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HERMITE-PADE APPROXIMANTS FOR A PAIR OF CAUCHY TRANSFORMS
WITH OVERLAPPING SYMMETRIC SUPPORTS
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ABSTRACT. Hermite-Padé approximants of type II are vectors of rational functions with com-
mon denominator that interpolate a given vector of power series at infinity with maximal
order. We are interested in the situation when the approximated vector is given by a pair
of Cauchy transforms of smooth complex measures supported on the real line. The conver-
gence properties of the approximants are rather well understood when the supports consist
of two disjoint intervals (Angelesco systems) or two intervals that coincide under the condi-
tion that the ratio of the measures is a restriction of the Cauchy transform of a third measure
(Nikishin systems). In this work we consider the case where the supports form two overlap-
ping intervals (in a symmetric way) and the ratio of the measures extends to a holomorphic
function in a region that depends on the size of the overlap. We derive Szeg6-type formulae
for the asymptotics of the approximants, identify the convergence and divergence domains
(the divergence domains appear for Angelesco systems but are not present for Nikishin sys-
tems), and show the presence of overinterpolation (a feature peculiar for Nikishin systems
but not for Angelesco systems). Our analysis is based on a Riemann-Hilbert problem for
multiple orthogonal polynomials (the common denominator).
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1 INTRODUCTION

For p € IN, let f= (f 1,eee, fp) be a vector of holomorphic germs at infinity. Given a multi-
index @ = (ny,...,np) € INP, the type II Hermite-Padé approximant to f corresponding to

—

n,

(1)

L (M) (») W ._ Ps

(1.1) =g ey ), TR = ,
Qn

is a vector of rational functions with common denominator Q satisfying
deg(Qn) < [fl=ny+-- +1np

(1.2) Rg)(z) = (Qﬁ‘_fi —Pg)) (z)=0(z ™ 1) as z— o0

n

for each i € {1,...,p}. We shall not deal with type I Hermite-Padé approximants in this
work and therefore henceforth we will drop the “type II” modifier. Such approximants
were introduced by Hermite [23] for the vector of exponentials (1,e%,..., e(P=1)2) with
the interpolation taking place at the origin rather than at infinity, as a tool in proving the
transcendence of e. Later, his student Padé systematically studied the scalar case p = 1
[30] and such approximants are now called Padé approximants.

From our perspective interpolating at infinity is more convenient than interpolating at
the origin in the following sense. Any holomorphic function can be written as a Cauchy
integral of its boundary values on any curve encircling a domain of analyticity. For a holo-
morphic function on a domain we will use the terminology trace to mean the boundary
values of the function on the boundary of the domain. When the function is holomorphic
at infinity, such an integral representation can in some important cases be deformed an-
alytically into an integral over a “one dimensional” set. A particular fruitful example of
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this principle is when we deal with Markov functions. Let p; be a positive measure and
take
dpy (x

(1.3) fi(z) = J xu%(z)’ supp(pi) C [ai, bi] CR.

The vector f is called an Angelesco system if [a]-,bj] N lai, bi] = @ for j # i (such systems
were initially considered by Angelesco [1] and later rediscovered by Nikishin [27]). Ange-
lesco has shown that Q7 has exactly ny zeros on [aj, bi]. This means that an Angelesco
system is an example of a perfect system, i.e., a system for which every multi-index is

normal, that is, deg(Qx) = |7 |. As far as the asymptotic behavior of ﬂg) is concerned,
convergence properties are not as straightforward as one could hope. Given an Angelesco
system and a sequence of multi-indices such that ny/[fi| — ¢; >0, ¢c1+---+¢cp =1,
Gonchar and Rakhmanov [21] have shown that for each j the complement of U?:1 lai, byl
is separated by a system of analytic arcs into two domains, say D].+, containing the point
52
n
infinity in D;". Moreover, the polynomials Qy can have an asymptotic zero distribution

. . . — . . + .
at infinity, and Dj", possible empty, such that 7;* converges to fj in DJ" and diverges to

(in the sense of weak™® convergence) on a strict subset of Uf:1 supp(py) (pushing effect). The
pushing effect always implies existence of a divergence region but the reverse implication
is not true. More detailed (strong) asymptotics for Hermite-Padé approximants to Angele-
sco systems when p = 2 and the weights dp;/dx satisfy the so-called Szegd condition, was
obtained by the first author in [2].

Another class of Markov functions for which positive convergence results were ob-
tained is now known as Nikishin systems [28]. The functions f; in (1.3) form a Nikishin
system if they all are supported on the same interval [a, b] and the Radon-Nikodym deriva-
tives dy;/duy, j € {2,...,p}, form a Nikishin system of order p — 1 with respect to some
interval [c, d] such that [c,d] N [a,b] = @. Nikishin himself [28] has shown that such sys-
tems are perfect when p = 2 and the Hermite-Padé approximants converge uniformly
outside of the interval [a, b] in this case. This puts Nikishin systems more in line with the
Padé case p = 1 (Markov theorem [26]) as neither the pushing effect nor the possibility of
non-empty divergence regions appears for them. However, Nikishin systems do possess
one new phenomenon, namely overinterpolation. It turns out that R%z) has zeros on [c, d]
that are dense on this interval. It took 30 years to prove that Nikishin systems are perfect
for any p [17]. In [17], Fidalgo Prieto and Lépez Lagomasino also proved uniform conver-
gence for multi-indices close to the diagonal. Strong asymptotics in the case of diagonal
multi-indices and Szeg® weights was derived by the first author in [3].

It is interesting to observe that the first result on strong asymptotics of Hermite-Padé
approximants was obtained by Kalaygin [24] for the case of two touching symmetric inter-
vals (the limiting case of an Angelesco system).

As often happens in mathematics, the treatment of Angelesco and Nikishin systems can
be unified under the umbrella of generalized Nikishin systems (GN-systems) as introduced
in [22], where Gonchar, Rakhmanov, and Sorokin defined a system of Markov functions
with the help of a rooted tree graph and considered the question of uniform convergence
of Hermite-Padé approximants to such a system. In such a set-up, an Angelesco system
corresponds to a tree where the root is connected by p edges to p leaves and a Nikishin
system corresponds to a tree in which every node except for the final leaf has exactly
one child. Strong asymptotics of Hermite-Padé approximants to GN-systems of Markov
functions generated by more general (than rooted tree) graphs (admitting cycles) was
derived by the first author and Lysov in [8]. An example of GN-system from [8] is a pair
of two Markov functions in (1.3) where the support of one of them is strictly included in
the support of the other, i.e., supp(p2) = [az,bz] C supp(pq) = [ay,bq] and the Radon-
Nikodym derivative du,/dpy along [aj,bq] is a Markov function with support [a3, b3]
where [a3,b3] N [ay,b1] = @. Weak asymptotics of Hermite-Padé approximants to this
example of Markov functions was derived by Rakhmanov in [32].

3
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We emphasize that in all the results we listed above the geometry of the problem is real,
i.e., the supports of the limiting distributions of the poles of the approximants and the
overinterpolation points belong to R.

In this paper we consider Hermite-Padé approximants to a pair of Cauchy transforms
(Markov functions) of generally speaking complex measures with overlapping supports
and aim at strong asymptotics. The set up does not fall into the framework of GN-systems,
even when the measures are positive, as their supports overlap (for GN-systems the sup-
ports are either disjoint or one coincides with or contains the other). It turns out that both
phenomena, the pushing effect and overinterpolation, appear in this case. Hermite-Padé
approximants to a pair of Markov functions with overlapping supports were first consid-
ered by Stahl with the goal of proving weak asymptotics [34, 33, 9]. He had the important
insight that the geometry of this problem is complex, i.e., the overinterpolation points are
distributed on analytic arcs in the complex plane (later, a similar effect was observed in
[5]). This discovery was very unusual at the time because the input geometry (i.e., the
supports of the measures generating the Markov functions) is completely real. Unfortu-
nately, Stahl’s results have never been published. This work was strongly motivated by
the desire to provide a detailed proof of his findings (in an even more delicate setting of
strong asymptotics).

Opting here for complex measures is natural from the point of view of complex analysis.
However, many techniques, like those in [2, 3], do not apply as they use positivity in an
essential way. An approach that does not rely on positivity was outlined by Nuttall in
his seminal paper [29]. There Nuttall conjectured that the main term of the asymptotics
of Hermite-Padé approximants is a function solving of a certain explicit boundary value
problem on some unknown Riemann surface. He identified this surface only in a handful
of special cases. Elaborating on Nuttall’s approach, the first two authors and Kuijlaars [7]
pinpointed the algebraic equation which defines the appropriate Riemann surface in the
case of two Cauchy transforms of complex measures supported on two arcs joining pairs
of branch points in the complex plane (the simplest example is a complexified Angelesco
system) and derived formulae of strong asymptotics in the case when the Riemann surface
has genus zero. Below, we build upon the ideas developed in [7] and extend the results of
[7] to the cases when the appropriated Riemann surface has positive genus (elliptic and
ultra- elliptic case).

In Section 2 we identify the Riemann surface in Nuttall’s program by an algebraic
equation, discuss its realization as a ramified cover of C, and construct a certain function
on this surface whose level lines will geometrically describe convergence and divergence
domains of the approximants. In Section 3, we construct the Nuttall-Szegé functions
that will provide the leading term of the asymptotics of the Hermite-Padé approximants.
Finally, in Section 4 we state the main result of this work. The remaining part of the paper
is devoted to the proofs of all the stated results.

2 RIEMANN SURFACE

Let a € (0,1) be given. Our goal is to investigate Hermite-Padé approximants to a pair of
Markov-type functions generated by measures with supports [—1, a] and [—a, 1]. To this
end we consider the algebraic equation

(2.1) A(z)h® —3B(z)h— 2B (z) =0,

where the polynomials A(z), B2(z), and Bq(z) are defined by
Alz) = (22—=1)(z%2—da?),
By(z) = z2—p?,

Bi(z) = z
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for some parameter p > 0. Denote by hy, k € {0,1, 2}, the three distinct branches of the
algebraic function h determined by (2.1). Naturally, these branches satisfy

ho+hy+hy, =0,
(2.2) hohy +hohy + hihy = =3By /A,
hohthy, = 2B /A.

Hence, it necessarily holds that hy(co) = 0 and therefore hy(z) = cx/z+--- as z = oo.
It readily follows from the above equations that the constants cy are the solutions of
0=c3—-3c—2=(c+1)%(c—2). Thus, we put

2

ho(z) = 4.
(2.3) % as z— 00
hi(z) = _2+

for i € {1,2}. It can easily be checked that all three solutions of (2.1) are real for positive
large x. Hence, we can label the branches so that for all x > 0 large enough

(2.4) ho(x) > hy(x) > hy(x).

Denote by R the Riemann surface of h. It is a three-sheeted ramified cover of C. We
shall denote by R %k € {0,1,2}, the sheet on which h coincides with hy (a particular
realization of this surface is specified in Theorem 1 below). We denote by z a generic point
on R with natural projection m(z) = z € C. If we want to specify the sheet, we write z(¥)
for z18) € |(K) 5o that 7t(z®)) = z. Thus, hy(z) = h(z(¥)). Consider the differential

(2.5) dN(z) := h(z)dz,

where z is a generic point on fi. The choice of the parameter p is driven by the following
condition:

z
(2.6) N(z):=Re (J' dN) is a well defined (single-valued) harmonic function on fA.

When it exists, N(z) is defined up to an additive constant. If we denote by Ny the restric-
tion of N to R(¥), then it is easy to see that Ny + N, + N3 is a well defined harmonic
function in C and therefore it is constant. Thus, we normalize N so that

(2.7) Ni(z)+Nz(z) +N3(z) =0, zeC.

Notice also that (2.6) is equivalent to requiring that all the periods of the differential dN
are purely imaginary.

Theorem 1. Consider the algebraic equation (2.1) with a € (0,1).

(@) If a € (0,1/v2), then there exists p € (a,/(1+ a2)/3) such that condition (2.6) is
fulfilled. In this case R has eight ramification points whose projections are {+1, £a} and
{£b, tic} for some uniquely determined b € (a,p) and ¢ > 0. Moreover, the surface can
be realized as on Figure 1(a);

() If a = 1/V/2, then condition (2.6) is fulfilled for p = 1/v/2. In this case R has four
ramification points whose projections are { +1,£1/v/2} and it can be realized as on
Figure 1(b);

() If a € (1/v/2,1), then condition (2.6) is fulfilled for for p = \/(1+ a2)/3. In this case
R has six ramification points whose projections are {+1, £a} and {£b} for some uniquely
determined b € (p, a). Moreover, the surface can be realized as on Figure 1(c).

The points b and ¢ in Case I and the point b in Case III can be explicitly computed as
they are solutions of a certain explicit quadratic or linear (in z%) equation whose parame-
ters depend on a and p.

It follows from Theorem 1 that 9% has genus g = 2 when a € (0,1/v2) and genus g = 1
otherwise. Moreover, in Cases I and 1II, all the ramification points have order 2 while in
Case II the points +1 have order 2 while 41/+/2 have order 3.

5
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MM o R
—a a b 1
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(a) Casel
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RO 5 R RO 5 1) RO Ry

(c) Case III

FIGURE 1. Ramification points of SR and the cuts (black curves) along which the
sheets :R(0), ;1) R(2) are glued to each other.

In the light of Theorem 1, it will be convenient to fix the following notation:

Ao = m(cycle that separates |(!) and R(2)),
Ay = m(cycle that separates %(®) and R(1)),
(2.8) Ay = Ay UA,
Ay = m(the left cycle of the chain that separates %(°) and (%)),
Ay, = m(the right cycle of the chain that separates %t(°) and %(2)).

Clearly, Ay is defined only in Case L.
Let dN be defined by (2.5). The function

(2.9) D(z) :=exp {J'Z dN}

is analytic, except for a double pole at co(®), and multiplicatively multi-valued on 9.
Moreover, it is single-valued in Ry g := R\ Ug:1 (i UBy), where {«;, [51}?:1 is a homol-
ogy basis on fR. Later on, see Figure 2, we shall specify the basis in more detail, but right
now it is sufficient to assume that each cycle y € {e;, B;}{_; possesses a projective involu-
tion: lynm'(z)| = 2 for any z € m(y) which is not a branch point of R (the involution
is then defined by mapping a point on y to the other one with the same projection). We
normalize @ so that

(2.10) oM =1 in C,

where ®(¥) is the pullback to C of the restriction of ® to R(k). Let us show that such
a normalization is indeed possible. Since Ry g is simply connected and dN has integer
residues, the restriction of @ to Ry g is single-valued. It satisfies

2.11 ot =@~

(2.11) { exp {2t} on By,

1 <1 < g, where the constants w; and T are real (this is guaranteed by (2.6)) and given
by

1 1
(2.12) wy = 54 . dN, Ty == 3 iﬁ dN

exp {2miw;} on «;,
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(a) Casel
X
s’/ (0) Cﬁl>/_\
r)
K2
[51 X1

(b) Cases II and III (there is no gap between the cuts on R0 in
Case II, but this does not affect the choice of the cycles)

FIGURE 2. Homology basis for fA.

At times, it will be convenient to use vector notation T = (t1,7;)" and @ = (w7, w;) T if
g=2and T= (17) and & = (w1) if g = 1. Since ® has a double pole at 00(0) and simple
zeros at ool! ), oo(z), we can write

{@(0)(2) = Coz?+--

. as zZ — oQ.
oW(z) = Ciz "4

(2.13)

It follows from (2.7) that log |0 d(M®(2)| =0 on C. Hence, if we choose the normaliza-
tion CoCy1C, = 1, then (2.10) is fulfilled due to our choice of the homology basis: since
the cycles possess projective involutions, exactly two pullbacks of @ have jumps at each
point belonging to the projection of a homology cycle, moreover, the jumps are reciprocal
as the projected parts of the cycle coincide as sets but have opposite orientations.

Due to the symmetries of the Riemann surface, the vectors @ and 7 take special forms.
To be more specific, let us fix a homology basis. We choose nt(f3;) = A7 and, in Case I,
n(B,) = Ay, see (2.8), while the a-cycles are as on Figure 2(a) in Case I and the a7-cycle
should be chosen as on Figure 2(b) in Cases II and III.

