A NOTE ON THE SHARPNESS OF THE REMEZ-TYPE INEQUALITY FOR HOMOGENEOUS POLYNOMIALS ON THE SPHERE

MAXIM L. YATTSELEV
Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract

Remez-type inequalities provide upper bounds for the uniform norms of polynomials p on given compact sets K, provided that $|p(x)| \leq 1$ for every $x \in K \backslash E$, where E is a subset of K of small measure. In this note we obtain an asymptotically sharp Remez-type inequality for homogeneous polynomials on the unit sphere in \mathbb{R}^{d}.

1. Introduction

For any $d, n \in \mathbb{N}$ define the space of homogeneous polynomials as

$$
H_{n}^{d}:=\left\{\sum_{|\mathbf{k}|_{1}=n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}, a_{\mathbf{k}} \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{d}\right\}
$$

where $\mid \cdot \|_{1}$ stands for the ℓ_{1}-norm of $\mathbf{k} \in \mathbb{Z}_{+}^{d}$.
Denote by

$$
R_{n, d}(\delta):=\sup \left\{\frac{\|b\|_{S^{d-1}}}{\|b\|_{S^{d-1} \backslash E}}: b \in H_{n}^{d}, E \subset S^{d-1}, s_{d-1}(E) \leq \delta^{d-1}\right\},
$$

where $S^{d-1}:=\left\{\mathbf{x} \in \mathbb{R}^{d}:|\mathbf{x}|=1\right\}$ is the unit sphere in \mathbb{R}^{d} (with respect to the usual ℓ_{2}-norm, $\left.|\cdot|\right),\|f\|_{K}:=\max _{\mathrm{x} \in K}|f(\mathbf{x})|$ for any continuous function f on an arbitrary compact set K, and $s_{d-1}(\cdot)$ stands for the Lebesgue surface measure in \mathbb{R}^{d}.

The classical inequality of Remez [4] (see also [2]) was generalized in numerous ways during the past decades. In particular, in the recent paper by A. Kroó, E. B. Saff, and the author [3] a result for homogeneous polynomials on star-like domains was obtained. Roughly speaking, a simply connected compact set K in \mathbb{R}^{d} is a star-like α-smooth $(0<$ $\alpha \leq 2$) domain if its boundary is given by an even mapping of S^{d-1} which is Lipschitz continuous of order α. Then, by the result mentioned above, for any $0<\delta<1 / 2$ and any $b \in H_{n}^{d}$ such that

$$
s_{d-1}(\{\mathbf{x} \in \partial K:|h(\mathbf{x})|>1\}) \leq \delta^{d-1}
$$

we have

$$
\frac{1}{n} \log \|b\|_{K} \leq c(K) \varphi_{\alpha}(\delta)
$$

2000 Mathematics Subject Classification. 41A17.
Key words and phrases. Remez-type inequalities, homogeneous polynomials.
where

$$
\varphi_{\alpha}(\delta):= \begin{cases}\delta^{\alpha}, & 0<\alpha<1 \\ \delta \log \frac{1}{\delta}, & \alpha=1 \\ \delta, & 1<\alpha \leq 2\end{cases}
$$

For instance, in the case of the unit sphere, it follows that

$$
\frac{1}{n} \log R_{n, d}(\delta) \leq c\left(S^{d-1}\right) \delta
$$

The goal of this note is to obtain asymptotically sharp expression for the constant $c\left(S^{d-1}\right)$ in the previous inequality.
Theorem 1. Let $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers tending to zero such that

$$
\lim _{n \rightarrow \infty} n \delta_{n}=\infty
$$

and $\Gamma(\cdot)$ stand for the Gamma function. Then for any integer $d \geq 2$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log R_{n, d}\left(\delta_{n}\right)}{n \delta_{n}}=\varkappa_{d} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{d}:=\frac{1}{\sqrt{\pi}}\left(\frac{d-1}{4} \Gamma\left(\frac{d-1}{2}\right)\right)^{1 /(d-1)} \tag{2}
\end{equation*}
$$

