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ABSTRACT. For all n large enough, we show uniqueness of a critical point in best rational approxi-
mation of degree n, in the L2-sense on the unit circle, to functions of the form

f(z) =
∫ dµ(t )

z − t
+ r (z), dµ= µ̇dω[a,b],

with r a rational function and µ̇ a complex-valued Dini-continuous function on a real segment
[a, b] ⊂ (−1,1) which does not vanish, and whose argument is of bounded variation. Here ω[a,b]
stands the normalized arcsine distribution on [a, b].

1. INTRODUCTION

Best rational approximation of given degree to a holomorphic function, in the least squares
sense on the boundary of a disk included in the domain of analyticity, is a classical issue for which
early references are [22, 30, 26, 20, 17]. The interplay between complex and Fourier analysis
induced by the circular symmetry confers to such an approximation a natural character, and the
corresponding approximants provide one with nice examples of locally convergent sequences of
diagonal multipoint Padé interpolants. The problem can be recast as best rational approximation
of given degree in the Hardy space H 2 of the unit disk and also, upon reflecting the functions
involved across the unit circle, in the Hardy space of the complement of the disk which is the
framework we shall really work with.

Because of the natural isometry between Hardy spaces of the disk and the half-plane, that pre-
serves rationality and the degree [25, Ch. 8], the question can equivalently be stated as best rational
L2-approximation of given degree on the line to a function holomorphic in a half-plane.

Further motivation for this type of approximation stems from Control Theory and Signal Pro-
cessing. Indeed, the transfer-function of a stable linear control system belongs to the Hardy space
of the half-plane or of the complement of the disk, depending whether the setting is in continuous
or discrete time, and it is rational if the system is finite-dimensional. Moreover, by Parseval’s theo-
rem, the L2 norm on the line or the circle of this transfer function coincides with the norm of the
underlying convolution operator from L2[0,∞) to L∞[0,∞) in the time domain [19]. Further,
in a stochastic context, it coincides with the variance of the output when the input is white noise
[24]. Therefore approximating the transfer function by a rational function of degree n, in L2 of the
line or the circle, is tantamount to identify the best system of order n to model the initial system
with respect to the criteria just mentioned. Also, since any stationary regular stochastic process
is the output of a linear control system fed with white noise [29, 18], this approximation yields
the best ARMA-process to model the initial process while minimizing the variance of the error.
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A thorough discussion of such connections with System Theory, as well as additional references,
can be found in [2].

From the constructive viewpoint no algorithm is known to constructively solve the question
we raised, and from a computational perspective this is a typical non-convex minimization prob-
lem whose numerical solution is often hindered by the occurence of local minima. It is therefore
of major interest in practice to establish conditions on the function to be approximated that en-
sure uniqueness of a local minimum. This turns out to be difficult, like most uniqueness issues in
nonlinear approximation.

New ground for the subject was broken in [1], where a differential-topological method was
introduced to approach the uniqueness issue for critical points, i.e. stationary points of the ap-
proximation error. Uniqueness of a critical point implies uniqueness of a local minimum, but is a
stronger property which is better suited to analysis. In fact, the above-mentioned method rests on
the so-called index theorem [5] that provides us with a relation between the Morse indices of the
critical points, thereby reducing the proof of uniqueness, which is a global property, to checking
that each critical point has Morse index 0, which is a local issue. The latter is in turn equivalent to
each critical point being a non-degenerate local minimum.

This approach was taken in [12] to handle the case where the approximated function is of
Markov type, that is, the Cauchy transform of a positive measure on a real segment, when that
measure is supported within some absolute bounds. Subsequently, in [8], the property of being
a local minimum was connected to classical interpolation theory and the technique was applied
to prove asymptotic uniqueness of a critical point in best L2 rational approximation to e1/z/z on
the unit circle, as well as in best L2 rational approximation to generic holomorphic functions over
small circles; here, asymptotic uniqueness means uniqueness in degree n for all sufficiently large
n. The criterion derived in [8] for being a local minimum was further refined in [11], where it is
shown that asymptotic uniqueness of a critical point holds for Markov functions whose defining
measure satisfies the Szegő condition. The result is sharp in that the Szegő condition cannot be
omitted in general [10]. A general condition on the logarithmic derivative of the approximated
function was derived [3] but it only ensures uniqueness in degree 1. A criterion for best approx-
imation in degree n− 1 to a rational function of degree n can further be found in [9, Thm. 9.1],
based on fast geometric decay of the error in lower degree.

Altogether, these works indicate the fact, perhaps unexpected, that uniqueness of a critical point
in best L2 rational approximation is linked to a regular decrease of the error.

The present paper can be viewed as a sequel to [11]. Indeed, the latter reference expressed
hope that the techniques set up there could be adapted to handle more general Cauchy integrals
than Markov functions. Below, we take a step towards carrying out this program. Specifically, we
consider Cauchy transforms of complex measures that are absolutely continuous with respect to
the equilibrium distribution on a real segment [a, b]⊂ (−1,1). The density will be required to be
Dini-smooth and non-vanishing. In addition, it should admit an argument function of bounded
variation on [a, b]. Moreover, we handle with little extra-pain the case where a rational function
is added to such a Cauchy tranform.

For functions of this kind, we establish an analog to [11, Thm. 1.3], namely asymptotic unique-
ness of a critical point in best rational approximation for the L2-norm on the unit circle. This is
the first uniqueness result in degree greater than 1 for Cauchy integrals with complex densities,
more generally for non-rational functions without conjugate symmetry. In contrast, say, to [12,
Thm. 3], it is only fair to say that such a statement is not really constructive in that no estimate
is provided for the degree beyond which uniqueness prevails. However, considering our restricted
knowledge on uniqueness in non-linear complex approximation, our result sheds considerable
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light on the behaviour of best rational approximants to Cauchy transforms, and it is our hope that
suitable refinements of the technique will eventually produce effective bounds.

Our method of proof follows the same pattern as [11]. Namely, the index theorem is invoked
to reduce the question of uniqueness to whether each critical point is a non-degenerate local min-
imum. Next, a criterion for being a local minimum is set up, based on a comparison between the
error function generated by the critical point under examination and the error function attached
to a particular multipoint Padé interpolant of lower degree; we call it for short the comparison
criterion. Finally, the fact this criterion applies when the degree is sufficiently large depends on
strong asymptotic formulas for the error in rational interpolation to functions of the type we con-
sider, that were recently obtained in [15, 13, 31], and on a specific design of interpolation nodes
to build the particular multipoint Padé interpolant of lower degree that we need.

With respect to [11], however, two main differences arise. The first is that the comparison
criterion was set up there for conjugate-symmetric functions only, i.e. for those functions having
real Fourier coefficients. Because we now adress Cauchy transforms of complex densities on a
segment, we handle complex Fourier coefficients as well. Although the corresponding changes are
mostly mechanical, they have to be carried out thoroughly for they impinge on the computation
of the Hessian quadratic form and on the nondegeneracy thereof.

The second difference causes more serious difficulties. Indeed, the construction of the spe-
cial interpolant of lower degree needed to apply the comparison criterion requires rather precise
control on the poles of multipoint Padé interpolants to the approximated function. For Markov
functions, it is known that such poles are the zeros of certain orthogonal polynomials with respect
to a positive measure on the segment [a, b], therefore they lie on that segment. But for Cauchy
transforms of complex measures, the poles are the zeros of some non-Hermitian orthogonal poly-
nomial with respect to a complex measure on [a, b], and their behaviour does not lend itself to
analysis so easily. We resort here to the work in [4] on the geometry of non-Hermitian orthogonal
polynomials to overcome this difficulty, and this is where the boundedness of the variation of the
density’s argument becomes important.

Let us briefly indicate some generalizations of our results that were not included here. Firstly,
asymptotic uniqueness of a critical point extends to Cauchy transforms of absolutely continuous
measures whose density with respect to Lebesgue (rather than equilibrium) measure satisfies similar
assumptions, e.g. non-vanishing and Hölder-smoothness; in fact, densities with respect to any
Jacobi weight could be handled the same way under suitable regularity requirements. We did not
mention them, however, because such an extension depends on asymptotics for non-Hermitian
orthogonal polynomials with respect to this type of weight which are yet unpublished [14].

Secondly, finitely many zeros in the density would still be acceptable, provided they are of
power type with sufficiently small exponent. Developing the precise estimates would make the
paper heavier (compare [13, Thm. 4] and [31, Thm. 5]), so we felt better omitting this stronger
version.

The organization of the article is as follows. In Section 2 we present the rational approximation
problem under study and we state the main result of the paper, which is Theorem 1. Section 3
introduces the critical points in H 2-rational approximation and develops their interpolating prop-
erties; this part is adapted to complex Fourier coefficients from [8]. The index theorem and the
comparison criterion are expounded in section 4, paralleling the treatment for real Fourier coef-
ficients given in [11]. Section 5 recalls the necessary material on interpolation from [15, 13, 31],
which is needed to carry out the comparison between critical points and interpolants of lower
degree required in the comparison criterion. Finally, elaborating on [11], we prove Theorem 1 in
Section 6.
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2. NOTATION AND MAIN RESULTS

Let T be the unit circle and D the unit disk. We let L2 (resp. L∞) stand for the space of square-
integrable (resp. essentially bounded) measurable functions on T. Denote by H 2 the familiar
Hardy space of the unit disk, consisting of those L2-functions whose Fourier coefficients of strictly
negative index are zero. The space H 2 identifies with traces on T of those holomorphic functions
in D whose L2-means on circles centered at zero with radii less than 1 are uniformly bounded
above. In fact, any such function has non-tangential boundary values almost everywhere onT that
define a member of L2 from which the function can be recovered by means of a Cauchy integral
[21]. The space of bounded holomorphic functions on D is denoted by H∞ and is endowed with
the L∞ norm of the trace.

