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ABSTRACT. Let G ⊂C be a bounded simply connected domain with boundary Γ and let E ⊂G be
a regular compact set with connected complement. In this paper we investigate asymptotics of the
extremal constants:

χn = inf
p∈Pkn

sup
q∈Pn−kn

||pq ||E
||pq ||Γ

, n = 1,2, . . . ,

where ‖ ·‖K is the supremum norm on a compact set K ,Pm is the set of all algebraic polynomials of
degree at most m, and kn/n→ θ ∈ [0,1] as n→∞. Subsequently, we obtain asymptotic behavior
of the Kolmogorov k-widths, k = kn , of the unit ball A∞n of H∞∩Pn restricted to E in C (E), where
H∞ is the Hardy space of bounded analytic functions on G and C (E) is the space of continuous
functions on E .

1. INTRODUCTION

The Kolmogorov k-width of a set A contained in a Banach space X is defined by

dk (A;X ) := inf
Xk

sup
h∈A

inf
g∈Xk

‖h − g‖,

where Xk runs over all k-dimensional subspaces of X and ‖·‖ is a norm on X . Let G be a bounded
simply connected domain with boundary Γ in the complex plane C, and H∞ be the Hardy space
of bounded analytic functions in G. Denote by E ⊂ G a regular compact set with connected
complement D and A∞ the unit ball of H∞ restricted to E . In [12] H. Widom investigated the
asymptotic behavior of dk (A

∞;C (E)), where C (E) is the space of continuous functions on E
endowed with the usual supremum norm ‖ · ‖E . It is proved that

(1.1) lim
k→∞

� 1

k
log dk (A

∞;C (E))
�

=−
1

cap(E ,Γ)
,

where cap(E ,Γ) is the condenser (Green) capacity of E with respect to G (see, for example, [10,
Sec. II.5]). Further, in [2] (see also [1, Sec. 7.5]) S. D. Fisher and C. A. Micchelli obtained the
following representation for dk (A

∞;C (E)) :

(1.2) dk (A
∞;C (E)) = inf

z1,...,zk

sup{‖h‖E : h ∈A∞, h(z j ) = 0, j = 1, . . . , k}.

Clearly, it is enough to consider only the Blaschke products instead of all functions from A∞ in (1.2).
Then it is a consequence of [3] that the zero counting measures of any asymptotically extremal
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sequence of Blaschke products swept out to ∂ E converge weak-star to the Green equilibrium dis-
tribution on E relative to G.

In this paper we investigate the n-th root behavior of dk (A
∞
n ;C (E)), k = kn , the Kolmogorov

k-widths of the unit ball A∞n of H∞ ∩Pn restricted to E in C (E), and show its connection to the
following extremal problem:

(1.3) χn = inf
p∈Pkn

sup
q∈Pn−kn

||pq ||E
||pq ||Γ

,

where

(1.4) lim
n→∞

kn

n
= θ, θ ∈ [0,1].

Analogous k-width occur in the study of truncated Hankel operators which the authors will ex-
plore in a later paper.

Regarding the minimax problem defined in (1.3), we observe that it connects two well-understood
extremal problems of potential theory. It is an simple consequence of the Bernstein-Walsh inequal-
ity ([11] and [10, Sec. III.2]) and properties of the Chebyshev polynomials for E that

(1.5) lim
n→∞

�

inf
p∈Pn

‖p‖E

‖p‖Γ

�1/n

= exp
§

−max
z∈Γ

g (z,∞)
ª

,

where g (·,∞) is the Green function for D with singularity at infinity. It is easy to see that

(1.6) lim
n→∞

 

sup
q∈Pn

‖q‖E

‖q‖Γ

!1/n

= 1

and the extremal polynomial is q ≡ 1. Furthermore, it is readily verified that polynomials zn−Rn

are asymptotically extremal for (1.6) whenever R is such that {|z |< R} ⊃G. Let us also illustrate
extremal problem (1.5). Put E to be the closed unit disk D and Γ to be the circle of radius R > 2
centered at 1. In this case g (z,∞) = log |z | and therefore the monomials zn are extremal for (1.5)
and the limit is equal to 1/(R+ 1). Moreover, the polynomials zn − 1 are asymptotically extremal
for that problem.

This paper is organized as follows. In Section 2 we consider two minimal energy problems,
one for the Green potentials and another for the logarithmic potentials, that are vital for our main
results. The latter are given in Section 3, which contains results on the behavior of χn and the
extremal polynomials (Theorems 3.1 and 3.2) as well as connection with n-width (Theorem 3.3).
In Section 4 we study some extremal problem of the potential theory which can be considered as
an continuous analog of the extremal problem (1.3). In Section 6 we provide a detailed description
of the extremal measures defined in Section 2. Sections 5 and 7 of this paper consist of proofs of
the stated results. In Section 8 we investigate the asymptotics of k-widths.

2. EQUILIBRIUM MEASURES

Let G, Γ, E , and D be as described. We shall use the standard terminology that a property
holds quasi-everywhere (q.e.) if it holds everywhere except for a set of zero logarithmic capacity (see
[10, Sec. I.1] or [9, Sec. 5] for the definition of capacity). In this paper we extensively utilize
logarithmic and Green potentials. The logarithmic potential of a finite positive Borel measure ν
with compact support supp(ν), is given by

U ν (z) =−
∫

log |z − t |d ν(t ).
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It is superharmonic in C and harmonic in C \ supp(ν). Unlike the logarithmic case, Green poten-
tials are defined relative to a domain. Let ν be a positive Borel measure compactly supported in D .
Then the Green potential of ν relative to D is given by

U ν
D (z) =

∫

g (z, t )d ν(t ),

where g (z, t ) = gE (z, t ) is the Green function for D with singularity at t ∈D . Since E is a regular
compact set, g (z, t ) = 0 for z ∈ ∂ D = ∂ E . Here and in what follows we assume that g (z, t ) = 0
for all z ∈ E . The Green potential of ν is nonnegative and superharmonic in D , harmonic in
D \ supp(ν), and satisfies U ν

D = 0 on E .
Let K be a compact set. Denote by Λδ (K), δ > 0, the set of positive Borel measures λ of mass

δ = |λ|=
∫

dλ compactly supported on K .
For each θ ∈ [0,1) consider the following weighted Green energy of a measure λ ∈Λ1−θ(Γ):

(2.1) Jθ(λ) :=
∫ ∫

g (z, t )dλ(t )dλ(z)− 2
∫

g (t ,∞)dλ(t ).

Then we have the following result.

Theorem 2.1. For each θ ∈ [0,1) there exists a unique measure λθ ∈Λ1−θ(Γ) such that

(2.2) min
λ∈Λ1−θ(Γ)

Jθ(λ) = Jθ(λθ).

The extremal measure λθ satisfies the following properties:

(2.3) U λθ
D (z)− g (z,∞) = mθ, z ∈ Sθ := supp(λθ)⊆ Γ,

and

(2.4) U λθ
D (z)− g (z,∞)≥ mθ, z ∈ Γ,

where

(2.5) mθ :=
1

1−θ

�

Jθ(λθ)+
∫

g (t ,∞)dλθ(t )
�

.

