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ABSTRACT. Remez-type inequalities provide upper bounds for the uniform norms of
polynomials p on given compact sets K , provided that |p(x)| ≤ 1 for every x ∈ K \ E ,
where E is a subset of K of small measure. In this note we obtain an asymptotically sharp
Remez-type inequality for homogeneous polynomials on the unit sphere in Rd .

1. INTRODUCTION

For any d , n ∈N define the space of homogeneous polynomials as

H d
n :=







∑

|k|1=n

akxk, ak ∈R, x ∈Rd







,

where | · |1 stands for the `1-norm of k ∈Zd
+.

Denote by

Rn,d (δ) := sup

(

‖h‖Sd−1

‖h‖Sd−1\E
: h ∈H d

n , E ⊂ Sd−1, sd−1(E)≤ δ
d−1

)

,

where Sd−1 := {x ∈ Rd : |x| = 1} is the unit sphere in Rd (with respect to the usual
`2-norm, | · |), ‖ f ‖K := maxx∈K | f (x)| for any continuous function f on an arbitrary
compact set K , and sd−1(·) stands for the Lebesgue surface measure in Rd .

The classical inequality of Remez [4] (see also [2]) was generalized in numerous ways
during the past decades. In particular, in the recent paper by A. Kroó, E. B. Saff, and
the author [3] a result for homogeneous polynomials on star-like domains was obtained.
Roughly speaking, a simply connected compact set K in Rd is a star-like α-smooth (0 <
α ≤ 2) domain if its boundary is given by an even mapping of Sd−1 which is Lipschitz
continuous of order α. Then, by the result mentioned above, for any 0 < δ < 1/2 and
any h ∈H d

n such that

sd−1 ({x ∈ ∂ K : |h(x)|> 1})≤ δd−1

we have
1

n
log‖h‖K ≤ c(K)ϕα(δ),
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where

ϕα(δ) :=







δα, 0<α < 1
δ log 1

δ
, α= 1

δ, 1<α≤ 2.

For instance, in the case of the unit sphere, it follows that
1

n
log Rn,d (δ)≤ c(Sd−1)δ.

The goal of this note is to obtain asymptotically sharp expression for the constant c(Sd−1)
in the previous inequality.

Theorem 1. Let {δn}∞n=1 be a sequence of positive numbers tending to zero such that

lim
n→∞

nδn =∞

and Γ(·) stand for the Gamma function. Then for any integer d ≥ 2 we have

(1) lim
n→∞

log Rn,d (δn)

nδn
= κd ,

where

(2) κd :=
1
p
π

�

d − 1

4
Γ
�

d − 1

2

��1/(d−1)

.

In particular, in the case of the unit circle we obtain

Corollary 2. Let {δn}∞n=1 be as above. Then

lim
n→∞

log Rn,2(δn)

nδn
=

1

4
.

2. PROOFS

The proof of Theorem 1 explores a connection between the restriction of H 2
n to the

unit sphere in R2, H 2
n (S

1), and P2n(T), the space of complex polynomials of degree at
most 2n restricted to the unit circle. Namely, for any h(x, y) ∈ H 2

n (S
1), there exists

q(z) ∈ P2n(T) such that

|h(x, y)|= |q(z)|, for any z = x + i y ∈T.

It will allow us to use the known Remez inequality for polynomials in P2n(T). The
following result that we shall apply later is due to V. Andrievskii and can be found in [1].

Theorem 3. Let n ∈N, δ ≥ 0, and q ∈ Pn(T) be such that

s1 {z ∈T : |q(z)| ≥ 1} ≤ δ.

Then

‖q‖T ≤
�

1+ sin(δ/4)

cos(δ/4)

�n

.

This estimate is sharp in the asymptotic sense. Namely, let {qn} be a sequence of normalized
Fekete polynomials for the set

Cδ :=
¦

z = e iφ ∈T : φ ∈ [−π,−δ/2]∩ [δ/2,π]
©

,
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where normalization means that ‖qn‖Cδ = 1. Then

lim
n→∞
|qn(1)|

1/n =
1+ sin(δ/4)

cos(δ/4)
.

Next we shall need an auxiliary lemma which will reduce the problem to the two-
dimensional case.

Let Sd−1
+ := {x = (x1, . . . , xd ) ∈ Rd : |x| = 1, xd ≥ 0} denote the upper half-sphere.

Any two-dimensional plane containing the line {x1 = · · ·= xd−1 = 0} can be described as
follows:

L
φ
= {γ ·u+β · ed : γ ,β ∈R},

whereφ ∈ T d−2 := [0,π]×[−π/2,π/2]d−3, ed := (0, . . . , 0, 1) ∈Rd , and u= (u1, . . . , ud−1) ∈
Sd−2 which can be represented in the spherical coordinates of Rd−1 as (1,φ) or (−1,φ).

