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ABSTRACT. Given non-collinear points a1, a2, a3, there is a unique compact ∆ ⊂ C that has minimal
logarithmic capacity among all continua joining a1, a2, and a3. For a complex-valued non-vanishing Dini-
continuous function h on∆, we define

fh (z) :=
1

πi

∫

∆

h(t )

t − z

d t

w+(t )
,

where w(z) :=
q

∏3
k=0(z − ak ) and w+ is the one-sided value according to some orientation of ∆. In this

work we present strong asymptotics of diagonal Padé approximants to fh and describe the behavior of the
spurious pole and the regions of locally uniform convergence from a generic perspective.

1. INTRODUCTION

A truncation of continued fractions in the field of Laurent series in one complex variable, Padé approx-
imants are among the oldest and simplest constructions in function theory [27]. These are rational func-
tions of type1 (m, n) that interpolate a function element at a given point with order m+n+1. They were
introduced for the exponential function by Hermite [26], who used them to prove the transcendency of
e , and later expounded more systematically by his student Padé [43]. Ever since their introduction, Padé
approximants have been an effective device in analytic number theory [26, 49, 50, 29], and over the last
decades they became an important tool in physical modeling and numerical analysis; the reader will find
an introduction to such topics, as well as further references, in the monograph [7], see also [16, 17, 46].

Still, convergence properties of Padé approximants are not fully understood as yet. Henceforth, for
simplicity, we only discuss approximants of type (n, n) (the so-called diagonal approximants) which are
most natural since they treat poles and zeros on equal footing. For restricted classes of functions, such
approximants were proven to converge, locally uniformly in the domain of analyticity, as n goes large.
These classes include Markov functions and rational perturbation thereof [37, 23, 47, 12], Cauchy trans-
forms of continuous non-vanishing functions on a segment [11, 42, 36] (in these examples interpolation
takes place at infinity), and certain entire functions such as Polya frequencies or functions with smooth
and fast decaying Taylor coefficients [5, 33, 34] (interpolation being now at the origin). However, such
favorable cases do not reflect the general situation which is that Padé approximants often fail to converge
locally uniformly, due to the occurrence of “spurious” poles that may wander about the domain of an-
alyticity. The so-called Padé conjecture, actually raised by Baker, Gammel and Wills [6], laid hope for
the next best thing namely convergence of a subsequence in the largest disk of holomorphy, but this was
eventually settled in the negative by D. Lubinsky [35]. Shortly after, a weaker form of the conjecture due
to H. Stahl [57], dealing with hyperelliptic functions, was disproved as well by V. Buslaev [15].

Nevertheless, spurious poles are no obstacle to some weaker type of convergence. Indeed, convergence
in (logarithmic) capacity of Padé approximants to functions with singular set of capacity zero (the proto-
type of which is an entire function) was established by J. Nuttall and Ch. Pommerenke [41, 45]. Later, in
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his pathbreaking work [52, 53, 54, 55, 58] dwelling on earlier study by J. Nuttall and S. Singh [42, 39], H.
Stahl proved an analogous result for (branches of) functions f having multi-valued meromorphic contin-
uation over the plane deprived of a set of zero capacity (the prototype of which is an algebraic function).
Here, there is an additional problem of identifying the convergence domain, since the approximants are
single-valued in nature but the approximated function is not. It turns out to be characterized, among all
domains on which f is meromorphic and single-valued, as one whose complement has minimal capacity.2

As n tends to infinity, this complement attracts almost all the poles of the Padé approximant of order n
(that is, all but at most o(n) of them). However, the actual limit set of the poles can be significantly larger,
possibly the whole complex plane, which is the reason why uniform convergence may fail.

When the singular set of f consists of finitely many branchpoints, the complement ∆ of the con-
vergence domain is a (generally branched) system of analytic cuts without loop, whose loose ends are
branchpoints of f , which is called an S-contour. Here the prefix “S” stands for “symmetric”, meaning
that the equilibrium potential of ∆ has equal normal derivative from each side at every smooth point.
Actually, this symmetry property expresses that the first order variation of the capacity is zero under
small distortions of the contour.

Stahl’s work dwells on the classical and fruitful connection between Padé approximants and orthogo-
nal polynomials: if f can be expressed as the Cauchy integral of a compactly supported (possibly com-
plex) measure ν, then the denominator of the Padé approximant of type (n, n) to f at infinity is orthog-
onal to all polynomials of degree at most n − 1 for the non-Hermitian3 scalar product defined by ν in
L2(|ν |). In the case of Markov functions, ν is a positive measure supported on a real segment (a segment is
the simplest example of an S-contour), so the orthogonality is in fact Hermitian and the limiting behavior
of the denominator can be addressed using classical asymptotics of orthogonal polynomials [59]. In this
connection, the work [54] provides one with a non-Hermitian generalization to arbitrary S-contours
of that part of the theory of orthogonal polynomials on a segment dealing with weak (i.e., n-th root)
asymptotics.4

To determine subregions where uniform convergence of Padé approximants takes place, if any, one
needs to analyze the behavior of all the poles when n goes large and not just o(n) of them. For functions
with finitely many branchpoints, in light of the previous discussion, it is akin to carrying over to a
non-Hermitian context, over general S-contours, the Szegő theory of strong asymptotics for orthogonal
polynomials.

On a segment K , strong asymptotics for non-Hermitian orthogonal polynomials qn with respect to
an absolutely continuous complex measure of the form hdωK , with ωK the equilibrium measure of K ,
was obtained in [11, 42, 39, 41] via the study of certain singular integral equations (see [1, 3, 9, 10] for
generalizations to varying weights over analytic arcs). When the density h is smooth and does not vanish,
the asymptotics is similar to classical one: up to normalization, qn is equivalent for large n toΦn/S, locally
uniformly outside of K , where Φ conformally maps the complement of K to the complement of the unit
disk and S is an auxiliary function, the Szegő function of h, which solves a Riemann-Hilbert problem
across K and has no zeros. In particular K attracts all zeros of qn asymptotically, which is equivalent to
saying that there are no spurious poles in Padé approximation to the Cauchy transform of hdωK .

When h does have zeros (and even in the Hermitian case if it has non-convex support), spurious poles
appear whose number can sometimes be estimated from the nature of the zeroing and the smoothness of
arg h [42, 51, 56, 8]. But it is S.P. Suetin, for analytic non-vanishing densities on an S-contour comprised
of finitely many disjoint arcs (in particular on a finite union of real intervals), who converted Nuttall’s

2This characterization is up to a set of zero capacity only, but the union of all such domains is again a convergence domain, maximal
with respect to set-theoretic-inclusion, that we call the convergence domain in capacity of Padé approximants to f .
3This means there is no conjugation involved, i.e. the scalar product is 〈g , h〉 :=

∫

g hd ν.
4Note that f can be written as the Cauchy integral of the difference between its values from each side of the S-contour, at least if
the branchpoint have order >−1; if not, special treatment is needed at the endpoints, see [54].
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singular equation approach to non-Hermitian orthogonality [41] into an affine Riemann-Hilbert prob-
lem on a hyperelliptic Riemann surface and who linked the occurrence of spurious poles to the outcome
of a Jacobi inversion process [60]. In the case of two arcs the Riemann surface is elliptic (i.e., it has genus
1), and there is at most one spurious pole whose recurrent behavior can be explained by the rational inde-
pendence of the equilibrium weights of the arcs, much for the same reason why a line with irrational slope
embedded in the unit torus fills a dense subset of the latter [61] (see [2, 4] for a generalization). These
results stress a parallel between non-Hermitian orthogonality and the theory of Hermitian orthogonal
polynomials on a system of curves initiated by H. Widom [63, 22, 44].

Now, Suetin’s work tells us about spurious poles of functions with four branchpoints of order 2 in
special position, namely the associated S-contour should consist of two disjoint arcs. In the present paper,
drawing inspiration from [61], we deal with the case of three branchpoints in arbitrary (non-collinear)
position. The corresponding S-contour is a threefold, and thus we consider orthogonality on a non-
smooth (in fact branched) contour. For a special class of Jacobi polynomials, such a setting was considered
by Nuttall [40], using a different method, and just recently by Martínez Finkelshtein, Rakhmanov, and
Suetin in [18]. Here, using classical properties of singular integrals, we handle at little extra cost Dini-
continuous non-vanishing densities (that may not be analytic). Moreover, we put our results in generic
perspective with respect to the location of the branchpoints employing differential geometric tools and
properties of quadratic differentials.

We first identify a convenient Riemann surface R and a suitable curve L ⊂R over which we can lift
non-Hermitian orthogonality on the threefold into a Riemann-Hilbert problem. This step is somewhat
more involved than in [60] but the surface we construct is still elliptic.

Next, to analyze the Riemann-Hilbert problem thus obtained in each degree n, we first solve it explic-
itly when the density is the reciprocal of a polynomial, in terms of (the two branches of) some auxiliary
function Sn . Then, to handle an arbitrary Dini-continuous non-vanishing density, we approximate it by
a sequence of reciprocal of polynomials and regard this case as a perturbation of the previous one, using
some singular integral theory.

The function Sn is holomorphic in R\L and plays here the role of the product Φn/S which is the main
term in the asymptotics of qn in the segment case. It has at most one finite zero, given by the solution
of a Jacobi inversion problem (which depends on n). When this zero belongs to the first sheet of the
covering, it generates a spurious pole nearby, whereas there are no spurious poles when it belongs to the
second sheet.

To describe the dynamics of this wandering zero, we proceed as in [61] by mapping the Jacobi inver-
sion problem to an equation on the Jacobian variety of R (which is a torus). There, the image of the zero
evolves according to a discrete linear dynamical system whose coefficients depend on the equilibrium
weights of the arcs of the threefold. The spurious pole recurs in a dense manner if these equilibrium
weights are rationally independent, and eventually disappears or clusters to a union of disjoint arcs (resp.
points) if they are rationally dependent but one of them is irrational (resp. if they are all rational). We
establish that the recurrent case is generic in the measure-theoretic sense, and is one where the domain
of convergence of the sequence of Padé approximants is empty although some subsequence converges
locally uniformly in the complement of the threefold. Still, the clustering case densely occurs and is one
where the domain of convergence is nonempty.

The paper is organized as follows. In Section 2 we construct the surface R, we introduce our main
objects of study (sectionally holomorphic functions, Padé approximants), and we state our results. In Sec-
tion 3, we discuss Cauchy integrals and use them to construct Szegő functions on the threefold. Section 4
contains basic facts on Abelian differentials, which are used in Section 5 to devise certain sectionally mero-
morphic functions on R. These are instrumental in Section 6 where we construct Sn , derive formulae for
the product and ratio of its branches, and analyze the behavior of its wandering zero. At last, in Section 7,
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we solve our initial Riemann-Hilbert problem in terms of Sn and prove the announced asymptotics for
non-Hermitian orthogonal polynomials and Padé approximants to Cauchy integrals on the threefold.

The author’s motivation for writing the present paper has been twofold. On the one hand, we aimed
at carrying over to more general geometries and putting in generic perspective the mechanism behind
the dynamics of spurious poles, first unveiled by Suetin, which offers beautiful connections with classical
function theory on Riemann surfaces. On the other hand, we wanted to illustrate that Szegő’s theory of
orthogonal polynomials can be generalized to both non-Hermitian and non-smooth context, and does
not owe that much to positivity.

2. MAIN RESULTS

2.1. Chebotarëv Continua. Let a1, a2, and a3 be three non-collinear points in the complex plane C.
There exists a unique connected compact∆=∆(a1,a2,a3), called Chebotarëv continuum [24, 31, 32, 30],
containing these points and having minimal logarithmic capacity [48] among all continua connecting a1,
a2, and a3. It consists of three analytic arcs ∆k , k ∈ {1,2,3}, emanating from a common endpoint a0,
called the Chebotarëv center, and ending at each of the given points ak , respectively. It is also known that
the tangents at a0 of two adjacent arcs form an angle of magnitude 2π/3. In what follows, we assume that
the arcs∆k and the corresponding points ak , are ordered clockwise with respect to a0 (see Figure 1). The
interiors ∆◦k := ∆k \ {a0,ak} of the arcs ∆k can be described (see e.g. [30, Thm. 1.1]) as the (negative)
critical trajectories of the quadratic differential

(2.1)
1

π

z − a0
∏3

k=1(z − ak )
(d z)2.

In other words, for any smooth parametrization zk (t ), t ∈ [0,1], of∆k , it holds that

(2.2)
1

π

zk (t )− a0
∏3

k=1(zk (t )− ak )
(z ′k (t ))

2 < 0 for all t ∈ (0,1).

In what follows, we denote by D the complement of ∆ in the extended complex plane C and orient
each arc∆k from a0 to ak . According to this orientation we distinguish the left (+) and right (−) sides of
each∆◦k and therefore of∆◦ := ∪3

k=1
∆◦k =∆ \ {a0,a1,a2,a3}.

a3

a0 a1

a2

+−

+
−

+ −

2π/3

FIGURE 1. Contour ∆ consists of the arcs ∆k which are oriented from a0 to ak and are num-
bered clockwise. The left and right sides of the arcs∆k are labeled by signs+ and−, respectively.

On some occasions, it will be more useful to consider the boundary of D as a limit of simple Jordan
curves encompassing ∆ and whose exterior domains exhaust D . Thus, we define ∂ D to be the “curve”
consisting of two copies of each arc ∆◦k , the left and right sides, three copies of a0, and a single copy of
each ak . We assume ∂ D to be oriented clockwise, that is, D lies to the left of ∂ D when the latter is
traversed in the positive direction.
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The following function plays a prominent role throughout this work. We set

(2.3) w(z) :=

√

√

√

√

3
∏

k=0

(z − ak ),
w(z)

z2
→ 1 as z→∞,

which is a holomorphic function in D \ {∞}. It is easy to see that w has continuous trace on ∂ D and
it holds that w+ = −w−, where w+ and w− are the traces of w from the left and right, respectively, on
each∆k .

2.2. An Elliptic Riemann Surface. Let R be the Riemann surface defined by w. The genus of the
Riemann surface of an algebraic function is equal to the number of branch points divided by two, plus
one, minus the order of branching. Thus, R has genus 1, that is, R is an elliptic Riemann surface. We
represent R as two-sheeted ramified cover ofC constructed in the following manner. Two copies ofC are
cut along each arc ∆◦k comprising ∆. These copies are joint at each point ak and along the cuts in such a
manner that the right (left) side of each∆◦k of the first copy, say R(1), is joined with the left (right) side of
the respective∆◦k of the second copy, R(2), Figure 3. Thus, to each arc∆k in C there corresponds a cycle
Lk on R.

We denote by L the union L1 ∪ L2 ∪ L3 and by π the canonical projection π : R→ C. In particular,
it holds that π(Lk ) = ∆k . Each point in C has two preimages on R under π except for the points ak ,
k ∈ {0,1,2,3}, which have only one preimage. For each z ∈ D we set z (k) := π−1(z)∩R(k), k ∈ {1,2},
and write z for a generic point on R such that π(z) = z. We call two points conjugate if they have the
same canonical projection and denote the conjugation operation by the superscript ∗. Furthermore, we
put D (k) := π−1(D)∩R(k). We orient each Lk in such a manner that D (1) remains on the left when Lk is
traversed in the positive direction and these orientations induce an orientation on L, Figure 2.

D(1)

D(2)

L−
2 L+

2

L+
1

L−
1

L+
3

L−
3

a3

a3

a2 a2
a1

a0

a0a0

a0

FIGURE 2. Elliptic Riemann surface R has genus 1 and therefore is homeomorphic to a torus.
We represent R as a torus cut along curves L2 and L3. In this case domains D (1) and D (2) can be
represented as the upper and lower triangles, respectively.

We identify D (1) with D and L+ with ∂ D . This means that we consider each function defined on D
as a function defined on D (1). In particular, we set

(2.4) w(z) =
�

w(z), z ∈D (1),
−w(z), z ∈D (2).