Let H̄ 2
0 be the orthogonal complement of H 2 in L2 with respect to the standard scalar product

(2.1) 〈 f , g 〉 :=
∫

T
f (τ)g (τ)

|dτ|
2π

, f , g ∈ L2.

The space H̄ 2
0 , in turn, identifies with traces of those holomorphic functions in C \D that vanish

at infinity and whose L2-means on circles centered at zero with radii greater then 1 are uniformly
bounded above. In what follows, we denote by ‖ · ‖2 the norm on L2, H 2, and H̄ 2

0 induced by
the scalar product (2.1). On one occasion, we shall refer to the Hardy space H̄ 2

0 (C \Dρ), which is
defined similarly except that D gets replaced by Dρ := {|z |<ρ} where ρ> 0.

Set Pn for the space of algebraic polynomials of degree at most n and Mn for the subset of
monic polynomials with exactly n zeros in D. Note that q ∈ Mn if and only if 1/q ∈ H̄ 2

0 and
1/q(z) ∼ z−n at infinity. From the differential viewpoint, we regard Pn as Cn+1 andMn as an
open subset of Cn , upon taking the coefficients as coordinates (except for the leading coefficient
inMn which is fixed to unity).

Define

(2.2) Rn :=

(

p(z)

q(z)
=

pn−1zn−1+ pn−2zn−2+ · · ·+ p0

zn + qn−1zn−1+ · · ·+ q0

: p ∈Pn−1, q ∈Mn

)

.

It is easy to check that Rn consists of those rational functions of degree at most n that belong to
H̄ 2

0 , and we endow it with the corresponding topology. Coordinatizing Pn−1 andMn as above,
it is straightforward to see that the canonical surjection J : Pn−1 ×Mn → Rn is smooth (i.e.,
infinitely differentiable) when viewed as a H̄ 2

0 -valued map. Note that J is not injective, due to
possible cancellation between p and q , but it is a local homeomorphism at every pair (p, q) such
that p, q are coprime.

We shall be concerned with the following problem.

Problem 1: Given f ∈ H̄ 2
0 and n ∈N, find r ∈Rn to minimize ‖ f − r‖2.

Let us point out two equivalent formulations of Problem 1 that account for early discussion
made in the introduction.

Firstly, it is redundant to assume that r lies in H̄ 2
0 , as is subsumed in the definition of Rn .

Indeed, by partial fraction expansion, a rational function of degree at most n in L2 can be written
as r1+ r2, where r1 ∈ H̄ 2

0 and r2 ∈H 2 have degree at most n. By orthogonality of H̄ 2
0 and H 2, we

get ‖ f − r‖2
2 = ‖ f − r1‖2

2+‖r2‖2
2 so that r1 is a better candidate approximant than r , showing that

Problem 1 is in fact equivalent to best rational approximation of given degree to f in L2.
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Secondly, composing with z 7→ 1/z, which is an L2-isometry mapping H̄ 2
0 onto zH 2 while

preserving rationality and the degree, Problem 1 transforms to best approximation in H 2 of func-
tions vanishing at the origin by rational functions of degree at most n that vanish at the origin as
well. However, by Parseval’s identity, any best rational approximant to g in H 2 has value g (0) at
0. Therefore Problem 1 is equivalent to

Problem 2: Given g ∈ H 2 and n ∈ N, find a rational r of degree at most n in H 2 to minimize
‖ f − r‖2.

Problem 1 is the one we shall work with, and we refer to it as the rational H̄ 2
0 -approximation

problem to f in degree n. It is well-known (see [3, Prop. 3.1] for a proof and further bibliography
on the subject) that the minimum is attained and that a minimizing r , called a best rational approx-
imant of degree n to f , lies in Rn \Rn−1 unless f ∈ Rn−1. Uniqueness of such an approximant
is a delicate matter. Generically, there is only one best approximant by a theorem of Stechkin on
Banach space approximation from approximately compact sets [16]. However, the proof is non-
constructive and does not allow us to determine which functions have a unique best approximant
and which functions do not. Moreover, from the computational viewpoint, the main interest lies
not so much with uniqueness of a best approximant, but rather with uniqueness of a local best
approximant for such places are all what a numerical search can usually spot. By definition, a local
best approximant is a function rl ∈Rn such that ‖ f − rl‖2 ≤ ‖ f − r‖2 for all r ∈Rn in some neigh-
borhood of rl . Like best approximants, local best approximants lie inRn \Rn−1 unless f ∈Rn−1
[3].

Still more general is the notion of a critical point, which is defined as follows. Fix f ∈ H̄ 2
0 and

put

(2.3)
Φ f ,n :Rn → [0,∞)

r 7→ ‖ f − r‖2
2.

A pair (p, q) ∈ Pn−1 ×Mn is called critical if all partial derivatives of Φ f ,n ◦ J vanish at (p, q).
Subsequently, a rational function rc ∈ Rn is said to be a critical point of Φ f ,n if there is a critical
pair (pc , qc ) such that rc = pc/qc . Critical points fall into two classes: they are termed irreducible
if they have exact degree n, and reducible if they have degree strictly less than n. Note that rc is
irreducible if and only if pc and qc are coprime in some (hence any) representation rc = pc/qc .
Clearly a local best approximant is a particular instance of a critical point, and it is irreducible
unless f ∈Rn−1.

In the present work, we dwell on a differential topological approach to uniqueness of a critical
point introduced in [1] and further developed in [5, 2]. In this approach, global uniqueness is
deduced from local analysis of the map Φ f ,n . Specifically, to conclude there is only one critical
point, which is therefore the unique local minimum (and a fortiori the global minimum as well),
one needs to show that each critical point is irreducible, does not interpolate the approximated
function on T, and is a nondegenerate local minimum; here nondegenerate means that the second
derivative is a nonsingular quadratic form. This method turns out to be fruitful when studying
rational approximation to Cauchy transforms of measures supported in (−1,1), i.e., functions of
the form

(2.4) fµ(z) :=
∫ dµ(t )

z − t
, supp(µ)⊂ (−1,1).

The first result in this direction was obtained in [12, Thm. 3] when fµ is a Markov function,
meaning that µ in (2.4) is a positive measure. It goes as follows.
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Theorem A. Let µ be a positive measure supported on [a, b]⊂ (−1,1) where a and b satisfy b−a ≤p
2
�

1−max
�

a2, b 2	�. Assume further that µ has at least n points of increase, i.e., fµ /∈Rn−1. Then
there is a unique critical point in rational H̄ 2

0 -approximation of degree n to fµ.

Removing the restriction on the size of the support makes the situation more difficult. The
following theorem [11, Thm. 1.3] asserts that rational approximants are asymptotically unique for
Markov functions whose defining measure is sufficiently smooth. Hereafter, we denote by ω[a,b]

the normalized arcsine distribution on [a, b] given by dω[a,b](t ) = d t/(π
p

(t − a)(b − t )).

Theorem B. Let µ be a positive measure supported on [a, b] ⊂ (−1,1) and let us write dµ =
µ′d t + dµs , where µs is singular and µ′ is integrable on [a, b]. If µ satisfies the Szegő condition:
∫

logµ′dω[a,b] >−∞, then there is a unique critical point in rational H̄ 2
0 -approximation of degree n

to fµ for all n large enough.

As an additional piece of information, the following negative result [10, Thm. 5] shows that
the asymptotic nature of the previous theorem is indispensable.

Theorem C. For each n0 ∈N there exists a positive measure µ satisfying the Szegő condition such that
for each odd n between 1 and n0 there exist at least two different best rational approximants of degree
n to fµ.

Our goal is to extend Theorem B to a class of complex measures which is made precise in the
definition below. Recall that a function h with modulus of continuity ωh is said to be Dini-
continuous ifωh (t )/t is integrable on [0,ε] for some (hence any) ε > 0.

Definition (Class M). A measure µ is said to belong to the class M if supp(µ) ⊂ (−1,1) is an inter-
val, say [a, b], and dµ = µ̇dω[a,b], where µ̇ is a Dini-continuous non-vanishing function with an
argument of bounded variation on [a, b].

Observe that we deal here with µ̇, the Radon-Nikodym derivative of µ with respect to the arc-
sine distribution, rather then withµ′, the Radon-Nikodym derivative with respect to the Lebesgue
measure. Our main result is:

Theorem 1. Let f := fµ + r , where µ ∈M and r ∈ Rm has no poles on supp(µ). Then there is a
unique critical point in rational H̄ 2

0 -approximation of degree n to f for all n large enough.

