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Abstract

We consider a deformable plate interacting with a non-Newtonian fluid flow in three di-
mensions as a simple model problem for fluid-structure-interaction (FSI) phenomena in life
sciences (e.g., red blood cell interacting with blood flow). A power-law function is used for
the constitutive equation of the non-Newtonian fluid. The lattice Boltzmann equation (the
D3Q19 model) is used for modeling the fluid flow. The immersed boundary (IB) method
is used for modeling the flexible plate and handling the fluid-plate interaction. The plate
drag and its scaling are studied; the influences of three dimensionless parameters (power-law
exponent, bending modulus, and generalized Reynolds number) are investigated.
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1. Introduction

Problems involving interactions between a deformable solid and an incompressible fluid
are very rich in biology: swimming of fish [44], flying of birds [37], flowing of erythrocytes
in arteries and veins [48], and cytoskeleton moving in cytoplasm inside a cell [33], to name
but a few. The fluid may be Newtonian (e.g., air or water) or non-Newtonian (e.g., blood or
cytoplasm). The solid moves with the flow because of fluid viscosity; yet the solid experiences
drag because of the force exerted on the surface of solid by the fluid.

Classic theory in fluid mechanics [5] has showed that the drag coefficient for a rigid solid
scales as the reciprocal of the flow Reynolds number (Re) for small values of Re and the total
drag scales as the second power of the incoming flow-speed for sufficiently large Re. Alben
et al. [1, 2] have discovered that the drag of a one-dimensional flexible fiber immersed in
a two-dimensional inviscid flow is proportional to the 4

3
power of the incoming flow-speed.

Zhu [52] has found that the scaling is indeed Reynolds-number dependent: the exponent
goes monotonically from nearly 2 towards 4/3 as Re goes from 10 to 800. Zhu et al. [53] has
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found that the drag of 2D deformable sheet is approximately proportional to the incoming
flow-speed for Reynolds numbers in [1, 100] in three dimensions.

However, to the best of our knowledge, the drag of a deformable body in a non-Newtonian
fluid flow is not studied. Because non-Newtonian fluids are qualitatively different from
Newtonian fluids in several aspects, it appears not reasonable to assume that the existing
results of drag and its scaling are applicable to non-Newtonian fluids. For instance, due to
the presence of elasticity (hence elastic force) in non-Newtonian fluid, the drag of a body in
non-Newtonian fluid flow should be different from a very viscous fluid where the elasticity
(hence the elastic component of drag) is absent. Drag and drag scaling involving non-
Newtonian fluid can be important to many biological problems involving FSI. For instance,
red blood cells in a severely stenosed artery may get damaged because of the excessively
elevated force from the flow. Therefore, in this work, we study fluid-structure-interaction
involving non-Newtonian fluids.

Because of the high level of complexity of FSI problems, analytical solutions are very
rare; instead, numerical solutions by a computational approach are obtainable. There are
various computational methods in the literature specifically designed for FSI problems. The
first such a method is probably the immersed boundary (IB) method pioneered by Charles S.
Peskin [35, 36] in 1970s’. Other methods include the immersed interface method [26, 27, 28]
and the immersed finite element method [54, 29]. Note that there exists another class of
IB methods that are specifically designed for fluid-rigid-body-interactions where the motion
of structure is given in advance [43, 46, 32, 4]. See more relevant numerical methods cited
in [53].

There exist various versions of the IB method, too, including the formally 2nd-order
versions [25, 15], the penalty version [22], and the non-Newtonian version [10, 11]. See more
versions of the IB methods cited in [53]. In this work, we extend the lattice-Boltzmann
based immersed boundary (LB-IB) method developed by Zhu et al. [53] to the case of non-
Newtonian fluids. The major differences between our method and the existing method
in [10, 11] are as follows: the existing method is two dimensional and is formulated for
Oldroyd-B fluid; the Navier-Stokes equations are solved by a fractional step project method
of Kim and Moin [23] and the Oldroyd-B model is solved by the Stokes Oldroyd-B scheme
presented by [41]. While in our work, the method is three dimensional and is formulated
for a power-law fluid; the Navier-Stokes equations together with the power-law constitutive
equation are solved by the lattice Boltzmann D3Q19 model. A similar method has been
developed by Tian [42] in two dimensions.

Fluids can be broadly classified as Newtonian fluids and non-Newtonian fluids. Non-
Newtonian fluids have many distinct properties, such as shear-thinning and normal stress
differences. Modeling non-Newtonian fluids is still quite challenging, partly because of the
different constitutive equations describing the stress-strain relationships and history effects.
To date, there exists no uniform formulation for all non-Newtonian fluids. In this work, we
start from non-Newtonian fluids whose constitutive equations can be modelled by power law
functions. Such fluids include the blood and cytoplasm.