Proposition 2. Let {et;, B;}{_, be the homology basis which we just fixed. In Case I, one has
(2.14) @ = (w,2(1 —w))T and T= (T,—T)T

for some real constants T = t(a) and w = w(a) € (1/2,1). In Cases II and I1I, one has
(2.15) ®=T=(1/2).

7
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Recall that [@(z)| = exp{N(z)} is a single-valued function on R, see (2.7). The asymp-
totics of the Hermite-Padé approximants will depend on the relative sizes of the different
branches of |®| (in other words, on the size of the branches of N). To this end, define Q ;)
to be open subset of C such that

Oy = {z:[0W )] > |00 (z)] > [0M (2)]}.
We also define the closed set I' := 1 UTp2 U Ty, by
My = {z: 0V (z)| =00 (z)], i;«éj}.
Clearly, C\T = Uizj ki Qijk- Then the following theorem holds.

Theorem 3. In Case I, the regions Qyj;y are distributed as on Figure 3(a); in Case II, the domains
are distributed as on Figure 3(b); in Case 111, the domains are distributed as on Figure 3(c,d).

(a) Casel

4 &2021

QOIQ

<)
-/
N

/

(b) Case II

Qo12
Qlaz Q102

(c) Case Illa

Qio2 Qo12

*—9

I?

(d) Case IlIb

FIGURE 3. Domains Qjjy.

We prove Theorems 1 and 3 as well as Proposition 2 in Section 6.

3 NUTTALL-SZEG® FUNCTIONS

To define the Nuttall-Szeg6 functions, we first need to formulate a certain Jacobi inversion
problem. To this end, denote by

G(z) = (Q1(2),...,Q4(2))"
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—

the vector of g normalized holomorphic integrals on fR. That is, ((z) is a vector of analytic
and additively multi-valued functions on R that are single-valued on 3 g and satisfy

[¢]
= = —Bé; on «
—+ — _ 1 17 e B
(3.1) QT -0 = { & on B B:= Hﬁ dQI] ,

j ji=1

where € is the i-th vector of the standard basis in R9. It is known that B is a symmetric
matrix with positive definite imaginary part when g = 2 and is a complex number with
Im(B) > 0 when g = 1. The Jacobi inversion problem we need consists of finding an

integral divisor® of order g, say Dy, such that
(3.2) A(Dn) = G(goo?)) + ¢, +n (& +B7) (mod periods dG3),

where C), is a vector of constants that depends only on the approximated functions and
is defined further below in (7.11), T and @ are the vectors defined after (2.12), and the
equivalence of two vectors C, € € CY is defined by

(3.3) c=¢ (mod periods dﬁ) & ¢—e=j+Bm, jmez9.

It is known that the Jacobi inversion problem has a unique solution when g = 1. Hence,
D, is well defined for all n in this case. Moreover, the following proposition holds.

Proposition 4. Assuming g = 1, let Dy, be the unique solution of (3.2). Then D = Dy
and Dymy1 = Dy for all m > 0. Moreover, either Dy # 00 or Dy # 000 and therefore
N, :={n € N: Dy # 00®)} is infinite.

The unique solvability of a Jacobi inversion problem is no longer guaranteed when
g = 2. However, it is known that solutions are either unique or given by any special
divisor®. Notice that integral divisors of order 2 can be considered as elements of %?/%,,
where X, is the symmetric group of two elements. This is a compact topological space.
Hence, we can talk about limit points of sequences of integral divisors.

Proposition 5. Let g = 2, then (3.2) has a unique solution for at least one of the indices n —1,n
for any n € IN. Moreover, there always exists an infinite subsequence IN, such that no limit point
of {Dn} e, 8 a special divisor or is of the form 00'©) +w for some w € R.

The following theorem is the main result of this section.

Theorem 6. Let py and py be functions holomorphic and non-vanishing in a neighborhood of
[—1,1]. In Case I, assume in addition that the ratio py/p1 holomorphically extends to a non-
vanishing function in a neighborhood of Ag. Denote by A the chain that separates |{(©), :(1),
and R2) (n(A) is a union of sets defined in (2.8)). For each n for which (3.2) is uniquely solvable,
there exists a function, say Wy, meromorphic in R\ A such that the zero/pole multi-set of Wr, is
given by

(3.4) D+ (n+1) (00 4 002 — 21000,
Its traces are bounded except at the branch points of R where W, behaves like

(3-5) Wn(z)l~lz—el V% as z—e,

I Recall that an integral divisor of order d is a formal expression D = 5 ; niz;, wheren; € Nand y ;n; =d. A
principal divisor is an expression Z}f:] nit; — ZL] miwj such that there exists a rational function on 93 with
a zero of multiplicity n; at t; for each i € {1,...,k}, a pole of order m; at w; for each i € {1,...,j}, and is
otherwise non-vanishing and finite (in particular, one has that Z]f:] ng = Z{:] my).

20n genus 2 surfaces, a special divisor is an integral divisor of order 2 such that there exists a rational function on
R with simple poles at the elements of the divisor (a double pole if they coincide) and otherwise regular.

9
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for every branch point e of R except when e = +1/+/2 (Case II only) where the exponent —1/4
should be replaced by —1/3. Furthermore

(wg))i = i(\yff’))im on AS,
(3.6) (W%Z))I = = (W) 2 on A5y,
(v2)" = (vl "o on A3,
(¥2) = () (2ror) on 4G,

where A° is the interior of the arc A. Moreover, if ¥ is a function meromorphic in R\ A satisfying
(3.6), (3.5), and (3.4) with Dy, replaced by any other integral divisor D, then W is a constant
multiple of Wr,.

It might seems especially after looking at (3.2), that the construction of the Nuttall-
Szeg6 functions ¥y, particularly, the divisors D;,, depends on the choice of the homology
basis. However, this is precisely the point of the uniqueness part of Theorem 6 that the
functions ¥, are independent of the intermediate steps of their construction.

The Nuttall-Szeg6 functions W5, are certain multiples of the functions ®™. In fact, their
ratios form a normal family on each 93, obtained from R by excising circular neighbor-
hoods of radius ¢ around the branch points.

Theorem 7. Let IN,. C IN be a subsequence as in Propositions 4 or 5. For each € > 0, there exists
a constant C¢(IN,) > 1 such that

{ Wil < Ce(INy) [T in Re,

57) Wnl > Ce (N OM in RO =]zl > 1/¢}.

We prove Propositions 4 and 5 as well as Theorems 6 and 7 in Section 7.
4 ASYMPTOTICS OF HERMITE-PADE APPROXIMANTS

Below, we consider vector functions f := (f 1, fz) of the form

_ LJ pj(x)
©2mi FX—z
where Fy = [-1,a] and F; = [~a,1], a € (0, 1), and p; are holomorphic and non-vanishing
in a neighborhood of [—1,1]. Additionally, we impose the following condition on the
functions pj:

(4.1) f;(z) dx, je{1,2},

Condition 8. The ratio p;/py extends from (—a, a) to a holomorphic and non-vanishing function

e in a domain that contains in its interior the closure of all the bounded components of the
regions Qi1 in Case I, see Figure 3(a);

e in a domain whose complement is compact and belongs to the right-hand component of
Qo321 in Cases 1I and 1lla, see Figures 3(b,c);

o in the extended complex plane, i.e., the ratio is a non-zero constant, in Case 111b.

Condition 8 needs to be regarded in the following context. As conjectured in [4] and
supported by the results for Nikishin systems, given f of the form (4.1), the appropriate
Riemann surface R must depend on the analytic continuation of p;/py from F; NF,. In
this work, on the other hand, we fixed the surface by considering (2.1), which necessitates
a condition on the continuation of p,/pj of the above type.

In what follows, we assume that a € (0,1) is fixed and the vector f= (f1,f2) is given
by (4.1), where p; and p; satisfy Condition 8; W, are the Nuttall-Szeg6 functions of



4 ASYMPTOTICS OF HERMITE-PADE APPROXIMANTS |

Theorem 6 corresponding to a and the functions p; and p;, constructed on the Riemann

surface R of h realized as in Theorem 1; the constants C,, are defined by
_ . 0 _
(4-2) = Zh_r}rolo‘lfg1 )(Z)Z n.

Qg are the monic denominators of the Hermite-Padé approximants 7 to f, which are

also multiple orthogonal polynomials with respect to the weights p7 and py, see (5.1)),
and Rg ) ie {1,2}, are the linearized errors of approximation corresponding to the multi-
indices i = (n,n), n € N, see (1.1)—(1.2).

To describe the asymptotics of Rg), it will be convenient to put

{ M= T3\ A, and { Q1 = (Qo21UO501) \ (M2UAUAy),

— —+ —t =
rZ B r]+2/ QZ = (QOZ] UQZO] U Q) \ (r]+2 U A] U Az),
where A and A, were introduced in (2.8), l}iz = T2 N{£Re(z) > 0}, Qii].k = Qi N

{£Re(z) > 0}, and Q is present only in Case I and is equal to the unbounded component
of Q;,, see Figures 4 and 3. Observe that Q1 = Q; = & in Case IllIb. Define

~ —eiy2) i 04, R v2) in0,,
(4.3) g = S and ¥ .= "

. 1 .
‘{’,(1] ) otherwise, g—f‘{’%) otherwise.

In Case I, it follows from (3.6) that @Eﬁ ) is the analytic continuation of wﬁf ) across Ao until
I;, which always exists by the analyticity of p;’s. In Cases II and III it still holds by (3.6)
), However, this time one needs to continue Wg )
through A?E into R(°) and then through AJ; into %(2) while W!2) needs to be continued
through Aicz into /(%) and then through AT into R(1).

For any & > 0, we further define

N5 :=={z: [Im(z)| < §, Re(z) € A1 UA;, dist (Re(z),{endpoints of Ay and A,}) > &},

and

that P is an analytic continuation of it

{z=t+x: xe(-95,8), teTl;, d<|Im(t) <c—05} inCasel,
Ng” = {z=t+x: x€(=9,8), tel, s <|Im(t)[<1/8} inCasell,
{z: dist(z,T}) < §, |Im(z)] > & when |Re(z)| < 1} in Case III.

Finally, let us introduce the following notation. Given a sequence of functions Ty, a
sequence of finite multi-sets X, and positive numbers €, we write

lz—x|
Fn =0 (en; Xn Fn = Olen).
eniXn) e Tl 1] i — e

Then the following theorem holds.

Theorem 9. Let IN,. be a subsequence from either Proposition 4 or Proposition 5 (depending on
whether a > 1/v/2 or a < 1//2), and i € {1,2}. Then

(4.2) Qa = CTLWELO) (1 + O(En,‘ Xn)) ’ N
4.4 . (s : n € Ny,
RV — ¢ oY (1 +O(en;Xg))) ,

locally uniformly in C\ (A7 UA3) and C \ (Fi U Fi), respectively, where Xy, is the multi-set of
zeros of\yﬁf” inC\ (A UA,), X'V is the multi-set of zeros of‘@g) inC\ (FLUTY), and® en, — 0.
Moreover, there exists 6o > O such that for all 5 € (0, 8¢ ) one has

(4.5)
Qi = Ca¥'d) (140(eniXns)) + Ca¥l (14 0(en; Xn)), N
. (s . (s . ne P
RY = CaWll (140 (emXi))) + Ca®l (140 (ensXiL)), ’

3In Cases I and Il one has €, = ! and €, = n~ /¢ in Case II.

11
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(a) Casel

(b) Case I
I
oW — _pg@ v — g
n P2 n 1 n
o0 /]
(c) Case II
\‘ ‘/1}712) = /Tf\pnl)
(d) Case Il
| \Ijgzl) = \Ijgll) /
(e) Case Illa
S e
o M .- \; P1 : °

(f) Case Illa

FIGURE 4. The sets I} (non-horizontal bold lines), the domains Q; (shaded re-
gions), and the boundary of the domain of holomorphy of \T/EJ ) (bold lines).

locally uniformly in Ns and N?), respectively, where ‘l’f i) are functions holomorphic in N that
coincide with (‘1’1(10 ))i on A UAS and Xn4 are their multi-sets of zeros in N, and ‘I’gj)[ are
functions holomorphic in N‘(SI) \ F; that coincide with (‘Tf,(f ))i on '\ Fy and Xg)i are their multi-

sets of zeros in Ng”.
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It follows from Theorems 3 and 7 that in Cases I and III we observe the pushing effect,
ie, a # b, and the presence of divergence regions (both phenomena are observed in
Angelesco systems). Indeed, according to (1.2) and (4.4), one has locally uniformly in
C\ ([=1,1UT}) that
Gl +O(en;X1(1l))

L \yglo) 1 +O(€n,‘Xn) ’
(i)

—
n

Hence, the error of approximation f; — 7.~ is geometrically small in {|z| > 1/¢} for all ¢

small enough. On the other hand, in Case I, the error f1 — ng ) is at least geometrically

big on compact subsets of Q5,;, see Figure 3(a), (it could be infinite if the elements
of Dy, belong to |(®) and project onto this component) and the error f; — 71%2) is at
least geometrically big on compact subsets of QF,;. In Case III, both components of the
approximant diverge in (¢, and in Case II there are no divergence domains.

As to the zeroes of the functions, it can be deduced from Theorem 3 and (4.5) that Qz
must vanish in N5 and Rg) must vanish in Néi), which is precisely the phenomenon of
overinterpolation first observed in Nikishin systems.

5 MULTIPLE ORTHOGONAL POLYNOMIALS

The basis of our approach to asymptotics of Hermite-Padé approximants lies in their
connection with multiple orthogonal polynomials. It is quite simple to verify that if the
functions f; are of the form (4.1), then (1.2) is fulfilled if and only if

(5.1) L' Q)Xo ) dx =0, ke {0,...,ni—1).

Moreover, the linearized error functions R g ) admit the following integral representation:

R (z) = LJ Qi(x)pilx) 4
Fi

(52) T omi X—2z

The analysis of the system (5.1)-(5.2) then proceeds via its reformulation as a matrix
Riemann-Hilbert problem. This fundamental fact in the theory of orthogonal polynomials
was first revealed by Fokas, Its, and Kitaev [18, 19] and the extension to multiple orthogo-
nal polynomials was given in [37]. Set 71 := (n—1,n) and 1, := (n,n— 1), and assume
that the index n is such that
(5.3) mEf)RQB =z "+

for some constants mT(f ). Under condition (5.3), the matrix

(M (2)
R R- R:
1 1 1 1 2
(5.4) Y = mgl )Qﬁ] m1(1 )RQ]) m1(1 )R%R
2 2 1 2 2
mn( )Qﬁz m&l )R(“z) mn( )R(“z)

solves the following Riemann-Hilbert Problem (RHP-Y):

(a) Y is analyticin C \ [-1,1] and
. . —2n .n _n\ _
Zlgr;OY(z) diag (z ,z%,z > =1,
where diag(:, -, -) is the diagonal matrix and I is the identity matrix;
(b) Y has continuous traces on (—1, 1) \{£a} that satisfy Y. = Y_J(x1p1,x2p2), where

o == R
— O «

1
(5.5) Jx,y)=| 0
0

and Y; is the indicator function of F;;
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(©) Y(z) =0 (loglz—el|) as [-1,1] # z — e for e € {£]1, £a}*

Vice versa, if RHP-Y is solvable, then the solution is necessarily of the form (5.4) and
(5.3) holds. To prove Theorem 9, we then follow the framework of the non-linear steepest
descent method for matrix Riemann-Hilbert problems, first introduced in the 2 x 2 case
by Deift and Zhou [14]. The proof of Theorem 9 is carried out in Sections 8-10.

6 GEOMETRY

This section is devoted to proving Theorems 1 and 3 together with Proposition 2. In
Section 6.1 we establish that 93 can indeed be realized as in Figure 1. In Section 6.2 we
justify the the choice of the parameter p, thus, finishing the proof of Theorem 1, while
simultaneously proving Proposition 2. Finally, we prove Theorem 3 in Section 6.3.