In particular, in the case of the unit circle we obtain
Corollary 2. Let $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ be as above. Then

$$
\lim _{n \rightarrow \infty} \frac{\log R_{n, 2}\left(\delta_{n}\right)}{n \delta_{n}}=\frac{1}{4}
$$

2. Proofs

The proof of Theorem 1 explores a connection between the restriction of H_{n}^{2} to the unit sphere in $\mathbb{R}^{2}, H_{n}^{2}\left(S^{1}\right)$, and $P_{2 n}(\mathbb{T})$, the space of complex polynomials of degree at most $2 n$ restricted to the unit circle. Namely, for any $h(x, y) \in H_{n}^{2}\left(S^{1}\right)$, there exists $q(z) \in P_{2 n}(\mathbb{T})$ such that

$$
|h(x, y)|=|q(z)|, \text { for any } z=x+i y \in \mathbb{T}
$$

It will allow us to use the known Remez inequality for polynomials in $P_{2 n}(\mathbb{T})$. The following result that we shall apply later is due to V. Andrievskii and can be found in [1].
Theorem 3. Let $n \in \mathbb{N}, \delta \geq 0$, and $q \in P_{n}(\mathbb{T})$ be such that

$$
s_{1}\{z \in \mathbb{T}:|q(z)| \geq 1\} \leq \delta
$$

Then

$$
\|q\|_{\mathbb{T}} \leq\left(\frac{1+\sin (\delta / 4)}{\cos (\delta / 4)}\right)^{n}
$$

This estimate is sharp in the asymptotic sense. Namely, let $\left\{q_{n}\right\}$ be a sequence of normalized Fekete polynomials for the set

$$
\mathscr{C}_{\delta}:=\left\{z=e^{i \phi} \in \mathbb{T}: \phi \in[-\pi,-\delta / 2] \cap[\delta / 2, \pi]\right\}
$$

where normalization means that $\left\|q_{n}\right\|_{\mathscr{C}_{\delta}}=1$. Then

$$
\lim _{n \rightarrow \infty}\left|q_{n}(1)\right|^{1 / n}=\frac{1+\sin (\delta / 4)}{\cos (\delta / 4)}
$$

Next we shall need an auxiliary lemma which will reduce the problem to the twodimensional case.

Let $S_{+}^{d-1}:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:|\mathbf{x}|=1, x_{d} \geq 0\right\}$ denote the upper half-sphere. Any two-dimensional plane containing the line $\left\{x_{1}=\cdots=x_{d-1}=0\right\}$ can be described as follows:

$$
L_{\bar{\phi}}=\left\{\gamma \cdot \mathbf{u}+\beta \cdot \mathbf{e}_{d}: \gamma, \beta \in \mathbb{R}\right\}
$$

where $\bar{\phi} \in T^{d-2}:=[0, \pi] \times[-\pi / 2, \pi / 2]^{d-3}, \mathbf{e}_{d}:=(0, \ldots, 0,1) \in \mathbb{R}^{d}$, and $\mathbf{u}=\left(u_{1}, \ldots, u_{d-1}\right) \in$ S^{d-2} which can be represented in the spherical coordinates of \mathbb{R}^{d-1} as $(1, \bar{\phi})$ or $(-1, \bar{\phi})$.