Remarks. (a) This theorem is a special case of [10, Thm. II.5.10] for the external field−g (·,∞)/(1−
θ). We exhibit the dependence of λθ on θ in Theorem 6.1 (see also [6, Thm. 2.4]). In par-
ticular, λθ1

−λθ2
is a positive measure for any choice of θ1 <θ2.

(b) In general, (2.3) holds only q.e. on Sθ. However, as pointed out in [6, Thm. 2.2], the
regularity of Γ is sufficient for this property to hold at every point of Sθ.

(c) As shown later in Lemma 4.2, m0 = 0, λ0 = ωΓ, and S0 = Γ, where ωK stands for the
logarithmic equilibrium distribution on a set K .

(d) It follows from Theorem 6.1, the limit of mθ as θ approaches 1 from the left exists and

(2.6) m1 := lim
θ→1−

mθ =−max
z∈Γ

g (z,∞).

Furthermore, we define λ1 to be the zero measure.
(e) The measure λθ is uniquely determined by conditions (2.3) and (2.4). If λ ∈ Λ1−θ(Γ) has a

finite Green energy, U λ
D− g (z,∞) = c on supp(λ) and U λ

D− g (z,∞)≥ c on Γ, then λ= λθ
and c = mθ (see [10, Thm. II. 5.12]).

Let us consider the special case when Γ is a level curve of g (·,∞).
Example 2.1. Let Γ= {z : g (z,∞) = R} for some constant R> 0. Then for every θ ∈ [0,1) we have

λθ = (1−θ)ωΓ and mθ =−θR.
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It is easy to see (cf. Lemma 4.2) that

U (1−θ)ωΓD (z)− g (z,∞) =−θg (z,∞) =−θR, z ∈ Γ.

Therefore, by Remark (e), we get

λθ = (1−θ)ωΓ, mθ =−θR.

The second extremal problem that we need and which, in a way, is complimentary to (2.2), is
related to the following energy integral:

Iθ(µ) :=
∫

Uµ(t )dµ(t )+ 2
∫

U λθ (t )dµ(t ),

where θ ∈ (0,1] and µ ∈Λθ(E).
As in the case of Theorem 2.1, the following is known [10, Thm. I.1.3].

Theorem 2.2. For each θ ∈ (0,1] there exists a unique measure µθ ∈Λθ(E) such that

(2.7) min
µ∈Λθ(E)

Iθ(µ) = Iθ(µθ).

Moreover, the extremal measure µθ has the following properties:

(2.8) Uµθ+λθ (z) = bmθ, z ∈ supp(µθ)⊆ ∂ E ,

and

(2.9) Uµθ+λθ (z)≥ bmθ, z ∈ E ,

where

(2.10) bmθ :=
1

θ

�

Iθ(µθ)−
∫

U λθ (t )dµθ(t )
�

.

Remarks. (a) For θ = 1, (2.7) reduces to the classical (unweighted) minimal energy problem
(cf. [9, Sec. 3.3] and [10, Sec. I.1]) when θ = 1. In this case, µ1 is the logarithmic
equilibrium distribution ωE and and bm1 is the Robin constant for E , bm1 = − logcap(E),
where cap(E) is the logarithmic capacity of E .

(b) It is a well-known fact that supp(µθ)⊆ ∂ E (see, for example, [10, Thm. IV.1.10(a)]).
(c) As in the case of λ1, it is convenient for us to define µ0 to be the zero measure.
(d) The measure µθ is uniquely determined by conditions (2.8) and (2.9). If µ ∈ Λθ(E) has a

finite energy and Uµ+λθ = c on supp(µ) and Uµ+λθ ≥ c on E , then µ = µθ and c =Ómθ
(cf. [10, Thm. I. 3.3]).

Further properties of λθ and µθ and the constants mθ and bmθ are given in Section 6, including
asymptotics as θ→ 0.

3. MAIN RESULTS

Let χn be defined by (1.3) and (1.4). Below we show that limχ 1/n
n exists and provide the as-

ymptotic behavior of the zeros of the extremal polynomials. The latter are defined as follows. Let
{pn , qn}n∈N, pn ∈Pkn

and qn ∈Pn−kn
, be such that

(3.1) lim
n→∞

�

1

χn

‖pn qn‖E

‖pn qn‖Γ

�1/n

= lim
n→∞







1

χn
sup

q∈Pn−kn

‖pn q‖E

‖pn q‖Γ







1/n

= 1.
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We shall call {pn , qn}, satisfying the equalities above, a sequence of asymptotically extremal pairs of
polynomials. To each such pn and qn we associate the zero counting measures, ν(pn) and ν(qn),
respectively, defined by the rule

ν(pn) :=
1

n

∑

pn (z)=0

δz and ν(qn) :=
1

n

∑

qn (z)=0

δz ,

where δz is the point mass distribution at z ∈C and the sums are taken counting multiplicities of
zeros of polynomials pn and qn . It also will be convenient for us to sweep out (balayage) measures
ν(pn) and ν(qn) onto ∂ E and Γ, respectively. Recall that for any finite positive Borel measure
ν compactly supported in C and, with finite energy if supp(ν) ∩ ∂ D 6= ;, there exists a unique
measure bν, the balayage measure of ν , supported on ∂ E , such that |ν |= |bν |,

U bν (z) =U ν (z)+
∫

g (t ,∞)d ν(t ), z ∈ E , if supp(ν)⊂D ,

and
U bν (z) =U ν (z), z ∈D , if supp(ν)⊆ E .

We remark that for any positive compactly supported in D measure ν ,

(3.2) U ν
D (z) =U ν−eν (z)+

∫

g (t ,∞)d ν(t ), z ∈C.

Denote by eν the balayage of a finite positive Borel measure ν compactly supported in C \G onto
Γ. We have |eν |= |ν | and

(3.3) U eν (z) =U ν (z)+
∫

gG(t ,∞) d ν(t ), z ∈G,

where gG(z,∞) is the Green function of the domain C \G with singularity at infinity. Now we
define measures α(pn) and β(qn) as

(3.4) α(pn) := ν(pn)|D +
Ûν(pn)|E\∂ E ,

and

(3.5) β(qn) := ν(qn)|G +
åν(qn)|C\G +

n− kn − deg(qn)

n
ωΓ,

respectively, where a notation λ|K means restriction of a measure λ on a set K . LetM (E) = {ν :
ν ∈Λθ(E), bν =µθ}.

The following result holds.

Theorem 3.1. Let {kn}n∈N satisfy (1.4) for some θ ∈ [0,1]. Then

(3.6) lim
n→∞

� 1

n
logχn

�

= mθ,

where mθ was defined in (2.5) and (2.6). If {pn , qn} is a sequence of asymptotically extremal pairs of
polynomials in the sense (3.1), then, for θ ∈ (0,1) any weak-star limit point of {ν(pn)} belongs toM (E)
and

(3.7) α(pn)
∗→µθ as n→∞,
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where
∗→ stands for the convergence of measures in the weak-star sense. Moreover,

(3.8) ν(qn)
∗→ λθ as n→∞, if C \ Sθ is connected,

β(qn)
∗→ λθ as n →∞, otherwise.