6.1 Realization of R

It can be readily computed that the discriminant of (2.1) is equal to
D(z) = 108A(z)[B3(z) — A(z)B%(z)]
= 108A(z)[(1+4 a? —3p?)z* + 3p* — a?)z? —p©].

Assume first that we are in Case I, i.e.,

(6.2) ae (O,\]ﬁ) and p€ (a, ]J;az) .

Since the polynomial B3 — AB%, which is symmetric and of degree 4, is negative at the
origin and has positive leading coefficient, it follows that it has four zeros, which we
denote by £b and =ic, where b,c > 0. Furthermore, b € (a,p) since B% — AB% is positive
at p and negative at a. Observe that if a point is a branch point of h of order 3 (all three
branches coincide) and h is finite at this point, then necessarily all three branches are equal
to zero there. Hence, &b, £ic are branch points of order 2. Furthermore, the first equation
in (2.2) implies that neither of the points -1, £a can be a pole of one the branches while
the second equation implies that the branches cannot have a cubic root singularity there.
Hence, the points &1, =a are branch points of order 2, two branches are infinite at them
and one is finite.

It follows from the above discussion that we can analytically continue the branches hy
so that the inequalities in (2.4) hold for x > 1. At 1 two branches blow up and, of course,
all three add up to zero. This is possible only if hy tends to oo, h; tends to —oo, and hy
remains bounded. Thus, 1 is a branch point joining %(®) and 931(?). Tt can easily be seen
from (2.1) that all the branches must satisfy

(6.1)

(6.3) hi(z) = hi(z).

Therefore, all the branch cuts must be conjugate-symmetric. Thus, the branch cut starting
at 1 must end at b. That is, ho+ = hy+ on (b, 1), which immediately implies

(6.4) (ho —h2)4+ +(ho—hz)- =0

on (b, 1). Moreover, (6.3) implies that the traces above are purely imaginary. As hg, h; are
unbounded near 1 and bounded near b, one has

(6.5) (ho —h2)?(x)

where f; is holomorphic, non-vanishing, and real on (a, c0). As f; must be positive for
x > 1 and is non-vanishing, it is, in fact, positive for x > a. Therefore, (hg —hy)(x) > 0,

X7,

x—11

41n fact, in each case the entries of at least two columns remain bounded. However, the above simplification does
not affect the forthcoming analysis.
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x € (a,b) U (1, 00). Moreover, since hy is real and non-vanishing for x > a and is negative
for x large enough by (2.3), h; is negative for all x > a. Thus,

(6.6) ho(x) > ha(x) > hy(x), x€(a,b).
As in the case of 1, two branches are infinite at a and one is finite. The inequalities in
(6.6) imply that the unbounded branches are hy and h; and therefore a is a branch point

between R(0) and (). The branch cut is (—a, a) since it must be along the real axis. That

is, ho+ = hyx on (—a, a) and

(6.7) (ho —h1)+ +(ho—h1)—=0

on (—a, a) where the traces are purely imaginary. As hg, h; are unbounded near +a, one

has

2 (x

68) (ho — 1 2(x) = 2
X —a

where fq is holomorphic, non-vanishing, and real on (—b, b). The function f, is positive

on (a,b) according to (6.6) and therefore is positive on (—b,b). Hence, (hgp —hy)(x) < 0

for x € (—b,—a). Since both branches blow up at —a, one has

(6.9) hi(x) > ha(x) > ho(x), x€(=b,—a).

Furthermore, it is quite simple to deduce from (2.1) that the branches hy must satisfy

hy(—x) = —h;, (x) for all k € {0,1,2}, where jx € {0,1,2} depends on k. According to

(6.6) and (6.9), the considered continuations of hy satisfy ji = k for [x| € (a, b). Therefore,

—b is a branch point for hy and h; as well as —1. In particular, (6.4) remains valid for

x € (—1,—b). Hence,

. x+b 2

Tox+1 1),

where f_7 is holomorphic, non-vanishing, and real on (d, —a) for some d < —1. From

(6.9), we know that f_; is negative on (—b, —a) and therefore it is negative on (d, —a).

Thus, (ho —h2)(x) < 0 for x € (d,—1). This and the blowing up of hy and h;, at —1 imply

that

(6.11) hy(x) > hy(x) > ho(x), xe(d,—1).

On the other hand, write

(6.10) (ho —h2)?(x)

1 )
(6.12) hi(z) =—+ 0% +oee
z oz
for i € {1,2}. Plugging this expansion into (2.1) and considering the 1/z term on the
left-hand side, we get that

1 2
(6.13) ociz = +3a —pz > 0.
This means that the inequality hq(x) > h;(x) holds for all [x| large enough. That is,
hi(x) > ha(x) > ho(x), x € (—oo,d’),

where necessarily d’ < d. As there are no branch points between d’ and d, there should
be a branch cut passing between them and this cut should necessarily be between %(1)
and 91(?). In other words, +ic are branch points of hy and h;. This finishes the proof of
the claim that 93 can be realized as in Figure 1(a) in Case I.

Assume now that we are in Case I], i.e.,

a=p=1/V2
Then the discriminant of (2.1) is equal to D(z) = 27(z%2 —1)(z% —1/2)%. As before, +1 are
branch points of order 2. Furthermore, we know from the third identity in (2.2) that some
of the branches are unbounded near +1/v/2. However, if the branching were of order 2,

the left-hand side of the second relation in (2.2) would be unbounded near +1/+/2, but it
is bounded there. Hence, +1/+/2 are branch points of order 3.

15
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Plugging a power expansion for hy, i € {1, 2}, into (2.1), one can compute that
1, B
(6.14) hi(z):_£+§+...,

where the Bi’s are solutions of 2+ B+ 1/6 = 0. In particular, (hy — hy)(2)z3 = 1/V/3 +
O(1/z) for all z large. Then, by repeating the initial steps of the analysis for Case I, we see
that (2.4) extends for all x > 1 and that

(6.15) ho(x) > hy(x) > hp(x), x € (—oo,—1).

Therefore, (—1,—1/v/2) and (1/v/2, 1) are the branch cuts for hy and h,. Around the point
1/4/2 it can be directly verified that (2.1) is solved by the following Puiseux series:

1 1 —-1/3 1 1/3
(6.16) h(z;a)_ml—a(z—ﬁ) H'/3(2) + &2 (z—\Q) H1/3(z)],

where & is any solution of £3 = 1, H(z) := (1 +2zv1—22)/(2z+ v2), and all the roots
are principal. Since hy is negative and holomorphic for x > 1/ V2, one finds that hq(z) =
h(z; 1) locally around 1/ V2. On the other hand,

2(x)

x2—1’

where f(x) is non-vanishing and holomorphic for [x| > 1/ V2. Since f(x) > 0 for x > 1, we
get that f(x) > 0 for x > 1/v/2 and

(ho —h2)*(x) =

(6.17) ho+(x) =hox(x) = f%m (x) :Fi\/%, x e (1/V2,1).

Thus, ho has values in the fourth quadrant and ho_ has values in the first quadrant. As

the first summand in (6.16) is dominant around 1/v/2, we can conclude that
(6.18)

h(z; 27mi/3 o 0, h(z; 47mi/3 oo 0,
ho(z) = (z e4 . 3) m(z) > and ha(z) — (z e2 | 3) m(z) >
h(z;e™/3), Im(z) <0, h(z;e?™/3), Im(z) <0,

locally around 1/+/2. From this it is easy to see that h; is holomorphic across the interval
(—1/v2,1/v2) and this interval is the branch cut for hy and hy.
Finally, assume that we are in Case III, that is,

1 | 4 oo 14 a?
ae(ﬁ,) and p= 3 <@
In this case B3 — AB? is a polynomial of degree 2 which has two roots +b satisfying
b € (p, a). Exactly as in Case I, we see that all the branch points, namely {+1, +a, +b}, are
of order 2. Furthermore, the same reasoning as in Case I gives that (6.4) holds on (a, 1).
Since hp and h; are unbounded at both 1 and a, we get that

7(x)
(x—=1(x—a)
where f1 is holomorphic, non-vanishing, and real on (b, o). Since f; is positive for x > 1
and hence for x > b, we can conclude that (hg —h;)(x) < 0 for x € (b, a). The blowing up
of hp and h; at a implies that
(6.20) hy(x) > hy(x) > hg(x), x € (b,a).

It further follows from the third equation in (2.2) that two branches of h are negative and
one branch is positive on (b, a). The inequalities in (6.20) show that the negative branches
are hy and hy. This, in turn, implies that b is a branch point of hy and hy and so is —b.
Hence, (6.7) holds on (—b, b). As all the branches are bounded at +b, we have that

(6.21) (ho —h1)?(x) = (x* =b?)fp (x)

(6.19) (ho —h2)?(x) =
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for x € (—a, a), where fy, is holomorphic, non-vanishing, and is negative on (b, a). There-
fore, it is negative on the whole interval (—a, a) and we get that (ho —hy)(x) > 0 for
x € (—a,—b). As before, the third equation in (2.2) implies that two branches of h are
positive and one branch is negative on (—a, —b). Moreover, it also implies that h,(0) = 0.
As hy(x) > 0 for x > 0 and it has no other zeros, it must be the negative branch. Thus,

(6.22) ho(x) > hy(x) > ha(x), x € (—a,—b).
Now, as the branches that meet at —a are unbounded, they must be hy and h; by (6.22).
Hence, (6.4) holds on (—1,—a) and we have that
f2,1 (x)
(x+1(x+a)’
where f_1 is holomorphic, non-vanishing, and positive on (—a, —b). As before, this means

that f_; is positive for all x < —b and (6.15) holds in this case as well. This finishes the
proof of the claim that R can be realized as in Figure 1(c) in Case IIL

(6.23) (ho —h2)?(x) =

6.2 Choice of the Parameter

We start with Cases II and III as they are much simpler. Here we show that for the choice
of the parameter p as in Theorem 1 the condition (2.6) is fulfilled. That is, the period
of the Nuttall differential dN over any given chain on ‘R is purely imaginary. The latter
simplifies to showing that the periods of dN on the cycles of a homology basis are purely
imaginary. In fact, (2.15) implies that both periods of dN are equal to 7.

In proving (2.15) we shall rely on the following observation: one has that hy(—z) =

—h;, (z) for some jy € {0, 1,2}, which can be deduced immediately from (2.1). In fact, we
see from (2.4) and (6.15) that hy (—z) = —hy(z) for all k € {0, 1,2}. This implies that
1 1
1= g ], (oo dx = | (hoy —ho ) d

The sum of the last two integrals is equal to 1 by Cauchy’s residue theorem applied to
hy (recall that ho4+ = hy+ on A and h;(z) = —1/z+ O(1/z%)). This gives the desired
conclusion about wj. Furthermore, from the choice of the a-cycle, see Figure 2(b), one
has for Case III that

! (Jb ho(x) dx + J_b hot (x) dx + J_: ho(x) dx + J

2mi \ Jq b —a

a
T

hs (x) dx) .

As hy is an odd function, the sum of the first and the third integrals is equal to zero. Since
h; is odd as well, the fourth integral is zero too. Using the symmetry considerations once
more, we can get that

—b b
J hoy (x)dx = J ho_(x) dx.
b —b

Then by applying Cauchy’s residue theorem to hy (recall that hy(z) = —1/z+ O(1 /2%)),

we see that
1 —b b
o= ] hestax | ho-(vax
471 b _b

1 —b b
= I (L hi_(x) dX+J7b hy o (x) dx) =1/2.

In Case II, we have that
1 -1/V2 1/V2
T = — J hoo (x) dx—&-J' hy(x)dx |,
2mi \J1/vz ~1/v2

and the conclusion 1 = 1/2 follows from an analogous symmetry argument. This finishes
the proof for Cases II and III of Theorem 1.

17
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In Case I we again start with (2.14). The symmetry of the surface implies in this case
that hg is an odd function, i.e., hg(—z) = —hg(z), the functions hy, i € {1, 2}, are odd within
the bounded domain delimited by Ag and —Ag :={z: —z € Ay}, and hy(—z) = —h;(z) for
z within the unbounded domain delimited by Ay and —A. Then it follows from (2.3) and
the Cauchy residue theorem that

1

2 = ——,J hotr —ho_)(x)dx
> A2UA1( o+ —ho-)(x)

1

1
- Lz(m )0 x5 L (hot — 14 )(x) dx

o —b—x 1 fa(x) J x—b
- 2n JAZ] ( fo (X)) x+1 dx 271 JA1 Vz2 —x2 cbx + 271 Ay f1 (X) 1—x

where we used the notation from (6.5), (6.8), and (6.10). The analysis right after (6.5), (6.8),
and (6.10) implies that each of the last three integrals is positive. From the definition of
our homology basis, it can easily be seen that the first integral is equal to w1, the second
one is equal to wy, and the third is equal to the first as hy is an odd function. That is,
wji > 0and 2w + wy = 2. The latter clearly implies the first relation in (2.14) and the fact
that w = wy € (0,1). Applying now the Cauchy residue theorem to h;, we get that

1 J (hos —ho)(x)dx+ ij (hoy —ha)(x)dx
A AN

dx,

1 = —
2mi 2mi

1
= w1+ Lo(m —hy )00 dx,

where A is oriented from —ic to ic. Hence, we can conclude that wq € (1/2,1), if we show
that the last integral is negative. Since h,; —h1 is a trace of a holomorphic function, we
can deform the path of integration to get

-I ‘I 7iC iOO
MJAO(hH—hH)(x) dx = 5 (LJL ) (ha () — hy (1) dt
‘I —C o0
- L (J_JL ) (Ra(ix) — hy (ix) dx
(6.24) - —:—IJ (ha (ix) — hu (ix)) dx,

where we used the symmetry h,(—z) = —hq(z) to get the last equality. Notice also that
the branches satisfy hy (z) = hy(z) as follows directly from (2.1). Hence,

hy(ix) — hy (ix) = ha(—ix) — hy (—ix) = hy (—ix) — hy (—ix) = ha(ix) — hy (ix)

for x > c. Hence, this difference is real there. Moreover, h; (ix) —hj (ix) > 0 for all x large
as follows from (6.12) and (6.13). Since the difference h; —hy can be equal to zero only at
the branch points of 2, h;(ix) —hy(ix) > 0 for all x > ¢, which shows that the integral in
(6.24) is negative as desired.

To prove the second relation in (2.14), observe that our choice of the homology basis
can be made so that the a-cycles are contained within the bounded domain delimited by
Ay and —A, see Figure 2(a). Moreover, they can freely be deformed within the domain
of holomorphy of dN. Thus, it follows from (2.5) and (2.12) that

—b 0 —ic 0 —a
2mity = J; ho(x) dx+J;b hs(x) dX+J0 ho (%) dx+J¥ hy(x) dx+JO ho_(x)dx
b 0 ic 0 a
= J ho(x) dx—f—L hs(x) dx—i—JO hs(x) dx—i—J' hq(x) dx—i—L ho (x) dx

= 27Ty,

where we used the fact hy (—z) = —hy(z) with the bounded domain delimited by Ay and
—Ap, which, in particular, implies that h;_(—x) = hy4(x) for x € (—a, a). This finishes
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the proof of (2.14). It only remains to show that there exists a choice of the parameter p in
(2.1) so that T from (2.14) is real.

Showing that there is a choice of the parameter p € (a,+/(1+ a?)/3) such that T in
(2.14) is real, is equivalent to proving that I = 0, where

(6.25) [:=Re (E‘; h(z) dz) .

In order to prove (6.25) we consider the limiting values of I = I(p) as p — /(1 +a?)/3
and p — a. If they have opposite signs, then clearly such a choice of p is indeed possible.
We start with the case p — /(1 + a?)/3. Define
Ny (z; = Re([Fhe(x)dx), ke{0,2},
k(zp) ("rtz’ () dx) z € {Re(z),Im(z) > 0}.
Ni(zp) = Re([Zhi(x)dx)+No(a;p),
Then it obviously holds that I(p) = Ny (ic;p) — N(ic; p). In Section 6.3 further below we
shall argue that

(6.26) N(z;p*) := Re <JZ h(x;p*) dx> , pri=4/(1+a2)/3,

is a well defined harmonic function on the Riemann surface of h(-;p*) and that

(6.27) N(ooM;p*) = N(c0?);p*) < 0.