The lattice Boltzmann (LB) method is an alternative approach for solving Navier-Stokes
equations. It has been a popular method in Computational Fluid Dynamics (CFD) [38, 6,
20, 17, 18, 30, 19, 45, 31, 39]. The advantages of the LB method include relative simplicity in
parallelization, modeling extra flow physics, and handling highly complex rigid flow boundary
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such as porous media. The first IB method using the LB approach was developed by Feng
and Michaelides [12, 13]. Other similar LB-IB methods include [40, 14, 47, 34, 24, 9]. In
this work, we extend the LB-IB method introduced by Zhu et al. [53] for modeling and
simulation of non-Newtonian-fluid deformable-structure interactions. Due to the complexity
of FSI problems, we start from an ideal model problem to investigate the drag and its
scaling of a deformable structure in a non-Newtonian fluid. The model problem involves
a two-dimensional flexible plate tethered at its midline interacting with a viscous flow of
non-Newtonian fluid whose constitutive equation is given by a power function.

There exist several dimensionless parameters in the model problem. The bending rigidity
of the plate K̂b, the exponent n of the power-law (fluid constitutive equation), the mass
ratio of the plate and fluid M , and a dimensionless ratio similar to the Reynolds number of
Newtonian flow. For simplicity, this ratio is called generalized Reynolds number and denoted
by Reg in this paper (see next section for definition). In many FSI problems in life sciences,
the structure is neutrally buoyant in the ambient fluid, therefore the value of M is fixed to
1 in this study. All other parameters are variable. Series of simulations are performed with
one dimensionless parameter varied and others fixed. The drag of the plate is computed
and its position is recorded. The drag coefficients with respect to n,Re, K̂b are studied for
several fixed values of other parameters. The drag scaling with respect to inflow speed is
investigated for different values of n and Re.

The remaining of the paper is structured as follows. Section 2 outlines the physical
model problem. Section 3 gives the mathematical formulation of the model problem. Section
4 briefly address the extension of the LB-IB method to the non-Newtonian-fluid structure
interaction. Section 5 presents the major numerical results. Section 6 concludes the article
by a summary and discussion.

2. The model problem

We consider a 3D viscous flow of non-Newtonian fluid past a flexible plate tethered at the
midline in a rectangular channel. A right-handed Cartesian coordinate system is used with
the x-axis pointing from left-to-right (i.e. main flow direction) and the y-axis pointing from
front to rear. A quadrilateral deformable plate is introduced near the left boundary at the
center of the channel cross-section. The plate is tethered at its midline and otherwise uncon-
strained. No-slip boundary condition is imposed on the front, rear, top, and bottom. Inflow
and outflow boundary conditions are imposed on the left and right, respectively (uniform
flow with speed V0). The fluid is assumed to be viscous, homogeneous, incompressible, and
non-Newtonian. The rectangular flexible plate is made of two orthogonal families of linearly
elastic fibers (along longitudinal and lateral directions) that possess identical mechanical
properties.

The flow channel has a square cross-section and has a length-width ratio of 2. The ratio
of width to length of the elastic plate is 1 to 2. Stiff springs are used to tether the plate
midline to a fixed line-segment joining two points (xt, y1t, zt) and (xt, y2t, zt). The plate
width is W = y2t − y1t. The plate length is L = 2W . The plate is initially placed vertically,
i.e., on the y-z plane. See Fig. 1 for illustration of the model problem.

Table 1 lists three major dimensionless flow parameters of the problem and their values
used in the simulations. Here V0 is the inflow speed with unit m/s, ρ0 is the fluid mass
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density with unit kg/m3, mp is a constant of the power-law model with unit Pa · sn, Kb is
the plate fiber bending rigidity with unitN ·m2, µ(γ̇) is the fluid dynamical viscosity with unit
kg/(m ·s), and γ̇ is the flow shear rate with unit s−1 (see next section for its definition). The
dimensionless variable n is the exponent of the power-law of the non-Newtonian fluid. Other
dimensionless parameters used in the work are as below: the fiber compression/stretching
coefficient K̂s = 20; that of the tethering virtual springs K̂st = 40.

Notice that 1) The unit of parameter mp is Pa · sn. Therefore the quantity mp may
not have any physical meanings for power-law fluid. To make a distinction between Newto-
nian and non-Newtonian fluids, we shall make explicit use of the name generalized Reynold
number, Reg, for the dimensionless group associated with non-Newtonian fluid. It should
be pointed out that this dimensionless group has incorporated non-Newtonian effect of the
power-law fluid. 2) The plate is made of identical fibers that are homogeneous and possess
the same mechanical properties. For simplicity the dimensionless group K̂b is defined using
the bending rigidity of the constitutive fiber.