Clearly, w extends continuously to each side of L and the traces of w on L+ and L− coincide. Thus, w is
holomorphic across L by the principle of analytic continuation. That is, w is in fact a rational function
over R (a holomorphic map from R into C).
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2.3. Sectionally Meromorphic Functions. A holomorphic (resp. meromorphic) function on R \ L
is called sectionally holomorphic (resp. meromorphic). In this section we discuss some properties of
sectionally holomorphic functions on R that we use further below.

Let rh be a meromorphic function in R \ L with continuous traces on L that satisfy

(2.5) r−
h
= r+

h
· (h ◦π),

where h is a continuous function on ∆ \ {a0} which extends continuously to each ∆k . The function rh
gives rise to two meromorphic functions in D , namely,

(2.6) rh (z) := rh (z
(1)) and r ∗h (z) := rh (z

(2)), z ∈D ,

where we abuse notation in that we use rh to stand for both a function on R and its restriction to D (as
mentioned before, we identify D with D (1)). We call rh and r ∗h the conjugate functions derived from rh .

D(1)

D(2)

L−

L+

∆− ∆+

FIGURE 3. Domains D (1) and D (2) are represented as upper and lower layers, respectively (two
thick horizontal lines each). Each pair of disks joint by a dotted line represents the same point
on ∆ as approached from the left (∆−) and from the right (∆+). Each pair of disk joint by a
punctured line represents the same point on L as approached from the left (L−) and from the
right (L+). The left and right sides are chosen according to the orientation of each contour in
question.

Since the domains D (k) are “glued” to each other crosswise across ∆ (see Figure 3), boundary value
problem (2.5) gives rise to the following relation between the traces of rh and r ∗h on∆:

(2.7) (r ∗h )
± = r∓

h
h.

Relations (2.7) have two useful consequences. Firstly, if h is holomorphic in some neighborhood of ∆
then so is r ∗h + h rh . Indeed, we only need to verify that this function has no jump on ∆. The latter
follows from (2.7) and the computation:

(2.8) (r ∗h + h rh )
± = (r ∗h )

±+ h r±
h
= h r∓

h
+(r ∗h )

∓ = (r ∗h + h rh )
∓.

Secondly, the product rh r ∗h is a rational function over C as soon as h is continuous. Indeed, as rh r ∗h
is clearly meromorphic in D , we need only check the behavior across ∆. If h vanishes on a subset of
positive linear measure of ∆, then r ∗h ≡ 0 by (2.7) and Privalov’s theorem. Otherwise (2.7) implies that
(rh r ∗h )

+ = (rh r ∗h )
− a.e. on∆◦, and since rh r ∗h is bounded we get by a standard continuation principle [21,

Ch. II, Ex. 12]. that it extends holomorphically across each∆◦k . Finally, because it has bounded behavior
near each ak , the latter are removable singularities, as desired.

When rh as above is not constant, we define its principal divisor as

(2.9) (rh ) :=
∑

l

ml zl −
∑

j

k j w j ,
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meaning that rh has a pole (resp. zero) of multiplicity k j (resp. ml ) at each w j ∈ D (1) ∪ D (2) (resp.
zl ∈ D (1) ∪D (2)), and that rh r ∗h has a pole (resp. zero) of multiplicity k j (resp. ml ) at each π(w j ) (resp.
π(zl )) if w j ∈ L (resp. zl ∈ L), while rh has finite non-zero value at any other point of R including its
two-sided boundary values on L. Then it is easy to see that

(2.10) (rh r ∗h )(z) = const.
∏

|π(zl )|<∞
(z −π(zl ))

ml
∏

|π(w j )|<∞
(z −π(w j ))

−k j .

In particular,
∑

l ml =
∑

j k j as the number of poles and the number of zeros for a rational function over

C are the same. Thus definition (2.9) generalizes to sectionally meromorphic functions on R meeting
(2.5) the well-known fact that non-constant rational functions on a compact Riemann surface have as
many zeros as poles, counting multiplicities. Note that w is such a rational function and that its principal
divisor is (w) =

∑3
k=0 ak − 2∞(1)− 2∞(2).

2.4. Szegő-type Functions. The function Sn , introduced in this section, will provide the main term of
the asymptotics of Padé approximants to functions of the form (2.20). Before stating our first proposition,
recall that a function h is called Dini-continuous on∆ if

∫

[0,diam(∆)]

ωh (τ)

τ
dτ <∞, ωh (τ) := max

|t1−t2|≤τ
|h(t1)− h(t2)|,

where diam(∆) :=maxt1,t2∈∆ |t1− t2|.
Proposition 1. Let h be a Dini-continuous non-vanishing function on∆. Then there exists zn ∈R such that
zn + (n − 1)∞(2) − n∞(1) is the principal divisor of a function Sn which is meromorphic in R \ L and has
continuous traces on L from both sides which satisfy

(2.11) S−n = S+n · (h ◦π).

Moreover, under the normalization Sn(z)z
−kn → 1 as z→∞(1), where kn = n− 1 if zn =∞(1) and kn = n

otherwise, Sn is the unique function meromorphic in R\L with principal divisor of the form w+(n−1)∞(2)−
n∞(1), w ∈ R, and continuous traces on L that satisfy (2.11). Furthermore, if zn =∞(1) then zn−1 =∞(2)
and Sn = Sn−1.

Observe that when h ≡ 1 the principle of analytic continuation implies that Sn is simply a rational
function over R having n poles at∞(1) and n− 1 zeros at∞(2). The point zn is then determined by the
geometry of R as one cannot prescribe all poles and zeros of rational functions over Riemann surfaces of
non-trivial genus (see Section 4.5).

Note also that, when h = 1/p, where p is an algebraic polynomial non-vanishing on∆, equation (2.8)
yields that Sn + pS∗n is a monic polynomial of degree kn if 2n > deg(p)+ 2.

Denote by ϕ the conformal map of D onto {|z |> 1} with ϕ(∞) =∞, ϕ′(∞)> 0. Then

(2.12) ϕ(z) =
z

cap(∆)
+ . . . ,

where cap(∆) is the logarithmic capacity of ∆, see [48] (often (2.12) serves as the definition of the loga-
rithmic capacity of a continuum). Denote also byω∆ the equilibrium (harmonic) measure on∆, see [48].
It is known5 thatω∆ has the form

(2.13) dω∆(t ) =
i(t − a0)d t

πw+(t )
, t ∈∆.

5 By (2.2) and the Cauchy formula, the right hand side of (2.13) is a probability measure on ∆, say µ. The differential along ∆◦
k

of
its logarithmic potential Uµ(z) :=−

∫

∆ log |z− t |dµ(t ) is Re{(
∫

∆ dµ(t )/(t − z))d z}=Re{(a0− z)d z/w±(z)}= 0, using (2.2) and
Cauchy’s formula again. Hence Uµ is constant on∆, which is characteristic of the equilibrium potential.
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In fact, ϕ has an integral representation involvingω∆, see (4.21) in Section 4.4. Set

(2.14) Gh := exp
�∫

log hdω∆

�

.

It is clear, sinceω∆(∆) = 1, that Gh is well-defined as long as a continuous branch of log h is used, which
is possible since h is continuous and does not vanish on ∆ and the latter is simply connected. Hereafter,
we put for simplicity zn =π(zn).

Proposition 2. In the setting of Proposition 1 we have that

(2.15)
(Sn S∗n)(z)

(cap(∆))2n−1
= ξnGh















(z − zn)/|ϕ(zn)|, zn ∈D (2) \ {∞(2)},

cap(∆), zn =∞(2),

(z − zn)|ϕ(zn)|, zn ∈ L∪D (1) \ {∞(1)},

where |ξn |= 1. Moreover, it holds that

(2.16)
S∗n(z)

Sn(z)
=

ξnGh

ϕ2n−1(z)
Υ(zn ; z)































z − zn

ϕ(z)|ϕ(zn)|
, zn ∈D (2) \ {∞(2)},

cap(∆)/ϕ(z), zn =∞(2),

ϕ(z)|ϕ(zn)|
z − zn

, zn ∈ L∪D (1) \ {∞(1)},

where Sn and S∗n are the conjugate functions derived from Sn and {Υ(a; ·)}a∈R is a normal family of non-
vanishing functions in D.

For N1 an arbitrary subsequence of the natural numbers and Z1 the derived set of {zn}n∈N1
, the se-

quence {S∗n/Sn}n∈N1
converges to zero geometrically fast on closed subsets of D \{π(Z1∩D (1))} by (2.16)

(recall that |ϕ| > 1 in D). On the contrary, no convergence can take place on domains intersecting
π(Z1 ∩D (1)). Hence the convergence properties of {S∗n/Sn} depend on the geometry of Z= Z(h), the set
of the limit points of {zn} in R.

Our next proposition qualitatively describes this geometry. The classification according to the rational
independence of the numbersω∆(∆k ) is essentially due to Suetin [61]whose argument, originally devel-
oped to handle the case of two arcs rather than a threefold, applies here with little change. We complete
the picture with generic properties of this classification which are intuitively as expected, although their
proof is not so straightforward.

Proposition 3. In the setting of Proposition 1 it holds that Z=R when the numbers ω∆(∆k ), k ∈ {1,2,3},
are rationally independent; Z is the union of finitely many pairwise disjoint arcs whenω∆(∆k ) are rationally
dependent but at least one of them is irrational; Z is a finite set of points whenω∆(∆k ) are all rational. All the
points zn are mutually distinct in the first two cases and {zn}= Z in the third one. The set of triples (a1,a2,a3)
for which the numbers ω∆(∆k ) are rationally dependent form a dense subset of zero measure in C3. Triples
(a1,a2,a3) for which ω∆(∆k ) are rational are also dense.

We prove these propositions in Section 6 with all the preliminary work carried out in Sections 3, 4
and 5. Moreover, in these sections one can find integral representations for Sn and Υ(a; ·).

2.5. Padé Approximation. Let f be a function holomorphic and vanishing at infinity. Then f can be
represented as a power series

(2.17) f (z) =
∞
∑

k=1

fk

zk
,
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which converges outside of some disk centered at the origin. A diagonal Padé approximant of order n to
f is a rational function πn = pn/qn of type (n, n) such that

(2.18) qn(z) f (z)− pn(z) = O
�

1/zn+1
�

as z→∞

System (2.18) is always solvable since it consists of 2n + 1 homogeneous linear equations with 2n + 2
unknowns, whose coefficients are the moments fk in (2.17), no solution of which can be such that qn ≡ 0
(we may thus assume that qn is monic). A solution needs not be unique, but each pair ( p̃n , q̃n) meeting
(2.18) yields the same rational function πn = p̃n/q̃n . In particular, each solution of (2.18) is of the form
(l pn , l qn), where (pn , qn) is the unique solution of minimal degree. That is, a Padé approximant is the
unique rational function πn of type (n, n) satisfying

(2.19) f (z)−πn(z) = O
�

1/zn+1+σ(πn )
�

as z→∞.

where σ(πn) is the number of finite poles of πn , counting multiplicity (see[43, 7]). Hereafter, when
writing πn = pn/qn , we always mean that (pn , qn) is the solution of minimal degree. In the generic
case where deg qn = n, observe that the order of contact of πn with f at infinity is 2n + 1, which is
generically maximal possible as a rational function of type (n, n) has 2n+ 1 free parameters. Notice here
that deg(pn) < deg(qn) as f vanishes at infinity. Equivalently, one could also regard πn as a continued
fraction of order n constructed from the series representation (2.17) [37], but we shall not dwell on this
connection.

Let now h be a complex-valued integrable function given on∆. We define the Cauchy integral of h as

(2.20) fh (z) :=
1

πi

∫

∆

h(t )

t − z

d t

w+(t )
, z ∈D ,

where integration is taking place according to the orientation of each∆k , i.e., from a0 to ak . Clearly, fh is
a holomorphic function in D that vanishes at infinity and therefore can be represented as in (2.17). Thus,
we can construct the sequence of Padé approximants to fh whose asymptotic behavior is described by the
following two theorems.

In the first theorem we assume that h ≡ 1/p, where p is a polynomial non-vanishing on ∆. This is
not only a key step in our approach to the general case, but it is also of independent interest since this
assumption assumption allows us to obtain non-asymptotic formula for the approximation error.

Theorem 4. Let {πn}, πn = pn/qn , be the sequence of diagonal Padé approximants to f1/p , where p is a
polynomial non-vanishing on∆. Then

(2.21)











�

f1/p −πn

�

=
2

w

S∗n
Sn + pS∗n

,

qn = Sn + pS∗n ,

for all 2n > deg(p)+2, where Sn and S∗n are the conjugate functions derived from Sn granted by Proposition 1.

As we show in Section 7.1, the polynomial qn is orthogonal (in the non-Hermitian sense) to all alge-
braic polynomials of degree at most n− 1 with respect to the weight h/w+ on∆. Thus, polynomials qn
appearing in Theorem 4 stand analogous to the well-known Bernstein-Szegő polynomials on [−1,1] [62,
Sec. 2.6]. Moreover, since 1/w vanishes at infinity, Cauchy theorem yields that

1

w(z)
=

1

2πi

∫

Γ

1

w(t )

d t

z − t

for z in the exterior of Γ, where Γ is any positively oriented Jordan curve encompassing∆. By deforming
Γ onto ∂ D , one can easily verify that 1/w = f1 and therefore polynomials qn for the case h ≡ 1 can be
viewed as an analog of the classical Chebyshëv polynomials.
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The second line in (2.21) yields that qn = Sn(1+ pS∗n/Sn), and checking the behavior at infinity using
Proposition 1 gives us deg(qn) = n unless zn = ∞(1) in which case deg(qn) = n − 1, qn = qn−1, and
zn−1 =∞(2). Hence, when analyzing the behavior of qnk

along a subsequence {nk} ⊂N, we may assume
that znk

6=∞(1) for all k upon replacing nk by nk − 1 if necessary.
Turning now to more general densities, let h be a Dini-continuous non-vanishing function. Denote by

(2.22) ωn =ωn(h) :=min
p
‖1/h − p‖∆,

where the minimum is taken over all polynomials p of degree at most n. Clearly ωn → 0 as n→∞ by
Mergelyan’s theorem.

Theorem 5. Let h be a complex-valued Dini-continuous non-vanishing function on ∆ and {πn}, πn =
pn/qn , be the sequence of Padé approximants to fh . Then

(2.23)
�

fh −πn
�

=
2

w

S∗n
Sn

1+ E∗n
1+ En +O (|ϕ|−n)

,

where O (|ϕ|−n) holds uniformly in D and En is a sectionally meromorphic function on R \ L with at most
one pole which is necessarily zn , and such that

(2.24)

�
∫

∂ D

�

|(En ln)(t )|
2+ |(E∗n ln)(t )|

2
� |d t |
|w(t )|

�1/2

≤ const.ωn

with ln(t )≡ 1 when zn /∈O and ln(t ) = t − zn otherwise, where O is some fixed but arbitrary neighborhood
of L in R (the constant in (2.24) depends on O but is independent of n). Moreover, if zn 6=∞(1) and n is large
enough then deg(qn) = n.

Formulae (2.23) and (2.24) have the following ramifications for the uniform convergence of Padé ap-
proximants.

Corollary 6. Assumptions being as in Theorem 5, let N1 ⊂N be a subsequence such that {zn}n∈N1
converges

to z ∈R.
• If z ∈D (2)∪L, then the Padé approximants πn converge to f geometrically fast on compact subsets of

D as N1 3 n→∞.
• If z ∈ D (1), then the Padé approximants πn converge to f geometrically fast on compact subsets of

D \{z} as N1 3 n→∞. Moreover, to each neighborhood O of∆ in C, there is nO ∈N1 such that πn
has exactly one pole in D \O for n ≥ nO and this pole converges to z as N1 3 n→∞.

Theorems 4, 5, and Corollary 6 are proven in Section 7. The following is an immediate consequence
of Corollary 6.

Corollary 7. Under conditions of Theorem 5, let {πn}n∈N′⊂N be a sequence of diagonal Padé approximants
to f and Z the set of accumulation points of {zn}n∈N′ on R. Then {πn}n∈N′ converges locally uniformly to f
on D \π(Z∩D (1)) and on no larger subdomain of D.

Our last theorem puts the preceding results in a generic perspective.