As I(p) depends continuously on the parameter p, we can conclude that I(p*) < 0.
Let now p = a. In this case equation (2.1) becomes

(6.28) (22 =1)(z? —a?)h® —3(z2—a®)h—22=0, a?<1/2.

The branch points with projections a and b of the curve (6.28) merge together into a triple
branch point with projection a ((this can be observed directly from (6.1)). To verify that
I(a) > 0, we deform the cycle @; = «;(a) into a cycle « which is involution-symmetric
and whose projection from ('), say «, is as on Figure 5. That is, « emanates from a

% —a 0 a 1

FIGURE 5. Contour « for the limiting case p = a < 1/v/2.

into the first quadrant along some special arc z(t), t € [0,t_], and then proceeds along the
imaginary axis from z(t—) down to ic.

As in (6.24) one has hi(Z; a) = hi(z;a) and hq(—z) = —h;(z) for all z large (and hence
for all z € (ic,ico)), which leads to the same conclusion that (hy —hy)(z) is real for
z € (ic,ico) and therefore the real part of the integral of this difference on [ic,ico) is

equal to zero. Hence, we get that

I(a) = Re (J (hi(z;a) —hz(z; a)) dz) .

Therefore, in order to complete the proof of Theorem 1, it remains to show that there exists
an arc z(t), such that

(629) {Z“’)“' Re(z(t-)) =0, Im(z(t-)) >c,

Re((h1 —h2)(z(t)Z/(t)) >0, te (0,t).

| 19
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To construct this arc we use a parametrization of the algebraic curve (6.28). This parametriza-
tion was suggested in [11] and it has the form

h=—i (&t—i— 1) C(t)

(6.30) 3 !  E=1ted
z= W (d,(t) +id4 (t))
where
) ay (t) +it®a(t)
(631) Clj:(t) = \/:l:(] — az) + azt:l:G , C(t) = C(IT_ (12)1(] j_tG) :

Since the expression for h in (6.30) has the Cardano form

h=(A+E7'B, A =—itC, B:—%C,

the equivalence of (6.30) and (6.28) can be written (using the Vieta relations) as

1
z2 —1

A3 +B3 =iC3 (B +t73) =

—AB=C?=—

2z
(z22=1) (22 —a?)’
With some work one can verify that plugging in the expression for C(t) from (6.31) and
the expression for z(t) from (6.30) into the above equations produces an identity, which
proves that (6.30) is indeed a parametrization of (6.28), (for details see [11]). Observe that

az 1/6
(6-32) d:l:(t) >0, telo,t ], t_:= (1_(12> ’
and that the parametrization (6.30) defines a Jordan arc with end points
. . 2
ia ia
z(0)=a and z(t.)=-————, while ic=—,
(©) (t-) V1 —2a? V1—2a2

As a > a?, the first line of (6.29) is satisfied. The local analysis around the point a
shows that hy is given by (6.30) with & = (iv3—1)/2 and for h, one needs to select
& = (—iv/3 —1)/2. Then, after a tedious computation, we get

3V3t <1 —2a? i)

(h1 7h2)(2(t))z/(t) = t4 +t2 +] ﬁ+df

Hence, the second line of (6.29) follows from (6.32) as a? < 1/2. This finishes the proof
of Theorem 1 granted we can prove that N(z;p*) in (6.26) is a well defined harmonic
function, which we do at the end of the upcoming subsection.

6.3 The Regions Qijx

We start with two general observations that are consequences of the single-valuedness of
N(z) on fR. First, the regions Q. could be equivalently defined by

Qijk == {z:Nj(z) > Ni(z) > Ni(2)},

and this definition does not depend on the initial point of integration chosen in (2.6) as
changing the initial point results in adding the same constant to all Ny simultaneously.
Secondly, let H be the analytic continuation of h; —h; from the point at infinity. Then H
is an algebraic function and Re(H) is a well defined harmonic function on the Riemann
surface of H. Hence, the set I is a subset of a projection of the zero level line of Re(H) to
C. As such it cannot be dense in an open set.

We start with Case L. It will be convenient to consider a slightly different realization of
R, namely, we shall suppose that

(6.33) Ay = [—ioco, —ic] U [ic, ioco].
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Our first goal is to show that I" in this case has the form as shown in Figure 6. It follows

['19
oo oo
0F02 o/ ;-“ ',; Tl 02 °
-1 =b'i—a.’ Na _,'7) 1

['12

FIGURE 6. Case I: I'1; - solid lines, Ty, - dashed lines, and Ty - dotted dashed line.

from our first observation that lines I'i; emanating from a projection of a branch point e

of SR can be described by
z
0=Re (J (hi —h;)(x) dx) ,

e
for z € Tjj locally around e. That is, I}; is a trajectory of a quadratic differential (h; —
hj)z(x) dx?. The local behavior of the trajectories is well known, [35]. This implies that
exactly one line of the set I' emanates from the points +1 and +a (“hard edges”) and
exactly three lines (with angle 7t/3 between them) emanate from the points +b, +ic (“soft
edges”).

In order to proceed, recall the inequalities (2.4) and (6.6) as well as the decompositions
(6.5) and (6.8). Furthermore, it follows from (6.3) and the fact that hg(—z) = —hgo(z) that
hy is purely imaginary on iR. Analogously, we can conclude that hy, i € {1,2}, are purely
imaginary on (—ic,0) U (0,ic).

ho
© a b 1 *
Rehy < Rehgy > 0
Imhy < Imhg <O
hy
o (0.0]
Reh; < 0@ b —1
Imhy >0/
h
2 Imh2>0
Reh; > (
(o} a 5 r (0.e]

FIGURE 7. Behavior of the branches h along the upper bank of R-..

It follows immediately from (6.5) and (6.6), by choosing the initial point of integration
to be a in (2.6), that

(6.34) No(x) =Ni(x), x€A;, and No(x)>Ni(x), xe€(a,b).

21
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Similarly, by choosing the initial point of integration in (2.6) to be b, we deduce from (6.8)
and (6.6) that

(635) No(X):Nz(X)>N](X), X € Ayy, and Nz(x)>No(X), x € (a,b).

Hence, we get from the symmetry of the surface that

(6.36) Ay CTo1, Az CToz, (=b,—a)U(a,b) € Qpo1-
Moreover we have
(6.37) Nz(a) > Ng(a) =Nj(a), Nz(b) =Np(b) > N;q(b).

To conclude our qualitative analysis based on Figure 7, we continue the integration beyond
the points 1 (to the right) and a (to the left). We get that there exists d; > 1 and dq > 0
such that

(6.38) (1,d7) € Qo217 and Np(x) =Nj(x) > Na(x), x € (dg,al.

Indeed, if we start integrating from 1 in the positive direction, then N increases and N
decreases. Thus, (6.38) follows from (6.35) and (6.36) by continuity. We summarize the
order of the branches of N along R in Figure 8.

N2 >Np=N7 N2 >Np>N; Nog=N3>N; Ng>N;, >N, N0>max{N2,N1}

0 xq dg a b 1 dq 00

FIGURE 8. The result of the qualitative analysis of the branches of N along R .

We note that N, decreases if its argument moves from dq to the left while Ny and N;
increase, see Figure 7. Thus, it is possible that there exists xq € (0, dq) such that

(6:39) No(xa) =Nj(xa) = Nz(xa).
Moreover, if such a point exists, it is unique. In order to prove the last claim, set
dAq(x) = fald dx x € (—a,a),

Vaz _x2 2n’

where the function f is positive and was defined in (6.8),

/[x—Db dx
f](X) ]_XEI XE(b,]),
[—x—Db dx
—f_1(x) Tix e x € (—=1,-b),

where the function f; is positive and was defined in (6.5) while and f_; is negative and
was defined in (6.10), and finally

dAz(x) =

dx
R/
The measures A1, Az, and Ag are positive (for Aq; this claim follows from the discussion
after (6.24) where one needs to recall that we deformed Ay to be as in (6.33)). It further
follows from (6.5), (6.8), (6.10), and Privalov’s lemma [31, Sec. III.2] that

e = [ g [0 gy - [ 40N

X—z X—z X—Z

dAo(x) = £(ho — ) (x) +x € [ic,ioc0).

Since hy(z) = 20,Ny(z), we deduce that the branches Nj, i € {1,2}, have the following
global representation

Ni(z) = Vi(z) = (=1)'Vo(z) — ¢y,
where Vi (z) = — [log|z — t|dAk(t), k € {0,1,2}. Notice that the symmetry of R implies
that A, is an even measure. Therefore, in a complex neighborhood of [—b, b] (which is the
gap between two connected components of supp(A2)), the potential V, has the form of a
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saddle such that on the imaginary axis iR it is an even, concave and decreasing function.
Hence,

9%V (x) 24V, (iy)
T>O, X € [—b,b], and ayiz<o, yER
The same is true for V, that is,
32 Vo (x) 92Vy (iy)
7<O, x€R, and 61_;72>O' y € [—c,cl.
Thus, N, is a convex function on [—b,b]. As 2N; = —N, on [—a, a], N7 is a concave

function on [—a,a]. Thus, inside [—a, al, the inequality Ny > N; can be true on the
connected set only, i.e., on the interval [—xq,xq], 50 (6.39) and the uniqueness claim are
proved and we obtain

(6.40) No = N7 > Ny on (—xgq, Xq)-

Now, consider the trajectory I, (i.e., the set where N7 = N;) emanating from the point
ic into {Rez > 0}. It cannot cross the set iR U [1, 0o] U [—0o0, —1] as it would contradict the
maximum principle for harmonic functions. Hence, the only possibility for I, to cross
[0, 1] is to cross it at xq. Analogous considerations lead to the conclusion that the trajectory
of I'p2 emanating from the point b to the lower half-plane arrives at x, and coincides with
the continuation of the considered trajectory I'1;. Thus, we have that the three subarcs of
12 emanating from the point ic (resp. —ic) terminate at the points ico (resp. —ioco) and
+x; three subarcs of Iy, emanating from the point b (resp. —b) terminate at the points 1
(resp. —1) and +xg; the trajectory Iy joins the points —a and +a. That is, we have shown
that the set I" has indeed the form as in Figure 6.

The structure of I' and the order of the branches {N k}i=o on R (see Figure 8 and (6.40))
allow us to identify the decomposition of C\I'" into U Qj;y like in Figure 9. It remains to

FIGURE 9. Case I: The sets Q5% when Ay = [—ic, —ioo] U [ic, ico].

deform the cut (6.33) to the one in Figure 3(a) while simultaneously interchanging indices
1 and 2 in the subscripts of Q;j1 bounded by Ay and [—ic, —ico] U [ic,icc]. This finishes
the proof of the Case I of Theorem 3.

Now we prove Cases II and III of Theorem 3. Recall that we put p = /(1 + a?)/3 in
(2.1) and therefore the imaginary branch points +ic annihilate at infinity. Similar to Case
I, we can use (6.17), (6.19), (6.21), and (6.23), to show that

Niz) = Vi(2)—ci, Vile) = —Jlog 2 — t]dA(t),

where A; is a positive measure supported inside of A;, i € {1,2}. Then the choice of the
additive constant in (2.7) and the ordering of the branches N along R give us

-0, A,
(2V1+Vz)(t)—Y1{ + € supp()

>0, t€[—a,d, Y1 =2¢c1 +ca,
(6-41) =2
(2V5 + V1) (1) =0, tesupp(Ay) Y2zt
+V1)(t) —
2T n Y2 >0, tel[-1,—dUla,T],

23
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This type of vector-potential equilibrium problem is well-known in the theory of Hermite-
Padé approximants and systems of measures {A1, A} which satisfy such equilibrium con-
ditions are called Angelesco systems, [1, 27, 21]. Using the symmetry of the problem (6.41)
with respect to the imaginary axis we can transform it to the following one. Set

\71 (w) = L:l log
= 3| e mm =i Va2 = vila),

where we used the change of variables w = z? and x = t?. Analogously, we put

1

~ 1

Vi (w) = J In—— dAy(VX) = Va(z), w=z%
a2 w—x|

Thus, (with the same constants y; as in (6.41)) we have

=0 xesupp(A(vx))NI0,1],

2Vi+V —
(2V7 +V2)(x) Y1{ 50 xelal,

(6.42)
- =0 xesupp(A2(v/x))NI0, 1],
2V V- —
(2V2+V1)(x) Yz{ 50 xelad 1.
Therefore,
(6.43) Ni(z) = Ny(w) = Vi(w) —c;, w=2%, ie{1,2}

Angelesco systems (6.42) for two touching intervals [0, a?] and [a?,1] (for any a € (0,1))
are well studied, see [24, 22, 2, 6]. In particular, one knows that the regions Qj;j} con-

structed for Nk(w) decompose C as in Figure 10.

@
Qo12 Qo021 Qo12 w
Qo217
w 2
L J ® o’
b2 1 0 1/2 1 0 b
Qo12 Qo021 o w
102
Qo12 Qo12

FIGURE 10. Domains Qjjy for T:Ik. Case (I): a2 < 1/2; Case II: a = 1/2; Case III:
2
ac>1/2

Thus, if we plot images of the sets Qi from Figure 10 (Cases II and III) under the trans-
formation z = \/w, then (due to (6.43)) we obtain the corresponding sets from Figure 3
(b,c,d). This finishes the proof Theorem 3.

It remains to show that (6.26) defines single-valued harmonic function on the Riemann
surface of h(-,p*), p* = /(1 + a?)/3, which satisfies (6.27). This follows from the fact
we can obtain N(-;p*) from KI(- ;p*) through the transformation z2 — w and the latter
can be computed via (6.42) and (6.43). The partition of C by the domains Q;y for N is
presented in Figure 10 [Case (I)]. Hence, the corresponding domains for N are distributed
as in Figure 11, which finishes the proof of Theorem 1 and justifies the proof of Theorem 3.
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FIGURE 11. Sets Qyjy for (2.1) with p = \/(1+a?)/3 and a < 1/V2.

7 NUTTALL-SZEGO FUNCTIONS

This section is devoted to the construction of the Nuttall-Szeg6 functions of Theorems 6
and 7. Along the way we prove Propositions 4 and 5. For brevity, we shall use the
following notation:

9 9
Ra =R\ U o; and Ry p =R\ U (g UBy) .

i=1 i=1
7.1 Abelian Differentials

A holomorphic differential on %R is a differential of the form
dQ(z) = f(z) dz,

where f is a rational function on R whose principal divisor is of the form
(7.1) (1) = D¢ +2 (00l + 001 + 002)

— Z ({order of branching at e} —1)e,
e &{branch points of 91}

for some integral divisor D¢ of order 2g — 2. It is known that such rational functions
(integrands of holomorphic differentials) form a subspace of dimension g. Hence, there
exists precisely one such integrand (up to a multiplicative constant) when g = 1, and
there exist 2 linearly independent ones when g = 2. It is further known that if f; and f,
are distinct integrands of holomorphic differentials, then D¢, and D¢, have no element
in common. Moreover, any z € R has a unique complementary point, say 2, such that
Dy, = z+ 2 for some holomorphic integrand f,. When g = 2, the integral divisors Dy in
(7.1) are exactly the special divisors mentioned before Proposition 5. Clearly, if D¢, and
Dy, are any two special divisors, then D¢, — Dy, is principal.