Lemma 4. Let $\epsilon>0$ and $d \in \mathbb{N}$ be fixed. Further, let $E \subset S_{+}^{d-1}$ be such that $\mathbf{e}_{d} \in E$ and $s_{d-1}(E)=\epsilon^{d-1}$. Then

$$
\begin{equation*}
\inf \left\{s_{1}\left(L_{\bar{\phi}} \cap E\right): \bar{\phi} \in T^{d-2}\right\} \leq 2^{d /(d-1)} x_{d} \epsilon+o(\epsilon), \quad \text { as } \quad \epsilon \rightarrow 0 \tag{3}
\end{equation*}
$$

where x_{d} is defined by (2).
Proof. Define a projection $P_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ by the rule

$$
P_{d}\left(x_{1}, \ldots, x_{d-1}, x_{d}\right):=\left(x_{1}, \ldots, x_{d-1}\right) .
$$

For any $r>0$ denote by

$$
A_{r}:=P_{d}^{-1}\left(B_{r}^{d-1}\right) \cap S_{+}^{d-1}
$$

a spherical cap around point \mathbf{e}_{d} on the unit sphere which is the preimage of the ball B_{r}^{d-1} under the projection P_{d}, where $B_{r}^{d-1}:=\left\{\mathbf{x} \in \mathbb{R}^{d-1}:|\mathbf{x}| \leq r\right\}$. Let $r(\epsilon)$ be chosen in such a way that $s_{d-1}\left(A_{r(\epsilon)}\right)=\epsilon^{d-1}$. Denote by

$$
E_{\bar{\phi}}=\left\{\rho \in[-1,1]:(\rho, \bar{\phi}) \in P_{d}(E)\right\}
$$

where $(\rho, \bar{\phi}) \in \mathbb{R} \times T^{d-2}$ are spherical coordinates in \mathbb{R}^{d-1}.
First we are going to show that

$$
\begin{equation*}
\inf \left\{s_{1}\left(L_{\bar{\phi}} \cap E\right): \bar{\phi} \in T^{d-2}\right\} \leq 2 \arcsin (r(\epsilon)) \tag{4}
\end{equation*}
$$

Suppose (4) is false, i.e., for any $\bar{\phi} \in T^{d-2}$ we have that

$$
s_{1}\left(L_{\bar{\phi}} \cap E\right)>2 \arcsin (r(\epsilon))
$$

The last claim can be restated as

$$
\int_{E_{\bar{\phi}}} \frac{d \rho}{\sqrt{1-\rho^{2}}}>\int_{-r(\epsilon)}^{r(\epsilon)} \frac{d \rho}{\sqrt{1-\rho^{2}}}, \quad \text { for all } \bar{\phi} \in T^{d-2}
$$

which can be written in the following form

$$
\begin{equation*}
\int_{\left.E_{\bar{\phi}} \backslash-r(\epsilon), r(\epsilon)\right]} \frac{d \rho}{\sqrt{1-\rho^{2}}}>\int_{[-r(\epsilon), r(\epsilon)] \backslash E_{\bar{\phi}}} \frac{d \rho}{\sqrt{1-\rho^{2}}}, \quad \text { for all } \bar{\phi} \in T^{d-2} \tag{5}
\end{equation*}
$$

Since

$$
\rho_{1}:=\min _{E_{\bar{\phi}}[-r(\epsilon), r(\epsilon)]}|\rho|^{d-2} \geq \max _{[-r(\epsilon), r(\epsilon)] \backslash E_{\bar{\phi}}}|\rho|^{d-2}=: \rho_{2}
$$

inequality (5) implies that

$$
\begin{aligned}
\int_{\left.E_{\bar{\phi}} \backslash-r(\epsilon), r(\epsilon)\right]} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho & \geq \int_{E_{\bar{\phi}} \backslash[-r(\epsilon), r(\epsilon)]} \frac{\rho_{1}^{d-2}}{\sqrt{1-\rho^{2}}} d \rho \\
& >\int_{[-r(\epsilon), r(\epsilon)] \backslash E_{\bar{\phi}}} \frac{\rho_{2}^{d-2}}{\sqrt{1-\rho^{2}}} d \rho \geq \int_{[-r(\epsilon), r(\epsilon)] \backslash E_{\bar{\phi}}} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho
\end{aligned}
$$

and consequently

$$
\int_{E_{\bar{\phi}}} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho>\int_{-r(\epsilon)}^{r(\epsilon)} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho
$$