Theorem 8. There is dense subset of zero measure E ⊂C3 such that, for f as in (2.20) with∆ the Chebotarëv
continuum of (a1,a2,a3) ∈C3 and h a Dini-continuous non-vanishing function on∆, the following holds:

• if (a1,a2,a3) ∈ C3 \ E, then the sequence of Padé approximants to f converges on no subdomain of
C \∆ but some subsequence converges locally uniformly to f on C \∆;
• if (a1,a2,a3) ∈ E, then the sequence of Padé approximants to f converges locally uniformly onC\(∆∪

A), where A is either a finite (possibly empty) union of curves or finitely many points. In particular the
domain of convergence is non-void.
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3. CAUCHY INTEGRALS

For an analytic Jordan arc F with endpoints e1 and e2, oriented from e1 to e2, define

(3.1) wF (z) :=
Æ

(z − e1)(z − e2),
wF (z)

z
→ 1 as z→∞,

to be a holomorphic function outside of F with a simple pole at infinity. Then wF has continuous traces
w+F and w−F on the left and right sides of F , respectively (sides are determined by the orientation in the
usual manner). For an integrable function φ on F , set

(3.2) CF (φ; z) :=
∫

F

φ(t )

t − z

d t

2πi
and RF (φ; z) := wF (z)CF

 

φ

w+F
; z

!

,

z ∈C \ F . We also put

(3.3) C∆(z) :=
∫

∆

θ(t )

t − z

d t

2πi
and R∆(θ; z) := w(z)C∆

�

θ

w+
; z
�

,

z ∈D , where θ is an integrable function on∆. The following lemma will be needed later on.

Lemma 1. Let θ be a Dini-continuous function on∆ and J be either C±∆ or R±∆. Then

(3.4)
∫

∆

|J (t )|2

|w+(t )|
|d t | ≤ const.

∫

∆

|θ(t )|2

|w+(t )|
|d t |,

Proof. It was shown in [9, Sec. 3.2] that for a Dini-continuous function φ on∆k , the functions R∆k
(φ; ·)

and C∆k
(φ; ·) have unrestricted boundary values on both sides of∆k and the traces R±∆(φ; ·) and C±∆k

(φ; ·)
are continuous. It is known [14, Thm. 2.2] that |w∆k

|−1/2 is an A2-weight on ∆k . Hence, by [14, Thm.
4.15] it follows that

(3.5)
∫

∆k

�

�

�C±∆k
(φ; t )

�

�

�

2

|w+∆k
(t )|

|d t | ≤ const.
∫

∆k

|φ(t )|2

|w+∆k
(t )|
|d t |,

where const. is a constant independent of φ. By the very definition, see [14, eq. (2.1)], |w∆k
|−1/2 is an

A2-weight if and only if |w∆k
|1/2 is also an A2-weight. Thus, applying [14, Thm. 4.15] as in (3.5) only

with |w∆k
|−1/2 replaced by |w∆k

|1/2 and φ replaced by φ/w+∆k
, we get that

(3.6)
∫

∆k

�

�

�R±∆k
(φ; t )

�

�

�

2

|w+∆k
(t )|

|d t | ≤ const.
∫

∆k

|φ(t )|2

|w+∆k
(t )|
|d t |.

Moreover, [14, Prop. 2.1] yields that not only |w∆k
|±1/2 but also |w|±1/2 is an A2-weight on each ∆k .

Thus, (3.4) is obtained by applying (3.5) and (3.6) on each∆k withφ= θ|∆k
and then taking the sum over

k. �

The main purpose of this section is to study the so-called Szegő function of a given function on ∆.
Namely, let h be a Dini-continuous non-vanishing function on∆. For a fixed κ ∈ {1,2,3} and an arbitrary
continuous branch of log h, we define the constant Gh,κ as

(3.7) Gh,κ := exp

(

−m1+
β1
κ

βκ
m0

)

, m j :=
1

πi

∫

∆

t j log h(t )d t

w+(t )
,
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and the Szegő function of h as

(3.8) Sh,κ(z) := exp

¨

w(z)
�

C∆

�

log h

w+
; z
�

−
m0

βκ
C∆κ

� 1

w+
; z
�
�

−
logGh,κ

2

«

,

z ∈D , where under logGh,κ we understand −m1+m0(β
1
κ
/βκ),

(3.9) βk :=
1

πi

∫

∆k

d t

w+(t )
and β1

k :=
1

πi

∫

∆k

t d t

w+(t )
, k ∈ {1,2,3}.

As 1/w(z) = 1/z2+ . . . , it holds by the Cauchy integral formula that

β1+β2+β3 =
1

2πi

∫

∂ D

d t

w(t )
= 0 and β1

1+β
1
2+β

1
3 =

1

2πi

∫

∂ D

t d t

w(t )
=−1.

Proposition 9. For h and κ as above, the constant Gh,κ and the function Sh,κ do not depend on the contin-
uous branch of log h used to define them through (3.7) and (3.8). Moreover Sh,κ is holomorphic in D, it has
continuous boundary values on ∂ D, and Sh,κ(∞) = 1.

(3.10) h =







eGh,κS+
h,κ

S−
h,κ

on ∆◦
κ
,

Gh,κS+
h,κ

S−
h,κ

, on ∆◦ \∆κ,
eGh,κ :=Gh,κ exp

¨

m0

βκ

«

.

Proof. As we mentioned in Lemma 1, it follows from [9, Sec. 3.2] that for any Dini-continuous function
φ on an analytic arc F , RF (φ; ·) has unrestricted boundary values on both sides of F , the traces R±F (φ; ·)
are continuous, R+F (φ; ek ) = R−F (φ; ek ), k ∈ {1,2}, and furthermore

(3.11) R+F (φ; t )+R−F (φ; t ) =φ(t ), t ∈ F ,

where (3.11) is a consequence of Sokhotski-Plemelj formulae and the relation w+F =−w−F .
Let now θ be a Dini-continuous function on ∆. Observe that w = w∆k

wFk
according to (3.1), where

Fk := (∆ \∆k )∪{a0}. Then

R∆(θ; z) =
3
∑

k=1

wFk
(z)R∆k

 

θ

wFk

; z

!

according to (3.2). This immediately implies that R∆(θ; ·) has continuous trace on ∂ D with

(3.12) R+∆(θ; t )+R−∆(θ; t ) = θ(t ), t ∈∆,

by (3.11). Moreover, applying the Cauchy integral formula to 1/w on ∂ D , we get

(3.13) R∆(const.; z) =
const.

2
for any constant. To describe the behaviour of R∆(θ; ·) at infinity, define the moments

(3.14) mk = mk (θ) :=
1

πi

∫

∆

t kθ(t )

w+(t )
d t , k ∈ {0,1}.

Using the fact that 1/w = 1/z2+O(1/z3) near infinity, one can readily verify that

(3.15) m0(θ+ const.) = m0(θ) and m1(θ+ const.) = m1(θ)+ const.

for any constant. By developing 1/(t − z) at infinity in powers of z, we get that

(3.16) R∆(θ; z) = w(z)
�

−
m0

2z
−

m1

2z2
+O

� 1

z3

��
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there. Analogously, one can check that

(3.17) wFκ
(z)R∆κ

 

1

wFκ

; z

!

= w(z)

 

−
βκ
2z
−
β1
κ

2z2
+O

� 1

z3

�

!

near infinity. Thus,

Rκ(z) := R∆(θ; z)−
m0

βκ
wFκ
(z)R∆κ

 

1

wFκ

; z

!

= w(z)

 

1

2z2

 

m0

β1
κ

βκ
−m1

!

+O
� 1

z3

�

!

=
1

2

 

m0

β1
κ

βκ
−m1

!

+O
� 1

z

�

(3.18)

near infinity by (3.16) and (3.17). Moreover, it follows from (3.11) and (3.12) that

(3.19) R+
κ
+R−

κ
= θ−

¨

m0/βκ, on ∆◦
κ
,

0, on ∆◦ \∆κ.

Finally, let h be a Dini-continuous non-vanishing function on ∆. As explained in [9, Sec. 3.3], any
continuous branch of log h is itself Dini-continuous. Fix such a branch and denote it by θ. Observe
that the difference between any two continuous determinations of log h is an integer multiple of 2πi and
therefore Gh,κ is well-defined by (3.15). Moreover, the Szegő function of h defined in (3.8) is nothing else
but

(3.20) exp

(

Rκ(z)−
1

2

 

m0

β1
κ

βκ
−m1

!)

, z ∈D .

As evident from (3.13) and (3.15), Sh,κ does not depend on the choice of the branch of log h as long as
the branch is continuous and used in (3.3) and (3.14) simultaneously. Clearly, (3.10) follows from (3.19)
and Sh,κ(∞) = 1 by (3.18). The continuity of Sh,κ on ∂ D is a consequence of continuity of Rκ on
∂ D . Obviously, Sh,κ is holomorphic and non-vanishing in D as it is an exponential of a holomorphic
function. �

4. ABELIAN DIFFERENTIALS AND THEIR INTEGRALS

The following material is expository on Abelian differentials on an elliptic Riemann surface. We use
[13, 19] as primary sources, limiting ourselves to the case at hand (i.e. R).

For each k ∈ {1,2,3} set eRk :=R\ (Lk ∪Lk+1) and bRk :=R\Lk , where indices are computed modulo
3. It is easy to see (cf. Figure 2), that each domain eRk is simply connected.

4.1. Abelian Differentials of the First Kind. A differential dΩ is called an Abelian differential of the first
kind on R if the integral

∫ z dΩ defines a holomorphic multi-valued function on the whole surface. Since
the genus of R is 1, there exists exactly one Abelian differential of the first kind up to a multiplicative
constant. This differential is given by

dΩ(z) :=
d z

w(z)
as the principal divisor of dΩ should be integral and since it is known that the principal divisor of the
differential d z is given by

∑3
k=0 ak−2∞(1)−2∞(2). By dΩ1 we denote the Abelian differential of the first

kind normalized to have period 1 on L2 (i.e., we choose L2 to be the so-called a-cycle for dΩ). That is,

(4.1) dΩ1(z) :=
1

2πiβ2

d z

w(z)
, βk =

1

πi

∫

∆k

d t

w+(t )
=

1

2πi

∮

Lk

dΩ,
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k ∈ {1,2,3}. Moreover, it is known that

(4.2) Im

�

β3

β2

�

> 0,
β3

β2
=
∮

L3

dΩ1,

because (L2, L3) is positively oriented (i.e. we take L3 to be the so-called b-cycle for dΩ). The numbers
1 and β3/β2 are called the periods of dΩ1. It is known that for any Jordan curve Γ on R the integral of
dΩ1 along Γ is congruent to 0 (≡ 0) modulo periods of dΩ1. That is,

∮

Γ
dΩ1 = l + j

β3

β2
, l , j ∈Z.

It will be convenient for us to define6

(4.3) Ω1(z) :=
∫ z

a1

dΩ1, z ∈ eR2,

where the path of integration except perhaps for the endpoint lies entirely in eR2. Observe that Ω1 is a
well-defined holomorphic function in the simply connected domain eR2 since 1/w has a double zero at
infinity. Furthermore, Ω1 has continuous traces on both sides of L2 and L3 and the jump of Ω1 there can

D(1)

D(2)

L2

L3

a1

a0

a0a0

a0

t

z

FIGURE 4. Paths of integration of dΩ1 that start at a1 and end at z ∈ L2 (solid lines) and t ∈ L3
(dashed line).

be described by the relations

(4.4) Ω+1 −Ω
−
1 =

¨

−β3/β2, on L2,
1, on L3,

as can be seen from Figure 4 (as shown on the figure, the dashed path in D (2) can be deformed into a
concatenation of the dashed path in D (1) and the loop L2 traversed in the negative direction; the solid
path in D (2) can be deformed into a concatenation of the solid path in D (1) and the loop L3 traversed in
the positive direction).

6It is formally more appropriate but also more cumbersome to denote Ω1 by Ω1,3, where Ω1,k is defined as in (4.3) using the
differential of the first kind that has Lk−1 as the a-cycle, Lk as the b-cycle, and ak+1 as the initial bound for integration. This
comment applies to all the differentials below where we do not explicitly specify the dependence on the choice of cycles.



PADÉ APPROXIMANTS TO ELLIPTIC-TYPE FUNCTIONS 15

4.2. Abelian Differentials of the Third Kind. An arbitrary Abelian differential is a differential of the
form r dΩ, where r is a rational function over R. The principal divisor of r dΩ coincides with the
principal divisor of r . Thus, r dΩ has only poles as singularities and the residue of r dΩ at a pole a is
equal to 1

2πi

∮

Γa
r dΩ, where Γa is a Jordan curve on R that separates a from the rest of the poles of r dΩ

and is oriented so that a lies to left of Γa when the latter is traversed in the positive direction.
In what follows, we are primarily interested in the following rational function:

(4.5) r (a;z) :=
1

2

�

w(z)+w(a)

z − a
+ z − a+A

�

, A :=
1

2

3
∑

j=0

a j ,

a ∈R, |a| <∞. Since w(z) = z2−Az + · · · at infinity, it is an easy computation to verify by taking the
appropriate limits that r (a;∞(2)) =A− a and that r (∞(2);z)≡ z. That is, r (a; ·) is, in fact, defined for all
a ∈R \ {∞(1)} and is bounded near∞(2) for all a with finite canonical projection. Moreover,

(4.6) r (a;z)+ a−A⇒ 0 as a→∞(1)

in R \ {∞(1)}, where the sign⇒means “converges locally uniformly”. Analogously, we get that

(4.7) r (b;z)− r (a;z)⇒ 0 as b→ a

in R \ {a}. Summarizing, we have that

(4.8) r (a;z)dΩ(z), a ∈R \ {∞(1)},
defines a differential with two poles, ∞(1) and a. Let Γ∞(1) be a Jordan curve in D (1) that encompasses
∞(1) and separates it from a. Assuming that Γ∞(1) is oriented clockwise, we can compute the residue of
r (a;z)dΩ(z) at∞(1) as

(4.9)
1

2πi

∫

Γ∞(1)

r (a;z)dΩ(z) =
1

4πi

∫

π(Γ∞(1) )

d z

z − a
+

1

4πi

∫

π(Γ∞(1) )

zd z

w(z)
=−1,

where all the integrals are evaluated by the Cauchy integral formula for unbounded domains. Respec-
tively, the residue of r (a;z)dΩ(z) at a is equal to 1.

More generally, given two distinct points b1 and b2 on R, there is a differential dΩ(b1,b2;z) called
an Abelian differential of the third kind having only two simple poles, b1 and b2, with residues 1 and −1,
respectively. Such a differential is unique up to a differential of the first kind. Thus, for b1,b2 ∈ eR2,
there exists a unique differential of the third kind with period 0 on L2, that we denote by dΩ0(b1,b2;z)
for brevity. It is known for such a differential that the L3-period can be expressed through the Riemann
relation:

(4.10)
∮

L3

dΩ0(b1,b2;z) =−2πi
∫ b2

b1

dΩ1(z),

where the path of integration for the integral on right-hand side of (4.10) lies entirely in eR2. We shall also
use another relation between the normalized Abelian integrals of the third kind, namely,

(4.11)
∫ b2

b1

dΩ0(b3,b4;z) =
∫ b4

b3

dΩ0(b1,b2;z)

for bk ∈ bR2, k ∈ {1,2,3,4}, where the paths of integration again lie in eR2.
Assume now that at least one of b1,b2 belongs to L2 ∪ L3. Let L′k , k ∈ {2,3}, be two Jordan curves

on R intersecting each other and L1 once at the same point. Assume further that each L′k is homologous
to Lk and coincides with the latter except in a neighborhood of b j if b j ∈ Lk where they are disjoint.
In particular, the periods of dΩ remain the same on these new curves. For definiteness, we suppose that
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those of the points b1,b2 belonging to L2 ∪ L3 lie to the left of L′2 and L′3. Then (4.10) remains valid only
with L3 replaced by L′3, dΩ0(b1,b2; ·) normalized to have zero period on L′2, and the path of integration
for dΩ taken in R \ {L′2 ∪ L′3}. Clearly, (4.11) also holds only with the differentials of the third kind
normalized to have zero period on L′2 and the paths of integration taken to lie in R \ {L′2 ∪ L′3}.