A point z is a Weierstrass point of a genus 2 surface fR if there exists a rational function
on R with a double pole at z and no other poles. Hence, z is a Weierstrass point if and only
if 2 = z. To find Weierstrass points it is enough to find a two-sheeted Riemann surface
conformally equivalent to 3. Indeed, Weierstrass points are mapped into Weierstrass
points and the Weierstrass points of a two sheeted surface of genus 2 are precisely the
branch points. It was shown in [10, Theorem 1.1] that % is conformally equivalent to

(7.2) 72 = A'(t)2 —4A (1) (3t — (1 + a?) +3p?),

where A is the same polynomial as in (2.1) and the correspondence between the surfaces
is given by?

t=z+1/h

Z=2(3t>—(1+a?)+3p?)/h+A'(t)

5One needs to replace h by —h in (2.1) to get the correct correspondence with [10, Theorem 1.1].
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for the uniformizing parameter t € C. It follows from (6.12) and (6.13) that

2 2
t(oo®) = /T8 and 22(00) = A (t(o02))

2)

As Z(0!?)) # 0, it is not a branch point of (7.2) and hence oo!
of R, which is a conclusion we shall need later.
As just explained, 2R has g linearly independent holomorphic differentials. Denote by

T —
dﬁ — (dQ],dQZ) 7 9 - 2/
dQ], 921,

is not a Weierstrass point

the column vector of such differentials or the unique differential normalized so

ﬂg d_Qj = 5jk/
Xy

where §;y is the usual Kronecker symbol. The differentials dQy form a basis for the space
of holomorphic differentials on 9. The vector of analytic integrals O defined before (3.1)
is given by

z

O(z) = J dg,

€1
where e is the branch point of 23 such that 7t(e;) = 1 (we could have chosen any other
point to be the initial point for integration). The significance of this vector lies in Abel’s
theorem: if D1 and D, are integral divisors, the divisor Dj — D; is principal if and only
if the orders of D; coincide and

(7.3) A(Dq) = Q(D,) (mod periods dﬁ) ,
where Q(D) := > niQ(z;) for D = > i Mizi.

In what follows we shall also use differentials dQ), ,,, that are the normalized (that is,
$ o« dQ;w =0, 1 < i< g) abelian differentials of the third kind with simple poles at z
and w of respective residues +1 and —1, and holomorphic otherwise.

7.2 Cauchy Kernel on R

To solve the boundary value problem stated in Theorem 6, we need a (discontinuous)
Cauchy kernel suited for our purposes. Define dC; to be the normalized third kind
differential with three simple poles, say z,z1,z;, assuming n1(z) = {z,21,22}, which
have respective residues 2, —1,—1. It is quite simple to see that for any fixed w we have

dCs =2dQz 4w —dQz, w —dQz) a0

Let 'y be a chain on 2} possessing projective involution. For each t € y which is not a
branch point of R, we shall denote by t* another point on y having the same canonical
projection, i.e., 7i(t) = 7(t*). When t € y is a branch point of the surface, we simply set
t* =1t

Henceforth, fix y as above and let A be a Holder continuous function on y. For simplic-
ity, we shall also assume that the set 7t(y) N U?:] 7t (i) consists of finitely many points.
Define

g
A(z) :—;mi?\dcz, 269%\7'[7] (n(yU'U cxi)>.

i=1
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The function A is holomorphic in the domain of its definition. Moreover, when z — t €
oc%, one of the points z;, say z1, approaches t* € «;", while z, does not approach any

point on y U o (projective involution property). Hence,
1

_ 112 _ _
Y Y

= _f]g AdQy,
.

since, according to [38, Eq. (1.9)], one has
dof,, —dQ;,, = 2mdQy, z€ o.
On the other hand, ifz -,z = t € ocf, and z, — t* € cxf, then
1 1 1

AR —A (1) = 3 [_2711 jﬁy A(dOf,, —dOg,,) — 5 i A (dQ;,w - dQ;Q,W)} =0.

Furthermore, if z — t € y*\ U?:] «i, z1 — t* € yT, while z, does not approach any
point on yUJ{_; &, then

At - A () = 2T,
according to [38, Eq. (2.8)]. Finally, if z — f, z; — t € y*, and z, — t* € yT, then
A A (1) = A

Thus, if we additionally require that A(t) = A(t*), then A is a holomorphic function in
Ra \ Y such that

(/\“‘_/\_) (1) = %y}\dﬂk, te Oék\(YU(ngk),

A(t)/ te Y \ Uig:] &i.
It also can readily be verified that
(7.4) Alz) +A(z1)+A(z2) =0 on %R,

since the cycles y and «; possess projective involutions.

7.3 Logarithmic Discontinuities

It is known that the continuity of AT, in fact, Holder continuity, depends on the Holder
continuity of A only locally. That is, if A is Holder continuous on some open subarc of vy,
so are the traces AT on this subarc irrespective of the smoothness of A on the remaining
part of y. Of particular importance for us are the logarithmic discontinuities at the branch
points of fR.

More precisely, let e be a branch point of SR and 4 be its circular neighborhood. Given
a cycle on fR that possesses a projective involution and passes through e, denote by vy its
part that belongs to 4. In this case 7(y) is a Jordan arc ending at e = 7t(e). Recall [20, Sec.
1.8.6] that

(7.5) 3 =4 +0((z—e)™)

1 J alog(t—e) dt oetvrd log(z—e)
nty) (t—e)Y* t—z " 2isin(va) (z—e)Y

as z — e, where alog(z—e), x € R, and (z—e)Y, v # 0, are holomorphic outside of 7t(y),
log(t — e) is any continuous determination of the logarithm on 7t(y), (t —e)¥™" is the trace
of (z—e)Y on the positive side of 7t(y), and the choice of the sign in + is determined by
the orientation of 7t(y): + if (y) is oriented away from e and — if it is oriented towards e.
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Assuming that PR has double branching at e, define u(z) := £(z — e)1/2, where the
choice of the sign depends on whether z lies to the left (+) or to the right (—) of y. Set

1 u(z)\ dt
de,(t) = 3 <1 +3u(t)) P

The differential dC, is holomorphic in 4(\{z, z*} with residues +2 at z and —1 at z*, where
z* is the unique point in Y which is different from z and has the same natural projection.
Clearly, the difference dC, —dC; is a holomorphic differential in (. Therefore, if A(t) is
of the form «log(t —e)+ {Ht‘)lder continuous part} satisfying A(t) = A(t*), then

Alz) = % L alog(t—e)dCL(t)+0O(1)
1 u(z) dt o« B
(7.6) = ZmL(woclog(t—e)teth_z—l-Oﬂ) —izlog(z e)+0(1)

as z — e € yT by (7.5) applied with v = 1/2 (observe that the second equality above is
valid independently of the orientation of 7(vy)).

Assume now that i has triple branching at e. Since y possesses projective involution
there is exactly one component of [\ y that lies schlicht over 7t({{ \ v). Orient y so that
this component lies to the right when v is traversed in the positive direction (it is bordered
by v7). Define

w(z) u?(z)\ dt
dC,(t) := (u(t) + uz(t)> 2
where u(z) is equal to the lift of a fixed determination of (z — e)!/3 to the “schlicht”
component of { and then is continued holomorphically to the whole l. Since the values
of u at the points with the same natural projection differ by e*27/3, one has that dC,
is a holomorphic differential in £\ 1 (z), with 3 simple poles at the elements of w1 (2)
having residues +2 at z and —1 at the two elements of ! (z)\{z}. Again, dC; —dC; is
a holomorphic differential in 4 and therefore

1
Alz) = %J alog(t—e)dCx(t)+ O(1)
Y
V3i sz w(z) tomi3 uA(2) dt
= %Jﬂy) alog(t—e) (:I:e e /3 te (te)2/3+) —

where the sign + is used when 7n(y) is oriented towards e and the sign — is used if it is
oriented away from e, and we used the fact that

dt J dt J dt o SJ dt
_— _— _— :I:\/?)le 7.[1/ _—
Jy wt)  Jpy (t—e)1/37 Jry (t—e)1/3+ n(y) (t—e)1/3—

with the same choice of signs. Then (7.5) applied with v =1/3 and v = 2/3 gives that

2
Az) = —% log(z —e) ((Zf(ez))lﬁ + (Zli i)zz)/3> Hot

o 1, z—ecvy™,
O(1 —1 —
()+3og(z e){—z, z—>ecy,

1/3

(7.7)

where the determination of (z — e)
of il that lies to the right of vy.

is precisely the one of u(z) within the component

7.4 Szeg6 Function S,

Let A be the chain introduced in Theorem 6. We assume that the cycles forming A and
separating 91(°) and :1(1), i € {1,2}, are oriented so that 9t(°) lies on the left (positive) side
as each of the cycles is traversed in the positive direction, while the cycle separating %"
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and 9%(?) is oriented so that %(1) remains on the left when it is traversed in the positive
direction.

To define a density whose Cauchy transform on A we shall need, let us introduce
auxiliary “trigonometric” weights. Namely,

wi(z) = Vz?—a?,
wa(z) = /(22 —1)(z2 —b2)(z% +c2),

in Case I with branch cuts along Ay, Ay U Ay, respectively (all are positive for positive
reals large enough), and

(79) wi(z) = Vz2-12?,
79 wiz) = VEZ-DNZ-d),

in Cases II and III with branch cuts along A7 and A, respectively (all are positive for
positive reals large enough). We set

(7.8)

—log (p1w7) (1), t € AS,
—log ( — pow? ) (1), te A,

(7.10) Ao(t) = B - ) 2 tean,
—log (p2w3) (1), teAS,,

—log (paw3 /p1wr)(t), te€ A,
where we choose continuous branches of the logarithms, which is possible as the functions
p;i and the trigonometric weights are non-vanishing except at the endpoints. Put

1

(7.11) So(z) =exp{Ap(2)}, Cp:i= 54 %A ApdQ.

Then S, is a holomorphic and non-vanishing function on R \ A with continuous traces
except at the branch points that satisfy

{ exp {2mi(Cp), } on &
P

12 St =S5
7.12) exp{Ap} on A.

p
Moreover, S, satisfies (2.10) with @ replaced by S, as follows from (7.4), and, excluding
the case a = b = 1/v/2, one has

|S (z|~|z e~ /% as z-—ee{tl, +a,+tb},

|s (z| lz—el'/* as z—ec{te},
(7.13)
|S (z|~|z—e| /4 as z— e e {+ic},

|Sp (z)] ~lz—el/*  as z—ee{£],+e,, +ic),

by (7.6), where e; = a and e; = b in Case I while e; = b and ey = a in Cases Il and
IlI, and the points +ic appear only in Case I. When e; = e; = 1/v/2, we need to use
(7.7) instead of (7 6) Now there are two cycles that pass through a branch point: one
that separates R(© and R (91 lies to the right of this cycle), and one that separates

) and %1(2) (1(?) lies to the right of this cycle). Combing the contributions from the
integrals over both cycles we get that

57 @)~ le—el 3 as z—ee {x1/v2},

(7.14) .
|S£,1)(z)|~|z—e|1/6 as z—eec{£1/V2}, ief1,2)

29
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7.5 Riemann Theta Function

The theta function associated with B is an entire transcendental function of g complex
variables defined by

()= > exp {mﬁTBﬁ+ zmﬁTa}, teCy.
nez9
As shown by Riemann, the symmetry of B and positive definiteness of its imaginary part
ensures the convergence of the series for any . It is known that
Aw)+K, g=2

K g=1 (mod periods dﬁ)

(7.15) 0(i)=0 <« ﬁz{

for some w € R, where the equivalence = was defined in (3.3) and K is the vector of
Riemann constants defined by

(K)y = (Bla—1/2—-$,,  OdQs ., g=2,
K = (B-1)/2 g=1.

Let D be an integral divisor of order g. Then 6(@(2) —Q(D) — 12) is a multi-valued
holomorphic function on A if D is not special and is identically zero otherwise. Indeed,
in the later case Q(D) = Q(z+2) + j; + Bmni,, fz, m, € Z9 and therefore

- T

0 (Glz) - G(D)—K) =0 (~G(2) - K) e mIBRe-2mmI(G1214K) — g

by (7.15), where we used the fact 6(—1i) = 6(i) and the periodicity property of theta
functions:

(7.16) 0 (a+f+ Bm) = exp { — i B — 2mmTﬁ}e(ﬁ), j,m e z9.
Set ¥y == ﬁ(oo(k) —00(0)), k €{0,1,2}, and define

0 (Q(Z) —ﬁ(goo(z)) - ]z—vk _Ep _i’n _Bgn>

(7.17) Onk(2) = - = =
" 8 (G(z) — G(go02)) —K)

(recall that 200(?) is not a special divisor, see (7.2) and after, and therefore ©,, \ is always

well defined), where X, §n € [0,1)9 are such that

(7.18) Xn + Byn = n (@ + BT) (mod periods dﬁ) .

If the numerator is not identically zero, ©, x is a multiplicatively multi-valued mero-
morphic function on 9t with g simple poles at co(?), g zeros that we shall describe by an
integral divisor Dy, i, and otherwise non-vanishing and finite (it is also possible that zeros
could cancel poles). Moreover, it follows from (3.1) and (7.16) that ©y, i is meromorphic
and single-valued in 91« and

(7.19) O, = O, L exp {27 (Vi + Cp + Xn + Byn); } on .

Together with the functions ©;,  we shall need two more auxiliary theta functions. We
set

—

0 (Q(z) —0(0l® + (g—T)w) —K)

—

0 (ﬁ(z) —G(00® + (g—T)w) — K)

for any fixed w such that w # &) for all k € {0,1,2). Clearly, ©®p = 1 and ©;, i € {1,2},
is a meromorphic function in R4, with a simple zero at co(®), a simple pole at co!), and
otherwise non-vanishing and finite. Moreover, its traces on «y satisfy

Ok(z) = , ke{0,1,2],

(7.20) O] =0, exp{2mi (Vi) } on oy.
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7.6 Jacobi Inversion Problem

It follows from (7.15) and (7.18) that the divisor Dy, i is a solution of the Jacobi inversion
problem

—

(7.21) A(Dnx) = O(goo?)) + 3 +¢p +n (@ + BT) (mod periods dﬁ) .

Clearly, D, o are precisely the divisors D, defined in (3.2).
As we already mentioned after (3.2), any Jacobi inversion problem is uniquely solvable
on surfaces of genus 1. Thus, D, i are well defined in this case. Since

(7.22) O(Dnyx) =Q(Dn_1x) + @+ BT (mod periods dﬁ) ,
Proposition 2 and the unique solvability property imply that
Domx =Dox #Dix =Dami1x
for all m > 0. This finishes the proof of Proposition 4. Observe also that
(7.23) Q(Dn,k) = Q(Dn/j —o00l) 4 oo(k)) (mod periods dﬁ) )
The latter equivalence together with the unique solvability property imply that
") forall ke{o,1,2).

Hence, if Dy o # (9, then Dni # ooV, i € {1,2}, which will be important in what
follows.

As to Proposition 5, observe that its first claim follows from (7.22) and Proposition 2
as O assumes equivalent values at special divisors by Abel’s theorem (7.3). To prove the
second claim, assume to the contrary that all the limit points of {Dn 0}, o are either

@nlj:oo(j) forsome j€{0,1,2} = Dyy=00

special or of the form co(®) +w for some w € :\. Using compactness, we always can
select a subsequence N7 such that
Dnyjo— D as Nyoan— oo

for some divisors D’ simultaneously for all j € {0,1,2,3}. According to our assumption,
one has

(7.24) G(DV) = G (0! +wy),

where wj = 60(°) when DJ is special. Observe also that continuity of 3 and (7.22) imply
that

(7.25) QD =3(D)) + @ + BT (mod periods dﬁ)
forj €{0,1,2}. By combining (7.25) for different j and then recalling (7.24), we deduce that
Q(ZWJ-) = Q(Wj+] +wj_1) (mod periods dﬁ) ,

j € {1,2}. The latter equivalence and Abel’s theorem imply that 2w; and w3 +w are
special divisors, and therefore necessarily w3 = wj. The above conclusion and (7.25)
imply that

26+ 2Bt =0 (mod periods dﬁ) ,

which is impossible since 20 = (2w, 4(1 — w)) and 2w € (1,2) by Proposition 2. This
contradiction proves the second claim of Proposition 5.

Finally, observe that the subsequence N, is such that no limit point of {Dyn i}, N, 18
special or of the form ooV 4w for i € {1,2}. Indeed, otherwise there would exist a limit
point D of one those sequences such that

G(D) = G (oot +w),
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where w = (1) if D is special. Choose a limit point D, of {D, o} along the same
subsequence. The continuity of Q and (7.23) then would imply that

ﬁ(ﬂ*) = Q(D — oo +oo(0)) = ﬁ(oo(o) +w) (mod periods dﬁ) ,

which means that either D, is special or contains co(®). As both options are impossible
by the choice of N, such a limit point D does not exist.