Before we can prove the theorem, we must study in greater detail the structure of critical points,
which is the object of Sections 3 and 4 to come.

3. CRITICAL POINTS

The following theory was developed in [5, 6, 7, 8] when the function f to be approximated is
conjugate-symmetric, i.e., f (z̄) = f (z), and the rational approximants are seeked to be conjugate-
symmetric as well. In other words, when a function with real Fourier-Taylor expansion at infinity
gets approximated by a rational function with real coefficients. Surprisingly enough, this is not
subsumed in Problem 1 in that conjugate-symmetric functions need not have a best approximant
out ofRn which is conjugate-symmetric. For Markov functions, though, it is indeed the case [4].
Below, we develop an analogous theory for Problem 1, that is, without conjugate-symmetry as-
sumptions. This involves only technical modifications of a rather mechanical nature.

Hereafter, for any f ∈ L2, we set f σ (z) := (1/z) f (1/z̄). Clearly, f → f σ is an isometric
involution mapping H 2 onto H̄ 2

0 and vice-versa. Further, for any p ∈ Pk , we set p̌(z) := p(1/z̄)
and define its reciprocal polynomial (in Pk ) to be ep(z) := zk p̌(z) = zk p(1/z̄). Note that ep has
the same modulus as p on T and its zeros are reflected from those of p across T.
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3.1. Critical Points as Orthogonal Projections. Fix f ∈H 2
0 and let Φn :=Φ f ,n be given by (2.3).

It will be convenient to use complex partial derivatives with respect to p j , qk , p̄ j , q̄k , where, for
0 ≤ j , k ≤ n − 1, the symbols pk and qk refer to the coefficients of p ∈ Pn−1 and q ∈Mn as in
equation (2.2). By complex derivatives we mean the standard Wirtinger operators, e.g., if p j =
x j + i y j is the decomposition into real and imaginary part then ∂ /∂ p j = (∂ /∂ x j − i∂ /∂ y j )/2
and ∂ /∂ p̄ j = (∂ /∂ x j + i∂ /∂ y j )/2. The standard rules for derivation are still valid, obviously

∂ g (p j )/∂ p̄ j = 0 if g is holomorphic, and it is straightforward that ∂ h/∂ p j = ∂ h̄/∂ p̄ j for any
function h. In particular, since Φn is real,

(3.1)
∂ Φn

∂ p̄ j
=

 

∂ Φn

∂ p j

!

and
∂ Φn

∂ q̄k
=
�

∂ Φn

∂ qk

�

.

Thus, writing Φn ◦ J (p, q) = 〈 f − p/q , f − p/q〉 and differentiating under the integral sign, we
obtain that a critical pair (pc , qc ) of Φn ◦ J is characterized by the relations

∂ Φn

∂ p j

�

pc , qc
�

=

*

z j

qc
, f −

pc

qc

+

= 0, j ∈ {0, . . . , n− 1},(3.2)

∂ Φn

∂ qk

�

pc , qc
�

= −
*

zk pc

q2
c

, f −
pc

qc

+

= 0, k ∈ {0, . . . , n− 1}.(3.3)

Equation (3.2) means that pc/qc is the orthogonal projection of f onto Vqc
, where for any q ∈Mn

we let Vq := {p/q : p ∈Pn−1} to be the n-dimensional linear subspace of H̄ 2
0 consisting of rational

functions with denominator q . In what follows, we consistently denote the orthogonal projection
of f onto Vq by Lq/q , where Lq ∈Pn−1 is uniquely characterized by the fact that

(3.4)

®

f −
Lq

q
,

p

q

¸

= 0 for any p ∈Pn−1.

Taking equation (3.3) into account, we conclude from what precedes that critical points of Φn are
preciselyRn -functions of the form Lqc

/qc , where qc ∈Mn satisfies

(3.5)

*

zk Lqc

qc
2

, f −
Lqc

qc

+

= 0, k ∈ {0, . . . , n− 1}.

Now, it is appearent from (3.4) that Lq is a smooth function of q , therefore we define a smooth
map Ψn onMn by setting

(3.6)
Ψn =Ψ f ,n :Mn → [0,∞)

q 7→ ‖ f − Lq/q‖2
2

.

By construction, Φn attains a local minimum at r = Lql
/ql if and only if Ψn attains a local mini-

mum at ql , and the assumed values are the same. More generally, r ∈ Rn is a critical point of Φn
if and only if r = Lqc

/qc , where qc ∈Mn , is a critical point of Ψn . This is readily checked upon
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comparing (3.5) with the result of the following computation:

∂ Ψn

∂ qk
(q) =

*

(∂ Lq/∂ qk )q − zk Lq

q2
, f −

Lq

q

+

+

*

f −
Lq

q
,−
(∂ Lq/∂ q̄k )

q

+

= −
*

zk Lq

q2
, f −

Lq

q

+

, k ∈ {0, . . . , n− 1},(3.7)

where we applied (3.4) using that the derivatives of Lq lie in Pn−1 and that ∂ q/∂ q̄k = 0. For
simplicity, we drop from now on the subscript “c” we used so far as a mnemonic for “critical”.
Altogether we proved the following result:

Proposition 1. For f ∈ H̄ 2
0 , let Φn and Ψn be defined by (2.3) and (3.6), respectively. Then r ∈Rn is

a critical point of Φn if and only if r = Lq/q and q ∈Mn is a critical point of Ψn .

In view of Proposition 1, we shall extend toΨn the terminology introduced for Φn and say that
a critical point q ∈Mn of Ψn is irreducible if Lq and q are coprime.

3.2. Interpolation Properties of Critical Points. If we denote with a superscript “⊥” the or-
thogonal complement in H̄ 2

0 , it is elementary to check that

(3.8) V ⊥q =
¨

eq

q
u : u ∈ H̄ 2

0

«

, H̄ 2
0 =Vq ⊕V ⊥q .

Hence, by (3.4), there exists uq = u f ,q ∈ H̄ 2
0 such that

(3.9) f q − Lq = eq uq .

Relation (3.9) means that Lq/q interpolates f at the reflections of the zeros of q across T. Assume
now that q ∈Mn is a critical point of Ψn . Then, combining (3.9) and (3.7), we derive that

(3.10) 0=
® pLq

q2
, f −

Lq

q

¸

=

*

pLq

q2
,
eq uq

q

+

=
∫

T

p(τ)

q(τ)

(Lq uσq )(τ)

eq(τ)

dτ

2πi
, p ∈Pn−1.

Since Lq uσq /eq ∈ H 2, we see by letting p range over elementary divisors of q and applying the
residue formula that (3.10) holds if and only if each zero of q is a zero of Lq uσq of the same multi-

plicity or higher. That is, q is a critical point of Ψn if and only if q divides Lq uσq in H 2.
Let d ∈ Mk be the monic g.c.d. of Lq and q , with 0 ≤ k ≤ n − 1. Writing Lq = d p∗ and

q = d q∗, where p∗ and q∗ are coprime, we deduce that q∗ divides uσq in H 2 or equivalently that

uq = q̌∗h for some h ∈ H̄ 2
0 . Besides, it follows from (3.4), applied with p = d v and v ∈ Pn−k−1,

that p∗ = Lq∗ . Therefore, upon dividing (3.9) by d , we get

(3.11) f q∗− Lq∗ =
eqq̌∗

d
h,

implying that uq∗ = ed q̌∗h/d . In particular, q , thus a fortiori q∗, divides uσ
q∗

in H 2, whence q∗ is
critical forΨn−k by what we said before. Finally, dividing (3.11) by q∗ and taking into account the
definition of the reciprocal polynomial, we find that we established the following result.
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Proposition 2. Let q be a critical point of Ψn and d ∈ Mk be the monic g.c.d. of Lq and q with
0 ≤ k ≤ n − 1. Then q∗ = q/d ∈ Mn−k is an irreducible critical point of Ψn−k , and Lq∗/q∗

interpolates f at the zeros of q̌∗
2
ď/z in Hermite’s sense on C \ D, that is, counting multiplicities

including at infinity.

The converse is equally easy: if q∗ is an irreducible critical point of Ψn−k , and Lq∗/q∗ interpo-

lates f at the zeros of q̌∗
2
ď/z in Hermite’s sense for some d ∈Mk , then q = q∗d is a critical point

of ϕn and d is the monic g.c.d. of q and Lq . This we shall not need.
It is immediately seen from Proposition 2 that a critical point of Φ f ,n must interpolate f with

order 2 at the reflections of its poles across T; for best approximants, this property is classical
[22, 26].

3.3. Smooth Extension of Ψn . One of the advantages of Ψn , as compared to Φn , is that its do-
main of definition can be compactified, which is essential to rely on methods from differential
topology. To do that, however, we need to place an additional requirement on f .

Let us denote by H̄0 the subset of H̄ 2
0 comprised of functions that extend holomorphically

across T. Hereafter we will suppose that f ∈ H̄0 and pick ρ= ρ( f )< 1 such that f is holomorphic
in {|z |>ρ− ε} for some ε > 0. In particular, f is holomorphic across Tρ := {|z |= ρ}.