Remarks. (a) Since m0 = 0 and m1 =−maxz∈Γ g (z,∞), (1.3) indeed connects extremal prob-
lems (1.5) and (1.6).

(b) Observe that α(pn) = ν(pn) when E has empty interior. In this case (3.7) is a statement on
the convergence of counting measures themselves, rather than their balayages onto ∂ E .

The following theorem is related to the case when kn→∞ and kn = o(n) as n→∞. To formu-
late the result, we need to slightly modify the definition of an asymptotically extremal sequence.
We say that a sequence {pn} is asymptotically extremal if

(3.9) lim
n→∞







1

χn
sup

q∈Pn−kn

‖pn q‖E

‖pn q‖Γ







1/kn

= 1.

Notice that for θ > 0 definitions (3.1) and (3.9) coincide. Let

(3.10) ν∗(pn) =
1

kn

∑

pn (z)=0

δz

and

(3.11) α∗(pn) = ν
∗(pn)|D +

Ûν∗(pn)|E\∂ E .

We remark that |ν∗(pn)| ≤ 1 and |α∗(pn)| ≤ 1. Let N (E) = {ν : ν ∈ Λ1(E),bν = ω(E ,Γ)}, where an
ω(E ,Γ) is the Green equilibrium distribution on E relative to G.

Theorem 3.2. Let kn→∞ and kn = o(n) as n→∞. Then

(3.12) lim
n→∞

�

1

kn
logχn

�

=−
1

cap(E ,Γ)
.

Moreover, if {pn} is an asymptotically extremal sequence in the sense of (3.9), then any weak-star limit
point of {ν∗(pn)} belongs toN (E) and

(3.13) α∗(pn)
∗→ω(E ,Γ) as n→∞.

The last theorem provides the asymptotic behavior of the Kolmogorov k-width, k = kn , of A∞n
in C (E). To formulate this theorem we need to introduce more notation. Fix θ ∈ (0,1] and define

Gθ :=
n

z ∈C : U λθ
D (z)− g (z,∞)> mθ

o

.

For θ= 0 we simply set G0 :=G. Clearly, the maximum principle for harmonic functions implies
that Gθ =G whenever Sθ =Γ and it follows from (2.3) and (2.4) that G ⊆Gθ for all θ ∈ [0,1]. Let
G ⊆ G′ ⊆ Gθ, H∞(G′) be the space of bounded analytic functions on G′, and A∞n (G

′) stand for
the restriction to E of the unit ball of H∞(G′)∩Pn . The following theorem shows that the n-th
root limit of dkn

(A∞n (G
′);C (E)), kn/n→ θ, is independent of G′.

Theorem 3.3. Let {kn}n∈N satisfy (1.4) for some θ ∈ [0,1], G′ be a simply connected domain such
that G ⊆G′ ⊆Gθ, and A∞n =A∞n (G

′). Then

(3.14) lim
n→∞

� 1

n
log dkn

(A∞n ;C (E))
�

= mθ.
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In particular, when θ= 0 and kn→∞ as n→∞, we have that

(3.15) lim
n→∞

�

1

kn
log dkn

(A∞n ;C (E))
�

=−
1

cap(E ,Γ)
.

4. AN EXTREMAL PROBLEM OF THE POTENTIAL THEORY

We now state the main theorem of this section. Let σ be a compactly supported positive Borel
measure. Define

M (σ) :=min
Γ

U σ −min
E

U σ .

Theorem 4.1. For each θ ∈ [0,1] we have

(4.1) mθ = inf
µ∈Λθ(E)

sup
λ∈Λ1−θ(Γ)

M (µ+λ) = sup
λ∈Λ1−θ(Γ)

inf
µ∈Λθ(E)

M (µ+λ).

Moreover, if µ∗, |µ∗| ≤ θ, and λ∗, |λ∗| ≤ 1−θ, are compactly supported positive Borel measures such
that

(4.2) mθ =M (µ∗+λ∗) = sup
λ∈Λ1−θ(Γ)

M (µ∗+λ)

then supp(µ∗)⊆ E, cµ∗ =µθ, and λ∗ = λθ when Sθ does not separate the plane and supp(λ∗)⊂C\G
, eλ∗ = λθ− (1−θ− |λ∗|)ωΓ , otherwise.

The proof of Theorem 4.1 is based on several auxiliary lemmas.

Lemma 4.2. We have

(4.3) λ0 =ωΓ, bλ0 =ωE , and m0 = 0.

Proof. Since UωΓ(z) =− logcap(Γ) for z ∈G and UωE (z) =− logcap(E) for z ∈ E , it holds that

UωE (z) =UωΓ(z)+ c , z ∈ E ,

where c = − logcap(E) + logcap(Γ). Using now the fact supp(ωE ) = ∂ E and the uniqueness of
the balayage (see, for example, [10, Thm. II.4.4]), we can immediately conclude that

(4.4) bωΓ =ωE

and

(4.5)
∫

g (t ,∞)dωΓ(t ) =− logcap(E)+ logcap(Γ).

From this, on account of the formula

(4.6) UωE (z) =− logcap(E)− g (z,∞), z ∈C,

we obtain that for every z ∈C,

UωΓ
D (z)− g (z,∞) = UωΓ−ωE (z)+

∫

g (t ,∞)dωΓ(t )− g (z,∞)

= UωΓ(z)+ logcap(Γ).(4.7)

So,
UωΓ

D (z)− g (z,∞) = 0, z ∈ Γ.

Therefore, relations λ0 =ωΓ and m0 = 0 follow from the uniqueness of the measure λθ satisfying
conditions (2.3) and (2.4) (see Remark (e) after Theorem 2.1). �
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Lemma 4.3. For each θ ∈ [0,1] we have

(4.8) µθ =Úλ0−λθ =ωE −cλθ,

(4.9) bmθ =− logcap(E)−
∫

g (t ,∞)dλθ(t ),

and

(4.10) U λθ
D (z)− g (z,∞) =U λθ+µθ (z)− bmθ, z ∈C.

Moreover,

(4.11) supp(µθ) = ∂ E , θ ∈ (0,1].

Proof. It is easy to see that for θ = 0 and θ = 1 (4.8), (4.9) and (4.10) are valid. In the case θ = 0,
µ0 = 0 by definition, and Lemma 4.3 implies that λ0 =ωΓ and bλ0 =ωE . From this, on account of
(4.5) and (4.7) we get (4.9) and (4.10). For θ = 1, λ1 = 0 by definition. It follows from Theorem
2.2 (see Remark (a) after Theorem 2.2) that µ1 = ωE and bm1 = − logcap(E). We also note that
since supp(ωE ) = ∂ E , (4.11) holds for θ= 1.