4.3. Differentials dΩ0(a,∞(1); ·). In Section 5, we shall mainly work with differentials of the form
dΩ0(a,∞(1);z). It easily follows from (4.8) that

(4.12) dΩ0(a,∞(1);z) = (r (a;z)+ c(a))dΩ(z),

where the constant c(a) is chosen so that the period on L2 (or L′2) of the differential is equal to 0 and is
clearly a continuous function of a. Moreover, it readily follows from a computation analogous to (4.9)
that c(a) = a −A+O (1/a) for a in the vicinity of∞(1). That is, dΩ0(a,∞(1);z) degenerates into a zero
differential as a→∞(1) by (4.6).

It is useful to observe that a general Abelian differential of the third kind is given by

(4.13) dΩ0(b1,b2;z) = dΩ0(b1,∞(1);z)− dΩ0(b2,∞(1);z).
Clearly, (4.13) also provides a rational function representation for dΩ0(b1,b2;z) via (4.12).

For a ∈R \ (L2 ∪{a1,∞(1)}), set

(4.14) Ω0(a;z) :=
∫ z

a1

dΩ0(a,∞(1); t), z ∈ eR2,

where the path of integration, as usual, lies in eR2 (or R \ (L2 ∪L′3) when a ∈ L3). Then Ω0(a; ·) is analytic

and multi-valued (single-valued modulo 2πi ) on eR2\{a,∞(1)} (or R\(L2∪L′3∪{a,∞(1)}) with logarithmic
singularities at a and∞(1). Moreover, analyzing the boundary behavior of Ω0(a; ·) on L2 and L3 (or L′3) as

in (4.4), we see that Ω0(a; ·) is analytic and multi-valued (single-valued modulo 2πi ) in bR2 \ {a,∞(1)}, and
that on L2 it has the following jump:

(4.15) Ω+0 (a; ·)−Ω−0 (a; ·)≡−
∮

L3

dΩ0(a,∞(1); t) = 2πi
�

Ω1(∞
(1))−Ω1(a)

�

(mod 2πi),

where the second equality follows from (4.10) and (4.3).
For a=∞(1), we formally set

(4.16) Ω0(∞
(1); ·) :≡ 0⇔Ω0(t; ·) (mod 2πi) as t→∞(1),

where convergence holds locally uniformly in R \ {∞(1)} by (4.6). Observe that under this convention
(4.15) still remains valid.

For a= a1, we simply change the initial bound of integration to some b ∈ L1 \ {a1,a0}. Clearly, (4.15)
remains valid in this case as well.

For a ∈ L2, the construction of Ω0(a; ·) is as follows. Define Ω̃0(a; ·) as in (4.14) with L2 replaced by
any admissible L′2. This function is analytic and multi-valued in R\ (L′2∪{a,∞(1)}) and has a jump across
L′2 whose magnitude is described by (4.15). Observe that the magnitude of the jump does not depend on
the choice of L′2 and that for any z ∈ D (1) (z ∈ D (2)) the curve L′2 can be chosen not to separate z and
∞(1) (z and∞(2)). Hence, Ω̃0(a; ·) can be analytically continued to an analytic multi-valued function in
bR2 \ {a,∞(1)}, and we set Ω0(a; ·) to be this function. Notice that (4.15) is still at every point of L \ {a}.

One more important property of functions Ω0(a; ·) is that

(4.17) Ω0(t;z)−Ω0(a;z)⇒ 0 (mod 2πi) as t→ a

in R \ {a} for any a ∈R, which follows from (4.12) and (4.13) combined with (4.7).
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4.4. Green Differential. Another important way to normalize a differential of the third kind is to make
its periods to be purely imaginary. For instance, we shall be interested in the so-called Green differential
given by

dG(z) := (z − a0)dΩ(z) =
(z − a0)d z

w(z)
.

Computing as in (4.9), one can easily check that dG is a differential of the third kind having simple poles
at∞(1) and∞(2) with residues −1 and 1 respectively. Moreover, by (2.13),

(4.18)
∮

Lk

dG =−2πiω∆(∆k ) =:−ωk ,

where, as before,ω∆ is the equilibrium measure on∆. In particular, it follows from (3.9) that

(4.19) ω∆(∆k ) = a0βk −β
1
k .

Observe also that

(4.20) dΩ0(∞
(2),∞(1);z) = dG(z)+ω2dΩ1(z)

by uniqueness of a normalized Abelian differential of the third kind with prescribed poles.
Set

(4.21) ϕa1
(z) := exp

(

∫ z

a1

dG

)

, z ∈ eR2.

Then ϕa1
is a well-defined meromorphic function in eR2 (the integral is defined modulo 2πi ) with a simple

pole at∞(1), a simple zero at∞(2), otherwise non-vanishing, and with unimodular traces on L2 ∪ L3 that
satisfy

(4.22)
ϕ+a1

ϕ−a1

=
¨

exp{ω3}, on L2,
exp{−ω2}, on L3,

where we obtain (4.22) exactly as we derived (4.4). In fact, ϕa1
is the conformal map of D onto {|z |> 1},

ϕa1
(a1) = 1. It is known that

(4.23) z/ϕa1
(z (1)) = zϕa1

(z (2))→ ξa1
cap(∆) as z→∞,

where |ξa1
| = 1 and cap(∆) is the logarithmic capacity of ∆. Here we indicate the dependence on the

choice of the cycles and of the initial point of integration in (4.21), so that ϕa1
will not be confused with

ϕ defined in (2.12). Clearly,

(4.24) ϕa1
(z (1)) = ξ̄a1

ϕ(z) and ϕa1
(z (2)) = ξa1

ϕ−1(z)

for z ∈D .

4.5. Abel’s Theorem and Jacobi Inversion Problem. Given any arrangement of distinct points zl ,w j ∈
R and integers ml , k j ∈N, a divisor is a formal symbol

(4.25) d :=
∑

l

ml zl −
∑

j

k j w j .

We define the degree of the divisor as |d | :=
∑

l ml −
∑

j k j . By Abel’s theorem, d is the principal divisor
of a rational function on R if, and only if |d |= 0 and

(4.26)
∑

l

mlΩ1(zl )−
∑

j

k jΩ1(w j )≡ 0 (mod periods).
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When zl (resp. w j ) belongs to L2 ∪ L3, we understand under Ω1(zl ) (resp. Ω1(w j )) its boundary values
on either side of L2 ∪ L3 as they are congruent to each other. It is also known that the range of Ω1, as a
multi-valued function on R, is the entire complex planeC. Moreover, for any a ∈C there uniquely exists
za ∈R such that

(4.27) Ω1(za)≡ a (mod periods).

The problem of finding za from a is called the Jacobi inversion problem. In particular, the unique solvabil-
ity of this problem implies that there are no rational functions with a single pole on R.

Using (4.27), we see that for each n ∈ N \ {1} and γ ∈ C, there uniquely exists zn = zn(γ ) ∈ R such
that

(4.28) Ω1(zn)+ (n− 1)Ω1(∞
(2))− nΩ1(∞

(1))+ γ
β3

β2
=: ln + jn

β3

β2
≡ 0 (mod periods),

ln , jn ∈ Z. Observe that when γ is an integer or an integer multiple of β2/β3, the constant γβ3/β2
is congruent to 0 modulo periods and therefore zn + (n − 1)∞(2) − n∞(1) is the principal divisor of a
rational function on R by (4.26). In this case, notice also that if zn =∞(2) then necessarily zn+1 =∞(1)
and ln+1 = ln , jn+1 = jn .

Due to the integral expressions for Ω1(zn) and Ω1(∞(2)), (4.28) can be easily rewritten as

(4.29) n
�

Ω1(∞
(2))−Ω1(∞

(1))
�

+(γ − jn)
β3

β2
= ln −

∫ zn

∞(2)
dΩ1.

Again, by the very definition of Ω1, we have that

Ω1(∞
(2))−Ω1(∞

(1)) =
∫ ∞(2)

∞(1)
dΩ1 =

1

2πi

∮

L3

dΩ0(∞
(2),∞(1); t),

where the second equality follows from the Riemann relation (4.10). Now, using (4.20), (4.18), and (4.2),
we get that

(4.30) Ω1(∞
(2))−Ω1(∞

(1)) =
1

2πi

∮

L3

(dG+ω2dΩ1) =ω∆(∆2)
β3

β2
−ω∆(∆3).

Hence, by plugging (4.30) into (4.29) and rearranging the summands, we arrive at the equality

(4.31)
�

nω∆(∆2)− jn + γ
� β3

β2
= nω∆(∆3)+ ln −

∫ zn

∞(2)
dΩ1.

In particular, comparing the imaginary parts on both sides of (4.31), we get that

(4.32)
�

nω∆(∆2)− jn +Re(γ )
�

Im

�

β3

β2

�

=−Im(γ )Re

�

β3

β2

�

− Im
�∫ zn

∞(2)
dΩ1

�

.

Thus, we obtain from (4.32) that

(4.33) λn := 2πi
�

nω∆(∆2)− jn + γ
�

= λ(zn)

where

(4.34) λ(z) :=−2πi






Im(γ )

�

β3

β2

�

+ Im
�∫ z

∞(2)
dΩ1

�






/Im

�

β3

β2

�

.
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It follows from the definition of Ω1 and (4.4) that λ is a continuous function in bR2 with continuous traces
on both sides of L2 that satisfy

(4.35) λ+−λ− = 2πi .

Moreover, it holds that

(4.36) |λn | ≤ const.

independently of n since Im(β3/β2)> 0 by (4.2) and |Ω1| is uniformly bounded above in eR2.

4.6. Linear Functions. Here, we obtain several auxiliary representations for the linear function z − a1
and its multiples. It holds that

(z − a1) = C∗ exp
�

2
∫ z

∞(2)
dΩ0(a1,∞(1); t)−ω2Ω1(z)

�

ϕ−1
a1
(z)(4.37)

= C∗ exp
�

2
∫ z

∞(1)
dΩ0(a1,∞(2); t)+ω2Ω1(z)

�

ϕa1
(z)(4.38)

where

(4.39) C∗ := ξa1
cap(∆)exp

¦

−ω2Ω1(∞
(1))
©

.

To verify (4.37), denote the right-hand side of this expression by E . Then E is a meromorphic function
in eR2 whose primary divisor is equal to 2a1 −∞(1) −∞(2). Moreover, E has continuous traces on both
sides of L2 and L3. Examining these traces as in (4.4), this time with the help of Figure 5, we get on L2

D(1)

D(2)

L2

L3

∞(2)

∞(1)

a0

a0a0

a0 t t

z

z

FIGURE 5. Paths of integration for dΩ0(a1,∞(1); ·) (dΩ0(a1,∞(2); ·)) that start at∞(2) (∞(1)) and
end at t ∈ L3 (solid lines) and z ∈ L2 (dashed line).

that

E+

E−
= exp

(

−2
∮

L3

dΩ0(a1,∞(1); t)+ω2

β3

β2

)

ϕ−a1

ϕ+a1

= exp

¨

2πi
�

2Ω1(∞
(1))+ω∆(∆2)

β3

β2
−ω∆(∆3)

�«

≡ 1(4.40)

where the first equality follows from (4.4), the second from (4.10) and (4.22), while the last is a conse-
quence of (4.30) and the fact that Ω1(∞(2)) =−Ω1(∞(1)). Moreover on L3

(4.41)
E+

E−
= exp

(

2
∮

L2

dΩ0(a1,∞(1); t)−ω2

)

ϕ−a1

ϕ+a1

≡ 1
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by (4.4), (4.22) and since dΩ0(a1,∞(1); ·) has zero period on L2. Hence, E is a rational function over R
such that (E) = 2a1−∞(1)−∞(2). That is, E(z) = const.(z− a1). Now, it is easy to verify by considering
the behavior of E near∞(2) and using (4.23) that C∗ is chosen exactly so (4.37) holds.

The validity (4.38) can be shown following exactly the same steps.
In another connection, using properties of Ω0(a; ·) it is easy to show by analyzing the boundary behav-

ior on L2 that

(4.42)
z − a

a1− a
= exp{Ω0(a;z)+Ω0(a;z∗)} ,

where, as usual, a =π(a). Let now b be a point in a punctured neighborhood of a1 with respect to which
we defined Ω0(a1; ·). Then

(4.43) C (b )
z − a1

b − a1
= exp{Ω0(a1;z)+Ω0(a1;z∗)} ,

where C (b ) is the normalizing constant. Clearly,

C (b ) := exp{Ω0(a1; b )+Ω0(a1; b ∗)}= exp{Ω0(a1; b ∗)}

= exp

(

∫ b ∗

b
dΩ0(a1,∞(1); t)

)

= exp

( 

∫ b ∗

∞(2)
−
∫ b

∞(2)

!

dΩ0(a1,∞(1); t)
)

= −exp{−ω2Ω1(b )}/ϕa1
(b ),(4.44)

where we used (4.37) as well as the continuity of C (b ) as a function of b in a neighborhood of a1 and the
fact that C (a1) = −1 to derive (4.44). To see that C (a1) = −1, pick b on L1. The integration path Γ(b )
from b ∗ till b can be chosen so that π(Γ(b )) is a Jordan curve through π(b ) since b and b ∗ have the same
canonical projection. Using (4.12) and (4.5) we can write mod 2πi that

∫ b ∗

b
dΩ0(a1,∞(1); t) =

∫

π(Γ(b ))

�

w(t )

2(t − a1)
+ t + c

�

d t

w(t )
=±πi +

∫

π(Γ(b ))

t + c

w(t )
d t

where c is some constant and the choice of + or − in front of πi depends of the orientation of π(Γ(b )).
Finally, it is easy to see that the last integral approaches 0 as b tends to a1.

4.7. Cauchy-type Integrals on L. Let χ be a continuous function on L. Define

(4.45) Fχ (z) :=
1

2πi

∮

L
χ (t)

w(t)+w(z)

t − z

d t

2w(t)
,

z ∈ R \ (L∪ {∞(1),∞(2)}). It is known [64], and can be verified easily by projecting onto the complex
plane using (4.49)–(4.50) below, together with the classical Sokhotski-Plemelj formulae, [20, Sec. I.4.2],
see also (3.11), that Fχ is a sectionally holomorphic function in R \ (L∪ {∞(1),∞(2)}) with simple poles
at∞(1) and∞(2) that satisfies

(4.46) F +
χ
− F −

χ
= χ a.e. on L.

By developing 1/(t − z) and w(z) in powers of z at infinity as was done after (4.5), we get that Fχ (z
(1))−

`χ (z)→ 0 and Fχ (z
(2))+ `χ (z)→ 0 as z→∞, where

(4.47) `χ (z) = uχ z + vχ :=−z
∮

L

χ

2w

d t

2πi
+
∮

L
(A− t )

χ

2w

d t

2πi
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and A was defined in (4.5). As for the traces of Fχ on L, it holds that

(4.48) ‖F ±
χ
‖2,L ≤ const.‖χ ‖2,L, ‖ · ‖2,L :=

�∮

L
| · |2|dΩ|

�1/2

,

where const. is independent of χ . Indeed, we have that

Fχ (z
(1)) =

w(z)

4πi

∮

L

χ (t)

t − z

d t

w(t)
+

1

4πi

∮

L

χ (t)

t − z
d t

=
w(z)

4πi

∫

∆

χ+(t )+χ−(t )

t − z

d t

w+(t )
+

1

4πi

∫

∆

χ+(t )−χ−(t )
t − z

d t

=
1

2

�

R∆(χ
+; z)+R∆(χ

−; z)+C∆(χ
+; z)−C∆(χ

−; z)
�

,(4.49)

Fχ (z
(2)) =

1

2

�

−R∆(χ
+; z)−R∆(χ

−; z)+C∆(χ
+; z)−C∆(χ

−; z)
�

,(4.50)

where χ±(t ) := χ (t), t ∈∆±, and the functions R∆ and C∆ are defined in (3.3). Hence,

‖F +
χ
‖2

2,L ≤
∫

∆

�

|R+∆(χ
+; t )|2+ |R−∆(χ

+; t )|2+ |R+∆(χ
−; t )|2+ |R−∆(χ

−; t )|2
� |d t |
|w+(t )|

+
∫

∆

�

|C+∆ (χ
+; t )|2+ |C−∆ (χ

+; t )|2+ |C+∆ (χ
−; t )|2+ |C−∆ (χ

−; t )|2
� |d t |
|w+(t )|

≤ const.