Denote by M n and M 1/ρ
n respectively the closure of Mn and the set of monic polynomials

with zeros in D1/ρ := {|z | < 1/ρ}; as usual, we regard these as subsets of Cn when coordinatized
by their coefficients except the leading one. This wayM 1/ρ

n becomes an open neighborhood of

the compact setM n , which is easily seen to consist of polynomials with zeros in D. Also, q lies
on the boundary ∂M n =M n \Mn if and only if it is a monic polynomial of degree n having at
least one zero of modulus 1 and no zero of modulus strictly greater then 1.

For q ∈Mn , since q/eq is unimodular on T, it follows from (3.9) that

(3.12) Ψn(q) =











f −
Lq

q











2

2

= ‖uq‖
2
2 =
∫

T
(uq uσq )(τ)

dτ

2πi
.

In addition, taking into account the Cauchy formula, the analyticity of Lq/eq in D, the analyticity
of f across Tρ, and the definition of the σ -operation, we obtain

uq (z) = u f ,q (z) =
1

2πi

∫

Tρ

f (τ)q(τ)
eq(τ)

dτ

z −τ
, |z |>ρ,(3.13)

uσq (z) =
1

2πi

∫

T1/ρ

f σ (τ)eq(τ)

q(τ)

dτ

τ− z
, |z |< 1/ρ(3.14)

Lq (z) = L f ,q (z) =
∫

Tρ

f (τ)
eq(τ)

q(z)eq(τ)− eq(z)q(τ)
z −τ

dτ

2πi
, |z |>ρ.(3.15)

Now, if q ∈M 1/ρ
n , then eq has all its zeros of modulus greater then ρ, therefore (3.15) and (3.13) are

well-defined and smooth with respect to the coefficients of q , with values inPn−1 and H̄ 2
0 (C\Dρ)

respectively. Because evaluation at τ ∈ T is uniformly bounded with respect to τ on H̄ 2
0 (C \Dρ),

Ψn in turn extends smoothly to M 1/ρ
n in view of (3.12). Moreover, differentiating under the
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integral sign, we obtain

(3.16)
∂ Ψn

∂ q j
(q) =

∫

T







∂ uq

∂ q j
(τ)uσq (τ)+ uq (τ)

∂ uσq
∂ q j
(τ)







dτ

2πi
,

with
∂ uq

∂ q j
(z) =

1

2πi

∫

Tρ

τ j f (τ)
eq(τ)

dτ

z −τ
, |z |>ρ,(3.17)

∂ uσq
∂ q j
(z) =

1

2πi

∫

T1/ρ

−τ j f σ (τ)eq(τ)

q2(τ)

dτ

τ− z
, |z |< 1/ρ,(3.18)

for j = 0, . . . , n− 1. To recap, we have proved:

Proposition 3. Let f ∈ H̄0. Then Ψn extends to a smooth function in some neighborhood of M n

and so do Lq and uq with values inPn−1 and H̄ 2
0 (C\Dρ) respectively. In addition, (3.16), (3.17), and

(3.18) hold.

We shall continue to denote the extension whose existence is asserted in Proposition 3 byΨ f ,n ,
or simply Ψn if f is understood from the context.

3.4. Critical points on the boundary. Having characterized the critical points of Ψn onMn in
Section 3.2, we need now to describe the critical points that it may have on ∂M n . We shall begin
with the case where all the roots of the latter lie on T.

Let f ∈ H̄0 and assume v(z) = (z − ξ )k , ξ ∈T, is a critical point of Ψk . It immediately follows
from (3.13), the Cauchy formula, and the definition of v that

(3.19) ev = e iθv, where e iθ := (−ξ̄ )k , Lv ≡ 0, and uv = e−iθ f .

In this case, equations (3.17) and (3.18) become

∂ uv

∂ q j
(z) =

e−iθ

2πi

∫

Tρ

τ j f (τ)

v(τ)

dτ

z −τ
, |z |>ρ,

∂ uσv
∂ q j
(z) =

−e iθ

2πi

∫

T1/ρ

τ j f σ (τ)

v(τ)

dτ

τ− z
, |z |< 1/ρ.

Plugging these expressions into (3.16), we obtain

0=
∂ Ψk

∂ q j
(v) =

∫

∂ Aρ

τ j ( f f σ )(τ)

v(τ)

dτ

2πi
, j ∈ {0, . . . , k − 1},

where Aρ := {ρ < |z | < 1/ρ} with positively oriented boundary ∂ Aρ, and we used the Fubini-
Tonelli theorem. By taking linear combinations of the previous equations, we deduce from the
Cauchy formula that

0=
∫

∂ Aρ

( f f σ )(τ)

(τ− ξ )l
dτ

2πi
=
( f f σ )(l−1)(ξ )

(l − 1)!
, l ∈ {1, . . . , k}.

Hence v divides f f σ , when viewed as a holomorphic function in Aρ. Consequently, since ζ ∈ T
is a zero of f if and only if it is a zero f σ , we get that f vanishes at ξ with multiplicity b(k+1)/2c,
where bxc is the integer part of x.
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Next we consider the case where q is a critical point of Ψn having exactly one root on T: q = vq∗

with v(z) = (z − ξ )k , ξ ∈ T, and q∗ ∈ Mn−k . Denote by Q and V some neighborhoods of q∗

and v, inM 1/ρ
n−k

andM 1/ρ
k

respectively, taking them so small that each χ ∈Q is coprime to each
ν ∈ V ; this is possible since q∗ and v are coprime. Then, (χ , ν) 7→ χ ν is a diffeomorphism from
Q×V onto a neighborhood of q inM 1/ρ

n . In particular, the fact that q is a critical point of Ψn
means that q∗ is a critical point of Θ and v a critical point of Ξ, where

Θ :Q → [0,∞)
χ 7→ Ψn(vχ )

and Ξ : V → [0,∞)
ν 7→ Ψn(νq

∗).

Since Ývχ = e iθv eχ , where e iθ is as in (3.19), it follows from (3.13) that uvχ = e−iθuχ , and therefore
by (3.12) that Θ = Ψn−k|Q , implying that q∗ is a critical point of Ψn−k . In another connection,

shrinking V if necessary, we may assume there exists % > ρ such that V ⊂ M 1/%
k

. Put for sim-
plicity w := uq∗ = u f ,q∗ , which is clearly an element of H̄0 by (3.13). Computing with the latter
formula yields for any ν ∈ V that

uw,ν (z) =
1

2πi

∫

T%

(wν)(τ)
eν(τ)

dτ

z −τ
=

1

2πi

∫

T%

1

2πi

∫

Tρ

( f q∗)(t )
eq∗(t )

d t

τ− t

ν(τ)
eν(τ)

dτ

z −τ

=
1

2πi

∫

Tρ

( f νq∗)(t )

ß(νq∗)(t )

d t

z − t
= u f ,νq∗(z), |z |>%,

where we used the Fubini-Tonelli theorem and the Cauchy integral formula. Thus, we derive from
(3.12) that

Ξ(ν) = Ψ f ,n(νq
∗) = ‖u f ,νq∗‖

2
2 = ‖uw,ν‖

2
2 =Ψw,k (ν), ν ∈ V .

As v is a critical point of Ξ, we see that it is also critical for Ψw,k , so by the case previously
considered we conclude that w = u f ,q∗ vanishes at ξ with multiplicity b(k+1)/2c. By (3.9), this is
equivalent to the fact that Lq∗/q∗ = Lq/q interpolates f at the zeros of d (z) = (z − ξ )b(k+1)/2c in
Hermite’s sense.

Finally, the case where q is arbitrarily located on ∂M n is handled the same way upon writing
q = q∗v1 . . . v`, where v j (z) = (z−ξ j )

k j for some ξ j ∈T, and introducing a product neighborhood
Q×V1 × . . .×V` of q∗v1 . . . v` to proceed with the above analysis on each of the corresponding
maps Θ, Ξ1, . . . ,Ξ`. Thus, taking into account Proposition 2 and the fact that v j and v̌ j have the

same zeros in C, we obtain:

Proposition 4. Let f ∈ H̄0 and q = vq∗, where v =
∏

(z − ξ j )
k j , ξ j ∈ T, deg(v) = k, and

q∗ ∈ Mn−k . Assume that q is a critical point of Ψn = Ψ f ,n . Then q∗ is a critical point of Ψn−k .
Moreover, if we write q∗ = q1d1 where d1 is the monic g.c.d. of Lq∗ and q∗, then Lq∗/q∗ = Lq/q

interpolates f at the zeros of q̌1
2 ď1 ď/z in Hermite’s sense on C\D, where d (z) =

∏

(z−ξ j )
b(k j+1)/2c.

Again the converse of Proposition 4 is true, namely the properties of q∗ and v asserted there
imply that q = q∗v is critical for Ψn . This is easy to check by reversing the previous arguments,
but we shall not use it.

4. A CRITERION FOR LOCAL MINIMA

Let f ∈ H̄0 and Ψn = Ψ f ,n be the extended map obtained in Proposition 3, based on (3.12)

and (3.13). The latter is a smooth real-valued function, defined on an open neighborhood ofM n
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identified with a subset of Cn ∼ R2n by taking as coordinates all coefficients but the leading one.
By definition, a critical point of Ψn is a member of M n at which the gradient ∇Ψn vanishes.
This notion is of course independent of which coordinates are used, and so is the signature of the
second derivative, the so called Hessian quadratic form1. A critical point q is called nondegenerate
if the Hessian form is nonsingular at q , and then the number of negative eigenvalues of this form
is called the Morse index of q denoted by M (q). Observe that nondegenerate critical points are
necessarily isolated.