7.7 Nuttall-Szeg8 Functions

Finally, we are ready to prove Theorem 6. Let §j € RY. Then it follows from (3.1) that
Sg(z) :==exp{ —27tigTﬁ(z)}, z € Rap,

is a holomorphic function on 2Ry g with continuous traces that satisfy

exp (2mi(By).; on o
(7.26) st s | P 2By ‘
YooY | exp{-27(7),} on B;.
Moreover, (7.4) implies that (2.10) holds with ® replaced by Sy. Finally, set
W(Z(O)) =1 and W(zm) =w;i(z), ie{1,2},

where the functions wy and w; are defined by (7.8) or (7.9), depending on the considered
case. The Nuttall-Szeg® functions we are looking for are defined by

(7.27) Yk = O"SpSg, On kOW T,

where 4, was defined in (7.18) and we assume n is such that the corresponding Jacobi
inversion problem (7.21) is uniquely solvable. Indeed, it can readily be checked, using
(2.11), (7.12), (7.18), (7.19), (7.20), and (7.26), that each ¥, i is holomorphic in R \ A and
its traces satisfy
(WY )" = (WY )" exp{A,} on A

Using the definition of W and (7.10), we see that the pullbacks of ¥, i solve the boundary
value problem (3.6). Further, the functions ¥, x have the local behavior around the branch
points of R as stated in (3.5) by the very definition of W and (7.13) or (7.14). Finally, the
zero/pole multi-set of ¥y, i in 3\ A is described by the divisor

(7.28) D+ (n+1) (o0l +002)) — 0o — (2 — T)o0(®)

as follows from the properties of ®™, O, 1, Ok, and W. In particular, the functions
satisfying conditions of Theorem 6 are given by ¥, := ¥, o.

It only remains to show the uniqueness of ¥, . To this end, consider ¥, /¥, where
VY satisfies (3.5), (3.6), and (7.28) with Dy, i replaced by any other integral divisor, say D.
Then the analytic continuation property implies that ¥,, /¥ is a rational function on %R
whose divisor is given by Dy, x —D. As D, i is not special, D = Dy, i, that is ¥y, /Y is a
constant.

7.8 Auxiliary Observation

In Section 9, we shall need the following observation. Assuming we are in Case II, let
D x(p) be the solution of (7.21) for the weights p1 and p, and Dy, i (1/p) be the solution
of (7.21) for the weights 1/p7 and 1/p;. Then it can easily be seen from (7.21), (7.10), and
(2.15) that

O(Dric(p) +Dric(1/p)) =28 (00 + 29 + 287 = 23(Dy i (1))
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Moreover, it also follows from (2.15) and (3.6) that (51 Sg‘n®n,k®k)2 is a rational function
on R with the divisor equal to the sum of the divisors (7.1) and 2D, i (1) — 200(K). As the
divisor (7.1) is a divisor of a rational function, we get from Abel’s theorem (7.3) that

O (D xe(p) + D x(1/0)) = 20 (00)).
In particular, it follows from the unique solvability of the Jacobi inversion problem that
(7.29) Drilp) =00l & Dy y(1/p) =00,
That is, n € N4 (p) if and only if n € IN,(1/p).

7.9 Asymptotic Behavior

Below we prove Theorem 7. In fact, we shall show that a more general statement is true.

Given N, and ¢ > 0 small, there exists a constant 1 < C.(IN,) < oo such that
{ |lyn,k| < Ce(INy) ‘(D|n in R,

(7.30)
Yokl > CeN)~ @™ in gl

for all n € N, large, where gl = j(K) 1 ({lzl > 1/¢}).

It follows from the continuity of the boundary values of S, as well as from (7.13) that
ISpl is bounded from above and away from zero in . (that is, including the boundary
values on A and the a-cycles). Moreover, since the image of R g under A is bounded
and yn € [0,1)9 by the very definition, see (7.18), the moduli |Sg, | are uniformly bounded

from above and away from zero. Thus, we only need to estimate the function @nrkaW” .

It follows from (7.28) that the zero/pole multi-set of @n,k@qu in R \ A is equal to
D + 000 + 001 4+ 00(2) — 00l*) and therefore these functions are holomorphic there

as well as non-vanishing in 4 for all ¢ > 0 small and n large by the very choice of IN..

Hence,

|@n,k®kw_]| < Cne(INY) in R,
(7.31) 1 1 (k)
’®n,k®kw ‘ > Cn,e(INy) in e

Thus, if we show that {©,,x®xW~'} is a normal family and every limit point satisfies

the estimates as in (7.31), a standard compactness argument will finish the proof of (7.30).

The only varying part of this family is given by
(7.32) 0 (ﬁ(z)—fl(goo(z)) —K—vk—ap—zn—sgn).

Boundedness of its image follows from the continuity of 8(-), boundedness of the image
of O(z) for z € Ry g, and the fact that X, Un € [0,1)9. Thus, {0, O W~'} is a normal
family and its elements are indexed by pairs (Xn,Un) € [0,1 )29. The continuity of 6(-)
and (7.17) imply that any limit point of the functions in (7.32) has the same form with
(Xn,Un) replaced by a limit point (%,§) € [0,1129. Denote by D the integral divisor of
order g describing the zeros of this limit point. Then

A(D) = ﬁ(goo(z)) +Vk +Cp+X+ By (mod periods dﬁ) )

The continuity of O implies that the right-hand side of the equivalence above is a limit
point of the right-hand sides in (7.21). By the definition of IN,, it determines D uniquely
as it is a limit point of {Dy, 1 JneN, . Moreover, all such limit points are uniformly bounded
away from containing co'®) and therefore from containing an element from il(sk) for all
¢ > 0 small enough, which is sufficient to get the required lower estimate.
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8 RIEMANN-HILBERT ANALYSIS: CASE I
8.1  Global Lenses

Set
0
1

0
(8.1) Gi(u) = 0 and Gy(v):=1| O
1

S o =

u
Observe that Gi(u)~! = Gi(—u), i € {1,2}. Moreover, with | as in (5.5),
{ G, (WIxy)G1 () = J(x+uy,y)

G, WJ(xY)G2(v) = J(x,y +vx).

That is, conjugating J by G; allows one to modify the i-th variable of the matrix J using

the other variable.
Let, as before, +ic, ¢ > 0, be the projections of the branch points of %R and T" be the cut

along which the sheets R and R®(2) are glued to each other. Pick arcs Apy4 and Ay, all
oriented from —ic to ic, as in Figure 12. These arcs delimit three bounded domains that
we label from left to right as Oy, O4, and O,.

(8.2)

FIGURE 12. The lens £g and the domains Oy, O, and O;.

Set S :=Y outside of the closure of Oy U0 UO; and inside put

Gi(—p1/p2) in O,
(8.3) S=Y{ Ga(—p2/p1)G1(p1/p2) in O,
Gz (—p2/P1) in Oy,

where the p; are the weight functions in (4.1). This way S has jumps on Ay, Apz, and
Ap. In particular, the jump on A is equal to
1 0 0

Jo:=G1(—p1/p2)G2(p2/p1)G1(—p1/p2) =] O 0 P2/P1
0 —p1/p2 0

For brevity, let us write

o[ 2z Rel)>0,
(&4 Patel '_{ —p(2), Re(z) <0,

Put g :=[-1,1UAp1+ UAg1_ UAg2 UAp. Then S solves RHP-S:

(a) Sisanalyticin C\ g and lim;—_, S(z)diag (z72™,2",2") =1;
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(b) S has continuous traces on Lg := X\ {*1,+a, fic} that satisfy

I(Or pZ) on (*1,*(1)U(Cl,1),
](p1lo) on (—(1, Cl) \{O}/
S+ =8¢ Jo on A,

Gi(p1/p2) on Aopis,
Ga(—=p2/p1) on  Ag;
(c) S satisties RHP-Y(c) (see Section 5) with [—1, 1] replaced by Zsg.
If RHP-S is solvable, then so is RHP-Y, and the solutions are connected via (8.3).

8.2 Local Lenses

For the next step we introduce additional arcs Aj1 and systems of two arcs A1 as on
Figure 13, all oriented from left to right. Denote further by O the domains bounded by

FIGURE 13. The lens Zz: specifically, the arcs A7+ and systems of arcs Ap4. The
black curves constitute the system Zy.

(—a, a) and the arcs Ay, respectively, and by O, the open sets bounded by A+ and
(=1,=b)U (b, 1). Set

(8.5) Z:=SLF' in O,
i e {1,2}, where

1 00 1 00
(8.6) Ly=]| 1/p1 1 0 and L, := 0 1 0
0 0 1 1/p5 0 1
It can readily be checked that Z, =Z_]J; on Ay, i € {1, 2}, see (2.8), where
0 p; O 0 0 p5
(8.7) Jp=| —-1/p7 0 O and J; = 0 1 0
0 0 1 —1/p5 0 0

PutXz =YXgUA{L UA1_UAy, UA, . Then Z solves RHP-Z:

(a) Z is analytic in C\ £z and lim,_, Z(z)diag (z°™,z7 ™,z ™) =1
(b) Z has continuous traces on each side of % := L7 \ {1, +a, +b, £ic} that satisfy

Jk on APN\{0}, ke{0,1,2},
Z+:Z_
Jz on Z%\(AoUA]UA2>,
where
J(0, p3) on (—~b,—a)U(a,b),
Gi(p1/p2) on Agi4,

G2(—p2/p1) on Agy,
L; on Ay, 1€{l,2}

(8.8) Jz:

35
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(c) Z satisfies RHP-S(c) with Xg replaced by 7.

As before, if RHP-Z is solvable, then so is RHP-S, and the solutions are connected via
(8.5).

8.3 Global Parametrix

Let Iy := Ap UA7 UA;, see Figure 13. In this section we are seeking the solution of the
following Riemann-Hilbert problem (RHP-N):

(@) N is analytic in C \ Zy and lim,_, N(z)diag (Z*Z“,z“,z“) =1
(b) N has continuous traces on each side of X \ {1, +a, +b, £ic} that satisfy N =
N_Jron A?, k €{0,1,2}.

We solve RHP-N only along the subsequence IN.. defined in Proposition 5. Let ¥, i be
the n-th Nuttall-Szeg6 functions constructed in (7.27). As the functions ¥,, i satisfy (3.6)
with the zero/pole sets described by (7.28), it readily follows that a solution of RHP-N is
given by

(0) (1) (2)
lyn,O liln,O llln,O
(8.9) N=Cn | ¥ v} v | = c "MD",
(0) 1) (2)
Wn,z Wn,z Wn,z

where n € IN,, Cy, is a diagonal matrix of constants chosen to fulfill the normalization
condition in RHP-N(a), C := diag(Cg, C1,C>), see (2.13), and D := diag (CD(O), o), (D(z)).
Observe that det(N) is an entire function in C \ {#1, +a, &b, 4-ic} since the determinants
of the jump matrices in RHP-N(b) are all equal to 1. Moreover, the normalization at
infinity implies that det(N)(co) = 1 and therefore det(N) is a rational function. It also
follows from (3.5) that near any of the points in {1, £a, £b, £ic} the entries of one of the
columns of N are bounded and the other entries behave like O(|z — e|~1/4). Hence,

det(N)(z) = O (|z— er‘/z) as z— {41, +a,+b, +ic},
and therefore det(N) = 1.

8.4 Local Parametrices

Denote by U, e € {£1, £a, £b, +ic}, a disk centered at e of small enough radius so that

L. := Ue N Xz consists of disjoint, except at e, analytic arcs. We are seeking a solution of
the following RHP-P.:

(a) Pe is analytic in Ue \ Z¢;

(b) P, has continuous traces on each side of L3 that satisfy RHP-Z(b) within Ue;

(c) Pe is either bounded or has the behavior near e within U, described by RHP-Z(c);

(d) Pe=M(I+0(1/n)) D™ uniformly on dU, \ £z, where M and D are defined by

(8.9).

We solve each RHP-P. only for n € IN,. For these indices the above problem is well-
posed as det(N) = 1 and therefore N~ isan analytic matrix function in C \ L. In fact,
the solution does not depend on the actual choice of IN,, however, the term O(1/n) in
RHP-P.(d) may depend on the choice of this subsequence.

In solving RHP-P,, it will be convenient to use the notation o3 = ((1) _O]) and intro-

duce the following matrix transformations T1A, T2A, and T3A given by

1T 0 0 [Al11 0 [Al2 Al1; [Al12 O

0 [Aln [Ah2 |, o 1 0 , and Al21 [Al22 0 |,
0 [Alxr [Al2 [Al21 0 [Alx2 0 U
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respectively, where [A];y is the (i,k)-th entry of A. Observe that T;(AB) = T;(A)T;(B)
for all 2 x 2 matrices A, B.

8.4.1 RHP—Pi1

In [25], a 2 x 2 matrix function was constructed out of Bessel and Hankel functions that
solves RHP-Y:

(a) ¥ is holomorphic in C\ (I UI_ U (—o0,0]), where 14 := {C rarg(Q) = iZn/S}, all
the rays are oriented towards the origin;
(b) ¥ has continuous traces on I UI_ U (—o0,0) that satisfy

10 1
11 on 4

(_01 ;) on (—OO, 0)/
(c) W(¢) =0(loglc|) as ¢ — 0;
(d) ¥ has the following behavior near oco:

o2 " (1) (v (e
uniformly in C\ (I UI_ U (—o0,0]).

y,o—y

Furthermore, 03Wo3 solves the same R-H problem only with the reversed orientation of
all the rays. Notice also that RHP-¥(d) should be replaced in this case by

03¥(Q)os = (2n¢/2) 7 % (11 T) (1+0 (c71/2)) exp {2203}

To carry ¥ from the C-plane to U, e € {£1}, we need to introduce local conformal maps.

To this end, set

1(* ! (0)(2)/0(2)

ge(2) =5 | (ho—hy) (t)dt =5 log (0©)(2)/02)(2)),

2 Je 2
z € Ue \ [-1,1], where the second equality follows from (2.5) and (2.9). As mentioned
after (6.4), ge has purely imaginary traces on (—1,1) N U, that differ by a sign. Moreover,
since ge vanishes at e as a square root, gé is conformal in U,. Furthermore,

g2({x: sgn(e)x >1}NUe) C {z:z>0},
g2((-1,)nUe) ¢ {z:z<0},
92(A2+NUe) < {z: sgn(e)arg(z) = +2m/3}.

Indeed, the first property follows from (2.4) and (6.11) while the second is a consequence of

the fact that ge has purely imaginary traces there. The last property is the requirement we
impose on the arcs A, 1. Choosing the branch of gl/ 2
1}NUe, one has on (—1,1) N U, that

1/2 . 172
(8.10) gei :sgn(e)1ge/,.

Now, it can readily be verified that the matrix function

which is positive on {x : sgn(e)x >

(8.11) Pe = EcTo¥e (n?g2/4) We,

satisfies RHP-P.(a,b,c) for any holomorphic matrix function E., where ¥; =¥, ¥_; =
o3¥o3, and

(8.12) W, = diag ((qn(")@(z))“/z/ o3, (@)™, (cD(O)qn(z))"/z\/@ .

Moreover, one has on 0U, that

. _ 1 ,
(8.13) P =E.T, <p2 03/2 (7nge) o3/2 < 1 sgn(e)i

sgn(e)i 1

7 )) (1+0(1/n))D™
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Thus, it only remains to choose E. so that RHP-P.(d) is fulfilled. Direct computation
using RHP-N(b) and (8.10) shows that the matrix

o *03/2 o3/2 1 1 —sgn(e)i
(8.14) Ee:= MT, (pz (nge)™/* = (_Sgn(e)i 1 ))

is holomorphic in U, \ {e}. As the entries of M behave like |z — e[ V%asz e by (3.5),
the entries of E. can have at most a square root singularity there. Thus, E. is holomorphic
throughout U, as desired.