for all $\bar{\phi} \in T^{d-2}$. Then

$$
\begin{aligned}
\epsilon^{d-1} & =s_{d-1}(E)=\int_{P_{d}(E)}\left(1-\sum_{k=1}^{d-1} x_{k}^{2}\right)^{-1 / 2} d \mathbf{x}=\int_{T^{d-2}} J(\bar{\phi}) \int_{E_{\bar{\phi}}} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho d \bar{\phi} \\
& >\int_{T^{d-2}} J(\bar{\phi}) \int_{-r(\epsilon)}^{r(\epsilon)} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^{2}}} d \rho d \bar{\phi}=\int_{B_{r(\epsilon)}^{d-1}}\left(1-\sum_{k=1}^{d-1} x_{k}^{2}\right)^{-1 / 2} d \mathbf{x} \\
& =s_{d-1}\left(A_{r(\epsilon)}\right)=\epsilon^{d-1},
\end{aligned}
$$

where $|\rho|^{d-2} J(\bar{\phi})$ is the Jacobian of the spherical transformation in \mathbb{R}^{d-1}. Thus, we have obtained a contradiction.

Now, to prove (3) we need to get an upper estimate for $r(\epsilon)$. Since

$$
\mu_{d-1}\left(B_{r(\epsilon)}^{d-1}\right) \leq s_{d-1}\left(A_{r(\epsilon)}\right) \leq\left(1+r^{2}(\epsilon) / 2\right) \mu_{d-1}\left(B_{r(\epsilon)}^{d-1}\right)
$$

we have

$$
\epsilon^{d-1}+o\left(\epsilon^{d-1}\right)=\mu_{d-1}\left(B_{r(\epsilon)}^{d-1}\right)=\mu_{d-1}\left(B_{1}^{d-1}\right) r^{d-1}(\epsilon)=\frac{1}{2}\left(\frac{r(\epsilon)}{\varkappa_{d}}\right)^{d-1}
$$

where $\mu_{d-1}(\cdot)$ stands for the usual Lebesgue measure in \mathbb{R}^{d-1}. From the above we obtain that

$$
r(\epsilon)=2^{1 /(d-1)} \chi_{d} \epsilon+o(\epsilon)
$$

which completes the proof.
Proof of Theorem 1. We start by showing the upper estimate for the limit in (1). Let $h \in H_{n}^{d}$ and $E \subset S^{d-1}$ with $s_{d-1}(E) \leq \delta_{n}^{d-1}$. Without loss of generality we may assume that $\|h\|_{S^{d-1} \backslash E}=1$ and b attains maximum of its modulus at $\mathbf{e}_{d} \in E$. Then the auxiliary lemma ensures that there exists a one-dimensional sphere S^{1} which goes through the \mathbf{e}_{d} with the property

$$
s_{1}\left(E \cap S^{1}\right) \leq 4 \chi_{d} \delta_{n}+o\left(\delta_{n}\right)
$$

where $o\left(\delta_{n}\right)$ is understood in the following sense

$$
\lim _{n \rightarrow \infty} o\left(\delta_{n}\right) \cdot \delta_{n}^{-1}=0
$$

Since b restricted to S^{1} is a homogeneous polynomial of two variables, problem can be reduced to the two-dimensional case.

The unit sphere in \mathbb{R}^{2} can be viewed as the unit circle \mathbb{T} in the complex plane \mathbb{C}, which allows us to establish a relationship between homogeneous polynomials on S^{1} and polynomials with complex coefficients on \mathbb{T}.

$$
h(x, y)=\sum_{j=0}^{n} h_{j} x^{j} y^{n-j}=\sum_{j=0}^{n} h_{j}\left(\frac{z^{2}+1}{2 z}\right)^{j}\left(\frac{z^{2}-1}{2 i z}\right)^{n-j}=\frac{q_{b}\left(z^{2}\right)}{z^{n}},
$$

where $z=x+i y$ and $q_{b} \in P_{n}(\mathbb{T})$. Moreover

$$
|b(x, y)|=\left|q_{b}\left(z^{2}\right)\right|, \quad z=x+i y \in \mathbb{T} .
$$

