ
wdz = 0,

where Γ is any cycle on the Riemann surface R of (1) and (4). When the genus of R is 1 or
2, explicit elliptic and hyperelliptic uniformization were constructed in [4]. When genus
is 0, a rational uniformization were found in [1].

The set up (1)–(2) is motived by the question of convergence of Hermite-Padé approxi-
mants for a pair of functions (3) with

a1 = −1, b1 = a, a2 = −a, b2 = 1; a ∈ (0, 1/
√
2).
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2 2 main results

This problem was investigated by Herbert Stahl [7, 3]. However, a complete detailed
solution was obtained only recently [5]. The fact that the only non-trivial period of the
abelian integral (1)–(2) has a positive real part, i.e.,

(5) ∃γ ⊂ R : Re

∮
γ
wdz > o, a ∈ (0, 1/

√
2),

was an essential ingredient for proofs in [5]. In what follows, we derive a parametrization
of (1)–(2) and show how (5) follows from it.

2 main results

The following theorem takes place.

Theorem 1. The curve (1)–(2) can be parametrized by

(6)


w = −iC

(
εt+

1

εt

)
,

z =
ã+ it3 ˜̃a
1− t6

,

ε3 = 1, C =
˜̃a+ it3ã

(1− a2)(1+ t6)
,

where

(7) ã :=
√
a2 − (1− a2)t6, ˜̃a :=

√
(1− a2) − a2t6.

In other words, Theorem 1 establishes a mapping of the Riemann surface H of the vector
function (ã, ˜̃a) onto the Riemann Surface R of the function (1)–(2). The surface H can be
realized as a four-sheeted surface of H = a2ã− (1− a2) ˜̃a over Ct. The roots in (7) need
to be understood as analytic continuations of the principal branches.

Before we continue with the results, let us fix the global sheet structure of the algebraic
function (1)–(2) (i.e., the realization of R = {Rj}

2
j=0 over Cz). By letting z → ∞, we can

distinguish the branches

w0(z) =
2

z
+ · · · , wi(z) = −

1

z
+ · · · , i = 1, 2.

The function w = {wj(z)}
2
j=0 has 6 branch points: z = ±1 are branch points of the second

order (2 branches ofw coincide there), z = ±a have order 3, and z = ±id, d = a2/
√
1− 2a2

have order 2. In particular, R has genus 2.
Further analysis of (1)–(2) yields that the branches of w fixed at∞ posses holomorphic

continuations into the following domains

(8)


w0 ∈ H

(
C \ [−1, 1]

)
,

w1 ∈ H
(
C \
{
[−a,a]∪ [+id,+i∞]∪ [−id,−i∞]

})
,

w2 ∈ H
(
C \
{
[−1,−a]∪ [a, 1]∪ [+id,+i∞]∪ [−id,−i∞]

})
.

The cuts of the sheet Rj are defined as the projection of the boundary of the domain of
holomorphy of the corresponding branch wj.

Let t ∈ (0, t−), t− := (a2/(1− a2))1/6. Then the expressions under the square roots in
(7) are positive and the parametrization (6) defines an analytic arc γ̃ := z(t) in C connecting
the points z(0) = a and z(t−) = ia/

√
1− 2a2 > id. Let us define a closed contour γ on R

in the following way. The contour starts at the triple branch point above a and continues
in R1 along γ̃ until the preimage of z(t−), then it proceeds along the preimage of the
imaginary axis until the branch point above id, where it crosses to R2 and goes back to
initial point along the path with the same projection as the one on R1.

Corollary 1. The conclusion of (5) holds for the just constructed cycle γ.

Indeed, notice that Rew1(z) = Rew2(z), z ∈ [id,+i∞], and therefore

Re

∮
γ
wdz =

∫
γ̃

(
w1(z) −w2(z)

)
dz =

∫t−
0

(w1 −w2)
dz
dt

dt.
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Let us point out that the choice of the branch (8) in parametrization (6) is done via fixing
the value of ε, where w1 corresponds to ε = (i

√
3 − 1)/2 and w2 correspond to ε =

(−i
√
3− 1)/2. Therefore,

w1 −w2 =
√
3C

(
t−

1

t

)
.

After simplification, we deduce from (6) that

dz
dt

=
3t5(3a2 − 1+ (a2 − 1)t6)

ã(t6 − 1)2
− i
3t2(a2 − 1+ (3a2 − 1)t6)

˜̃a(t6 − 1)2
.

Hence,

(w1 −w2)
dz
dt

=
3
√
3(1− 2a2)

ã ˜̃at2(t4 + t2 + 1)
− i

3
√
3t

t4 + t2 + 1
,

which proves the corollary.

3 proof of theorem 1

The approach we use to find the parametrization of (1) is rather general. It is based on the
same ideas as Cardano’s formulae. We represent w = u+ v and look for functions u, v so
that the branches wj are given by

wj = ε
ju+ ε−jv, j = 0, 1, 2, ε3 = 1.

The Vieta’s relations for (1) yield that{
u3 + v3 = 2B(z)

uv = A(z)
⇒

(
u3 − v3

u3 + v3

)2
=
B2 −A3

B2
.

Choosing the parameter t as

(9) t2 =
u

v
⇒

(
t6 − 1

t6 + 1

)2
=
B2 −A3

B2
=

(1− 2a2)z2 + a4

z2(1− z2)
,

which gives the dependence of z on t. To find w(t), let us write

(10) w = u
(
1+

v

u

)
, u

((
u
v

)3
+ 1(

u
v

)2
)

=
u3 + v3

uv
=
2B

A
.

Denoting T± := t6 ± 1, we can rewrite (9) as

z4 − z2

(
T2− − (1− 2a2)T2+

T2−

)
+ a4

T2+T
2
−

T4−
= 0,

which yields

z =
1

2T−
(R+ ± R−), R± :=

√
T2− − (1− 2a2)T2+ ± 2a2T+T−.

After some algebra, we have

R+ = 2t3i
√
(1− a2) − a2t6, R− = 2

√
a2 − (1− a2)t6,

which, with the notation from (7), gives us the parametrization z(t) in (6). Finally, by
plugging (2) into the right-hand side of (10), we get

w = (1+ t−2)

(
t4

t6 + 1

)
z2 − a2

2z
.

Using the parametrization z(t) in the above expression and simplifying the result gives us
the parametrization w(t) in (6).
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