From first principles of differential topology [23] it is known that (−1)M (q), which is called the
index of the nondegenerate critical point q , is equal to the so-called Brouwer degree of the vector
field ∇Ψn/‖∇Ψn‖e on any sufficiently small sphere centered at q , where ‖ · ‖e is the Euclidean
norm in R2n .

One can show that ∂M n is a compact manifold2, so if Ψn has no critical points on ∂M n
and only nondegenerate critical points inMn , then the sum of the indices of the critical points is
equal to the Brouwer degree of ∇Ψn/‖∇Ψn‖e on ∂M n . The surprising fact is that the latter is
independent of f (see [1], [5, Sec. 5], and [2, Thm. 2]) and is actually equal to 1. Altogether, the
following analogue of the Poincaré-Hopf theorem holds in the present setting.

The Index Theorem. Let f ∈ H̄0 and C f ,n be the set of the critical points of Ψ f ,n inM n . Assume

that all members of C f ,n are nondegenerate, and that C f ,n ∩ ∂M n = ;. Then
∑

q∈C f ,n

(−1)M (q) = 1.

To us, the value of the index theorem is that if can show every critical point is a nondegenerate
local minimum and none of them lies on ∂Mn , then the critical point is unique. To see this,
observe that local minima have Morse index 0 and therefore index 1.

To make this criterion effective, we need now to analyze the Morse index of a critical point,
starting with the computation of the Hessian quadratic form.

Let q be a critical point of Ψn . It is easy to check that the Hessian quadratic form of Ψn at q is
given by

(4.1) Q(v) = 2Re







n−1
∑

j=0

n−1
∑

k=0

 

v j vk

∂ 2Ψn

∂ qk∂ q j
(q)+ v j v̄k

∂ 2Ψn

∂ q̄k∂ q j
(q)

!






,

where we have set v(z) =
∑n−1

j=0 v j z j for a generic element of Pn−1, the latter being naturally
identified with the tangent space toMn at q , and we continue to consider q j , q̄ j , j ∈ {0, . . . , n−1},
as coordinates onMn . Clearly, q is a nondegenerate local minimum if and only if Q is positive
definite, i.e.,

(4.2) Q(v)> 0 for v ∈Pn−1, v 6= 0.

Let us assume that q is irreducible, hence q ∈ Mn by Proposition 4. To derive conditions that
ensure the validity of (4.2), we commence by reworking the expression forQ.

1This is not true at non-critical points.
2We skim through technical difficulties here, because this manifold is not smooth; the interested reader should consult

the references we give.
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Any polynomial in P2n−1 can be written p1Lq + p2q for suitable p1, p2 ∈ Mn−1, due to the
coprimeness of Lq and q . Therefore

(4.3)

®

p

q2
, f −

Lq

q

¸

= 0 for any p ∈P2n−1

by (3.4) and (3.7). In view of (4.3), differentiating (3.4) with respect to q j and evaluating at q leads
us to

(4.4)

*

∂

∂ q j

�Lq

q

�

,
p

q

+

= 0, j ∈ {0, . . . , n− 1}, p ∈Pn−1,

which means that ∂ (Lq/q)/∂ q j belongs to V ⊥q . Hence, we get from (3.8) that

(4.5)
∂

∂ q j

�Lq

q

�

=
q∂ Lq/∂ q j − z j Lq

q2
=:
eqν j

q2
, ν j ∈Pn−1, j ∈ {0, . . . , n− 1}.

As Lq and q are coprime, the polynomials ν j are linearly independent by construction, thus we
establish a one-to-one linear correspondence onPn−1 by setting

(4.6) v(z) =
n−1
∑

j=0

v j z j ↔ ν(z) =−
n−1
∑

j=0

v j ν j (z).

Moreover, from Proposition 2 where d = 1 and q∗ = q , we can write (compare (3.11))

(4.7) f −
Lq

q
=
eqq̌

q
wσ

q for some wq ∈H 2.

Note that wσ
q ∈ H̄0 since f does, hence wq is holomorphic across T. Now, it follows from (3.7)

and (3.1) that

∂ 2Ψn

∂ q̄k∂ q j
(q) = −

*

∂ 2

∂ q̄k∂ q j

�Lq

q

�

, f −
Lq

q

+

+

*

∂

∂ q j

�Lq

q

�

,
∂

∂ qk

�Lq

q

�
+

=

*

eqν j

q2
,
eqνk
q2

+

=
®

ν j

q
,
νk
q

¸

(4.8)

by (4.3), (4.5), and the fact that eq/q is unimodular on T. Furthermore

∂ 2Ψn

∂ qk∂ q j
(q) = −

*

∂ 2

∂ qk∂ q j

�Lq

q

�

, f −
Lq

q

+

+

*

∂

∂ q j

�Lq

q

�

,
∂ Lq/∂ q̄ j

q

+

= −
*

∂ 2

∂ qk∂ q j

�Lq

q

�

,
eqq̌

q
wq

+

by (4.4) and (4.7). Now, a simple computation using (4.5) yields

∂ 2

∂ qk∂ q j

�Lq

q

�

=
q(∂ 2Lq/∂ qk∂ q j )− zk (∂ Lq/∂ q j )+ z j (∂ Lq/∂ qk )

q2
− 2z j eqνk

q3
,
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and since the first fraction on the above right-hand side belongs toP2n−1/q , we deduce from (4.4)
and what precedes that

(4.9)
∂ 2Ψn

∂ qk∂ q j
(q) = 2

*

z j
eqνk

q3
,
eqq̌

q
wσ

q

+

= 2

*

z j νk
q

, wσ
q

+

,

since eq/q is unimodular while q̌ = q on T. So, we get from (4.8), (4.9), and (4.6) that

n−1
∑

j=0

n−1
∑

k=0

v j vk

∂ 2Ψn

∂ qk∂ q j
(q) =−2

®

vν

q
, wσ

q

¸

=−2

®

ν

q
, (vwq )

σ

¸

and
n−1
∑

j=0

n−1
∑

k=0

v j v̄k

∂ 2Ψn

∂ q̄k∂ q j
(q) =

®

ν

q
,
ν

q

¸

=











ν

q











2

2

.

Therefore, in view of (4.1) the quadratic formQ/2 can be rewritten as

(4.10)
1

2
Q(v) =











ν

q











2

2

− 2Re

®

ν

q
, (vwq )

σ

¸

=











ν

q











2

2

− 2Re

®�

ν

q

�σ

, vwq

¸

.

To manage the above expression, we assume that Lq/q does not interpolate f on T, i.e. that
wq has no zeros there, and we let Q ∈Ml have the same zeros as wq in D, counting multiplicities.

Thus we can write wq = oq Q/ eQ, where oq is holomorphic and zero-free on a neighborhood of

D, while |oq |= |wq | on T since Q/ eQ is unimodular there3. Consider now the Hankel operator Γ,
with symbol sq := Lq/(oq q eq), i.e.

Γ : H 2 → H̄ 2
0

u 7→ P−
�

sq u
�

,

where P− is the orthogonal projection from L2 onto H̄ 2
0 . Observe that Γ is well defined because sq

is bounded on T, and since the latter is meromorphic in D with poles at the zeros of q , counting
multiplicities. It is elementary [27] that Γ(H 2) =Vq , that KerΓ= (q/eq)H 2, and that Γ : V

eq →Vq
is an isomorphism, where V

eq :=Pn−1/eq is readily seen to be the orthogonal complement of KerΓ
in H 2. Thus, there exists an operator Γ# : Vq → V

eq , which is inverse to Γ|V
eq
. To evaluate Γ#,

observe from (4.5) that

Γ(voq ) = P−

�vLq

q eq

�

=
n−1
∑

j=0

v j P−

 

z j Lq

q eq

!

=
n−1
∑

j=0

v j P−

 

q(∂ Lq/∂ q j )− eqν j

q eq

!

=
n−1
∑

j=0

v j P−

 

−eqν j

q eq

!

= P−

�

ν

q

�

=
ν

q
,

where we used that (∂ Lq/∂ q j )/eq ∈H 2 and that ν/q ∈ H̄ 2
0 . Hence we may write

(4.11) Γ#

�

ν

q

�

= voq + u, with u ∈
q

eq
H 2 =KerΓ,

3The function oq is none but the outer factor of wq in H 2, see [21, Thm. 2.8].
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and since wq/oq ∈H∞ it follows that uwq/oq ∈KerΓ as well, entailing by (4.10) and (4.11) that

1

2
Q(v) =











ν

q











2

2

− 2Re

*
�

ν

q

�σ

,
wq

oq
Γ#

�

ν

q

�
+

because (ν/q)σ ∈V
eq = (KerΓ)⊥. Altogether, we see that

1

2
Q(v)≥











ν

q











2

2

− 2

�

�

�

�

�

*
�

ν

q

�σ

,
wq

oq
Γ#

�

ν

q

�
+�

�

�

�

�

≥
�

1− 2‖Γ#‖
�











ν

q











2

2

by the Schwarz inequality and since |wq/oq |= 1 on T while the σ operation preserves the norm.
The inequalities above imply thatQ is positive definite as soon as ‖Γ#‖< 1/2. This last inequality
is equivalent to saying that 2 is strictly less than the smallest singular value of Γ|Vq

, which is also

the n-th singular value of Γ since V
eq has dimension n and is the orthogonal complement of KerΓ

in H 2. By the Adamjan-Arov-Krein theorem [27], the singular value in question is equal to the
error in L∞-best approximation to sq from H∞n−1, where H∞n−1 stands for the set of functions of the
form h/χ where h ∈H∞ and χ ∈Mn−1. Let us indicate this approximation number by σn−1:

σn−1 := inf
g∈H∞n−1





sq − g






L∞
.