8.4.2 RHP-P.

To solve RHP-P+,, we again use the matrix ¥. In this case we have an additional
complication coming from the jumps on (—b, —a) U (a, b). To circumvent it, we shall need
the following fact about the matrix W:

(8.15) W]41(0) =1p(2¢"/?) and Wl (¢) = 2mic'/215(2¢/2)

within |arg(z)| < 27t/3, where Ij is the modified Bessel function of order 0. Observe that
both functions above are in fact entire in the whole complex plane.
Define

1 (% 1 0 1

(8.16) gelz) = EJ (ho =) (t)dt = S log (0 (2)/0V(z)),
e

z € Ue \ [—a, al. As mentioned after (6.7), ge has purely imaginary traces on (—a, a) N U,
that differ by a sign. Moreover, since g. vanishes at e as a square root, g2 is conformal in
Ue. Furthermore,

g2({x: sgn(e)x >a}NUe) C {z:z>0},
g2((—a,a)nUe) ¢ {z:z<0},
g2(AxNUe) C {z: sgn(e)arg(z) = £2m/3},
where the first property follows from (6.6) and (6.9), the second is a consequence of the
fact that ge has purely imaginary traces there, and the third is a requirement we impose

on the arcs Ay. Choosing the branch of gl/ 2 which is positive on {x : sgn(e)x > a}NU,,
we see that (8.10) holds on (—a, a) N Ue.
We further define

Faiz) = p2(2) (@@ (2)) ™ ?I5(nge(z)) 2 log =2,
Faa(z) = p2(2)(@@)(2)) " ?minT)(nge(2)) 7k log 22,

where [j is the modified Bessel function of order o, see (8.15). The above functions are
holomorphic in Ug \ [a, b] and

Frir —Fnie = Wi (n?g3/4)p2(01%)
on (a,b). According to [16, Eq. 10.40.5],
(nga)'/ 2Py = (e"920(1) + e "9=0(1) (012) /2

o0 \" oM\"
uniformly on 9U, by (8.16) and since 9y C Qjp1 by Theorem 3 and the choice of the

radius of Ug. Clearly, o(1) in the above equality is geometric. Moreover, a completely
analogous estimate holds for F,,». Given these two functions, we can set

W11 (n2g2/4) [Wh2(n?g2/4) Fu
Vo= | W1 (n?g3/4) [Waa(n?g3/4) Fna
0 0 1

—3n/2
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Then the solution of RHP-P is given by P, := Eq¥ (W, where

W, = diag((CD(O)(D(”)n/Z/\/ﬁ,((D(O)Q)U))“/z\/a’((D(Z))“)
.
E. = MT; (pf3/2(ﬂn9a)“3/2\‘ﬁ(_i ]l>>.

To verify RHP-P (d), observe that

1 —i o —no3/2
T3 (\k (_i ]l> (mmga) 3/2> woTs (000 /0) —1+0(1/n)

by the asymptotic properties of Fy ;. The matrix P_, solving RHP-P_ can be constructed
analogously.

843 RHP—Pib
In [13], a 2 x 2 matrix was constructed out of Airy functions that solves RHP-®:

(a) @ is holomorphic in C\ (I UI_ U (—o0, o)), where the real line is oriented from
left to right;

(b) ® has continuous traces on I, UI_ U ( ,0) U (0, 00) that satisfy
D, = ] n (—oo,0)
+ =% —1 o) O TeEh
11
<0 1) on (0,00);

(c) @ is bounded around the origin;
(d) @ has the following behavior near oco:

() = 603/4\]@ (1 ;) (1+0 (c372)) exp {_§C3/203}

uniformly in C\ (I.+ UI_ U (—o0, 00)).

Again, 03P 03 solves the same R-H problem only with the reversed orientation of all the
rays. As in the case of ¥,

3@ ()03 = r"s“\% (_‘i ‘f) (1+0(c3/2) ) exp {§c3/203}.

To map @ into U, e € {£b}, define

9e(2) =~ | (ho —ha) (1)t =~ log (0()2)/02)(2)),

e

z € Ue\ ([=1,—b] U [b,1]). As before, ge has purely imaginary traces on ((—1,—b) U
(b,])) N U, that differ by a sign. Moreover, since ge vanishes at e as (z —e) 3/2, gé/s is

conformal in U.. Furthermore,

/3({x:sgn(e)x<b}ﬁue) c {z:z>0},

g (1 -v)udN)NUe) ¢ {z:z<0},

ge/ (AZi ﬂue) - {z: —sgn(e)arg(z) = :|:27'c/3},
where the first property follows from (6.6) and (6.9), the second is a consequence of the
fact that g has purely imaginary traces there, and the third is a requirement we impose
on the arcs Ay . Choosing the branch of gl/ ® which is positive on {x : sgn(e)x < b}NU,,
one has on ((—1,—b) U (b, 1)) NUe that

. 1/6
(8.17) gei = sgn(ehge£~

39
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As in the previous cases, one can verify that the solution of RHP-P. is given by

(8.18) Pe = EcTo@ ((3n/2)%3g0% ) W,
where @ _y := @ and @y, := 03D o3, W, is defined by (8.12), and
— x03/2 o3/6 1 1 —sgn(e)i

whose holomorphy can be checked as in the previous cases using (8.17).

8.4.4 RHP-P ;.
To map @ into U, e € {£ic}, set sgn(=£ic) = & and define
1(# 1
ge(z) =~ | (b1 —ha) (1)t =~ log (0 (2)/02)(2)),
2 ). 2
z € U\ T. Since T is the branch cut for h; and h;, the traces of g on I'N U, differ

by a sign. Moreover, since ge vanishes at e as (z — e)3/2, gﬁ/ 3 is conformal in U,. The
following are conditions we impose on the arcs I', I, and ' 1:

g*(nNUe) ¢ {z:z>0},

gé/s(l“ﬂue) c {z:z<0},
g§/3 (MenUe) C {z: sgn(earg(z) = +2m/3}.

Choosing the branch of gl/ © which is positive on I'; N U, we see that (8.17) holds on
I'N U, with —sgn(e) replaced by sgn(e). Then the solution of RHP-P. is given by

(8.20) Pe = EcT1@, ((3n/2%3ge% ) W,
where @;. := ® and @ _;. := 03Do3, and

W, = diag ((d)(o))n, (cb“)CD(Z))“/Z\/m, (®(1)®(2))R/ZM> ’

E. = MT, ((02/91)"3/2(3n9e/2)‘73/6\b( 1 —Sg;l(e)i)).

—sgn(e)i

(8.21)

8.5 Final R-H Problem

Consider the following Riemann-Hilbert problem (RHP-R):

(a) Risanalyticin C\ Zg, where Ly is the contour shown in Figure 14, and R(o0) =1;
(b) R has continuous traces on each side of L that satisfy

(MD™)Jz(MD™) ™! on I3NZz,
P.(MD") "
where Jz was defined in (8.8), while M and D were introduced after (8.9).

R+ == R_
on 0U,, ee{*l,+a,=£b,+ic},

FIGURE 14. The contour Zg: solid lines. The dashed lines represent the relevant
borders of the domains Q;y, see Figure 3(a).
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Let us prove that the jumps of R are uniformly close to I for n € IN,. In Section 8.3 we
have shown that det(N) =, while det(D) = 1 by (2.10) and det(C) = 1 by (2.13). Hence,
det(M) = 1 and therefore M~ = adj(M), where adj(M) is the adjoint matrix of M. Thus,

(8.22) MI+0()M™" =1+MO()adj(M) =1+0(")

uniformly away from {+1, +a, +b, £ic} by (7.30). Therefore, it follows from RHP-P.(d)
that

(8.23) Pe(MD“)_] =I+MO(1/TL)M7] =1+0O(1/n)
uniformly on each dlU.. Furthermore, we can write
Jz=1+pjxEjx, j#k jke{0,1,2},

where E; i is the matrix with all zero entries except for the (j + 1,k + 1)-st one, which is
1, and pj x is always a combination of p; and p; (particular values of j, k and the value of
the entry depend on the arc in question). Thus,

- o) \" B

uniformly on Xz N X for some constant Cg > 1 by Theorem 3 (it is a simple examination
of the five relevant cases). Therefore, we get from (8.22) that

(8.24) (MD™)Jz(MD™) ' =1+0(Cx™)

uniformly on £z N Zg. The relations (8.23) and (8.24) together with [12, Corollary 7.108]
imply that RHP-R is solvable for all n € IN, large enough and satisfies

(8.25) R=I4+0(1/n), R(oo) =1,

uniformly in C, that is, including the boundary values on Ig.

8.6  Asymptotics of Hermite-Padé Approximants

Inverting (8.5) and (8.3), we get from (5.4) that

+[Z]1i11(2), € Oy,
(8.26) Qn(Z)Z[Z]n(ZJer;(Z){ e 2SR

0, otherwise,

where p] = p1;

—1Z]13(z), z€ O,
(Z]15(z), z€ Oy,

0, otherwise,

(8.27) R

for z ¢ Fq; and

(8.28) RE{Z)(Z) _ { 0, z€0Oq }+ 02(z) { (Z]12(z), O;U0; }

[Z]13(z), otherwise 0, otherwise

for z ¢ F,.
Let R be the solution of RHP-R. Then
MD"™ in C Ue,
(8.29) Z=C "R . Ve te .
P. in U, ee€{+£l,+a,+xb,=*ic},

solves RHP-Z for alln € N, large enough. Denote the firstrow of Rby (1 +vn0 Un1 vUn2).
It follows from (8.25) that

(8.30) [Unx(o0)| =0 and |vpk(z)|=0(1/n) uniformly for ze€C,
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meaning that vy 1 (z) is replaced by vril’k(z) whenz € Lg. If z & U, e € {+1,+a, +b, +ic},
then

2
(8:31) Zhi1(2) = Ca¥i(2) + Cn Y on(2W (2), ke(0,1,2)

according to (4.2), where the functions are replaced by their traces when necessary.
Formula (8.31) is valid for z € U;c UU_;. when k = 0 and for z € U, e € {£b,+1},
when k = 1. Indeed, in these cases Pe = MTy, 1(-)W,, see (8.20) and (8.21), (8.11) and
(8.14), (8.18) and (8.19). As the (k 4 1)-st column of W, is the same as the (k+ 1)-st
column of D™, the (k + 1)-st column of P, is the same as the (k + 1)-st column of MD™
from which the claim follows.
To estimate the sum on the right-hand side of (8.31), recall that

(8.32) Yoj = ¥Yn00i0,,;0,

n,0’
see (7.27), where ©;0,, ; @;10 is a rational function on R with the divisor Dy, 5 + 00(0) —
Do —o00). Then (8.30), the maximum modulus principle, and the same normal family
argument as in (7.31) and (7.32) imply that
(8.33) [un,i(2)0;(z)) 0y ; (z(k))(@;}) (™) = 0(1/m; Do NRK)
uniformly in C, where the function on the left-hand side of (8.33) needs to be replaced by
its traces when z € Lg Un(39%(K)). By combining (8.32) with (8.33) we get that

(8.34) Ui (WL (2) = WIS (2)0 (1/m; Do NRM)), 4,k €{0,1,2),

7

where O(-) is uniform in C.
The first relation in (4.4) follows immediately from the first line of (8.26), (8.31), and
(8.34). Moreover, (8.31) implies that the second line of (8.26) can be rewritten as

Qi(z) =Cn (WTL()())+(Z)+WTS()) )—i—CnZan ( n]+( z)+¥ /}_(z))

forz€ 07, UO07_UO2,UO;,_ and z & Ue, e € {&b,+a, £1}, where
0
o) wil(z), z€ O,
Wn,ji(z) = (i)
V5(2)/0i(z), z€ Oy,
Clearly, each ‘1’ i extends to a holomorphic function in O; U O;_ UA? by (3.6) (recall

that ¥,, 1 and ‘Pn 2 also satisfy these relations). The first part of (4.5) now follows from

(8.34).
Furthermore, (8.27), (8.31), and (8.34) imply the second line of (4.4) outside of Op U O
for i = 1. In the spirit of (4.3), define

(1) B ‘Pg)) (z), z € O,
i@ =9 L)
VS (z)(=p1/p2)(2), z€ Oy,
which is holomorphic in (Og U O7 UAZ) \ Az7 by (3.6), and
(1)
~(1) ) — { v s(z), z€ Oy,

n,j— >
w2 (2)(p1/02)(2), z€ O,

which is holomorphic in (Op UO7 UAgZ) \ Ay, again, by (3.6). Then (8.27) and (8.31) imply
that

ie{1,2).

RY(2) = o (B0, () + O )+cnzvm ) (90, @+ ) (@)
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for z € (OpUO7UAG)\Fy and z € Ue, e € {—1,—b, —a, £ic}. Clearly, formula (4.5) is an
immediate consequence of (8.34). To finish the proof of (4.4) for i =1, let us show that

w(1)
Wn,jJr

locally uniformly in (int("y UAg1—) UAg1—) \ (F1 UU_jc UU,). Indeed, we have that

G n §(2)(2)g(2)g(2)
VL ows (cp(z)) sysglellle,

07 powr \ @) sisMel]

Yn 1,0

=
= W&/éf@(]/n; Do nnM)

see (7.27). The claim now follows from Theorem 3 and the normal family argument along
the lines of (7.31) and (7.32). This proves (4.4) outside of int(I'; UAp14). Analogously we
can argue that

(1 a1
el =l o(1/m D, 0nn?)

locally uniformly in (int(l' UAgi4) UAgr4) \ (F1 UU_jc UUjc), which finishes the proof
(2)
n

of (4.4) for Rg ). The proof of (4.4) and (4.5) for R
with (8.28).

can be completed analogously starting

9 RIEMANN-HILBERT ANALYSIS: CASE II

9.1 Global Lenses

Let G1(u) and G;(v) be defined by (8.1). Further, let O :={z: Re(z) < 0} be the left half-
plane. We orient the boundary of O1, say A7 (the imaginary axis), so that Oy lies to the
left of Ag; when the latter is traversed in the positive direction. Denote by Ay, a simple
Jordan curve lying within the right component of Qg7 containing all the singularities
of p2/p1, see Figure 15 (this is always possible because of Condition 8). We orient Ap;

Ay Or Ay Ngy O
AV 1- Ao Aga
Aoy

FIGURE 15. The lens ~7 without the circle {|z] = R}, the domains O (shaded
regions on the left) and O, (unshaded region), local lenses Ay and Ay

counter-clockwise and set O, to be the intersection of the exterior domain of Ay and the
right half-plane {Re(z) > 0}. Put

G2(—p2/p1)Gi(p1/p2) in Oy,
(9.1) S:=G1(—p/2)G2(1/p)Y { G2(—p2/p1) in O,

1 in €\ (07002),
where p := p1(00)/p2(00). Put Xg := [—1,11UAgp7 UAp2. Then S solves RHP-S:

(a) Sisanalyticin C\ Lg and lim, ,, +Re(z)~0 S(2z)diag (z72™, 2™, z") = G1(Fp/2);
(b) S has continuous traces on I3 := Xg\ {£1,£1/v2,0} that satisfy

J(p1,0) on Ap\{0},

0, p3 on Ay,

S, =S J( pz) 2
Gi(p1/p2) on Apy,
G2(p2/p1) on Apy,

where pj is defined by (8.4) and A; in (2.8);
(c) S satisfies RHP-Y(c) (see Section 5) with [—1, 1] replaced by Zg.



44

| 9.3 GLOBAL PARAMETRIX

If RHP-S is solvable, then so is RHP-Y, and the solutions are connected via (9.1).

9.2 Local Lenses

As in Case I, we introduce additional arcs A7 and systems of two arcs A, as in Figure 15,
all oriented from left to right. We further denote by O;4 the open sets bounded by A; and
the arcs Aj, 1 €{1,2}. Set

(9.2) Z:=SLF' in O,
where the matrices L; are defined by (8.6). Put Lz :==Zg UA1; UA;_UA;; UA;_. Then
it can readily be checked that Z solves RHP-Z:

(a) Zis analytic in C\ £z and lim, o, 1Re(z)>0 Z(z)diag (z72™,z™,z") = G1(Fp/2);
(b) Z has continuous traces on each side of £5 =27\ { +1,41/V2 ,0} that satisfy

]i on A(l) \{O}r ie {],2},
Z,=7_ )
Jz on Ui_1(Aoi UAL UA;),
where J; are defined by (8.7) and
Gi(p1/p2) on Ao,
(9:3) Jz =< Gza(p2/p1) on Aoy,
L; on Ay, ief{l,2)
(c) Z satisfies RHP-S(c) with Zg replaced by Zz.