Let us consider now the case θ ∈ (0,1). We start from the next observation. As noted in the
Remark (b) after Theorem 3.1, it follows from [6, Thm. 2.4], that λ0−λθ is a positive measure. It

is easy to see that |λ0−λθ|= θ. Hence,Úλ0−λθ is a positive measure, and |Úλ0−λθ|= θ. Moreover,
it is a simple application of the second unicity theorem [10, Thm. II.4.6] to see that

Úλ0−λθ = bλ0− bλθ.

So, bλ0− bλθ =ωE − bλθ is a positive measure and |ωE −cλθ|= θ. According to the property (3.2) of
the Green potential,

(4.12) U λθ
D (z)− g (z,∞) =U λθ−bλθ (z)+

∫

g (t ,∞)dλθ(t )− g (z,∞), z ∈C,

and, by (4.6),

(4.13) U λθ
D (z)− g (z,∞) =U λθ+ωE−bλθ (z)+ logcap(E)+

∫

g (t ,∞)dλθ(t ), z ∈C.

Since U λθ
D (z)− g (z,∞) = 0 on E , (4.8) and (4.9) follow from the uniqueness of the measure µθ

satisfying conditions (2.8) and (2.9). So, we have (4.10). Using now the facts that E is a regular
compact set, µθ is the balayage of λ0−λθ and properties of the balayage (see, for example, [5]) we
can conclude that supp(µθ) = ∂ E . �

We can consider equation (4.10) as the basic equation of this section, it allows us to connect the
Green potential U λθ

D (z)− g (z,∞) and the logarithmic potentials U λθ+µθ (z)− bmθ of the extremal

problems from Section 2. Since U λθ
D (z)− g (z,∞) = 0 on E and minΓ(U

λθ
D (z)− g (z,∞)) = mθ on

Γ, we get immediately from (4.10) the equality:

(4.14) mθ =M (λθ+µθ).

The function U λθ+µθ satisfies the following property. The logarithmic potential U λθ+µθ of a
probability measure λθ+µθ is equal to constants on supports of µθ and λθ:

(4.15) U λθ+µθ = bmθ on E and U λθ+µθ =min
Γ

U λθ+µθ = mθ+ bmθ on Sθ ⊆ Γ.
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Lemma 4.4. For each θ ∈ [0,1], we have

(4.16) mθ = inf
µ

M (µ+λθ),

where infimum is taken over all compactly supported positive Borel measures with |µ| ≤ θ. Further,
the equality in (4.16), for θ ∈ (0,1], is possible if and only if supp(µ)⊆ E and bµ=µθ.

Proof. Let θ = 0. In this case µ0 = 0 by definition and by Lemma 4.2 m0 = 0, λ0 = ωΓ. Since
UωΓ(z) =− logcap(Γ) for z ∈G, M (λ0) =M (ωΓ) = 0. This yields the equality m0 =M (λ0).

Let θ ∈ (0,1]. Consider a logarithmic potential Uµ−µθ . This function is superharmonic and
bounded from below in D = C \ E . Then by the generalized minimum principle for superhar-
monic functions [10, Thm. I.2.4],

(4.17) min
E

Uµ−µθ ≤Uµ−µθ (z), z ∈D .

In particular,

(4.18) min
E

Uµ−µθ ≤min
Γ

Uµ−µθ .

Moreover, there are strict inequalities in (4.17) for z ∈D and in (4.18), unless

supp(µ)⊆ E , Uµ−µθ (z) = 0, z ∈D .

That is if and only if bµ=µθ by Carleson’s unicity theorem (see [10, Thm. II. 4.13]).
With the help of the equality

Uµ+λθ (z) =Uµ−µθ (z)+U λθ+µθ (z), z ∈C,

and (4.15), we can write
min

E
Uµ+λθ =min

E
Uµ−µθ + bmθ

and
min
Γ

Uµ+λθ ≥min
Γ

Uµ−µθ +mθ+ bmθ.

Therefore, by (4.18),
M (µ+λθ) =min

Γ
Uµ+λθ −min

E
Uµ+λθ ≥ mθ,

and the equality in (4.16) is possible if and only if supp(µ)⊆ E and bµ=µθ. �

Lemma 4.5. For each θ ∈ [0,1] we have

(4.19) mθ = sup
λ

M (µθ+λ),

where supremum is taken over all compactly supported positive Borel measures with |λ| ≤ 1 − θ.
Further, the equality in (4.19), for θ ∈ [0,1) is possible if and only if λ= λθ when Sθ does not separate
the plane and supp(λ)⊂C \G, eλ= λθ− (1−θ− |λ|)ωΓ, otherwise.

Proof. Let θ= 1. In this case λ1 = 0 and m1 =−maxΓ g (z,∞) by definition and µ1 =ωE . On the
basis of (4.6) we can write

M (µ1) =min
Γ

UωE −min
E

UωE =−max
z∈Γ

g (z,∞) = m1.

Let us consider the case when θ ∈ [0,1). Denote by λ any compactly supported positive Borel
measure with mass at most 1−θ. It is enough to show that

min
Sθ

Uµθ+λ−min
E

Uµθ+λ ≤ mθ.
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Consider a logarithmic potential U λ−λθ . This is superharmonic and bounded below function
in C \ Sθ. Then by the generalized minimum principle for superharmonic functions,

(4.20) min
Sθ

U λ−λθ ≤U λ−λθ (z), z ∈C \ Sθ,

and

(4.21) min
Sθ

U λ−λθ ≤min
E

U λ−λθ .

From this, using (4.15), we get

min
Sθ

Uµθ+λ−min
E

Uµθ+λ ≤ mθ

and therefore (4.19) holds. Observe also that the equality in (4.19) is possible if and only if we have
the equality in (4.21). That is if and only if

(4.22) U λθ (z) =U λ(z)+ c∗, z ∈Ω,

where c∗ is some constant, Ω = C \ Sθ if Sθ does not separate the plane and Ω = G otherwise. In
the former case c∗ = 0 and we get λ = λθ by Carleson’s unicity theorem. In the latter situation
supp(λ) ⊆ C \G. Using the continuity of potentials in fine topology (see [10, Sec. I.5]) and
regularity of Γ, we may continue equality in (4.22) up to G. Let eλ be the balayage of λ onto Γ
relative to C \G (we balayage only the part of λ which is supported outside of G). Then

U
eλ(z) =U λ(z)+ c , z ∈G,

where c =
∫

gG(t ,∞)dλ(t ). Thus,

(4.23) U
eλ(z) =U λθ (z)− c∗+ c , z ∈G.