�
∫

∆

|χ+(t )|2+ |χ−(t )|2

|w+(t )|
|d t |

�

= const.‖χ ‖2
2,L

by Lemma 1.

5. BOUNDARY VALUE PROBLEMS ON R

On an elliptic Riemann surface it is possible to prescribe all but one elements of the zero/pole set of a
sectionally meromorphic function with given jump. The following proposition deals with the case when
we prescribe n poles at∞(1) and n− 1 zeros at∞(2).

In what follows, we construct a function ϕn which should rather be denoted by ϕn,κ. However, we
alleviate the notation and drop the subscript κ.

Proposition 10. Let κ ∈ {1,2,3} be fixed.
(i) For each n ∈ N \ {1} and γ ∈ C there exists zn ∈ R such that zn + (n − 1)∞(2) − n∞(1) is the principal
divisor of a function ϕn which is meromorphic in bRκ and has continuous traces on Lκ that satisfy

(5.1) ϕ+n = ϕ
−
n e2πiγ .

Under the normalization ϕn(z)z
−kn → 1 as z → ∞, ϕn is the unique function meromorphic in bRκ with

principal divisor of the form w+(n− 1)∞(2)− n∞(1), w ∈R, and continuous traces on Lκ that satisfy (5.1).
Moreover, if zn =∞(1) then zn−1 =∞(2) and ϕn = ϕn−1.
(ii) It holds that

(5.2)
(ϕnϕ

∗
n)(z)

Gκ(cap(∆))2n−1
= ξn,κ















(z − zn)/|ϕ(zn)|, zn ∈D (2) \ {∞(2)},

cap(∆), zn =∞(2),

(z − zn)|ϕ(zn)|, zn ∈ L∪D (1) \ {∞(1)},
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where |ξn,κ|= 1 and Gκ := exp{2πω∆(∆κ)Im(γ )}.
(iii) It holds that

(5.3)
ϕ∗n(z)

ϕn(z)
=

ξn,κGκ

ϕ2n−1(z)
Υκ(zn ; z)































z − zn

ϕ(z)|ϕ(zn)|
, zn ∈D (2) \ {∞(2)},

cap(∆)/ϕ(z), zn =∞(2),

ϕ(z)|ϕ(zn)|
z − zn

, zn ∈ L∪D (1) \ {∞(1)},

where {Υκ(a; ·)}a∈R is a normal family of non-vanishing functions in D that are uniformly bounded in D for
a outside of any fixed neighborhood of L.

Proof. For definiteness, we put κ= 3. Cases where κ= 1,2 are handled similarly upon choosing Lκ−1 to
be the a-cycle, Lκ to be the b-cycle, and aκ+1 to be the initial bound for integration.
(i) Let zn be the unique point satisfying (4.28). Set

(5.4) ϕn(z) := γn exp
¦

Ω0(zn ;z)+ (n− 1)Ω0(∞
(2);z)+ 2πi(γ − jn)Ω1(z)

©

, z ∈ eR2,

where γn is some constant to be chosen later. Then ϕn is a holomorphic and non-vanishing function in
eR2 except for a pole of order n at∞(1), a zero of order n− 1 at∞(2), and a simple zero at zn . Denote by
χ the multiplicative jump of ϕn on L2 ∪ L3. That is, ϕ+n = ϕ

−
n χ . Then it follows from (4.4) that

(5.5) χ = exp{2πi(γ − jn)}= exp{2πiγ} on L3.

Moreover, we deduce from (4.15), (4.4), and (4.28) that

χ = exp

¨

−2πi
�

Ω1(zn)+ (n− 1)Ω1(∞
(2))− nΩ1(∞

(1))+ (γ − jn)
β3

β2

�«

= exp{−2πi ln}= 1 on L2 \ {zn}.(5.6)

Clearly, (5.6) extends to zn as well by continuity when the latter belongs to L2. Thus, ϕn is, in fact,
meromorphic in bR3 and satisfies (5.1).

Choose γn so that ϕn(z)z
−n→ 1 as z→∞. Let eϕn be a function meromorphic in bR3 with continuous

traces on L3 satisfying (5.1), such that (eϕn) =w+(n−1)∞(1)−n∞(2) for some w ∈R, and normalized so
that eϕn(z)z

−kn → 1 as z→∞, where kn = n if w 6=∞(1) and kn = n−1 otherwise. Then the ratio ϕn/eϕn
is continuous across L3 and therefore is a rational function over R. Since (ϕn/eϕn) = zn −w and there
are no rational functions over R with only one pole, w= zn and eϕn is a constant multiple of ϕn . Due to
the normalization at∞(1), it holds that eϕn = ϕn . That is, ϕn is the unique function with the prescribed
properties. The claim for zn =∞(1) follows from (5.4) and the remark made after (4.28).
(ii) Suppose that zn ∈R \ {a1,∞(1),∞(2)}. Then (5.4) combined with (4.20) and (4.33) yields that

(5.7) ϕn(z) = γnϕ
n−1
a1
(z)exp{Ω0(zn ;z)+ (λn −ω2)Ω1(z)} .

For brevity, let us put γ∆ := cap(∆). Using (4.23) and (4.42) we can equivalently write

(5.8) ϕn(z) =
(z − zn)ϕ

n−1
a1
(z)exp{(λn −ω2)Ω1(z)−Ω0(zn ;z∗)}

(ξa1
γ∆)

1−n exp
¦

(λn −ω2)Ω1(∞(1))−Ω0(zn ;∞(2))
© .

Then it follows from the symmetries ϕa1
(z)ϕa1

(z∗)≡ 1 and Ω1(z)+Ω1(z
∗)≡ 0 that

(5.9) ϕn(z)ϕn(z
∗) =

(z − zn)(a1− zn)(ξa1
γ∆)

2n−1

ξa1
γ∆ exp

¦

2(λn −ω2)Ω1(∞(1))− 2Ω0(zn ;∞(2))
©
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where we used (4.42) once more. Set

α(z) :=C−1
∗ (a1− z)exp

¦

(ω2− 2λ(z))Ω1(∞
(1))+ 2Ω0(z;∞(2))

©

,

where C∗ was defined in (4.39). Clearly, we can rewrite (5.9) as

(5.10) ϕn(z)ϕn(z
∗) = (ξa1

γ∆)
2n−1(z − zn)α(zn).

Now, we deduce from (4.11) and (4.38) that

α(z) = C−1
∗ (a1− z)exp

�

(ω2− 2λ(z))Ω1(∞
(1))− 2

∫ z

∞(1)
dΩ0(a1,∞(2); t)

�

= −exp
¦

−2λ(z)Ω1(∞
(1))+ω2

�

Ω1(z)−Ω1(∞
(2))
�©

ϕa1
(z).(5.11)

Representation (5.11) combined with (4.35), (4.4), and (4.22) yields that α is a continuous function in
R \ {∞(1)} that vanishes at∞(2), blows up at∞(1), and is otherwise non-vanishing and finite. It further
follows from (5.11) and (4.30) that

�

�

�

�

�

α(z)

ϕa1
(z)

�

�

�

�

�

= exp

¨

−2πω∆(∆2)Im
�∫ z

∞(2)
dΩ1

�

−Re

�

λ(z)
�

ω∆(∆3)−ω∆(∆2)
β3

β2

��«

.

The latter expression can be simplified using (4.34), (4.30), and elementary algebra to

(5.12)
�

�

�α(z)/ϕa1
(z)
�

�

�= exp{2πω∆(∆3)Im(γ )}=G3.

Hence, (5.2) holds by (5.10) and (5.12) with

(5.13) ξn,3 := ξ 2n−1
a1

α(zn)/|α(zn)|.

When zn =∞(2), we get as in (5.7) and (5.8) that

(5.14) ϕn(z) = (ξa1
γ∆)

nϕn
a1
(z)exp

¦

λnΩ1(z)−λnΩ1(∞
(1))
©

and therefore

(5.15) ϕn(z)ϕn(z
∗) = (ξa1

γ∆)
2n exp

¦

−2λ(∞(2))Ω1(∞
(1))
©

=: γ 2n
∆ ξn,3G3,

where it can be shown as in (5.12) that |exp
¦

−2λ(∞(2))Ω1(∞(1))
©

|=G3.
Finally, suppose that zn = a1. Then we deduce as in (5.8) only using (4.43) instead of (4.42) that

(5.16) ϕn(z) =
(z − a1)ϕ

n−1(z)exp{(λn −ω2)Ω1(z)−Ω0(a1;z∗)}

(ξa1
γ∆)

1−n exp
¦

(λn −ω2)Ω1(∞(1))−Ω0(a1;∞(2))
© .

Further, we get as in (5.9) only by using (4.43) again, that

ϕn(z)ϕn(z
∗) =

(z − a1)(b − a1)(ξa1
γ∆)

2(n−1)

C (b )exp
¦

2(λn −ω2)Ω1(∞(1))− 2Ω0(a1;∞(2))
© .

Since Ω0(a1;∞(2)) =−
∫ b
∞(2) dΩ0(a1,∞(1); t) by definition, we get from (4.37), (4.44), and (5.11) that

(5.17) ϕn(z)ϕn(z
∗) =

−(z − a1)(ξa1
γ∆)

2(n−1)C∗

exp
¦

2(λn −ω2)Ω1(∞(1))
© = (ξa1

γ∆)
2n−1(z − a1)α(a1),

which finishes the proof of (5.2) upon setting

(5.18) ξn,3 := ξ 2n−1
a1

α(a1)/|α(a1)|.
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(iii) For zn with finite canonical projection, we deduce from (5.8) and (5.16) that

(5.19)
ϕn(z

∗)

ϕn(z)
=

exp{2(ω2−λn)Ω1(z)−Ω0(zn ;z)+Ω0(zn ;z∗)}
ϕ2(n−1)

a1
(z)

.

Suppose first that zn = a1. Then we get from (5.19) by using (4.24) and (4.43) that

ϕ∗n(z)

ϕn(z)
=

 

ξa1

ϕ(z)

!2n−2
1

C (b )

b − a1

z − a1
exp
¦

2(ω2−λn)Ω1(z
(1))+ 2Ω0(a1; z (2))

©

.

Hence, (5.3) takes place with

Υ3(a1; z) :=
1

C (b )

b − a1

ξa1
α(a1)

exp
¦

2(ω2−λ(a1))Ω1(z
(1))+ 2Ω0(a1; z (2))

©

by (5.18). Since

1

C (b )

b − a1

ξa1
α(a1)

= γ∆ exp

(

−2(ω2−λ(a1))Ω1(∞
(1))+ 2

∫ b

∞(2)
dΩ0(a1,∞(1); t)

)

by (4.44), (4.37), (4.39), and (5.11) and Ω0(a1; z (2)) =
∫ z (2)

b dΩ0(a1,∞(1); t) by the very definition, we get
that

Υ3(a1; z) = γ∆ exp

(

2 (ω2−λ(a1))
�

Ω1(z
(1))−Ω1(∞

(1))
�

+ 2
∫ z (2)

∞(2)
dΩ0(a1,∞(1); t)

)

.

Suppose now that zn ∈ (L \ {a1})∪ (D (1) \ {∞(1)}). Then we obtain from (5.19) that

ϕ∗n(z)

ϕn(z)
=

 

ξa1

ϕ(z)

!2n−2
a1− zn

z − zn
exp
¦

2(ω2−λn)Ω1(z
(1))+ 2Ω0(zn ; z (2))

©

,

where we used (4.24) and (4.42). Therefore, (5.3) holds with

Υ3(a; z) :=
a1− a

ξa1
α(a)

exp
¦

2(ω2−λ(a))Ω1(z
(1))+ 2Ω0(a; z (2))

©

= γ∆ exp

(

2 (ω2−λ(a))
�

Ω1(z
(1))−Ω1(∞

(1))
�

+ 2
∫ z (2)

∞(2)
dΩ0(a,∞(1); t)

)

by (5.13) and where we used the definition of α (see the line above (5.11)), (4.39), and (4.13) to derive the
second equality. Treating dΩ0(a;∞(1); t) as being identically zero when a=∞(1), we can define

Υ3(∞
(1); z) := γ∆ exp

¦

2
�

ω2−λ(∞
(1))
��

Ω1(z
(1))−Ω1(∞

(1)
�©

.

Then for each a ∈ L ∪ D (1) the function Υ3(a; ·) is holomorphic and non-vanishing in D such that
Υ(a;∞) = γ∆. Moreover, the continuity of λ as a function of a in L ∪ D (1), (4.16), and (4.17) imply
that

(5.20) Υ3(t; ·)⇒Υ3(a; ·)

in D as t→ a, a, t ∈ L∪D (1).
Assume next that zn ∈D (2) \ {∞(2)}. Then we deduce from (5.19) that

ϕ∗n(z)

ϕn(z)
=

 

ξa1

ϕ(z)

!2n
z − zn

a1− zn
ϕ2

a1
(z (1))exp

¦

2(ω2−λn)Ω1(z
(1))− 2Ω0(zn ; z (1))

©

,
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where as before we used (4.24) and (4.42). Thus, (5.3) holds with

Υ3(a; z) :=
ξa1

α(a)(a1− a)
exp
¦

−2λ(a)Ω1(z
(1))− 2Ω0(a; z (1))+ 2Ω0(∞

(2); z (1))
©

due to (5.13) and (4.20). Because

ξa1

α(a)(a1− a)
=

1

γ∆
exp

(

2λ(a)Ω1(∞
(1))+ 2

∫ ∞(1)

a1

dΩ0(a,∞(2); t)
)

by (5.11), (4.37), (4.39), (4.11), and since Ω0(a; z (1))−Ω0(∞(2); z (1)) =
∫ z (1)

a1
dΩ0(a,∞(2); t) by (4.11) again,

we get that

(5.21) Υ3(a; z) =
1

γ∆
exp

(

−2λ(a)
�

Ω1(z
(1))−Ω1(∞

(1))
�

− 2
∫ z (1)

∞(1)
dΩ0(a,∞(2); t)

)

.

Finally, assume that zn =∞(2). Then we get from (5.14) that

ϕn(z
∗)

ϕn(z)
=

1

ϕ2n
a1
(z)

exp
¦

−2λ(∞(2))Ω1(z)
©

and therefore (5.3) holds with

Υ3(∞
(2); z) =

1

γ∆
exp
¦

−2λ(∞(2))
�

Ω1(z
(1))−Ω1(∞

(1))
�©

by (5.15). Clearly, for each a ∈D (2) the function Υ3(·;∞( j )) is holomorphic and non-vanishing in D such
that Υ3(a;∞) = 1/γ∆. Moreover, the continuity of λ as a function of a in D (2), (4.16), and (4.17) imply
that (5.20) holds for a, t ∈ D (2) as well. It only remains to observe that if t→ a ∈ L, t ∈ D (2), then the
limiting function is given by (5.21) used with this given a. �

In Section 4.5 we explained that zn+(n−1)∞(2)−n∞(1) is the principal divisor of a rational function
over R when γ is an integer or an integer multiple of βκ/βκ+1. In the former case ϕn is exactly this
rational function (e2πiγ = 1 and therefore ϕn has no jump across Lκ), but in the latter case it is not. In
fact, ϕn is then the product of the rational function with principal divisor zn +(n− 1)∞(2)− n∞(1) by a
function holomorphic in bRκ and having multiplicative jumpacross Lk as in (5.1).

6. SZEGŐ-TYPE FUNCTIONS ON R

6.1. Proof of Proposition 1. The ground work for the proof of Proposition 1 was done in Sections 3
and 5. Here, we only need to combine the results of these sections.