Which, in particular, means

$$
|h(\cos \phi, \sin \phi)|=|b(\cos (\pi+\phi), \sin (\pi+\phi))|=\left|q_{b}\left(e^{2 i \phi}\right)\right|
$$

for any $\phi \in[0, \pi]$. Since

$$
\begin{aligned}
s_{1}\{z=x+i y \in \mathbb{T}:|h(x, y)|>1\} & =2 \mu_{1}\{\phi \in[0, \pi]:|h(\cos \phi, \sin \phi)|>1\} \\
& \leq 4 x_{d} \delta_{n}+o\left(\delta_{n}\right),
\end{aligned}
$$

we obtain

$$
\begin{aligned}
s_{1}\left\{z \in \mathbb{T}:\left|q_{b}(z)\right|>1\right\} & =\mu_{1}\left\{\phi \in[0,2 \pi]:\left|q_{b}\left(e^{i \phi}\right)\right|>1\right\} \\
& =2 \mu_{1}\left\{\phi \in[0, \pi]:\left|q_{b}\left(e^{2 i \phi}\right)\right|>1\right\} \leq 4 x_{d} \delta_{n}+o\left(\delta_{n}\right)
\end{aligned}
$$

Thus we can apply Theorem 3, which yields

$$
\|b\|_{s^{d-1}}=\|b\|_{S^{1}}=\left\|q_{b}\right\|_{\mathbb{T}} \leq\left(\frac{1+\sin \left(\chi_{d} \delta_{n}+o\left(\delta_{n}\right)\right)}{\cos \left(\chi_{d} \delta_{n}+o\left(\delta_{n}\right)\right)}\right)^{n}
$$

The last inequality implies
$\frac{1}{n} \log R_{n, d}\left(\delta_{n}\right) \leq \log \left(1+\sin \left(x_{d} \delta_{n}+o\left(\delta_{n}\right)\right)\right)-\log \cos \left(x_{d} \delta_{n}+o\left(\delta_{n}\right)\right)=x_{d} \delta_{n}+o\left(\delta_{n}\right)$,
which gives us the desired upper bound for the limit in (1).
Now we turn our attention to the lower estimate. For $0<\epsilon<1$ consider the n-th Chebyshev polynomials for the interval $[-1+\epsilon, 1-\epsilon]$, i.e.,

$$
T_{n}^{\epsilon}(x):=T_{n}\left(\frac{x}{1-\epsilon}\right),
$$

where $T_{n}(x)=\left\{\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right\} / 2$ is the classical n-th Chebyshev polynomial. It satisfies
(i) $\left|T_{n}^{\epsilon}(x)\right| \leq 1$ for $x \in[-1+\epsilon, 1-\epsilon]$;
(ii) $\max _{x \in[-1,1]}\left|T_{n}^{\epsilon}(x)\right|=\left|T_{n}^{\epsilon}(1)\right|=\left|T_{n}\left(\frac{1}{1-\epsilon}\right)\right|$.

Due to the symmetry of $[-1+\epsilon, 1-\epsilon]$ we can write $T_{n}^{\epsilon}(x)$ in the next form:

$$
T_{n}^{\epsilon}(x)= \begin{cases}k_{n} \prod_{j=1}^{m}\left(x^{2}-t_{j}^{2}\right), & n=2 m ; \\ k_{n} x \prod_{j=1}^{m}\left(x^{2}-t_{j}^{2}\right), & n=2 m+1 .\end{cases}
$$