Name Definition Range

Generalized Reynolds Number (Reg) ρ0V0
2−nWn

mp
0.01− 200

Flexure Modulus (K̂b)
Kb

ρ0V 2
0 W

4 0.0001− 0.008

Power law exponent(n) µ(γ̇) = mp(γ̇)n−1 0.5− 1.9

Table 1: Parameter ranges (dimensionless) used in simulation.

3. The mathematical formulation of the model problem

The dimensionless mathematical formulation of the above model problem is as follows:

∂g(x, ξ, t)

∂t
+ ξ · ∂g(x, ξ, t)

∂x
+ f(x, t) · ∂g(x, ξ, t)

∂ξ
= −1

τ
(g(x, ξ, t)− g(0)(x, ξ, t)) (1)

The motions of the plate and fluid are described by a simplified Boltzmann equation
(Eq. 1), i.e., the Bhatnagar-Gross-Krook (BGK) equation [3]. The function g(x, ξ, t) repre-
sents the velocity distribution function of a single particle at space x, in time t, and with
particle velocity ξ. The complex collision operator in the Boltzmann equation is approx-
imated by the term − 1

τ
(g − g(0)), where the τ is the relaxation time. It is connected to

the fluid kinematic viscosity ν in the LB method. This is the well-known BGK approxima-
tion [3]. For the D3Q19 model we use, ν = 2τ−1

6
. The g(0) is the Maxwellian distribution.

The external force term f(x, t) = fib(x, t) + fext(x, t). The fib(x, t) is the force exerted by the
plate to the fluid. The fext(x, t) is other external forces applied on the fluid such as gravity.
As in the statistical mechanics, the velocity distribution function g can be used to compute
the macroscopic variables: fluid mass density (ρ) and momentum (ρu). Note that in Eq. 1
the kinematic viscosity ν is constant (i.e. Newtonian fluid).

The constitutive law of non-Newtonian fluids considered in our work may be written
as a power-law function: µ(γ̇) = m(γ̇)n−1, where µ is the fluid dynamical viscosity, γ̇ is
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the flow shear rate which is defined as γ̇ =
√

2DijDij, where Dij = 1
2
(uij + uji), here uij

means ∂ui
∂xj

(ui is the ith component of the flow velocity). Constants m and n are model

parameters describing the properties of the non-Newtonian fluid: n < 1 characterizes shear-
thinning or pseudoplastic fluids such as blood, cytoplasm, and paint; n > 1 characterizes
shear-thickening or dilatant fluids such as oobleck (a mixture of cornstarch and water); and
n = 1 characterizes Newtonian fluids.

To introduce the power-law model into the LB-IB framework [53], we take advantage
of the new dimensionless parameter (Reg) which corresponds to the Reynolds number for
Newtonian fluids, as defined in the previous section. Given the value of Reg and n, the value
of mp in lattice Boltzmann units (to be used in LB simulation) may be computed from the
definition of Reg, as listed in Table 1.

The shear rate is computed in lattice Boltzmann D3Q19 model as follows: γ̇ =
√

2SαβSβα.

Here Sαβ (α = 1, 2, 3; β = 1, 2, 3) is computed by Sαβ = − 3
2τ

∑i=18
i=0 ξiαξjβf

(1)
i , where f

(1)
i =

fi−f (0)
i . Here fi is the single particle velocity distribution function and f

(0)
i is the equilibrium

distribution function, and ξiα (i = 0, 1, ..., 18;α = 1, 2, 3) is the discrete direction of the
D3Q19 model along which particles are allowed to move or to stay. Note that because fluid
viscosity is shear rate dependent for the non-Newtonian fluid, the relaxation time τ is no
longer a constant in the LB model; instead it is a variable varying in both space and time.

Eq. 2 is used to compute the Eulerian force density fib(x, t), which is defined on the
fixed Eulerian lattice, from the Lagrangian force density F(α, t), which is defined on the
Lagrangian grid. This is done for any constitutive fiber point of the immersed plate whose
Lagrangian coordinate is α:

fib(x, t) =

∫
F(α, t)δ(x−X(α, t))dα (2)

Where the function δ(x) is the Dirac δ-function; the F is Lagrangian force density which
can be computed as follows:

F(α, t) = − ∂E
∂X

= −∂(Es + Eb)
∂X

(3)

In Eq. 3, (E) is the elastic potential energy which has two contributions: compres-
sion/stretching contribution (Es) and a bending contribution (Eb). For a typical constitutive
fiber, these energies are defined respectively by Eq. 4 and Eq. 5:

Es =
1

2
Ks

∫ (∣∣∣∣∂X∂β
∣∣∣∣− 1

)2

dβ (4)

Eb =
1

2
Kb

∫ ∣∣∣∣∂2X(β, t)