Lemma 4. Let ε > 0 and d ∈ N be fixed. Further, let E ⊂ Sd−1
+ be such that ed ∈ E and

sd−1(E) = ε
d−1. Then

(3) inf
n

s1

�

L
φ
∩ E
�

: φ ∈ T d−2
o

≤ 2d/(d−1)κdε+ o(ε), as ε→ 0,

where κd is defined by (2).

Proof. Define a projection Pd :Rd →Rd−1 by the rule

Pd (x1, . . . , xd−1, xd ) := (x1, . . . , xd−1).

For any r > 0 denote by
Ar := P−1

d
(B d−1

r )∩ Sd−1
+

a spherical cap around point ed on the unit sphere which is the preimage of the ball B d−1
r

under the projection Pd , where B d−1
r := {x ∈Rd−1 : |x| ≤ r }. Let r (ε) be chosen in such

a way that sd−1(Ar (ε)) = ε
d−1. Denote by

E
φ
=
n

ρ ∈ [−1,1] : (ρ,φ) ∈ Pd (E)
o

,

where (ρ,φ) ∈R×T d−2 are spherical coordinates in Rd−1.
First we are going to show that

(4) inf
n

s1

�

L
φ
∩ E
�

: φ ∈ T d−2
o

≤ 2arcsin(r (ε)).

Suppose (4) is false, i.e., for any φ ∈ T d−2 we have that

s1

�

L
φ
∩ E
�

> 2arcsin(r (ε)).

The last claim can be restated as
∫

E
φ

dρ
Æ

1−ρ2
>
∫ r (ε)

−r (ε)

dρ
Æ

1−ρ2
, for all φ ∈ T d−2,

which can be written in the following form

(5)
∫

E
φ
\[−r (ε),r (ε)]

dρ
Æ

1−ρ2
>
∫

[−r (ε),r (ε)]\E
φ

dρ
Æ

1−ρ2
, for all φ ∈ T d−2.
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Since
ρ1 := min

E
φ
\[−r (ε),r (ε)]

|ρ|d−2 ≥ max
[−r (ε),r (ε)]\E

φ

|ρ|d−2 =: ρ2,

inequality (5) implies that
∫

E
φ
\[−r (ε),r (ε)]

|ρ|d−2

Æ

1−ρ2
dρ ≥

∫

E
φ
\[−r (ε),r (ε)]

ρd−2
1

Æ

1−ρ2
dρ

>
∫

[−r (ε),r (ε)]\E
φ

ρd−2
2

Æ

1−ρ2
dρ≥

∫

[−r (ε),r (ε)]\E
φ

|ρ|d−2

Æ

1−ρ2
dρ

and consequently
∫

E
φ

|ρ|d−2

Æ

1−ρ2
dρ>

∫ r (ε)

−r (ε)

|ρ|d−2

Æ

1−ρ2
dρ

for all φ ∈ T d−2. Then

εd−1 = sd−1(E) =
∫

Pd (E)

 

1−
d−1
∑

k=1

x2
k

!−1/2

dx=
∫

T d−2
J (φ)

∫

E
φ

|ρ|d−2

Æ

1−ρ2
dρ dφ

>
∫

T d−2
J (φ)

∫ r (ε)

−r (ε)

|ρ|d−2

Æ

1−ρ2
dρ dφ=

∫

B d−1
r (ε)

 

1−
d−1
∑

k=1

x2
k

!−1/2

dx

= sd−1

�

Ar (ε)

�

= εd−1,

where |ρ|d−2J (φ) is the Jacobian of the spherical transformation in Rd−1. Thus, we have
obtained a contradiction.

Now, to prove (3) we need to get an upper estimate for r (ε). Since

µd−1

�

B d−1
r (ε)

�

≤ sd−1

�

Ar (ε)

�

≤ (1+ r 2(ε)/2)µd−1

�

B d−1
r (ε)

�

,

we have

εd−1+ o(εd−1) =µd−1

�

B d−1
r (ε)

�

=µd−1

�

B d−1
1

�

r d−1(ε) =
1

2

�

r (ε)

κd

�d−1

,

where µd−1(·) stands for the usual Lebesgue measure in Rd−1. From the above we obtain
that

r (ε) = 21/(d−1)κdε+ o(ε),
which completes the proof. �

Proof of Theorem 1. We start by showing the upper estimate for the limit in (1). Let
h ∈ H d

n and E ⊂ Sd−1 with sd−1(E) ≤ δd−1
n . Without loss of generality we may assume

that ‖h‖Sd−1\E = 1 and h attains maximum of its modulus at ed ∈ E . Then the auxiliary
lemma ensures that there exists a one-dimensional sphere S1 which goes through the ed
with the property

s1

�

E ∩ S1
�

≤ 4κdδn + o(δn),

where o(δn) is understood in the following sense

lim
n→∞

o(δn) ·δ
−1
n = 0.
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Since h restricted to S1 is a homogeneous polynomial of two variables, problem can be
reduced to the two-dimensional case.