Using now the maximum principle of harmonic functions in the domain C \G, we get

(4.24) U
eλ(z) =U λθ (z)+

�

1−θ− |eλ|
�

gG(z,∞)− c∗+ c , z ∈C \G

(we applied the maximum principle of harmonic functions for the difference of the left and right
hand sides). Taking now on an account (4.23), we obtain the equality (4.24) for all z ∈ C. From
this with help of the formula UωΓ(z) = − logcap(Γ)− gG(z,∞), and the unicity theorem [10,

Thm. II 2.1], we can conclude that eλ+ (1− θ − |λ|)ωΓ = λθ, which finishes the proof of the
lemma. �

Proof of Theorem 4.1. It is a straightforward application of Lemmas 4.4 and 4.5 to obtain

inf
µ∈Λθ(E)

sup
λ∈Λ1−θ(Γ)

M (µ+λ)≥ inf
µ∈Λθ(E)

M (µ+λθ) = mθ

and
inf

µ∈Λθ(E)
sup

λ∈Λ1−θ(Γ)
M (µ+λ)≤ sup

λ∈Λ1−θ(Γ)
M (µθ+λ) = mθ.

This establishes the first equality in (4.1). Clearly, we have

inf
µ∈Λθ(E)

sup
λ∈Λ1−θ(Γ)

M (µ+λ)≥ sup
λ∈Λ1−θ(Γ)

inf
µ∈Λθ(E)

M (µ+λ).
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On the other hand, it follows from Lemmas 4.4 and 4.5 that

sup
λ∈Λ1−θ(Γ)

M (µθ+λ) = inf
µ∈Λθ(E)

M (µ+λθ).

Therefore,
inf

µ∈Λθ(E)
sup

λ∈Λ1−θ(Γ)
M (µ+λ)≤ sup

λ∈Λ1−θ(Γ)
inf

µ∈Λθ(E)
M (µ+λ),

which finishes the proof of (4.1). Let nowµ∗ and λ∗ be as in (4.2). Then by Lemma 4.4, we observe
that

mθ ≤M (µ∗+λθ)≤ sup
λ

M (µ∗+λ) = mθ.

Thus,
mθ =M (µ∗+λθ)

and supp(µ∗)⊆ E and cµ∗ =µθ again by Lemma 4.4. Furthermore, in this case

mθ =M (µθ+λ
∗)

and, by Lemma 4.5, λ∗ = λθ when Sθ does not separate the plane and supp(λ∗) ⊂ C \G, eλ∗ =
λθ− (1−θ− |λ∗|)ωΓ, otherwise. �

5. PROOFS OF THE THEOREM 3.1

Before we present the proof of Theorem 3.1, we introduce the analogue of the Tsuji points ([8],
[3]) that corresponds to the weighted Green energy problem (2.2). Set

δG
m := max

z1,...,zm∈Γ







∏

1≤i< j≤m

exp

(

−g (zi , z j )+
g (zi ,∞)

1−θ
+

g (z j ,∞)
1−θ

)







2/m(m−1)

.

Then
δG

m ≥ δ
G
m+1, m ∈N, and lim

m→∞
logδG

m =−J (λθ)/(1−θ)
2.

Moreover, if {ζ1, . . . ,ζm} is any extremal set for δG
m , then

(5.1) λm,θ
∗→ λθ as m→∞, λm,θ :=

1−θ
m

m
∑

j=1

δζ j
.

Here and in what follows we keep to the notation

λn =
1

n

n−kn
∑

j=1

δξ j ,n−kn
,

where {ξ1,n−kn
, . . . ,ξn−nk ,n−kn

} is an extremal set for δG
n−kn

. We remark that

(5.2) λn
∗→ λθ as n→∞.

The proof of these facts needs only minor modifications comparing to the case of the logarithmic
kernel [10, Thm. III.1.1-3].

We also need a discretization of µθ. So, we introduce the Leja points (see [10, Sec. III.1]) that
correspond to the weighted minimal energy problem (2.7). Set

δm := max
z1,...,zm∈E







∏

1≤i< j≤m

|zi − z j |exp
�

−
1

θ

�

U λθ (zi )+U λθ (z j )
�

�







2/m(m−1)

.
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Then
δm ≥ δm+1, m ∈N, and lim

m→∞
logδm =−I (µθ)/θ

2.

Moreover, if {z1, . . . , zm} is any extremal set for δm , then

(5.3) µm,θ
∗→µθ, µm,θ :=

θ

m

m
∑

j=1

δz j
.

Here and in what follows we keep to the notation

µn =
1

n

kn
∑

j=1

δz j ,kn
,

where {z1,kn
, . . . , zkn ,kn

} is an external set for δkn
. We have

(5.4) µn
∗→µθ as n→∞.

It is easy to see that for any compact set K , p ∈Pkn
, p 6≡ 0, and q ∈Pn−kn

, q 6≡ 0, we have

‖pq‖1/n
K = γ 1/n exp

§

−min
K

U ν(p)+ν(q)
ª

,

where γ is the leading coefficient of pq , and

ν(p) :=
1

n

∑

p(z)=0

δz and ν(q) :=
1

n

∑

q(z)=0

δz

(the sums are taken counting multiplicities of zeros of p and q). Therefore, we get

1

n
log

�

‖pq‖E

‖pq‖Γ

�

=min
Γ

U ν(p)+ν(q)−min
E

U ν(p)+ν(q) =M (ν(p)+ ν(q)).

Proof of Theorem 3.1. Let

sup
q∈Pn−kn

M (µn + ν(q)) =M (µn + ν(Qn))

for some polynomial Qn ∈Pn−kn
,Qn 6≡ 0. Denote by

σn = ν(Qn)|G +
åν(Qn)|C\G .

By properties of the balayage, supp(σn)⊆G, |σn |= |ν(Qn)|, and

M (µn + ν(Qn)) =M (µn +σn).

We now choose a convergent subsequence such that

(5.5) σn
∗→ σ , n ∈Λ⊂N,

and
limsup

n→∞
M (µn +σn) = lim

n→∞,n∈Λ
M (µn +σn).

We remark that supp(σ)⊆G and |σ | ≤ 1−θ. Since E and Γ are regular sets, conditions (5.4) and
(5.5) imply (cf. [4]) that

min
Γ

V µn+σn →min
Γ

V µθ+σ as n→∞, n ∈Λ,

min
E

V µn+σn →min
E

V µθ+σ as n→∞, n ∈Λ,
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and then
lim

n→∞,n∈Λ
M (µn +σn) =M (µθ+σ),

where, by Lemma 4.5, M (µθ+σ)≤ mθ. Therefore,

limsup
n→∞

� 1

n
logχn

�

≤ limsup
n→∞

sup
q∈Pn−kn

M (µn + ν(q)) = limsup
n→∞

M (µn + ν(Qn))

= lim
n→∞,n∈Λ

M (µθ+σn) =M (µθ+σ)≤ mθ.(5.6)

For any polynomial p ∈Pkn
, p 6≡ 0, consider the following function

u(z) =U ν(p)+λn (z)−min
E

U ν(p)+λn −U λn
D (z)+ g (z,∞), z ∈C.

This function is superharmonic in D . Using the generalized minimum principle for superhar-
monic functions, we obtain that u(z)≥ 0, z ∈D . In particular,

(5.7) min
Γ

U ν(p)+λn −min
E

U ν(p)+λn ≥min
Γ

�

U λn
D (z)− g (z,∞)

�

.