As sq is holomorphic on a neighborhood of D, it follows from the Adamjan-Arov-Krein theory
that the infimum is uniquely attained at some gn−1 ∈ H∞n−1 which is holomorphic on a neighbor-

hood of T, that |sq − gn−1|(ξ ) = σn−1 for all ξ ∈T, and that wT
�

sq − gn−1

�

≤−2n+ 1 as soon as
σn−1 > 0, where wT stands for the usual winding number of a non-vanishing continuous function
on T.

We will appeal to a de la Vallée-Poussin principle for this type of approximation, to the effect
that

(4.12) σn−1 ≥ inf
T

�

�

�sq − g
�

�

� ,

whenever g ∈H∞n−1 is such that

wT
�

sq − g
�

≤ 1− 2n.

This principle is easily deduced from the Rouché theorem, for if (4.12) did not hold then the
inequality

|(gn−1− g )− (sq − g )|= |gn−1− sq |= σn−1 < |sq − g |

would imply that wT(gn−1− g ) =wT(sq− g )≤ 1−2n, which is impossible unless gn−1 = g because
gn−1− g is meromorphic with at most 2n− 2 poles in D.

Hence, with our assumptions, that q is an irreducible critical point and that f − Lq/q has no
zero on T, we find thatQ will be positive definite if there exists Πq ∈Rn−1 such that

(4.13) 2| f − Lq/q |< |Πq − Lq/q | on T and wT( f −Πq )≤ 1− 2n.

Indeed, in this case, we will get

(4.14) 2<

�

�

�

�

�

�

Lq/q −Πq

eqq̌wσ
q /q

�

�

�

�

�

�

=

�

�

�

�

�

Lq

oq q eq
−
Πq

eqoq

�

�

�

�

�

=

�

�

�

�

�

sq −
Πq

eqoq

�

�

�

�

�

on T,
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because |q̌/q | ≡ 1 and |wσ
q | ≡ |wq | ≡ |oq | on T. Moreover, it follows from (4.13) and the triangle

inequality that | f − Lq/q |< |Πq − f |, and therefore
�

�

�(Lq/q −Πq )− ( f −Πq )
�

�

�<
�

�

� f −Πq

�

�

�

so that wT(Lq/q −Πq ) =wT( f −Πq ) by Rouché’s theorem. Consequently

wT

 

sq −
Πq

eqoq

!

=wT

 

Lq/q −Πq

oq eq

!

=wT
�

Lq/q −Πq

�

=wT( f −Πq ),

where we used that oq eq does not vanish on D. So we see that Πq/eqoq can be used as g in (4.12)
to bound σn−1 from below by a quantity which, by (4.14), is strictly bigger than 2. Altogether,
rewriting (4.13) in the equivalent form (4.15) below, we proved:

Theorem 2 (Comparison Criterion). Let f ∈ H̄0 and q ∈ Mn be an irreducible critical point of
Ψ f ,n such that f − Lq/q does not vanish on T. Then q is a nondegenerate local minimum as soon as
there exists Πq ∈Rn−1 satisfying

(4.15) 2<

�

�

�

�

�

1−
f −Πq

f − Lq/q

�

�

�

�

�

on T and wT( f −Πq ) = 1− 2n.

In order to use this criterion, we need an appraisal of the error in interpolation to f by members
of Rn and Rn−1. In the next section, we gather the necessary estimates for the class of functions
introduced in Theorem 1 after the works [13, 31].

5. ERROR IN RATIONAL INTERPOLATION

Let us recall the notion of a diagonal multipoint Padé approximant. Conceptually, a diagonal
(multipoint) Padé approximant to a function g holomorphic in a domain Ω ⊂ C, is a rational
function of type (n, n)4 that interpolates g in a prescribed system of 2n+ 1 points of Ω, counting
multiplicities. However, such a definition may not work and it is best to adopt a linearized one
as follows. Without loss of generality, we normalize one interpolation point to be infinity and
assume that g (∞) = 0. The remaining 2n interpolation points, finite or infinite, form a set I2n
accounting for multiplicities with repetition. Let Q2n be a polynomial vanishing exactly at the
finite points of I2n . Then:

Definition (Padé Approximant). The n-th diagonal (multipoint) Padé approximant to g associated
with I2n is the rational function Πn = pn/`n satisfying:

• deg pn ≤ n, deg`n ≤ n, and `n 6≡ 0;
•
�

`n(z)g (z)− pn(z)
�

/Q2n(z) is analytic in Ω;
•
�

`n(z)g (z)− pn(z)
�

/Q2n(z) =O
�

1/zn+1� as z→∞.

The conditions for pn and `n amount to solving a system of 2n+ 1 homogeneous linear equa-
tions with 2n+2 unknown coefficients, and clearly no solution can be such that `n ≡ 0. Moreover
it is plain to see that all pairs (pn ,`n) define the same rational function pn/`n , thus a Padé approxi-
mant indeed exists uniquely with the above definition. As a result of our normalization, note that
the third condition in the above definition entails at least one interpolation condition at infinity,
therefore Πn is in fact of type (n− 1, n).

4A rational function is said to be of type (n1, n2) if it can be written as the ratio of a polynomial of degree at most n1
by a polynomial of degree at most n2.
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For our present purpose, we shall be interested only in the case where g = f is as in Theorem
1, and I2n consists of n points, each of which appears with multiplicity 2. In other words, we let
En consist of n points, repeated according to their multiplicities, in the analyticity domain of f,
say, Df = C \ ([a, b]∪Λ) where [a, b] := supp(µ) and Λ is the set of poles of r . We further let
vn be the monic polynomial whose roots are the finite points of En , and we obtain Πn from the
previous definition where g = f and Q2n = v2

n .
Next, we let n range over N and we put E = {En} for the interpolation scheme, i.e. the sequence

of sets of interpolation points. By definition, the support of E is supp(E ) := ∩n∈N∪k≥n Ek . We also
introduce the probability counting measure of En to be the measure with mass 1/n at each point of
En , repeating according to multiplicities.

We shall need strong asymptotics on the behaviour ofΠn as n→∞. To describe them, we need
some more notation. Let us denote by

w(z) :=
Æ

(z − a)(z − b ), w(z)/z→ 1,

the holomorphic branch of the square root outside of [a, b] which is positive on (b ,+∞), and by

(5.1) φ(z) :=
2

b − a

�

z −
b + a

2
−w(z)

�

the conformal map of D := C \ [a, b] into D such that φ(∞) = 0 and φ′(∞) > 0. Note that φ is
conjugate-symmetric.

Recall that the logarithmic energy of a positive Borel measure σ , compactly supported in C, is
given by −

∫ ∫

log |z − t |dσ(z)dσ(t ), which is a real number or +∞.

Definition (Admissibility). An interpolation scheme E is called admissible if the sums
∑

e∈En
|φ(e)−

φ(ē)| are uniformly bounded with n, supp(E ) ⊂ Df, and the probability counting measure of En

converges weak∗ to some Borel measure σ with finite logarithmic energy5.

The weak∗ convergence in the above definition is understood upon regarding complex measures
on C as the dual space of continuous functions with compact support.

To an admissible scheme E , we associate a sequence of functions on Df by putting

(5.2) Rn(z) = Rn(E ; z) :=
∏

e∈En

φ(z)−φ(e)
1−φ(z)φ(e)

, z ∈D .

Each Rn is holomorphic in D , has continuous boundary values from both sides of [a, b], and
vanishes only at points of En . Note from the conjugate-symmetry of φ that

φ(z)−φ(e)
1−φ(z)φ(e)

=
φ(z)−φ(e)
1−φ(z)φ(e)

�

1+
φ(ē)−φ(e)
φ(z)−φ(ē)

�

.

Thus, Rn is a Blaschke product with zero set φ(En) composed with φ, times an infinite product
which is boundedly convergent on any curve separating [a, b] from supp(E ) by the admissibility
conditions. In particular, {Rn} converges to zero locally uniformly in D .