As before, if RHP-Z is solvable, then so is RHP-S, and the solutions are connected via
(9.2).

9.3 Global Parametrix

Let N = C"™"MD™" be given by (8.9). Then it is a solution of the following Riemann-
Hilbert problem (RHP-N):

(a) N is analytic in C\ [-1,1] and lim,_,+ N(z)diag (z2™,z",z") = ;
(b) N has continuous traces on each side of A7, i € {1,2}, that satisfy N, = N_]J;.

We cannot argue that det(M) = 1 as in Section 8.3 since every entry of M behaves
like (zF 1/v2)~1/3 as z — 41/v/2. However, we can construct M~ explicitly. Denote
by N = C "MD" the matrix that satisfies RHP-N as above with p; and p replaced by

1/p1 and 1/p3. It follows from (7.29) that the construction (8.9) of the matrices N and N
is simultaneously applicable or not applicable for each index n. Observe that

T\ '/ T 1\ T [(~T\ ' T
<MM > (MM > - <M+> (D_/D)*"M, = (M+> M. =1
- +

on 1(e¢q) and 7(B1) by (2.11) and (2.15). Moreover,

—1\"! T T ™ T
MM MM | =(M_ ]1 +_(M+] ) =1
— +
on A? since ]iT = T: ] . It also follows from (3.5) that the entries of M and M have at most

1/4 and 1/3-root singularities at =1 and +1/v/2, respectively (the functions ¥,, 1 and ¥, »
possess exactly the same behavior around those points as ¥, = ¥, o). Hence, the product

—~T —
MM is holomorphic in the entire complex plane. Since M(co) = M(o0) = I, we deduce
that

(9.4) I=M M.
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In particular, it follows from (3.5) that
{ M(z) = (zF 1/\@)’”31\4 +0O(1),

13t as z— +1/V2,
M'(z2) = (z1/v2) *ML+o0),

(9:5)

for some constant matrices M+ and ﬁi. Then it follows immediately from (9.4) that

~T
(9:6) M M. =0.
9.4 Local Parametrices

Again, we need to solve RHP-Z locally, this time around +1, £1/ V2, and oo. The local
problems RHP-P,; are exactly the same as in Case I and therefore their solutions are
given by (8.12)—(8.14).

9.4.1 RHP-P

Let R > 0 be large enough so that Ag, C {Iz\ < R}. In this section, we are looking for a
solution to the following Riemann-Hilbert problem (RHP-P,):

(@) Po is holomorphic in {|z| > R}\ Ap7 and
lim CfnPoo(z)diag( —n n z“) =G1(Fp/2);

z—00,+Re(z)>0

(b) P has continuous traces on each side of Ap; N{|z] > R} that satisfy P =

Po—Gi(p1/p2);
() Puo=M (I + (‘)(n‘”z)) D™ uniformly on {|z| = R}

Let us show that RHP-P, is solved by
(©:7) Poo = MG ((p1/02)(C2/C1)™u(y/n/20) ) D™

where the constants Cy are defined in (2.13), the function u is given by

] ZCZ erfc( - \/EC)/ Re(C) < 0/
u(Q) = se
2 —erfc(V2(), Re(l) >0,
and ¢ is defined by
—1\/log 2)C2/@2)(2)Cq), |zl >R.

Indeed, ((z) is a conformal function in {Iz\ > R} that vanishes at infinity by (6.14) (make R
larger if necessary). Here, we choose the branch of the square root so that z((z) tends to
(12)~1/% when z — co. Hence, we can deform Ag; in {|z| > R} so that {(Ag7) C iR. Thus,
the right-hand side of (9.7) is holomorphic in {|z| > R}\ Apy. As it follows from [16, Eq.
(7.2.2)] that

lim u(g) =F1/2,
z—0,+Re(C)>0

RHP-P(a) is indeed satisfied. To verify RHP-P . (b), notice that G1(f1.) = G1(f-) G (f+ —
f_) and that uy (x) —u_(x) = e2 for x € iR. Since

exp {2n/2)%(2)} = (0@ 2)C1/0(2)C5) "
RHP-P(b) follows. Finally, [16, Eq. (7.12.1)] implies that

et Fk+1/2) (241
m Z % Tr(1,2)

‘LL

uniformly in the left and right half-planes. Hence,
Poo =M (I+ (p1/p2)(C2/C1)™O(1/v/n)E3,) D™
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uniformly on |z| = R. As |C| =|C;| by Theorem 3, we see that RHP-P,(c) holds as well.

9.4.2 RHP—Pﬂ/ﬁ

Denote by U YNk {z : ‘7.$ 1/v2 | <n1/2 } In this section, we construct a solution
to the following Riemann-Hilbert problem:

(a) Pil/\/i is analytic in Uﬂ/ﬁ \Zz;
(b) P, /N2 has continuous traces on each side of £ MU, , V2 that satisfy RHP-Z(b);

(c) P, /7 has the behavior near +1/ V2 within U_ /2 described by RHP-Z(c);
d) Py, s = (I + O(n_]/G)) MD™ uniformly on 0U_; , 5\ Zz.

In [15] (an alternative approach to asymptotics of multiple orthogonal polynomials
around cubic branch point was developed in [36]), a 3 x 3 matrix function was constructed
out of solutions to zy”’(z) — ty’(z) +y(z) = 0 that solves RHP-Y:

(a) Y is holomorphic in C\ (L+ UuL_u (foo,oo)), where Ly = {C :Re(() = :I:Im(C)}
and the positive direction on all the lines goes from the left half-plane to the right
half-plane;

(b) Y has continuous traces on (L+ UL_ U (—o0, oo)) \ {0} that satisfy

T, G ?) on Lin{C:Re(C) >0},
Y=Y
(0 o) on @)
and
T3 G ?) on LiN{C:Re(C) <0},
Y. =Y_
* 0 1

(c) Y(¢) =0O(loglcl) as ¢ = 0;
(d) Y has the following behavior near oo:

Y1) = AT (LY 0210 (0273 ) exp {—icz/ﬁaz _Tc‘/f*s}
uniformly for { € C\ (L4 UL_ U (—o0,00)) and T on bounded sets with

2
Yi(t) =5 <T+1>BZTC,

3\ 9 9
where
_e4mi/3 1 2mi/3
1 —1 —1 , Im(Q) >0,
2mi/3 4mi/3
A(GT) = \/Z?eTZ/GSTZ (Cgs/g’) 6_267(1/3/ 1 ! e4eni/3/
-1 =1 =1 |, ImQ<0o,
eAmi/3 1 p2mi/3

diag (€4m/3,1,627ﬂ/3>, Im(C) >0,
B :=
diag (62”1/3, 1, e4m/3> , Im(Q) <0,
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and
0 eAi/3 _ p2mi/3 1 _ p2mi/3
edm/3 0 1—e2m/3 | Im(¢) >0,
1— e47ti/3 e471i/3 _ eZ7ti/3 0
C:= 0 eAT/3 _ p2mi/3 GAmi/3 1
1—e2m/3 0 1 — em/3 Im(¢) < 0.
e2m/3 1 p2mi/3 _ p4mi/3 0

Below, we explain how to solve RHP-P, V32 using Y, a solution of RHP-P_, /2 can be
constructed analogously.
To carry RHP-V into a neighborhood of 1/ V2, define

(2 I\ BRI
“Z)"<3L/ﬁ("_ﬁ) md"> ‘

where the function H was introduced in (6.16) and we choose the principle branch of
the square root. Then ( is conformal in some neighborhood of 1/ V2, ¢(1/v/2) = 0, and
{(x) > 0, x > 1/V/2. Further, define

z 1 1/3 H-1/3 (x)
t(z)i=—¢ /3 (Z)J (x— ) ————dx
1/v/2 V2 V1—x2
It readily follows that t(z) is also conformal in some neighborhood of 1/ V2, 1(1/V/2) =0,
and that

(9-8) exp {—iCZB(Z)BZ - T(Z)C”3(Z)B} =D"(z)

by (6.16) and (6.18), and since ® has value 1 at the point of /3 whose natural projection is

1/v/2. Set
E.(z) := M(z)diag(1,07 ' (2), 05 ' (2)) A" (n*/2¢(2);n!/?7(2)).
It can easily be verified that
0 1
Ts (_] O) on (0,00),

T3 (0] (1)) on (—o0,0).

As the entries of M as well as the entries of A~ can have at most cubic root singularity
at 1/v/2, the matrix E, is holomorphic in u, I3 Then

A+ :A_

P.(z) == E.(2) Y (n3/2¢(2);n"/21(2))diag (1, p1(2), p2(2))

satisfies RHP-P, y /3(a—) (we always can adjust Ay so that ¢ maps them into {Re(z) =
+Im(z)}). It also follows from RHP-Y(d) and (9.8) that

P.(z) = M(z) (1+Fn(2) + O(n2/3)) D" (2)

as n — oo uniformly on o, I3 (recall that t(z) is conformal in U, NG and vanishes at

1/v/2, which implies that n'/21(z) remains bounded as n — oo and therefore RHP-Y(d)
is applicable), where

Fu(z) =120 13 (2)diag (1,07 ' (2), 03 ' (2)) Y1 (n'/21(2) ) diag (1, p1(2), p2(2)).

Since Y1 (n'/21(z)) ~n'/21(z) as z — 1/v2 or n — oo, we can write

-1/3 —~
(MFaM1)(2) = (Z(Z)i/ﬂ)(f/)s <§M+F;MI+O (|z—1/ﬁ|”3)>
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by (9.4) and (9.5), where F}, is a matrix of constants (more precisely, it is one matrix of
constants in {Im(z) > 0} and another one in {Im(z) < 0}, see the definition of Y';) with
entries whose moduli are uniformly bounded as n — oco. As the fraction in the above
equality is holomorphic around 1/+v/2 and has value —3/4 at 1/v/2, we get that

—~T
(MFaM)(2) = -M Fi M+ 0 (2= 1/v2]'?).
Since }z— 1/ﬁ| =n"12o0n auvﬁ, we have that
« XAV ~1/6 n
P.(z2)=(I-M F;M, +0O(n ) | M(z)D™(z)

uniformly on 0U, , 5. Thus, according to (9.6), RHP-P, 5 is solved by

—~T
P]/ﬁ(l) = (I + M+F;M+> P*(Z)

9.5 Final R-H Problem

The final Riemann-Hilbert problem is RHP-R from Section 8.5 with J7 defined in (9.3).
The same analysis shows that the jump matrices in RHP-R are of order O(n~1/¢) for

U_y \U\fl/\/i : Ul’//\//5: Uy O

’ \

FIGURE 16. The contour g without the circle {|z] = R} (solid lines) and the
borders of the domains Q; (dashed lines), see Figure 3(b).

N, > n — oo and therefore RHP-R is solvable for all n € IN, large enough and satisfies
(8.25) with n™! replaced by n-1/e,

9.6 Asymptotics of Hermite-Padé Approximants

It can readily be verified that formulae (8.26), (8.27), and (8.28) remain valid. Let R be
the solution of RHP-R. Then the solution of RHP-Z is given by (8.29), where e € { £
1,£1/v2,00}, for all n € N, large enough. The same argument as before shows that
(8.34) holds in this case as well.

Since the first column of P, is the same as the first column of MD™, (8.31) remains
valid when k = 0. Thus, the proof of the first parts of (4.4) and (4.5) is exactly the same.
The second parts of (4.4) and (4.5) are claimed to hold uniformly on each compact subset

of the respective domains (because I contains the point at infinity and Nél) is bounded).
Hence, given a compact subset, we always can enlarge R in RHP-P, so that this set is
contained in {|z| < R}. This way (8.31) is valid on this compact and the remaining part of
the proof is the same as in Case L.

10 RIEMANN-HILBERT ANALYSIS: CASE III
10.1  Global Lenses
Let Gq(u) and G;(v) be as in (8.1). Fix a domain, say O1, that contains [—1,—b] and whose

boundary Agq := 007 is smooth, lies entirely in Qp1, (except for the point where it crosses
(=b, b)), see Figure 3(c), while crossing the real line at the origin, see Figure 17. In Case
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IIIa, denote by Ay, a smooth Jordan curve lying within the right component of ;7 and
containing within its interior all the singularities of p,/py (recall that p;/p7 = const in
Case IlIb by Condition 8), see Figure 17. We also denote by O the intersection of the
exterior domains of Agy and Ag,. We orient Agy and Ag» counter-clockwise and set

0,

JAVES JACTS
——<—>()
A JAVEE

Aga

FIGURE 17. The lens Lz, the domains Oy (shaded region on the left) and O; (un-
shaded unbounded region), local lenses A14 and A,. The curve A, is present
only in Case IIla.

G2(—p2/p1)G1(p1/p2) in Oy,
(10.1) S:=G2((p2/p1)(0))Y < Gz(—p2/p1) in O,
I in C\(0;UO03).
Put Zg :=[—1,1UAp7 UAp;. Then, according to (8.2), S solves RHP-S:

(a) S is analytic in C\ £s and lim,_,« S(z)diag (z~2™,z",z"") = I;

(b) S has continuous traces on LY := s \ {£]1, £a, 0} that satisfy
J(p1,0) on A7\{0},
J(O, p3) on A3,
Gi(p1/p2) on Ao1,

G2(p2/p1) on Apy,

where pj is defined by (8.4) and A; in (2.8);
(c) S satisfies RHP-Y(c) (see Section 5) with [—1, 1] replaced by Zg.

S+:S_

If RHP-S is solvable, then so is RHP-Y, and the solutions are connected via (10.1).

10.2 Local Lenses

As usual, we introduce additional arcs A1 and systems of two arcs A4 as in Figure 17,
all oriented from left to right. We further denote by O; the open sets bounded by A; and
the arcs A4, 1 € {1,2}. Set

(10.2) Z:=SLT' in Oy,
where the matrices L; are defined by (8.6). Put Lz :==XgUA; UA;_UA; UA,_. Then
it can readily be checked that Z solves RHP-Z:

(a) Z is analytic in C\ £z and lim,_, Z(z)diag (z°™,z" ™,z ™) =1;
(b) Z has continuous traces on each side of £5 = Xz \ {1, £a, &b, 0} that satisfy

Z+=Z{ Ji on AP\{0}, ie{l1,2},
Jz on :Z\(A1UAZ),
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where J; are defined by (8.7) and
J(p1,0) on (—a,—bJU(b,a),
Gi(p1/p2) on Agy,
G2(p2/p1) on Agg,
L; on Ay, 1e€{1,2}
(c) Z satisfies RHP-S(c) with Zg replaced by 7.

(10.3) Jz =

As before, if RHP-Z is solvable, then so is RHP-S, and the solutions are connected via
(10.2).

10.3 Global Parametrix

Let N = C""MD™" be given by (8.9). Then det(N) = 1 and it is a solution of the following
Riemann-Hilbert problem (RHP-N):

(a) N is analytic in C\ (A7 UA;) and lim,_,o N(z)diag (z727, 2", 2") = I;
(b) N has continuous traces on each side of A7 that satisfy N, = N_J;, 1 € {1,2}.

10.4 Local Parametrices
Again, as in the previous cases, we need to solve RHP-P. for e € {1, +a,+b}. In fact,

these local problems are exactly the same as in Case 1. Thus, their solutions were con-
structed in Section 8.4.

10.5 Final R-H Problem

Once more, the final Riemann-Hilbert problem is RHP-R from Section 8.5 with Jz defined
in (10.3) and e € {£a,+b, £1}. Exactly the same analysis shows that the jump matrices in

FIGURE 18. The contour Xy (solid lines) and the relevant borders of the domains
Qjijx (dashed lines), see Figure 3(c,d).

RHP-R are of order O(1/n) for n € N, and therefore RHP-R is solvable for all n € IN,
large enough and satisfies (8.25).

10.6 Asymptotics of Hermite-Padé Approximants

As in Case I, one can verify that the formulae (8.26), (8.27), (8.28), (8.31), and (8.34) remain
valid in this case as well. So the proof of (4.4) and (4.5) proceeds exactly along the same
lines as in Case 1.
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