Since (5.7) is valid for any p ∈Pkn
, p 6≡ 0, we get

(5.8)
1

n
logχn ≥min

Γ

�

U λn
D (z)− g (z,∞)

�

.

Further, in view of the properties of weakly convergent sequences,

min
Γ

�

U λn
D (z)− g (z,∞)

�

→min
Γ

�

U λθ
D (z)− g (z,∞)

�

= mθ as n→∞.

Then, by the relation (5.8), we get

(5.9) liminf
n→∞

� 1

n
logχn

�

≥ mθ.

So, (3.6) follows from (5.6) and (5.9).
Fix a positive R such that G ⊂U , where U = {z : |z |< R}. Let L= {z : |z |= R}.
Let now {pn , qn}n∈N, pn ∈Pkn

and qn ∈Pn−kn
, be a sequence of asymptotically extremal pairs

of polynomials. First, we show (3.7). Let {ν(pn)}, n ∈Λ0 ⊂N, be a convergent subsequence. Let

(5.10) σn = ν(pn)|U +τn ,

where τn is the balayage of ν(pn)|C\U on L. By the properties of balayage, for any polynomial
q ∈Pn−kn

, q 6≡ 0,
M (ν(pn)+ ν(q)) =M (σn + ν(q)).

Hence,

(5.11) sup
q∈Pn−kn

M (ν(pn)+ ν(q))≥M (σn +λn).

We choose a convergent subsequence

(5.12) σn
∗→ ν, n ∈Λ⊂Λ0 ⊂N,

where |ν | ≤ θ, supp(ν)⊆U . On the basis of the fact that E and Γ are regular sets, we get

(5.13) M (σn +λn)→M (ν +λθ) as n→∞, n ∈Λ.
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By (3.1),
limsup

n→∞
sup

q∈Pn−kn

M ((pn)+ ν(q)) = mθ.

From this, on an account of (5.11) and (5.13), we obtain that M (ν + λθ) ≤ mθ. Applying Lemma
4.4, we can write M (ν +λθ) = mθ, supp(ν)⊆ E , and bν =µθ.

Since supp(ν)⊆ E , we obtain from (5.10) and (5.12) that

τn
∗→ 0 as n→∞, n ∈Λ,

ν(pn)
∗→ ν as n→∞, n ∈Λ,

and, then,

ν(pn)
∗→ ν as n→∞, n ∈Λ0.

From this, by properties of the balayage,

α(pn)
∗→µθ as n→∞, n ∈Λ0,

and, then,

α(pn)
∗→µθ as n→∞.

The relation (3.7) thereby is obtained.
It only remains to prove (3.8). By properties of the balayage, M (ν(pn) + ν(qn)) = M (α(pn) +

ν(qn)). Define

(5.14) νn = ν(qn)|U +ηn ,

where ηn is the balayage of ν(qn)|C\U on L, when Sθ does not separate the plane and νn = β(qn)
otherwise. Then M (α(pn)+ ν(pn)) =M (α(pn)+ νn) and (3.1) yields that

lim
n→∞

M (α(pn)+ νn) = mθ.

As above, taking a convergent subsequence, νn
∗→ ν , n ∈Λ⊂N, we get

lim
n→∞,n∈Λ

M (α(pn)+ νn) =M (µθ+ ν)

and M (µθ+ ν) = mθ.
Let us consider now the case when Sθ does not separate the plane. Since, by Lemma 4.5, ν = λθ,

supp(λθ)⊆ Γ, we obtain that

ηn
∗→ 0 as n→∞, n ∈Λ,

ν(qn)
∗→ ν = λθ as n→∞, n ∈Λ,

and then
ν(qn)

∗→ λθ as n→∞.

In the case when Sθ does separate the plane, we have by Lemma 4.5 that supp(ν)⊂C\G, |ν |= 1,
and eν = λθ. Moreover, by definition of β(qn) (see (3.5)) we can conclude that supp(ν) ⊆ Γ. From
this and the fact that eν = λθ we obtain that ν = λθ and then

β(qn)
∗→ λθ as n→∞. �
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6. SOME PROPERTIES OF λθ AND µθ

In the next two theorems we describe some properties of the extremal measures λθ and µθ,
their supports, and the constants mθ and bmθ. It will be convenient for us to use the notation

ω(K ,∂ E) and cap(K ,∂ E)

for the Green equilibrium distribution and the condenser capacity of a compact set K ⊂ D , re-
spectively (cf. [10, Ch. II and VII]).

Theorem 6.1. (a) The family {Sθ}, θ ∈ [0,1], is a decreasing family of sets such that

Sθ =
⋃

θ<τ<1

Sτ ⊆
⋂

0≤τ<θ

Sτ =
n

z ∈ Γ : U λθ
D (z)− g (z,∞) = mθ

o

and
S1 :=

⋂

0≤τ<1

Sτ = {z ∈ Γ : g (z,∞) =−m1} ;

(b) the family {λθ}, θ ∈ [0,1), is decreasing and continuous in the weak∗ sense. Moreover,

λθ =
∫ 1

θ

ω(Sτ ,∂ E)dτ;

(c) mθ is a continuous and strictly decreasing function of θ on [0,1]. Furthermore,

mθ = m1+
∫ 1

θ

dτ

cap(Sτ ,∂ E)
and

mθ

θ
→−

1

cap(Γ,∂ E)
as θ→ 0;

(d)
λ0−λθ
θ

∗→ω(Γ,∂ E) as θ→ 0;

(e) if S1 has positive capacity then
λθ

1−θ
∗→ω(S1,∂ E) as θ→ 1.

Proof. Statements (a), (b), and the first part of (c) follow from [6, Thm. 2.4]. (We should remark
that it is required in [6, Thm. 2.4] for any compact set K ⊂ Γ to have connected complement.
However, a direct examination of the proof shows that the theorem still holds when E is contained
in G and the later is simply connected.) Further, by Lemma 4.2, m0 = 0 and S0 = Γ. This means
that

mθ

θ
=−

1

θ

∫ θ

0

dτ

cap(Sτ ,∂ E)
.

Thus, the second part of (c) follows by the continuity of cap(Sθ,∂ E) as function of θ at zero from
the right [9, Thm. 5.1.3].

It has been proved in [6, Thm. 2.4] that

(6.1)
dλθ
dθ
=−ω(Sθ ,∂ E)

for any point of continuity of cap(Sθ,∂ E) as a function of θ. Then (d) follows from continuity of
cap(Sθ,∂ E) at θ = 0 and the fact S0 = Γ. Now, assume that S1 has positive logarithmic capacity
and therefore well-defined Green equilibrium distribution ω(S1,∂ E). As above, we can use (6.1).
The continuity from the left of cap(Sθ,∂ E) at one follows from [9, Thm. 5.1.3] by the definition
of S1. �



16 V.A. PROKHOROV, E.B. SAFF, AND M. YATTSELEV

The following theorem describes the connection between µθ and λθ, some properties of µθ
and Ómθ.