Fix κ ∈ {1,2,3} and let Gh,κ, Sh,κ, and ϕn(= ϕn,κ) be as in Propositions 10 and 9, where γ in Proposi-
tion 10 equals to −m0/(2πiβκ) with m0 defined in (3.7). Set

(6.1) Sn(z) =
¨

ϕn(z)/Sh,κ(z), z ∈D (1)

Gh,κϕn(z)Sh,κ(z), z ∈D (2).

Fix t ∈ L and let D (2) 3 z→ t so that z→ t ∈∆∓ (recall that z =π(z) and t =π(t)). Then

(6.2) Sn(z)→ S−n (t) and Sn(z) = ϕ(z)Gh,κSh,κ(z)→ ϕ−(t)Gh,κS∓
h,κ
(t )
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by the very definition of Sn . Let now D (1) 3 a→ t. Then a→ t ∈∆±, Sn(a)→ S+n (t), and

Sn(a) =
ϕ(a)

Sh,κ(a)
→

ϕ+n (t)

S±
h,κ
(t )
=







ϕ−n (t)Gh,κS∓
h
(t )/h(t ), t ∈∆ \∆κ,

ϕ−n (t)exp
n

−m0
βκ

o

eGh,κS∓
h,κ
(t )/h(t ), t ∈∆κ







=
S−n (t)

h(t )

by (5.1), (3.10), and (6.2). Moreover, it follows easily from Propositions 9 and 10(i) that Sn satisfies all the
functional properties required by Proposition 1. Hence, we are left to show uniqueness of Sn . Suppose
that S̃n is another such function with principal divisor of the form w+(n−1)∞(2)−n∞(1). Then Sn/S̃n is
a rational function on R by the principle of analytic continuation, and it has at most one pole namely w.
Therefore it is a constant as there are no rational functions over R with one pole. The fact that Sn = Sn−1
and zn−1 =∞(2) whenever zn =∞(1) follows from the analogous claim in Proposition 10(i). �

6.2. Proof of Proposition 2. By the very definition of Sn , we have that

Sn S∗n = ϕn S−1
h,κ

Gh,κϕ
∗
n Sh,κ =Gh,κϕnϕ

∗
n .

Observe that

Gh,κ = exp

(

−m1+m0

β1
κ

βκ

)

=Gh exp

¨

−ω∆(∆κ)
m0

βκ

«

by (4.19) and since

−m1+m0a0 =
1

πi

∫

∆
(a0− t )

log h(t )

w+(t )
d t =

∫

log hdω∆

by (2.13). As we use Proposition 10 with γ =−m0/(2πiβκ), it holds that

|Gh,κ/Gh |= exp

¨

−Re

�

ω∆(∆κ)
m0

βκ

�«

= exp{−2πω∆(∆κ)Im(γ )}=G−1
κ

.

Hence, (2.15) follows from (5.2) with ξn := ξn,κGh,κGκ/Gh . The fact that ξn does not depend on κ
follows from uniqueness of Sn .

By the same token, we get that S∗n/Sn = (Gh,κS2
h,κ
)(ϕ∗n/ϕn). As Sh,κ is a holomorphic and non-

vanishing function in D with continuous and non-vanishing trace on ∂ D , (2.16) follows from (5.3) with
Υ(a; ·) := S2

h,κ
(·)Υκ(a; ·). Again, Υ(a; ·) does not depend on κ by uniqueness of Sn . �

6.3. An Auxiliary Estimate. For the proof of Theorem 5 in the case of zn approaching L, we need an
estimate of the ratio S∗n/Sn on L+ (L approached from D (1)), see (6.8) below.

We start by constructing a special rational functions of degree 2 on R. The unique solvability of (4.27)
means that Ω1 and its boundary values from each side on L2∪L3 define an isomorphism from R onto the
quotient surface C/(Z+(β3/β2)Z). In particular,

δ :=min
n�

�

�Ω1(t)−Ω1(∞
(1))
�

�

� : t ∈ L+
o

> 0.

Let O be any neighborhood of L which is disjoint from O∞(1) , the neighborhood of∞(1) given by

(6.3) O∞(1) :=
n

z ∈R :
�

�

�Ω1(z)−Ω1(∞
(1))
�

�

�<δ/6
o

,

and such that for any z ∈O there exists t ∈R \O satisfying

(6.4) |Ω1(z)−Ω1(t)|= δ/3.
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Assume that n ∈N is such that zn ∈O. Denote by tn1 a point in R\O satisfying (6.4) with z replaced by
zn . Then, since Ω1(O∞(1)) is a disk of diameter δ/3, there exist wn , tn2 ∈ ∂ O∞(1) such that

(6.5) Ω1(zn)−Ω1(tn1) = Ω1(tn2)−Ω1(wn).

In other words, zn +wn − tn1 − tn2 is a principal divisor by (4.26), see Figure 6 for the geometric inter-
pretation of the above construction. Let Un be the rational function over R with this principal divisor

Ω1(R \ O)

Ω1(R \ O)

Ω1(wn)

Ω1(tn2)

Ω1(∞(1))

Ω1(tn1)

Ω1(zn)

Ω1(a0)

Ω1(a0)Ω1(a0)

Ω1(a0) Ω1(L)

FIGURE 6. Schematic geometric interpretation of the construction of the principle divisor zn+
wn − tn1 − tn2 representing the image of R under Ω1 as a rectangle (in general, it is a centrally
symmetric curvilinear rectangle). The shaded region is Ω1(O) and the boundary and the diagonal
represent the image of L under Ω1.

normalized so Un(∞(1)) = 1. Let us stress that the zero of Un which is not zn and the two poles do not
belong to O. Observe also that

Un(z)/Un(z
∗) =

∏

a∈{zn ,wn}
exp{Ω0(a;z)−Ω0(a;z∗)}

2
∏

j=1

exp
¦

Ω0(tn j ;z
∗)−Ω0(tn j ;z)

©

by the properties of Ω0(a; ·) (see the paragraph between (4.14) and (4.15)). In particular, it follows from
(5.19) that

(6.6)

�

�

�

�

�

ϕn(t
∗)Un(t)

ϕn(t)Un(t
∗)

�

�

�

�

�

≤ const. exp{Ω0(wn ; t)−Ω0(wn ; t∗)}
2
∏

j=1

exp
¦

Ω0(tn j ; t
∗)−Ω0(tn j ; t)

©

for t ∈ L+, where we used (4.36) and the fact that |ϕ±a1
| = 1 on L. Since Ω0(a; t) is a continuous function

of t ∈ L+ for a /∈ L and differentials continuously depend on the parameter a, see (4.7), a compactness
argument shows that

(6.7) 1/CO ≤ |Ω0(a; t)−Ω0(a; t∗)| ≤CO

on L+ for all a /∈O and some finite non-zero constant CO = C0(O). Combining (6.6) and (6.7) with the
definition of Sn and the boundedness of Sh,κ, see (6.1), we get that

(6.8)

�

�

�

�

�

Sn(t
∗)Un(t)

Sn(t)Un(t
∗)

�

�

�

�

�

≤ const.

for all t ∈ L+ and n such that zn ∈O, where the constant depends only on O.
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6.4. Proof of Proposition 3. By definition, see (4.31), the point zn is the solution of the Jacobi inversion
problem

(6.9)
∫ zn

∞(2)
dΩ1 ≡ nω∆(∆3)− (nω∆(∆2)+ γ )

β3

β2
= v(n), (mod periods),

where v(t ) := tω∆(∆3)−(tω∆(∆2)+ γ ) (β3/β2). Denote by V the set of the limit points of {v(n)} in the
Jacobi variety Jac(R) := C/{n+m(β3/β2)}. Since the function

∫ z
∞(2) dΩ1 is a holomorphic bijection of

R onto Jac(R), the set Z is equal to R, is a finite set of points in R, or is a finite union of pairwise disjoint
arcs onR if and only if V=Jac(R), is a finite set of points in Jac(R), or is a finite union of pairwise disjoint
arcs on Jac(R), respectively. Clearly, V⊂ {v(t )}t∈R. The structure of the sets V and {v(t )}t∈R on Jac(R)
for an elliptic Riemann surface R was analyzed in [61, Sec. 5], depending on arithmetic properties of the
numbersω∆(∆k ), k ∈ {1,2,3}. More precisely, it was shown that V=Jac(R)when the numbersω∆(∆k )
are rationally independent; that V is a finite set of points when the numbers ω∆(∆k ) are rational; and
that V is the union of a finite number of pairwise disjoint arcs when the numbers ω∆(∆k ) are rationally
dependent but at least one of them is irrational.

The second conclusion of the proposition easily follows from (6.9). Indeed, if zn = zn+m for some
n, m ∈N, then

m
�

ω∆(∆3)−ω∆(∆2)
β3

β2

�

≡ 0 (mod periods).

By comparing first imaginary and then real parts of the equation above, we see that mω∆(∆k ) ∈ N.
Hence, whenever at least one of the numbersω∆(∆k ) is irrational all the points zn are mutually distinct.
However, if allω∆(∆k ) are rational, then zn = zn+m for all n ∈N, where m is the least common multiple
of their denominators.

It remains for us to show that the set of non-collinear triples (a1,a2,a3) ∈ C3 whose corresponding
ω∆(∆k ) are rationally dependent has Lebesgue measure zero. Our point of departure is a characteriza-
tion, given in [30], of the Chebotarëv center a0 for triples of the form (a1,a2,a3) = (0, e iα,ρ2e−iα) with
α ∈ (0,π/2) and 0<ρ< 1. For such triples we indicate the dependence on (α,ρ) by writing∆k (α,ρ) for
the arcs constituting the Chebotarëv continuum, and we setω∆(∆ j (α,ρ)), j = 1,2,3, for the mass of the
equilibrium measure on ∆ j (α,ρ). Note that ω∆(∆2(α,β))>ω∆(∆3(α,β)) since ρ < 1 [30, Thm. 1.4].
We also define

(6.10)

¨

λ1 := ω∆(∆2(α,ρ))+ω∆(∆3(α,ρ)),
λ2 := ω∆(∆2(α,ρ))−ω∆(∆3(α,ρ)).

Let C∗/± be the quotient of C \ {0} by the equivalence relation (z1 ∼ z2) =⇒ z1 = ±z2. Denote
by U ⊂ (R+)2 the set of pairs (t1, t2) with 0 < t2 < t1 and t1 + t2 < 2. From [30, Thm. 1.6], and its
proof, we deduce that λ1, λ2, and a0 are the last components of a unique 6-tuple (p, k ,µ,λ1,λ2,a0) ∈
(C \ {0,±1})× (C∗/±)×C×U ×C satisfying7

(6.11)







































p −
�

1+(e−iα+ρ−2e iα)a0+ρ
−2a2

0

�1/2
= 0,

k −
�

p+1−(e−iα+ρ−2e iα)a0/2
2 p

�1/2
= 0,

cn(µ, k)− 1−p
1+p = 0,

µ−λ1K(k)− iλ2K(k
′) = 0,

2K(k)
�

a0 p1/2

ρ(1+p) −
Θ′4
�

µ
2K(k) |τ

�

2K(k)Θ4

�

µ
2K(k) |τ

�

�

+ iπλ2 = 0,

7The square root in the second equation of (6.11) is apparently missing in the statement just quoted; the need for it can be checked
from the proof, cf. equation (1.36) of that reference.
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where K(k) is the complete elliptic integral of the first kind with (complex) modulus k and k ′ = (1−k2)1/2
is the complementary modulus, Θ4(z |τ) is the Jacobi theta function with period 1 and quasi-period
τ := iK(k ′)/K(k), while cn(·, k) is the Jacobi elliptic function with periods 4K(k) and 2K(k) + i2K(k ′).
The principal branch of the square root is used in the first equation, where the quantity under square root
there cannot be negative because a0 necessarily lies in the open triangle K(0, e iα,ρ2e−iα). Consequently
p actually lies inH+ \ {1}, whereH+ indicates the open right half plane. The branch used in the second
equation is immaterial. The third equation addresses the equivalence class of µ modulo periods, but the
fourth selects a unique representative for µ because (t1, t2) ∈ U . Of necessity, it holds that k2 6= 1, that
K(k),K(k ′) 6= 0,∞, and that Im(iK(k ′)/K(k)) 6= 0,∞ [30, eqns. (1.33)&(1.60)]. In particular, the fourth
equation in (6.11) yields that

(6.12) λ1 =
Re
�

µK(k ′)
�

Re
�

K(k)K(k ′)
� and λ2 =

Im
�

µK(k)
�

Re
�

K(k)K(k ′)
� .

Set Z := ρe−iα + (ρe−iα)−1, and note that the map (α,ρ) 7→ Z is a real analytic homeomorphism from
(0,π/2)× (0,1) onto the positive quadrantQ := {z = x+ i y : x > 0, y > 0}. If we further let A0 := a0/ρ,
then (6.11) and (6.12) provide us with four relations:

(6.13)



































0 = p2− 1−ZA0−A2
0,

0 = 2k2 p − p − 1+ZA0/2,
0 = cn(µ, k)− (1− p)/(1+ p),

0 = 2K(k)









A0 p1/2

1+ p
−

Θ′4
�

µ
2K(k) |τ

�

2K(k)Θ4

�

µ
2K(k) |τ

�









+ iπ
Im
�

µK(k)
�

Re
�

K(k)K(k ′)
� .

From the first two equations in (6.13) we obtain

(6.14) A0 = (p
2− 3− 2 p + 4k2 p)1/2

where the principal branch of the square root is used (again the quantity under square root cannot be neg-
ative when (6.13) holds for a0 ∈K(0, e iα,ρ2e−iα)), and we are left with the following system of equations

(6.15) H1(p, k ,Z) =H2(p, k ,µ) =H3(p, k ,µ) = 0

where






















H1(p, k ,Z) := 2k2 p − p − 1+Z(p2− 3− 2 p + 4k2 p)1/2/2,
H2(p, k ,µ) := cn(µ, k)− (1− p)/(1+ p),

H3(p, k ,µ) := 2K(k)









(p2− 3− 2 p + 4k2 p)1/2 p1/2

1+ p
−

Θ′4
�

µ
2K(k) |τ

�

2K(k)Θ4

�

µ
2K(k) |τ

�









+ iπ
Im
�

µK(k)
�

Re
�

K(k)K(k ′)
� .

SetM to be the open subset of C∗/± comprised of k 6= ±1 for which Im(iK(k ′)/K(k)) 6= 0,∞ (C∗/±
being endowed with the quotient topology), and letU be the open subset of the analytic manifold

�

H+\

{1}
�

×M×C consisting of triples (p, k ,µ) for which the quantity−(4k2 p−2 p−2)/(4k2 p−2 p−3+ p2)
(i.e. the value of Z when H1(p, k ,Z) = 0) lies inQ and such that the right hand sides of equations (6.12)
define a member of U .

Then, solutions (p, k ,µ,λ1,λ2,a0) to (6.11) as described above project injectively onto the real analytic8

variety V ⊂ U of those (p, k ,µ) such that H2(p, k ,µ) = H3(p, k ,µ) = 0. Note that V is distinct

8Note that H3 is not complex analytic
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from U since for fixed p, k the set of µ with H2(p, k ,µ) = 0 is discrete. By a theorem of Lojaciewicz
[28, Thm. 5.2.3], as U has real dimension 6, we get that V decomposes into a disjoint union ∪5

j=0V j

where V j is a real analytic submanifold of U of dimension j . Pick j ∈ {0, . . . , 5} and consider the map
Φ j : V j ×Q → C given by Φ j (p, k ,µ,Z) = H1(p, k ,Z). From (6.15) and (6.14), we see that the partial
derivative9 DZΦ j is multiplication by A0/2, which is bijective at any (p, k ,µ,Z) where Φ j (p, k ,µ,Z) = 0
since A0 6= 0. Hence, by the transversality theorem [25, Ch. 2], it holds for almost every Z ∈ Q
that the partial map Φ j ,Z (p, k ,µ) := Φ j (p, k ,µ,Z), defined on V j with values in C, is transverse to the
submanifold {0} ⊂ C which has codimension 2. This means that, for a.e. Z , the set Φ−1

j ,Z
(0) is either

empty or a submanifold of V j of codimension 2 whose tangent space at (p, k ,µ) ∈ Φ−1
j ,Z
(0) is the kernel

of the derivative DΦ j ,Z (p, k ,µ) : T(p,k ,µ)V j → R2, where T(p,k ,µ)V j indicates the tangent space to V j at
(p, k ,µ). However, we know from existence and uniqueness of a solution to (6.11) that Φ−1

j ,Z
(0) consists

of a single point, say (pZ , kZ ,µZ ) ∈ U . Therefore, we get for a.e. Z that Φ−1
j ,Z
(0) = ; if j 6= 2, and

that (pZ , kZ ,µZ ) ∈ V2 is such that DΦ2,Z (pZ , kZ ,µZ ) is an isomorphism from T(pZ ,kZ ,µZ )
V2 onto R2.