5Note that σ may not be compactly supported. In this case, pick z0 ∈ C \ supp(E ) such that z0 /∈ supp(σ) and set
Mz0
(z) := 1/(z − z0). Then, all the sets Mz0

(En) are contained in a common compact set and their counting measures
converge weak∗ to σ ′ such that σ ′(B) := σ(M−1

z0
(B)) for any Borel set B ⊂C. What we require is then the finiteness of the

logarithmic energy of σ ′.
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To describe asymptotic behavior of multipoint Padé approximants, we need two more concepts.
Let h be a Dini-continuous function on [a, b]. Then the geometric mean of h, given by

Gh := exp
�∫

log h(t )dω[a,b](t )
�

,

is independent of the actual choice of the branch of the logarithm [13, Sec. 3.3]. Moreover, the
Szegő function of h, defined as

Sh (z) := exp

¨

w(z)

2

∫ log h(t )

z − t
dω[a,b](t )−

1

2

∫

log h(t )dω[a,b](t )
«

, z ∈D ,

does not depend on the choice of the branch either (as long as the same branch is taken in both inte-
grals) and is the unique non-vanishing holomorphic function in D that has continuous boundary
values from each side of [a, b] and satisfies h = Gh S+

h
S−

h
and Sh (∞) = 1. The following theorem

was proved in [13, Thm. 4] when r = 0 and in [31] for the general case.

Theorem 3. Let f be as in Theorem 1, E an admissible interpolation scheme, and {Πn} the sequence
of diagonal Padé approximants to f associated with E . Then

(5.3) (f−Πn)w = [2Gµ̇+ o(1)](Sµ̇Rn/R)2

locally uniformly in Df, where Rn is as in (5.2) and

R(z) :=
∏

(φ(z)−φ(e))/(1−φ(z)φ(e)),

the product defining R being taken over the poles of r according to their multiplicity.

Let now {qn} be a sequence of irreducible critical points forΨf,n . Put qn(z) = Π1≤ j≤n(z−ξ j ,n).
It follows from Proposition 2 that Lqn

/qn interpolates f at every 1/ξ̄ j ,n with order 2, hence Lqn
/qn

is the n-th diagonal Padé approximants associated with E{qn} := {{1/ξ̄ j ,n}nj=1}. This interpolation

scheme of course depends on qn , which accounts for the nonlinear character of the L2-best ratio-
nal approximation problem. The next theorem contains in its statement the Green equilibrium
distribution of supp(µ) = [a, b], for the definition of which we refer the reader to [28].

Theorem 4. Let f be as in Theorem 1 and {qn} be a sequence of irreducible critical points for f. Then
E{qn} is an admissible interpolation scheme, and moreover

(5.4)
∑n

j=1 |Im(ξ j ,n)| ≤ const.

where const. is independent of n. Also, the probability counting measures of the zeros of qn converges
to the Green equilibrium distribution on supp(µ). In addition, it holds that

(5.5) (f− Lqn
/qn)w = [2Gµ̇+ o(1)](Sµ̇Rn/R)2

locally uniformly in Df, where Rn is as in (5.2) and R is as in Theorem 3.

A few comments on Theorem 4 are in oder. First, the weak∗ convergence of the counting measures
of the qn was obtained in [15, Thm. 2.1]. It entails that the probability counting measures of the
sets E{qn} converge weak∗ to the reflection of the Green equilibrium measure across T, which has
finite energy. The admissibility of E{qn} follows easily from this and from the bound (5.4) which
was proven in [4], see [31, Lem. 8]. Then relation (5.5) is a consequence of (5.3).
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6. PROOF OF THEOREM 1

To prove Theorem 1, we follow the line of argument developed in [10, Thm. 1.3]. The main
difference is that in the present case the critical points are no longer a priori irreducible and their
poles no longer belong to the convex hull of the support of the measure. As we shall see, these
difficulties can be resolved with the help of Theorem 4.

Proof of Theorem 1. We claim there exists N = N (f) ∈ N such that all the critical points of Ψn =
Ψf,n inM n are irreducible for n >N . Indeed, assume to the contrary that there exists an infinite
subsequence of reducible critical point, say {qn j

}. It follows from Propositions 2 and 4 that each
qn j

has a factor q∗n j
such that q∗n j

∈ Mn j−kn j
is an irreducible critical point of Ψn j−kn j

, and the

difference f− Lq∗n j
/q∗n j

vanishes at the zeros of Ýq∗n j

2
dn j

where dn j
is a non-constant polynomial of

degree at least b(k j + 1)/2c ≥ 1 having all its zeros in {|z | ≥ 1}. Suppose first that (n j − kn j
)→∞

as j →∞. Then, the asymptotic behavior of f− Lq∗n j
/q∗n j

is governed by (5.5), in particular it can

only vanish at the zeros of Ýq∗n j

2
for all large n which contradicts the assumption that dn j

is non-

constant. Second, suppose that n j − kn j
remains bounded. Up to a subsequence, we may suppose

that n j−kn j
= l for some integer l . AsM l is compact, we may assume that q∗n j

converges to some

q ∈M l . Since Lv is a smooth function of v in some neighborhood ofM l (see Subsection 3.3),
the polynomials Lq∗n j

converge to Lq hence q∗n j
f− Lq∗n j

converges to qf− Lq locally uniformly in

Df. In particular, if we pick 0<ρ< 1 such thatDρ contains the zeros of q , we get that f−Lq∗n j
/q∗n j

is a normal family of functions converging to f− Lq/q in |z | > ρ. But since the number of zeros

it has in C \ D increases indefinitely (because it vanishes at the zeros of dn j
which are at least

b(n− l + 1)/2c in number), we conclude that f= Lq/q , which is impossible since f is not rational.
This contradiction proves the claim.

As we just showed, each critical point q of Ψn inM n , is irreducible for all n large enough, in
particular it belongs toMn and moreover Lq/q does not interpolate f on T. Assume further that,
for all such n, there exists a rational function Πq ∈Rn−1 such that (4.15) holds with f = f. Then q
is a local minimum by Theorem 2, and therefore it is the unique critical point of order n in view of
the Index Theorem. Thus, to finish the proof, we need only construct some appropriate function
Πq for each critical point q of Ψn , provided that n is large enough.

Let E{qn} be the interpolation scheme induced by {qn} and Eν some admissible interpolation
scheme, with supp(Eν )⊂ {|z |> 1}. Set {Πn} to be the sequence of diagonal Padé approximants to
f associated with Eν . Then Theorems 3 and 4 imply that when n→∞

(6.1)
(f−Πn−1)(z)

(f− Lqn
/qn)(z)

= [1+ o(1)]

 

Rn−1(Eν ; z)

Rn(E{qn}; z)

!2

uniformly on T.

Moreover, for all n large enough, (f−Πn−1) is holomorphic outside of D by (5.3) and it has 2n−1
zeros there, namely those of Rn−1(Eν ; ·), counting multiplicities, plus one at infinity. Consequently
wT(f−Πn−1) = 1− 2n for all such n, and so (4.15) will follow from (6.1) upon constructing Eν
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such that, for n large enough,

(6.2)

�

�

�

�

�

�

1−
 

Rn−1(Eν ; z)

Rn(E{qn}; z)

!2
�

�

�

�

�

�

> 2 on T.

For convenience, let us put I := [a, b] = supp(µ) and I−1 := {x : 1/x ∈ I }, together with
Ω := C \ (I ∪ I−1). Set % : Ω → {1 < |z | < A} to be the conformal map such that %(I ) = T,
%(I−1) = TA, limz→b+ %(z) = 1; as is well known, the number A is here uniquely determined by
the so-called condenser capacity of the pair (I , I−1) [28]. Note also that, by construction, % is
conjugate-symmetric. Define

hν (z) =
1− (%(z)A)2

%2(z)−A2
, z ∈Ω,

which is a well-defined holomorphic function in Ω := C \ (I ∪ I−1). It is not difficult to show (cf.
the proof of [10, Thm 1.3] after eq. (6.24)) that |1− hν |> 2 on T. Thus, to prove our theorem, it
is sufficient to find Eν such that

(6.3)

 

Rn−1(Eν ; z)

Rn(E{qn}; z)

!2

= [1+ o(1)]hν (z) uniformly on T.

For this, we shall make use of the fact, also proven in the course of [10, Thm 1.3], that hν can be
represented as

hν (z) := exp

¨
∫

log
1−φ(z)φ(x)
φ(z)−φ(x)

d ν(x)
«

,

where ν is a signed measure of mass 2 supported on I−1.
Denote by {ξ j ,n}nj=1 the zeros of qn and by {x j ,n}nj=1 their real parts. Observe from (5.5) that

any neighborhood of the poles of r which is disjoint from I , contains exactly m zeros of qn for all
n large enough. We enumerate these as ξn−m+1,n , . . . ,ξn,n . The rest of the zeros of qn we order in
such a manner that

a < x1,n < x2,n < . . .< xdn ,n < b ,

while those j ∈ {dn+1, . . . , n−m} for which x j ,n either lies outside of (a, b ) or else coincides with
xk ,n for some k ∈ {1, . . . , dn}, are numbered arbitrarily. Again from (5.5), any open neighborhood
of I contains {ξ j ,n}n−m

j=1 for all n large enough, and therefore

(6.4) δ i m
n := max

j∈{1,...,dn}
|Im(ξ j ,n)| → 0 as n→∞.