Theorem 6.2. (a) The family {µθ}, θ ∈ (0,1], is increasing, continuous in the weak∗ sense, and
such that

supp(µθ) = ∂ E and µθ =ωE − bλθ.

Moreover,
µθ
θ

∗→ω(E ,Γ) as θ→ 0;

(b) bmθ is a continuous and strictly increasing function of θ on [0,1]. Furthermore,

bmθ =− logcap(E)−
∫

g (t ,∞)dλθ(t ).

Proof. Part (b) follows from (4.9) and Theorem 6.1(b). First part of (a) follows from Lemma 4.3,

the formula µθ =Úλ0−λθ (see (4.8)), and Theorem 6.1(b). The continuity of {µθ} follows from

continuity of the family {λθ}, formula µθ =Úλ0−λθ, and properties of the balayage (see, for
example [5]). We have

λ0−λθ
θ

∗→ω(Γ,∂ E) as θ→ 0.

Thus, by properties of balayage,

Ûλ0−λθ
θ

∗→Ùω(Γ,∂ E) as θ→ 0,

and then
µθ/θ

∗→Ùω(Γ,∂ E) as θ→ 0.

It remains only to remark that
Ùω(Γ,∂ E) =ω(E ,Γ). �

7. PROOF OF THEOREM 3.2

Proof of Theorem 3.2. Since kn = o(n) as n → ∞, [kn/θ] ≤ n for any fixed θ ∈ (0,1) and n
sufficiently large. Let ln = [kn/θ]. Therefore,

inf
p∈Pkn

sup
q∈Pln−kn

‖pq‖E

‖pq‖Γ
≤ χn ≤ dkn

(A∞;C (E))

(compare (1.2) with the definition (1.3) of χn). Then by (3.6) and (1.1), we have

(7.1)
mθ

θ
≤ liminf

n→∞

�

1

kn
logχn

�

≤ limsup
n→∞

�

1

kn
logχn

�

≤−
1

cap(E ,Γ)
.

Taking the limit θ → 0, we obtain (3.12) from Theorem 6.1(c) and the fact that cap(E ,Γ) =
cap(Γ,∂ E).

Let now pn be asymptotically extremal polynomials in the sense of (3.9). Fix an arbitrary
θ ∈ (0,1). Let

σn =
1

ln

ln−kn
∑

j=1

δξ j ,ln−kn
,
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where {ξ1,ln−kn
, . . . ,ξln−kn ,ln−kn

} is an extremal set for δG
ln−kn

. Observe that

σn
∗→ λθ as n→∞.

Denote by Qn(z) =
ln−kn
∏

j=1

(z − ξ j ,ln−kn
) the corresponding polynomial degree ln − kn . By (3.9),

(7.2) limsup
n→∞

�

1

χn

||pnQn ||E
||pnQn ||Γ

�1/kn

≤ 1.

We have

(7.3)
1

kn
log
||pnQn ||E
||pnQn ||Γ

=M
�

ν∗(pn)+
ln

kn
σn

�

.

As in the proof of Theorem 3.1, we fix R> 0 such that G ⊂ U = {z : |z |< R}. Let L= {z : |z |=
R}. Let

νn = ν
∗(pn)|U +ηn ,

where ηn is the balayage of ν∗(pn)|C\U onto L. According to the properties of the balayage,

M
�

ν∗(pn)+
ln

kn
σn

�

=M
�

νn +
ln

kn
σn

�

.

By (3.12) and (7.2),

(7.4) limsup
n→∞

M
�

νn +
ln

kn
σn

�

≤−
1

cap(E ,Γ)
.

We select a convergent subsequence νn
∗→ ν , n ∈Λ⊂N, |ν | ≤ 1, such that

limsup
n→∞

M
�

νn +
ln

kn
σn

�

= lim
n→∞,n∈Λ

M
�

νn +
ln

kn
σn

�

.

Since E and Γ are regular sets,

lim
n→∞,n∈Λ

M
�

νn +
ln

kn
σn

�

=M
�

ν +
λθ
θ

�

.

Therefore, by (7.4), we get

(7.5) M
�

ν +
1

θ
λθ

�

≤−
1

cap(E ,Γ)
.

Since λ0 =ωΓ and UωΓ(z) =− logcap(Γ) on G,

M
�

ν +
1

θ
λθ

�

=M
�

ν −
λ0−λθ
θ

�

and

M
�

ν −
λ0−λθ
θ

�

≤−
1

cap(E ,Γ)
.

According to Theorem 6.1(d),

λ0−λθ
θ

∗→ω(Γ,∂ E) as θ→ 0.
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Taking now the limit as θ→ 0, we get

(7.6) M (ν −ω(Γ,∂ E))≤−
1

cap(E ,Γ)
.

Since

Uω(E ,Γ)−ω(Γ,∂ E) =
1

cap(E ,Γ)
on E

and
Uω(E ,Γ)−ω(Γ,∂ E) = 0 on Γ,

we obtain that

M (ν −ω(Γ,∂ E)) =M (ν −ω(E ,Γ))−
1

cap(E ,Γ)
.

Thus, we derive from this and (7.6) that

M (ν −ω(E ,Γ))≤ 0

and

(7.7) min
Γ

U ν−ω(E ,Γ) ≤min
E

U ν−ω(E ,Γ) .

Applying now the generalized minimum principle for superharmonic functions, we can conclude
that minΓU ν−ω(E ,Γ) = minE U ν−ω(E ,Γ) , U ν−ω(E ,Γ) = 0 in D and supp(ν) ⊆ E . By Carleson’s unicity
theorem, we obtain from this that bν =ω(E ,Γ). Since supp(ν)⊆ E , we get

ηn
∗→ 0 as n→∞, n ∈Λ,

and
ν∗(pn)

∗→ ν as n→∞, n ∈Λ.

From this, by the properties of the balayage, we can write

α∗(pn)
∗→ω(E ,Γ) as n→∞, n ∈Λ,

and then
α∗(pn)

∗→ω(E ,Γ) as n→∞. �

8. PROOF OF THEOREM 3.3

Proof of Theorem 3.3. We start by showing the lower bounds in (3.14) and (3.15). Since

A∞n (Gθ)⊆A∞n (G
′), G′ ⊆Gθ,

we may take G′ =Gθ.
Let {λn} be a sequence of measures defined as in (5.2). For each θ ∈ [0,1) we take {qn} to be

the sequence of monic polynomials such that ν(qn) = λn , where ν(h) be the counting measure of
the zeros of a polynomial h normalized by 1/n. For θ= 1 we take qn ≡ 1. Then {pqn : p ∈Pkn

}
is a linear space of continuous functions on E of dimesion kn + 1. Hence, it follows from [7, pg.
137] that for any linear space of continuous functions on E of dimension kn , say Xkn

, there exists
a polynomials pXkn

such that

inf
g∈Xkn

‖pXkn
qn − g‖E ≥ ‖pXkn

qn‖E .
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In particular, it means that

(8.1) dkn
(A∞n ;C (E))≥ inf

Xkn

‖pXkn
qn‖E

‖pXkn
qn‖Γθ

≥ inf
p∈Pkn

‖pqn‖E

‖pqn‖Γθ
.