Subsequently, by the implicit function theorem, such Z form an open set Z ⊂Q over which pZ , kZ ,µZ
are real analytic functions of Z .

We claim that λ1,λ2 cannot both be constant on some nonempty open set B ⊂ Z . Suppose indeed
this is the case. Then, we see from (6.11) that µZ = F (kZ ) for Z ∈ B , where F is a globally defined
holomorphic function on (C∗/±) \ {±1}. In turn, the third equation in (6.13) entails that pZ = G(kZ )
where G is again a globally defined holomorphic function on (C∗/±) \ {±1}. Thus, by uniqueness of a
solution, the correspondence Z 7→ kZ must be injective from B onto some set E ⊂ C∗/±, and since this
correspondence is continuous (in fact: real analytic) E is open [38, Thm. 36.5]. This shows that the open
subset of V2 consisting of triples (pZ , kZ ,µZ )with Z ∈ B is holomorphically parametrized by kZ ∈ E and
is in fact a Riemann surface. In particular, the third equation in (6.15) tells us that

2K(k)









(G2(k)− 3− 2G(k)+ 4k2G(k))1/2G1/2(k)

1+G(k)
−

Θ′4
�

F (k)
2K(k) |τ

�

2K(k)Θ4

�

F (k)
2K(k) |τ

�









+ iπλ2 = 0

for all k ∈ E . As the left hand side is a globally defined holomorphic function on (C∗/±)\{±1} (remem-
ber λ2 is assigned to some constant value) it must be the zero function. Hence, for any Z ∈H+ \ {1}, the
solution to (6.15), which is known to exists and to be unique, is obtained from k by plugging µ = F (k)
and p =G(k) while fixing λ1, λ2 to the constant values they assume on B , because then all the equations
will be satisfied. In particular λ1,λ2 are constant functions of Z ∈H+\{1}. Back to the original variables,
we get that the ω∆(∆ j (α,ρ)) are constant (remember

∑

j ω∆(∆ j (α,ρ)) = 1). However, this cannot be
because ω∆(∆1(α,ρ)) = ω∆(∆2(α,ρ)) when ρ2 = 1/(2cos(2α)) for some α < π/6 (i.e. a3 lies on the
perpendicular bisector of [a1,a2]) whereas ω∆(∆1(α,ρ)) < ω∆(∆2(α,ρ)) when 2ρ2 cos(2α) < 1 (i.e. if
|a3− a1|< |a3− a2|), see [30, Thm. 1.4]. This proves the claim.

Recaping what we did in terms of variables (α,ρ), we find in view of (6.10)and (6.14) that there is an
open subsetW ⊂ (0,π/2)×(0,1), whose complement has zero measure, over which a0 andω∆(∆ j (α,ρ)),
j = 1,2,3, are real analytic functions of (α,ρ). Moreover, the correspondence

(α,ρ) 7→
�

ω∆(∆1(α,ρ)),ω∆(∆2(α,ρ)
�

cannot be constant on a nonempty open subset ofW .

9We understand by DZΦ j the derivative of Z 7→ Φ j (p, k ,µ,Z) as a map from an open subset of R2 (i.e. Q) into R2 ∼ C. As H1 is
holomorphic in Z , this derivative is just multiplication by the complex number ∂ Φ j /∂ Z(p, k ,µ,Z) viewed as a real linear map on
R2.
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We now consider triples of the form (a1,a2,a3) = (0, i ,a) where a ∈ D+ := {z; |z | < 1, Rez > 0}.
Accordingly, we put ∆k (a), k ∈ {1,2,3}, for the analytic arcs constitutive of the corresponding Chebo-
tarëv continuum, and write c(a) for the Chebotarëv center. Observe that the map a(α,ρ) := iρ2e−2iα

is a real analytic diffeomorphism from (0,π/2)× (0,1) onto D+, and that the triples (0, e iα,ρ2e−iα) and
(0, i ,a(α,ρ)) differ by a rotation of angle π/2− α. Thus c(a(α,ρ)) = i e−iαa0 and ω∆(∆ j (a(α,ρ))) =
ω∆(∆ j (α,ρ)), 1≤ j ≤ 3. Moreover, by what precedes, there is an open subset T ⊂ D+, with D+ \T of
zero measure, such that the maps a 7→ c(a) and a 7→ ω∆(∆ j (a)), from T into C and R respectively, are
real analytic. Moreover, a 7→ (ω∆(∆1(a)),ω∆(∆2(a)) is not constant over a nonempty open subset of T .

Consider the open subsetA ⊂ T ×D+ of those (a, b ) such that b lies in the triangle K(0, i ,a). For
(a, b ) ∈A , consider the quadratic differential

(6.16) Qa,b (z) :=−
1

π

z − b

z(z − i)(z − a)
d z2.

Note that Qa,c(a) is minus the quadratic differential (2.1) where a1 = 0, a2 = i , and a3 = a, so that
Qa,c(a(z)d z2 > 0 on∆◦j (a), j = 1,2,3. Define further

(6.17) Ψ1(a, b ) :=
∫ b

0
Q1/2

a,b
(z)d z, Ψ2(a, b ) :=

∫ b

i
Q1/2

a,b
(z)d z

where, by Cauchy’s theorem, the integrals may be taken over any smooth path joining 0 (resp. i ) to b
whose interior lies in K(0, i ,a), and where the branch of the square root is positive if b = c(a) and if the
path∆1(a) (resp. ∆2(a)) is used. By (2.13), we have that

(6.18) Ψ1(a, c(a)) =ω∆(∆1(a)), Ψ2(a, c(a)) =ω∆(∆2(a)).

Writing a = xa + i ya to single out real and imaginary parts, we introduce differential operators ∂a :=
(∂xa
− i∂ya

)/2 and ∂ a := (∂xa
+ i∂ya

)/2. We define ∂b and ∂ b similarly. Those a for which ∂ a c(a) = 0
form a real analytic variety, sayX ⊂ T . We claim thatX has measure zero. To prove this, it is enough
by Lojaciewicz’s theorem to show thatX has no interior. Assume for a contradiction that it contains an
open set V 6= ;, so that c(a) is a holomorphic function of a ∈V . Then, by inspection of (6.16)-(6.17), the
function Ψ j (a, c(a)) is in turn holomorphic on V for j = 1,2. However, it is real valued by (6.18) hence
it must be constant. But then, a 7→ (ω∆(∆1(a)),ω∆(∆2(a))) is constant over V which is impossible, as
pointed out earlier. This proves the claim. Thus,A :=T \X is open and D+ \A has zero measure.

Next, since Ψ j (a, b ) is holomorphic in a,b , it holds that ∂ aΨ j (a, b ) = ∂ bΨ j (a, b ) = 0, so by (6.18)
and the chain rule

(6.19) ∂ aω∆(∆1(a)) =
�

∂bΨ1(a, b )|b=c(a)

�

∂ a c(a) =
∂ a c(a)

2

∫ c(a)

0

Q1/2
a,c(a)(z)

z − c(a)
d z

and likewise

(6.20) ∂ aω∆(∆2(a)) =
∂ a c(a)

2

∫ c(a)

i

Q1/2
a,c(a)(z)

z −C (a)
d z.

Fix ∆1(a) to be the integration path in (6.19), and let z3 be the intersection of the straight line through
a, c(a) with the segment [0, i]. Since a is strictly closer to 0 than i , it follows from [30, Thm. 4.1.] that
∆1(a) is included in the closure of the triangle K(0, z3, c(a)) but not in its boundary. Therefore, since
Q1/2

a,c(a)d z > 0 on ∆◦1(a), the integral in (6.19) lies in C (−c(a), 0, z3− c(a)), the complex conjugate of the
open positive cone C (−c(a), 0, z3 − c(a)) with vertex 0 generated by the triangle K(−c(a), 0, z3 − c(a)).
Similarly, if we let z1 be the intersection of the straight line through 0, c(a) with the segment [i ,a],
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we get from [30, Thm. 4.1.] that ∆2(a) is contained10 in the closure of K(i , c(a), z1) ∪ K(i , c(a), z3),
hence the integral in (6.20) lies in the closure of C (z1− c(a), 0, z3− c(a)). Since the latter is disjoint from

C (−c(a), 0, z3− c(a))∪
�

−C (−c(a), 0, z3− c(a))
�

, we deduce that the integrals in (6.19) and (6.20) define

two complex numbers that are linearly independent over R. If in addition a ∈ A , we conclude since
∂ a c(a) 6= 0 that ∂ aω∆(∆1(a)) and ∂ aω∆(∆2(a)) are in turn linearly independent overR. By definition of
∂ a , this means that the map Λ(a) := (ω∆(∆1(a)),ω∆(∆1(a))) fromD+ intoR2 has nonsingular derivative
at each point of A , in particular its restriction to A is locally a bi-Lipschitz homeomorphism. From
this, asA is open of full measure in D+, it is elementary to check that if E ⊂ Λ(D+)) has measure zero
(resp. is dense in Λ(D+)) then its inverse image Λ−1(E) has measure zero (resp. is dense in D+).

Now, since ω∆(∆1(a)) +ω∆(∆2(a)) +ω∆(∆3(a)) = 1, the ω∆(∆ j (a)) are rationally dependent if
and only if there exist integers n1, n2, not both zero, for which n1ω∆(∆1) + n2ω∆(∆2) ∈ Q. To each
nonzero pair of integers (n1, n2), we can pick real numbers t1, t2 with n1 t2 − n2 t1 6= 0, hence the sub-
set of R2 comprised of (x, y) such that n1x + n2y ∈ Q has measure zero, being the inverse image under
(x, y) 7→ (n1x + n2y, t1x + t2y) of those points whose first coordinate is rational. Consequently the set
Y ⊂R2 of those (x, y) for which there exists a nonzero pair of integers (n1, n2) such that n1x + n2y ∈Q
has measure zero as countable union of sets of measure zero. Note that Y contains the dense subset
of rational pairs. Thus, by properties of the map Λ we just proved, the set of a ∈ D+ for which the
triple (0, i ,a) has Q-linearly independent (resp dependent, rational) ω∆(∆ j (a)) has full measure (resp. is
dense) in D+. Because the ω∆(∆k ) are invariant under nonsingular affine transformations of the triple
(a1,a2,a3) and their conjugates [48, Thm. 5.1.2], it follows easily that, for any pair (a1,a2) ∈ C2, the set
of non-collinear a3 for which the triple (a1,a2,a3) has Q-linearly independent (resp. Q-linearly depen-
dent, rational) ω∆(∆ j ) has complement of measure zero (resp. is dense) in C. Proposition 3 is now a
consequence of Fubini’s theorem. �

7. ASYMPTOTICS OF PADÉ APPROXIMANTS

7.1. Integral Representation of the Error. Let fh be given by (2.20) and πn = pn/qn be the n-th Padé
approximant to fh . Then we deduce from (2.18) that

∮

Γ
zk (qn fh − pn)(z)d z = 0, k ∈ {0, . . . , n− 1},

by Cauchy integral formula applied in the exterior of Γ, where Γ is any positively oriented Jordan curve
encompassing∆. Applying Cauchy integral formula once more, this time in the interior of Γ, we get that

0=
∮

Γ
zk (qn fh )(z)d z =

∮

Γ
zk qn(z)

1

πi

∫

∆

h(t )

t − z

d t

w+(t )
d z.

Further, using the Fubini-Tonelli and Cauchy integral theorems, we obtain that

(7.1) 0=
1

πi

∫

∆
h(t )

∮

Γ

zk qn(z)

t − z
d z

d t

w+(t )
= 2
∫

∆
t k qn(t )

h(t )d t

w+(t )
, k ∈ {0, . . . , n− 1}.

Thus, polynomials qn , the denominators of Padé approximants πn , satisfy non-Hermitian orthogonality
relations on∆ with respect to the weight h/w+.

For each polynomial qn we define its function of the second kind by the rule

(7.2) Rn(z) :=
1

πi

∫

∆

qn(t )h(t )

t − z

d t

w+(t )
, z ∈D .

10 ∆2(a) lies in the closure of K(i , c(a), z1 or of K(i , c(a), z3) according whether 0 is closer to i than a or not; if |i − a| = |i | = 1,
then∆2(a) is the segment [c(a), i].
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It can be seen by developing 1/(t − z) in powers of z at infinity and using (7.1) that

(7.3) (wRn)(z) =O(z−n+1) as z→∞.

Moreover, it also easily follows from (7.1) that
∫

∆

qn(t )− qn(z)

t − z
qn(t )h(t )

d t

w+(t )
= 0

and therefore

Rn(z) =
1

qn(z)

1

πi

∫

∆

q2
n(t )h(t )

t − z

d t

w+(t )
.

Applying Cauchy integral theorem to qn(qn fh − pn) on the bases of (2.18), we get that

en(z) := ( fh −πn)(z) =
qn(z)(qn fh − pn)(z)

q2
n(z)

=
1

q2
n(z)

1

2πi

∮

Γ

qn(τ)(qn fh − pn)(τ)

z −τ
dτ

for z in the exterior of Γ. Hence, we derive from Cauchy integral formula and Fubini-Tonelli theorem
that

en(z) =
1

q2
n(z)

1

πi

∫

∆
h(t )

1

2πi

∮

Γ

q2
n(τ)

(z −τ)(t −τ)
dτ

d t

w+(t )

and hence

(7.4) en(z) =
1

q2
n(z)

1

πi

∫

∆

q2
n(t )h(t )

t − z

d t

w+(t )
=

Rn(z)

qn(z)
.

Thus, to describe the behavior of the error of approximation, we need to analyze the asymptotic behavior
of qn and Rn .

7.2. Boundary Value Problem. According to (3.3), it holds that

R∆(qn h; z) =
(wRn)(z)

2
, z ∈D .

Since qn h is Dini-continuous on ∆, wRn has unrestricted continuous boundary values on ∂ D . Further-
more, it follows from (3.12) that

(7.5) (wRn)
++(wRn)

− = 2qn h on ∆.

Below, we turn this boundary value problem on∆ into a boundary value problem on L.
Firstly, set

An(z) :=
(wRn)(z)

Sn(z)
, z ∈D (2),

where Sn is the function granted by Proposition 1. Since Sn vanishes at ∞(2) with order n − 1 when
zn 6=∞(2) and with order n otherwise, and wRn vanishes at infinity with order at least n − 1 by (7.3),
An is a holomorphic function in D (2) except for a single simple pole at zn when zn ∈ D (2) \ {∞(2)} and a
possible simple pole at∞(2) when zn =∞(2). Moreover, An has continuous trace on L− \ {zn}.

Secondly, put

Bn(z) :=
2qn(z)

Sn(z)
, z ∈R \ L.

Then Bn is a holomorphic function in R \ (L∪ {zn}) with a simple pole at zn when zn /∈ L∪ {∞(1)} and
a possible simple pole at∞(1) when zn =∞(1) and deg(qn) = n. Moreover, Bn has continuous traces on
both sides of L \ {zn}.
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Thus, by the very definition of functions An and Bn , we have that

(7.6) A−n (t)−B+n (t) =
(wRn)

±(t )

S−n (t)
−

2qn(t )

S+n (t)
=
(wRn)

±(t )

S−n (t)
−

2(qn h)(t )

S−n (t)
=−
(wRn)

∓(t )

S−n (t)
,

where, as usual, t =π(t) and we used (2.11) and (7.5).
Thirdly, define An(z) = An(z

∗), z ∈ D (1), where z∗ is the point conjugate to z. Clearly, An enjoys in
D (1) the same properties as in D (2). As to the boundary values on L, it holds that A+n (t) = A−n (t

∗) and
therefore

A−n (t) =
(wRn)

±(t )

S−n (t)
and A+n (t) =

(wRn)
∓(t )

S−n (t
∗)

,

where t ∈∆±. Hence, boundary value problem (7.6) can be rewritten as

(7.7) A−n (t)−B+n (t) =−A+n (t)
S−n (t

∗)

S−n (t)
, t ∈ L.