In addition, as the probability counting measures of the zeros of qn converge to a measure sup-
ported on the whole interval I , namely the Green equilibrium distribution, we deduce that dn/n→
1 and that

(6.5) δ r e
n :=max

¨

(x1,n − a), (b − xdn ,n), max
j∈{2,...,dn}

(x j ,n − x j−1,n)
«

→ 0 as n→∞.

Define ν̌ to be the image of ν under the map t → 1/t , so that ν̌ is a signed measure on I of
mass 2. Let further ϕ(z) := φ(1/z) be the conformal map of C \ I−1 onto D, normalized so that
ϕ(0) = 0 and ϕ′(0)> 0, Finally, set

K(z, t ) := log

�

�

�

�

�

ϕ(z)−ϕ(t )
1−ϕ(z)ϕ(t )

�

�

�

�

�

.
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To define an appropriate interpolation scheme Eν , we consider the coefficients:

c1,n := ν̌
��

a,
x1,n + x2,n

2

��

,

c j ,n := ν̌

�� x j−1,n + x j ,n

2
,

x j ,n + x j+1,n

2

��

, j ∈ {2, . . . , dn − 1},

cdn ,n := ν̌

�� xdn−1,n + xdn ,n

2
, b
��

.

Subsequently, we define two other sets of coefficients














b j ,n :=
j
∑

k=1

ck ,n = ν̌

��

a,
x j ,n + x j+1,n

2

��

a j ,n := 2− b j ,n = ν̌

�� x j ,n + x j+1,n

2
, b
�� j ∈ {1, . . . , dn − 1},

and b0,n = adn ,n := 0. It follows in a straightforward manner from the definitions that

2− c j ,n = b j−1,n + a j ,n , j ∈ {1, . . . , dn},

and therefore

(6.6) 2
dn
∑

j=1

K(z,ξ j ,n)−
dn
∑

j=1

c j ,nK(z,ξ j ,n) =
dn−1
∑

j=1

b j ,nK(z,ξ j+1,n)+
dn−1
∑

j=1

a j ,nK(z,ξ j ,n).

Next, we introduce auxiliary points y j ,n by setting

y j ,n :=
a j ,nξ j ,n + b j ,nξ j+1,n

2
, j ∈ {1, . . . , dn − 1}.

Observe that

(6.7) |y j ,n − ξ j ,n |=

�

�

�

�

�

b j ,n

2
(ξ j+1,n − ξ j ,n)

�

�

�

�

�

≤
‖ν̌‖
2
|ξ j+1,n − ξ j ,n |,

where ‖ν̌‖ is the total variation of ν̌ .
LetK be compact in Ω andU ⊂D be a neighborhood of I whose closure is disjoint fromK .

By (6.4), (6.5), and (6.7) we see that both {ξ j ,n}
dn
j=1 ⊂U and {y j ,n}

dn−1
j=1 ⊂U for all n large enough.

Thus, for such n and z ∈K , we can write the first-order Taylor expansions:

(6.8) K(z,ξ j ,n)−K(z, y j ,n) =
∂

∂ t
K(z, y j ,n)(ξ j ,n − y j ,n)+O

�

(ξ j ,n − y j ,n)
2
�

,

(6.9) K(z,ξ j+1,n)−K(z, y j ,n) =
∂

∂ t
K(z, y j ,n)(ξ j+1,n − y j ,n)+O

�

(ξ j+1,n − y j ,n)
2
�

,

and adding up (6.8) multiplied by a j ,n to (6.9) multiplied by b j ,n we obtain

(6.10) b j ,nK(z,ξ j+1,n)+ a j ,nK(z,ξ j ,n)− 2K(z, y j ,n) =O
�

(ξ j+1,n − ξ j ,n)
2
�

,

where we took (6.7) into account and, of course, the three symbols big “Oh” used above indicate
different functions. By the smoothness of K on C\ I−1×C\ I−1 and the compactness ofK ×U ,
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these big “Oh” can be made uniform with respect to z ∈K , being majorized by

ζ 7→ 2‖ν̌‖ sup
(z,t )∈K ×U

�

�

�

�

�

∂ 2K

∂ t 2
(z, t )

�

�

�

�

�

|ζ |2.

In another connection, it is an immediate consequence of (6.4), (6.5), and (5.4) that

dn−1
∑

j=1

|ξ j+1,n − ξ j ,n |
2 ≤

dn−1
∑

j=1

|x j+1,n − x j ,n |
2+ 2

dn
∑

j=1

|Im(ξ j ,n)|
2

≤ (b − a)δ r e
n + const.δ i m

n = o(1).(6.11)

Therefore, we derive from (6.11) upon adding equations (6.10) for j ∈ {1, . . . , dn − 1} that

(6.12)

�

�

�

�

�

�

dn−1
∑

j=1

b j ,nK(z,ξ j+1,n)+
dn−1
∑

j=1

a j ,nK(z,ξ j ,n)− 2
dn−1
∑

j=1

K(z, y j ,n)

�

�

�

�

�

�

= o(1),

where o(1) is uniform with respect to z ∈K . In view of (6.6), equation (6.12) can be rewritten as

(6.13)

�

�

�

�

�

�

2
dn
∑

j=1

K(z,ξ j ,n)− 2
dn−1
∑

j=1

K(z, y j ,n)−
dn
∑

j=1

c j ,nK(z,ξ j ,n)

�

�

�

�

�

�

= o(1).

Now, it follows from (6.5) and the definitions of c j ,n and hν that

(6.14)
dn
∑

j=1

c j ,nK(z, x j ,n)→
∫

K(z, t )d ν̌(t ) =− log |hν (1/z)| as n→∞,

uniformly with respect to z ∈K . Moreover, we deduce from (6.4) and (5.4) that

dn
∑

j=1

|c j ,n(K(z,ξ j ,n)−K(z, x j ,n))| ≤ C
dn
∑

j=1

|c j ,n ||Im(ξ j ,n)|

≤ C‖ν̌‖δ i m
n → 0,(6.15)

as n → ∞, where C = sup(z,t )∈K×U |∂ K/∂ t (z, t )|. Hence, combining (6.14) and (6.15) with
(6.13), we get

(6.16) 2
dn−1
∑

j=1

K(z, y j ,n)− 2
dn
∑

j=1

K(z,ξ j ,n)→ log |hν (1/z)| as n→∞,

uniformly onK . Define

gn(z) :=







dn−1
∏

j=1

ϕ(z)−ϕ(y j ,n)

1−ϕ(z)ϕ(y j ,n)
/

dn
∏

j=1

ϕ(z)−ϕ(ξ j ,n)

1−ϕ(z)ϕ(ξ j ,n)







2

,

which is holomorphic inΩ. By (6.16), it holds that log |gn(z)| → log |hν (1/z)| as n→∞ uniformly
on K , and since the latter was arbitrary in Ω this convergence is in fact locally uniform there.
Thus, {gn} is a normal family in Ω, and any limit point of this family is a unimodular multiple of
hν (1/·). However, limz→b+ hν (z) = 1 while it follows immediately from the properties of ϕ that
each gn has a well-defined limit at 1/b which is also 1. So, {gn} is, in fact, a locally uniformly
convergent sequence in Ω and its limit is hν (1/·).
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Finally, set Eν := {Eν,n}, where Eν ,n = {ζ j ,n}, ζ j ,n := 1/y j ,n+1 when j ∈ {1, . . . , dn+1 − 1}, and

ζ j ,n := 1/ξ̄ j+1,n+1 when j ∈ {dn+1, . . . , n}. Then
�

Rn−1(Eν ; z)/Rn(E{qn}; z)
�2
= gn(1/z)

and (6.3) follows from the limit just proved that {gn} → hν (1/·). Thus, it only remains to prove
that Eν is admissible. To show the first admissibility condition, put

Xn :=
n−1
∑

j=1

|φ(ζ j ,n−1)−φ(ζ̄ j ,n−1)|.

Then, since

|Im(y j ,n)| ≤
‖ν̌‖
2

�

|Im(ξ j ,n)|+ |Im(ξ j+1,n)|
�

, 1≤ j ≤ dn − 1,

by the very definition of y j ,n , we get

Xn =
dn−1
∑

j=1

|ϕ(y j ,n)−ϕ(ȳ j ,n)|+
n−1
∑

j=dn

|ϕ(ξ j+1,n)−ϕ(ξ̄ j+1,n)|

≤ 2sup
U
|ϕ′|







dn−1
∑

j=1

|Im(y j ,n)|+
n−1
∑

j=dn

|Im(ξ j+1,n)|







< 2sup
U
|ϕ′|






2‖ν̌‖

dn
∑

j=1

|Im(ξ j ,n)|+
n
∑

j=dn+1

|Im(ξ j ,n)|







which is uniformly bounded by (5.4). Further, since each Eν,n is contained in U −1, we have that
supp(Eν ) ⊂ {|z | > 1}. So, it only remains to show that the probability counting measures of Eν ,n
converges weak∗ to some Borel measure with finite logarithmic energy. Now, since dn/n → 1 as
n→∞, and by the remark made in footnote 3, it is enough to prove that this property holds for
the probability counting measures of the points {y j ,n}. But from (6.7) and (6.11), the latter have
the same asymptotic distribution as the points {ξ j ,n}, namely the Green equilibrium distribution
on I by Theorem 4. This finishes the proof of Theorem 1. �
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