When θ= 1, we get from the Bernstein-Walsh inequality and (8.1) that

(8.2) dkn
(A∞n ;C (E))≥ exp{kn m1}.

For θ ∈ [0,1), the lower estimate in (8.1) yields

dkn
(A∞n ;C (E)) ≥ inf

p∈Pkn

exp
�

n
�

min
Γθ

U ν(p)+λn −min
E

U ν(p)+λn

��

≥ exp
�

n min
Γθ

�

U λn
D (z)− g (z,∞)

�

�

,(8.3)

where Γθ := ∂ Gθ and we used (5.7) with Γθ instead of Γ. As before, by the properties of weakly
convergent sequences, it holds that

(8.4) min
Γθ

�

U λn
D (z)− g (z,∞)

�

→min
Γθ

�

U λθ
D (z)− g (z,∞)

�

= mθ as n→∞.

Thus, we get from (8.2) and (8.3) with (8.4) that

(8.5) liminf
n→∞

� 1

n
log dkn

(A∞n ;C (E))
�

≥ mθ.

When θ= 0, we have that G0 =G. Further, we get exactly as in the first inequality in (7.1) that

liminf
n→∞

�

1

kn
log dkn

(A∞n ;C (E))
�

≥ liminf
n→∞

�

ln

kn

1

ln
log dkn

(A∞ln
(Gτ);C (E))

�

≥
mτ

τ

for any τ ∈ (0,1], where ln := [kn/τ] and we used (8.5) and the fact that G ⊆Gτ . Therefore,

(8.6) liminf
n→∞

�

1

kn
log dkn

(A∞n ;C (E))
�

≥−
1

cap(E ,Γ)

by Theorem 6.1(c).
Now we shall show the upper bounds in (3.14) and (3.15). Observe that

dkn
(A∞n ;C (E))≤ dkn

(A∞;C (E)).

Thus, (3.15) follows from (8.6) and (1.1). Since for θ = 0 limit (3.14) follows from (3.15), we may
assume that θ ∈ (0,1]. Moreover, since

A∞n (G
′)⊆A∞n (G), G ⊆G′,

we may take G′ = G. To proceed with the upper bound we need to construct a special sequence
of domains. Fix θ ∈ (0,1] and define

Ωθ,δ :=
n

z ∈C : U λθ
D (z)− g (z,∞)< mθ+δ

o

, δ ∈ (0,−mθ).

Each such domain Ωθ,δ is unbounded and contains Sθ = supp(λθ) by (2.3). Also denote

Gδ :=
¦

z ∈C : gG(z,∞)≤ δ
©

,
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where gG(·,∞) is the Green function with pole at infinity for C \G. Now, for each fixed δ ∈
(0,−mθ) take Uδ to be a connected domain (possibly unbounded) with regular boundary and
such that

Sθ ⊂C \Uδ , E ⊂Uδ , and Lδ := ∂ Uδ ⊂Ωθ,δ ∩Gδ .

Then the harmonic measure (cf. [9, Sec. 4.3]) for Uδ , sayωδ (·, ·), exists,

(8.7) ‖h‖Lδ
≤ ‖h‖∂ Gδ ≤ ‖h‖Γ exp{nδ}, h ∈Pn ,

by the Bernstein-Walsh inequality, and

(8.8) max
Lδ

�

U λθ
D (z)− g (z,∞)

�

≤ mθ+δ.

Therefore, if Sθ = Γ, then Uδ is an open subset of G that contains E and whose boundary is
regular and close enough to Γ so (8.8) holds. If Sθ is a proper subset of Γ, the Uδ is an unbounded
open set that contains E , whose boundary is regular, encompasses Sθ, and is close enough to it so
(8.7) and (8.8) hold.

Let {µn} be defined as in (5.4) and {pn} be a sequence of monic polynomials such that ν(pn) =
µn . Further, let {qn} be a sequence of polynomials defined as at the beginning of the theorem
when θ ∈ (0,1) and take qn to be an arbitrary polynomial of degree n− kn with zeros on S1 when
θ= 1. Define

(T δ
n h)(z) := pn(z)qn(z)

∫

Lδ

h(τ)

pn(τ)qn(τ)
dωδ (τ, z), z ∈ E , h ∈Pn ,

Then T δ
n is an operator fromPn ∩H∞(Uδ ) to C (E) such that

(8.9) ‖T δ
n h‖E ≤

 

‖pn qn‖E

minLδ
|pn qn |

!

‖h‖Lδ
.

Recall that

‖pn qn‖
1/n
E → exp

§

−min
E

Uµθ+λθ
ª

= exp{− bmθ} as n→∞

by (5.2) and (5.4), (4.15), and since E is regular. Moreover, the counting measures of zeros of pn qn ,
namely µn+λn , are supported on E∪Γ and converge weakly to µ+λ that is supported on E∪Sθ.
Therefore, we always can modify qn , if needed, in such a manner that no zeros of qn lie in some
neighborhood of Lδ and λn still have the same asymptotic behavior. Hence, since the supports of
µn +λn stay away from Lδ , it holds that

|pn qn |
1/n→ exp

¦

−Uµθ+λθ
©

as n→∞ uniformly on Lδ .

Thus, we get for the operator norm of T δ
n that

limsup
n→∞

‖T δ
n ‖

1/n ≤ exp
�

max
Lδ

Uµθ+λθ − bmθ

�

= exp
�

max
Lδ

�

U λθ
D (z)− g (z,∞)

�

�

≤ exp{mθ+δ}(8.10)

by (4.10) and (8.8).
On the other hand, it holds that

T δ
n h = h, h(z j ,n) = 0, h ∈Pn ,
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where z1,n , . . . , zkn ,n are the zeros of pn . Indeed, this holds because the ratio h/pn qn is analytic in
Uδ (including at infinity since deg(pn qn) = n) and continuous on Lδ . Let φ1, . . . ,φkn

be polyno-
mials of degree at most n such thatφ j (zi ,n) = δi j , where δi j is the usual Kronecker symbol. Then
for any h ∈Pn we have

(8.11) (T δ
n h)(z) = h(z)−

kn
∑

j=1

h(z j )
�

φ j (z)− (T
δ
n φ j )(z)

�

.

Clearly, the sum on the right-hand sum of (8.11) belongs to a kn -dimensional subspace of C (E)
spanned by φ j −T δ

n φ j , j = 1, . . . , kn . Hence,

(8.12) dkn
(A∞n ;C (E))≤ exp{nδ}‖T δ

n ‖

by (8.7). Combining (8.12) with (8.10), we get

limsup
n→∞

� 1

n
log dkn

(A∞n ;C (E))
�

≤ mθ

since δ was arbitrary. Thus, (3.14) follows from (8.5) and the last limit. �
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