This leads to the following homogeneous polynomials of degree n :

$$
b_{n}^{\epsilon}(\mathbf{x})= \begin{cases}k_{n} \prod_{j=1}^{m}\left(\left(1-t_{j}^{2}\right) x_{d}^{2}-t_{j}^{2}\left(x_{1}^{2}+\cdots+x_{d-1}^{2}\right)\right), & n=2 m \\ k_{n} x_{d} \prod_{j=1}^{m}\left(\left(1-t_{j}^{2}\right) x_{d}^{2}-t_{j}^{2}\left(x_{1}^{2}+\cdots+x_{d-1}^{2}\right)\right), & n=2 m+1\end{cases}
$$

which enjoys the property

$$
\left.h_{n}^{\epsilon}(\mathbf{x})\right|_{S^{d-1}}=T_{n}^{\epsilon}\left(x_{d}\right)
$$

and consequently

$$
\left\|b_{n}^{\epsilon}\right\|_{S^{d-1}}=\left|T_{n}^{\epsilon}(1)\right|
$$

Then the exceptional set E_{ϵ} (i.e. $E_{\epsilon}:=\left\{\mathbf{x} \in S^{d-1}:\left|b_{n}^{\epsilon}(\mathbf{x})\right| \geq 1\right\}$) can be described as

$$
E_{\epsilon}=\left\{\mathbf{x} \in S^{d-1}:\left|x_{d}\right| \geq 1-\epsilon\right\} .
$$

Thus, $E_{\epsilon}=P_{d}^{-1}\left(B_{r(\epsilon)}^{d-1}\right)$, where P_{d} is the orthogonal projection from Lemma 4 and $r(\epsilon)=\sqrt{\epsilon(2+\epsilon)}$. We choose ϵ in such a way that $s_{d-1}\left(E_{\epsilon}\right)=\delta_{n}^{d-1}$. As was shown before

$$
\sqrt{2 \epsilon\left(\delta_{n}\right)+\epsilon^{2}\left(\delta_{n}\right)}=x_{d} \delta_{n}+o\left(\delta_{n}\right)
$$

where x_{d} is defined by (2). So, we get

$$
\begin{aligned}
\frac{1}{n} \log R_{n, d}\left(\delta_{n}\right) & \geq \frac{1}{n} \log \left\|h_{n}^{\epsilon\left(\delta_{n}\right)}\right\|=\frac{1}{n} \log \left|T_{n}\left(\frac{1}{1-\epsilon\left(\delta_{n}\right)}\right)\right| \\
& \geq \log \left(\frac{1}{1-\epsilon\left(\delta_{n}\right)}+\sqrt{\frac{2 \epsilon\left(\delta_{n}\right)+\epsilon^{2}\left(\delta_{n}\right)}{\left(1-\epsilon\left(\delta_{n}\right)\right)^{2}}}\right)+\frac{1}{n} \log \frac{1}{2} \\
& =\frac{1}{n} \log \frac{1}{2}+\sqrt{2 \epsilon\left(\delta_{n}\right)+\epsilon^{2}\left(\delta_{n}\right)}+o\left(\sqrt{\epsilon\left(\delta_{n}\right)}\right) \\
& =\frac{1}{n} \log \frac{1}{2}+x_{d} \delta_{n}+o\left(\delta_{n}\right) .
\end{aligned}
$$

We complete the proof by dividing the both sides of the inequality above by δ_{n} and taking the limit when $n \rightarrow \infty$.

References

[1] V. ANDRIEVSKII, A note on a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 116 (2002), pp. 416-424.
[2] P. Borwein and T. Erdélyi, Polynomials ans Polynomial Inequalities, Springer-Verlag, New-York, 1995.
[3] A. Kroó, E. B. SAFF, AND M. YATTSELEV, A Remez-type theorem for homogeneous polynomials, J. London Math. Soc., 73(3) (2006), pp. 783-796.
[4] E. J. Remez, Sur une properiété des polynômes de Tchebycheff, Comm. Inst. Sci. Kharkov, 13 (1936), pp. 9395.

Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee, 37240

E-mail address: maxym.l.yattselev@vanderbilt.edu