The unit sphere in R2 can be viewed as the unit circle T in the complex plane C,
which allows us to establish a relationship between homogeneous polynomials on S1

and polynomials with complex coefficients on T.

h(x, y) =
n
∑

j=0

h j x j yn− j =
n
∑

j=0

h j

�

z2+ 1

2z

� j � z2− 1

2i z

�n− j

=
qh (z

2)

zn ,

where z = x + i y and qh ∈ Pn(T). Moreover

|h(x, y)|= |qh (z
2)|, z = x + i y ∈T.

Which, in particular, means

|h(cosφ, sinφ)|= |h(cos(π+φ), sin(π+φ))|=
�

�

�qh

�

e2iφ
�

�

�

�

for any φ ∈ [0,π]. Since

s1 {z = x + i y ∈T : |h(x, y)|> 1} = 2µ1 {φ ∈ [0,π] : |h(cosφ, sinφ)|> 1}
≤ 4κdδn + o(δn),

we obtain

s1 {z ∈T : |qh (z)|> 1} = µ1

n

φ ∈ [0,2π] :
�

�

�qh

�

e iφ
�

�

�

�> 1
o

= 2µ1

n

φ ∈ [0,π] :
�

�

�qh

�

e2iφ
�

�

�

�> 1
o

≤ 4κdδn + o(δn).

Thus we can apply Theorem 3, which yields

‖h‖Sd−1 = ‖h‖S1 = ‖qh‖T ≤
�

1+ sin(κdδn + o(δn))

cos(κdδn + o(δn))

�n

.

The last inequality implies

1

n
log Rn,d (δn)≤ log

�

1+ sin(κdδn + o(δn))
�

− logcos(κdδn + o(δn)) = κdδn + o(δn),

which gives us the desired upper bound for the limit in (1).
Now we turn our attention to the lower estimate. For 0 < ε < 1 consider the n-th

Chebyshev polynomials for the interval [−1+ ε, 1− ε], i.e.,

T ε
n (x) := Tn

� x

1− ε

�

,

where Tn(x) = {(x +
p

x2− 1)n + (x −
p

x2− 1)n}/2 is the classical n-th Chebyshev
polynomial. It satisfies

(i) |T ε
n (x)| ≤ 1 for x ∈ [−1+ ε, 1− ε];

(ii) maxx∈[−1,1] |T ε
n (x)|= |T

ε
n (1)|=

�

�

�Tn

�

1
1−ε

�

�

�

� .

Due to the symmetry of [−1+ ε, 1− ε] we can write T ε
n (x) in the next form:

T ε
n (x) =







kn
∏m

j=1(x
2− t 2

j ), n = 2m;

kn x
∏m

j=1(x
2− t 2

j ), n = 2m+ 1.
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This leads to the following homogeneous polynomials of degree n:

hεn(x) =







kn
∏m

j=1

�

(1− t 2
j )x

2
d
− t 2

j (x
2
1 + · · ·+ x2

d−1
)
�

, n = 2m;

kn xd
∏m

j=1

�

(1− t 2
j )x

2
d
− t 2

j (x
2
1 + · · ·+ x2

d−1
)
�

, n = 2m+ 1;

which enjoys the property
hεn(x)

�

�

�

Sd−1
= T ε

n (xd ),

and consequently
‖hεn‖Sd−1 = |T ε

n (1)|.
Then the exceptional set Eε (i.e. Eε := {x ∈ Sd−1 : |hεn(x)| ≥ 1}) can be described as

Eε =
¦

x ∈ Sd−1 : |xd | ≥ 1− ε
©

.

Thus, Eε = P−1
d

�

B d−1
r (ε)

�

, where Pd is the orthogonal projection from Lemma 4 and

r (ε) =
p

ε(2+ ε). We choose ε in such a way that sd−1(Eε) = δ
d−1
n . As was shown before

Æ

2ε(δn)+ ε
2(δn) = κdδn + o(δn),

where κd is defined by (2). So, we get

1

n
log Rn,d (δn) ≥

1

n
log




hε(δn )
n





=
1

n
log

�

�

�

�

�

Tn

�

1

1− ε(δn)

�

�

�

�

�

�

≥ log









1

1− ε(δn)
+

√

√

√

√

2ε(δn)+ ε
2(δn)

(1− ε(δn))
2









+
1

n
log

1

2

=
1

n
log

1

2
+
Æ

2ε(δn)+ ε
2(δn)+ o

�Æ

ε(δn)
�

=
1

n
log

1

2
+κdδn + o(δn).

We complete the proof by dividing the both sides of the inequality above by δn and
taking the limit when n→∞.
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