Finally, define

Xn(z) =
Sn(z

∗)

Sn(z)
, z ∈R \ L.

Then Xn is a sectionally holomorphic function in R\(L∪{zn}∪{∞(2)}), it vanishes at∞(1) with order at
least 2(n−1) and has continuous traces on L\{zn}. Moreover, it holds that X+n (t) = S−n (t

∗)/S+n (t). Thus,
we get from (7.7) and (2.11) that

(7.8) A−n = B+n −
(AnXn)

+

h ◦π
, on L,

which is our final boundary value problem.

7.3. Proof of Theorem 4. Since h ≡ 1/p, (7.8) becomes

A−n = (Bn − PAnXn)
+,

where P := p ◦π is the lift of p onto R. Observe that the left-hand side of the equality above is given by
a function meromorphic in D (2) and the right-hand side is given by a function meromorphic in D (1) and
holomorphic at∞(1) for all 2(n−1)> deg(p) (recall that Xn vanishes at∞(1) with order at least 2(n−1)).
As they have continuous boundary values on L \ {zn} from within the respective domains and at zn they
have a polar singularity, the function

Φn :=
¨

Bn − PAnXn , in D (1),
An , in D (2),

is rational over R. Observe now that

(PAnXn)(z) =
(pwRn)(z)

Sn(z)
, z ∈D (1),

and hence Φn has at most one simple pole at zn . However, there are no rational functions over R with
one pole and therefore Φn is a constant. As pXn vanishes at∞(1) , Φn ≡ 2 by the normalization of Sn and
the definition of Bn . Summarizing, we derived that

(7.9) 2≡An(z
(2)) =

(wRn)(z)

Sn(z
(2))

and 2≡
2qn(z)

Sn(z
(1))
− 2

p(z)Sn(z
(2))

Sn(z
(1))

.

Hence, Theorem 4 follows from (7.4). �
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7.4. Proof of Theorem 5. Let pn be the best uniform approximant to 1/h on ∆ among all polynomial
of degree at most n. Then the norms ‖pn‖∆ are uniformly bounded and

(7.10)
�

�pn(z)ϕ
−n(z)

�

�≤ const., z ∈D ,

by the Bernstein-Walsh inequality. Set Pn := pn ◦π and define

(7.11) Φn :=
¨

Bn − PnAnXn , in D (1),
An , in D (2).

Analyzing Φn as in the proof of Theorem 4, we see that Φn is a sectionally meromorphic function on
R\L with at most one pole, necessarily at zn , and continuous traces on both sides of L\{zn} that satisfy

(7.12) Φ+n −Φ
−
n = εn(AnXn)

+,

where εn := (1/h − pn) ◦π. Observe that maxL |εn |=ωn by the definition ofωn , see (2.22).
Let O be a neighborhood of L in R as in Section 6.3. Consider first those indices n for which zn /∈O.

Assume in addition that zn 6=∞(1). Let Tn be the constant 0 if zn =∞(2), and if zn 6=∞(2) the unique
rational function on R vanishing at∞(1) and having two simple poles at zn and∞(2), normalized so that
Tn(z)/z→ 1 as z→∞(2). Put

(7.13) 2En := Fn − `n + 2unTn ,

where Fn(z) := Fεn (An Xn )
+(z), `n := `εn (An Xn )

+ , and un := uεn (An Xn )
+ , see (4.45)–(4.47). Then En is a section-

ally meromorphic function on R \ L with at most one pole at zn and well-defined boundary values on
both sides of L that satisfy a.e.

(7.14) 2E+n − 2E−n = εn(AnXn)
+.

Hence, we derive from (7.12) and (7.14) that Φn = Bn(∞(1)) + 2En by the principle of meromorphic
continuation and since there are no rational functions over R with one pole. Moreover, it holds that
Bn(∞(1)) = 2 when deg(qn) = n since qn is monic and Sn(z) = zn+. . . at∞(1) and Bn(∞(1)) = 0 otherwise.

If deg(qn)< n, then

(7.15) ‖A−n ‖2,L = ‖Φ
−
n ‖2,L = ‖2E−n ‖2,L.

Clearly, for zn /∈ O the values of Tn on L form a uniformly bounded family of continuous functions.
Hence, it follows from (4.48), (4.47) and (7.13) that

(7.16) ‖E−n ‖2,L ≤ const.ωn‖(AnXn)
+‖2,L.

Moreover, since for such zn the traces X+n form a normal family on L by (2.16) and A+n (t) = A−n (t
∗) on L

by the definition of An , (7.15) and (7.16) yield that

(7.17) ‖A+n ‖2,L ≤ const.ωn‖A
+
n ‖2,L.

However ωn → 0 and therefore (7.17) cannot be true for large n. That is, for all n large enough and
zn ∈R \O, it holds that zn 6=∞(1) and deg(qn) = n. Thus, for such n, we have that Bn(∞(2)) = 2. Then,
we get by repeating the steps (7.15)–(7.17) that

(7.18) ‖A+n − 2‖2,L ≤ const.ωn‖A
+
n ‖2,L,

which yields that ‖A+n ‖2,L→ 2 as n→∞ for all admissible n. In particular, it holds that

(7.19) ‖E±n ‖2,L ≤ const.ωn .
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In another connection, we deduce as in (7.9) that

(7.20)











qn(z)/Sn(z
(1)) = 1+

pn(z)Sn(z
(2))(1+ En(z

(2)))

Sn(z
(1))

+ En(z
(1)),

(wRn)(z)/Sn(z
(2)) = 2

�

1+ En(z
(2))
�

,

which implies (2.23) by (7.4), (7.19) and (2.16) (note that Sn En is holomorphic in D (2)).
Suppose now that zn =∞(1). If deg(qn) = n − 1 then qn−1 = qn and Rn−1 = Rn . As Sn = Sn−1 and

zn−1 =∞(2) by Proposition 1, the asymptotics of qn and Rn is described by what precedes. Hence, in what
follows we can assume that n belongs to an infinite subsequence such that zn =∞(1) and deg(qn) = n. As
before, one can check that

(7.21)
Φn(z)

ηn
= 2+

2z + Fn(z)− `n(z)

ηn
, z ∈R \ L,

where Bn(z) = 2z + 2ηn + O (1/z). Recall that `n(z) = un z + vn by the very definition (4.47) and
Fn(z) =−`n(z)+O (1/z) near∞(2). Thus, un = 1 and therefore

(7.22) 1≤ const.ωn‖A
+
n ‖2,L

as in (7.16). On the other hand, we get from (7.21) as in (7.18) that

(7.23) ‖η−1
n A+n − 2‖2,L = ‖η

−1
n (F

−
n − `n)‖2,L ≤ const.ωn‖η

−1
n A+n ‖2,L.

Hence, we have by (7.22) that

(7.24) ‖η−1
n A+n ‖2,L→ 2 and |η−1

n | ≤ const.ωn .

Set

En(z) :=
2z + Fn(z)− `n(z)

2ηn
, z ∈R \ L.

Then ‖E±n ‖2,L ≤ const.ωn by (7.23) and (7.24). Moreover, it holds that










qn(z)/Sn(z
(1)) = ηn

 

1+
pn(z)Sn(z

(2))(1+ En(z
(2)))

Sn(z
(1))

+ En(z
(1))

!

,

(wRn)(z)/Sn(z
(2)) = 2ηn

�

1+ En(z
(2))
�

,

which yields (2.23) by (7.4).
Assume next that n ranges over an infinite subsequence with zn ∈O. Define eΦn := Φn Un , where the

functions Un were constructed in Section 6.3. Recall that Un(∞(1)) = 1, (Un) = zn +wn − tn1− tn2, and
wn , tn1, tn2 /∈O. Therefore, eΦn is a meromorphic function on R \ L, with a zero at wn , two poles at tn1

and tn2, and eΦn(∞(1)) = Bn(∞(1)). Furthermore, since Un is holomorphic across L, it holds that

(7.25) eΦ+n − eΦ
−
n = εn( eAn

eXn)
+

by (7.12), where we set

eAn(z
(2)) := An(z

(2))Un(z
(2)),

eAn(z
(1)) := eAn(z

(2)),
and

eBn(z
(1)) := Bn(z

(1))Un(z
(1)),

eXn(z
(1)) := Xn(z

(1))Un(z
(1))/Un(z

(2)),

for z ∈D . As in (7.13), define
2 eEn := eFn −e`n + 2eun

eTn ,
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where eFn := F
εn ( eAn

eXn )
+ , e`n := `

εn ( eAn
eXn )
+ , eun := u

εn ( eAn
eXn )
+ , and eTn is a rational function over R with a zero

at ∞(1), two poles at ∞(2) and tn2, and normalized so eTn(z
(2))/z → as z → ∞. Note from (4.46) that

across L

(7.26) eE+n − eE
−
n = εn( eAn

eXn)
+.

As Ω1 is Lipschitz on eR2 with respect to any fixed Riemannian metric on R, it follows from (6.5) and
(6.4) (where z = zn) that eTn(wn) is bounded independently of n (along the considered subsequence), see
Figure 6. Moreover, |wn | remains bounded in D because wn ∈ ∂ O∞(1) , see (6.3). Hence, from (4.45),
(4.47), and since the traces eX+n are uniformly bounded on L by (6.8), we deduce that

(7.27) | eEn(wn)| ≤ const.ωn‖ eA
+
n ‖2,L.

Likewise, as tn2 /∈O, it holds that | eTn | is bounded on L, therefore by (4.48) and (4.47) again

(7.28) ‖ eE+n ‖2,L ≤ const.ωn‖ eA
+
n ‖2,L.

Now, from (7.25) and (7.26) we get that eΦn − 2 eEn has no jump across L, and since it can only have poles
at tn1, tn2 it must be a scalar multiple of Un . Checking values at ∞(1) and wn (remember eΦn(wn) =
Un(wn) = 0 and eΦn(∞(1)) = Bn(∞(1))), we conclude that

(7.29) eΦn = Bn(∞
(1))+ 2 eEn + cn(1−Un),

where cn = 2 eEn(wn)− Bn(∞(1)). If we had Bn(∞(1)) = 0 for all n large enough (within the considered
subsequence), it would hold that cn = 2 eEn(wn) and, by (7.11) and (7.29), that eA−n = 2 eE−n + cn(1−Un |L).

Because Un is bounded on L independently of n as tn2 /∈O, and since ‖ eA−n ‖2,L = ‖ eA+n ‖2,L by construction,
this would entail with (7.27),(7.28), (7.26) that

(7.30) ‖ eA+n ‖2,L ≤ const.ωn‖ eA
+
n ‖2,L.

But ωn → 0, thus (7.30) is impossible for n large enough, therefore Bn(∞(1)) = 2 and deg(qn) = n for all
such n. Repeating the arguments leading to (7.30), this time with Bn(∞(1)) = 2, we get that

(7.31) |2+ cn | ≤ const.ωn‖ eA
+
n ‖2,L and ‖ eA+n − 2Un‖2,L ≤ const.ωn‖ eA

+
n ‖2,L.

The last inequality implies that ‖ eA+n ‖2,L is uniformly bounded. Rewrite (7.29) as

eΦn = 2Un + 2 eEn +(2+ cn)(1−Un)

or equivalently

Φn = 2+ 2
�

eEn +(1+ cn/2)(1−Un)
�

U−1
n =: 2

�

1+ En
�

.

By its very definition, En has a pole at zn but is holomorphic at wn (even though U−1
n is not). Formula

(2.23) now follows exactly as (7.20). To show (2.24), observe from the definition of En and since |U−1
n (ln ◦

π)| is bounded on L that

‖2E±n (ln ◦π)‖2,L ≤ const.‖ eE±n +(1+ cn/2)(1−Un)‖2,L ≤ const.ωn ,

where the last estimate follows from (7.28), (7.31), and the boundedness of Un on L. �
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7.5. Proof of Corollary 6. Assume first that zn ∈ D (2) \ {∞(2)} for n large enough, n ∈ N1, so that
z ∈D (2) ∪ L. For such n, the function

(ξ − zn)E
∗
n(ξ )

w(ξ )|ϕ(zn)|
, ξ ∈D ,

is holomorphic and vanishes at ∞. Hence, it converges locally uniformly to zero there by (2.24) (to
handle the case where zn →∞(2), observe that (ξ − zn)/|ϕ(zn)| is bounded on ∆ independently of zn).
In turn, En is also holomorphic in D and converges to zero locally uniformly there. Indeed, if z /∈ L, this
follows directly from (2.24) (where we can choose ln ≡ 1) and the Cauchy representation formula. On
the other hand, if z ∈ L, observe that

(ξ − zn)En(ξ )

ϕ(ξ )
, ξ ∈D ,

is also holomorphic. Moreover, its L1(∂ D)-norm does not exceed const.ωn by (2.24), the Schwarz in-
equality, and since ‖w1/2/ϕ‖L2(∂ D) ≤ const. The latter immediately entails that this function tends to zero
locally uniformly in D by the Cauchy representation formula. However, as |(ξ − zn)/ϕ(ξ )| is bounded
away from zero on compact subsets of D uniformly with respect to zn (remember zn → z ∈ ∆), En
converges to zero locally uniformly in D as well.

Gathering what we did, it can be concluded from (2.16) and (2.23) that fh − πn converges locally
uniformly to zero on D and in fact geometrically fast because |ϕ| > 1+ εK on any compact K ⊂ D . If
zn =∞(2) for each n, then E∗n may have a pole at∞ but E∗n/w is holomorphic in D and vanishes at∞.
Thus, it converges locally uniformly to zero in D by (2.24) and the Cauchy formula. As before En also
converges locally uniformly to zero in D and, from (2.16) and (2.23) again, we get the desired conclusion.

Assume now that zn ∈D (1) for n large enough, n ∈N1, so that z ∈D (1) ∪L. If z ∈ L and K is compact
in D , then |ξ − zn | ≥ ck > 0 for ξ ∈K and n large. Moreover, the functions

(ξ − zn)En(ξ )

ϕ(ξ )
and

(ξ − zn)E
∗
n(ξ )

ϕ(ξ )
, ξ ∈D ,

are holomorphic in D , and using (2.24) and the Schwarz inequality as before we see that they go to zero
locally uniformly in D . In particular En and E∗n tend to zero uniformly on K . Thus, we conclude again
from (2.16) and (2.23) that fh−πn converges to zero geometrically fast on K . The argument when z ∈D (1)

and K ⊂D \ {zn} is similar.
Finally, observe from (2.23) that

(7.32)

�

�

�

�

�

( fh −πn)−
2S∗n
wSn

�

�

�

�

�

=

�

�

�

�

�

2S∗n
wSn

�

�

�

�

�

�

�

�

�

�

E∗n − En −O (|ϕ|−n)

1+ En +O (|ϕ|−n)

�

�

�

�

�

.

Now if z ∈ D (1) and D(z, r ) ⊂ D is a disk of radius r centered at z (the set {z : |z | > r } if z =∞) with
boundary circle T(z, r ), it follows from what precedes that En and E∗n tend to zero on T(z, r ). Hence,
the second factor on the right-hand side of (7.32) also converges to zero on T(z, r ) as N1 3 n→∞. Thus,
by Rouché’s theorem, fh − πn has exactly one pole in D(z, r ) for n large enough because 2Sn/(wS∗n)
has exactly one pole there (namely zn) and none of these two functions can have a zero in D(z, r ) by
(2.16), (2.23), and the fact that En and E∗n converge to zero on T(z, r ). This achieves the proof of the
corollary. �
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