∂β2

∣∣∣∣2dβ (5)

The symbol β is the Lagrangian coordinate of the fiber. The coefficients of stretch-
ing/compression (Ks) and bending (Kb) are both constant and associated with the plate
Young’s modulus.
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A first-order system of ordinary differential equations (Eq. 6) is used to update the
position of the immersed plate:

∂X

∂t
(α, t) = U(α, t) (6)

The X(α, t) is the position of the plate (i.e. Eulerian coordinate) with Lagrangian co-
ordinate α and at time t. Using the same δ-function (as in Eq. 2 for transferring the plate
force to the fluid), the velocity of the immersed boundary U(α, t) is interpolated from that
of the fluid u(x, t):

U(α, t) =

∫
u(x, t)δ(x−X(α, t))dx (7)

4. Numerical Method

The mathematical formulation of the problem (Eqs. 1 - 7) is discretized on a uniform
fixed Eulerian grid for the fluid with uniform spacing h (the number of grid nodes is Nx, Ny

and Nz in x, y and z direction, respectively), plus a set of moving Lagrangian points for the
plate with meshwidth ∆α1 = ∆α2 = 1

2
h. The BGK equation Eq. 1 is discretized by the LB

D3Q19 model [38, 6], as follows:

gj(x + ξj, t+ 1) = gj(x, t)−
1

τ
(gj(x, t)− g0

j (x, t)) + (1− 1

2τ
)wj(

ξj − u

cs2
+

ξj · u
cs4

ξj) · f (8)

In the D3Q19 model, particles at each lattice node can move (impinging and exiting)
along 18 different directions. They may also stay at the node. Therefore, the velocity
space of particles is discretized by 19 different directions: ξj, j = 0, 1, ..., 18. Along each such
direction at a node, impinging or exiting, gj, g

0
j , wj are particle velocity distribution function,

equilibrium distribution function, and weight of the LB model, respectively. The external
forces of Eq. 8 is treated by the approach of Guo et al. [16]. Here the fluid velocity u, forces
f are evaluated at time t.

The no-slip boundary condition for fixed rigid walls are modeled by the bounce-back
scheme [7]. Notice that the freely-moving immersed flexible plate does not need any special
treatment by the LB method. It is instead treated by the IB method: the fluid “feels” the
existence of the flexible plate through the force.

The verification and validation of the numerical method have been essentially performed
in the previous works [49, 53]. The new feature introduced in the method is the shear-rate-
dependent fluid kinematical viscosity, which is incorporated algebraically into the method
and code.

5. Major computational results

5.1. Visualization of flow and plate

Visualizations on the flow and plate are performed by plotting streamlines. A typical
picture is shown in Figs. 2. The dimensionless parameters are as follows: Re = 120, K̂b =
0.005, n = 0.6. The dimensionless time is 50,000 in lattice Boltzmann unit. The flexible
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plate at a quasi-stationary state is visualized by the gray surface. A streamline is visualized
by a thick colorful curve. Its tangent represents velocity direction and its color represents
velocity magnitude. One can see complicated patterns of the curves in the region close to the
flexible plate (compared to other regions), particularly right in front of and behind the plate:
some lines are winding and twining. This indicates formation of vortices and demonstrates
the flow complexity near the plate. Note that the seemingly intersecting lines in the 3D plot
in fact do not intersect.

We also try to visualize the vortical field by iso-surfaces of vorticity and the Q-value.
However, the results are not as satisfactory as in our previous work [53]: vorticity concen-
trates primarily on the plate and vortex shedding is not obvious. Possible reasons include: 1)
the generalized Reynolds number is not high enough; 2) the fluid elasticity of non-Newtonian
fluid may prevent the vorticity formation and vortex shedding.

5.2. Coefficient and scaling of plate drag

The instantaneous drag of the plate is computed by adding up the tension forces of the
virtual springs connecting all the discrete points of the plate middle line to the fixed spatial
points. Note that this simple approach in the IB methods is equivalent to integration of
viscoelastic fluid force on the entire plate surface. The virtual spring is given a very large
value of stiffness such that the plate midline is virtually immobile in space (the maximum
magnitude of the displacement of the midline nodes is less than 10−2 in LB unit for length).

The drag coefficient averaged in time is computed by

C̄d =
D̄

0.5ρ0V 2
0 LW

Where D̄ is the plate drag averaged in time; L and W are the initial plate length and width,
respectively. The instantaneous drag D is computed and stored every tr steps (in LB unit)
from the beginning (t = 0) to the end of a simulation (te). The average of D is performed
starting at an instant ts when the flow-plate system reaches a quasi-steady state until te.
In our simulations, ts = 100, 000, te = 200, 000, and tr = 200. Three sets of simulations
were designed and run with respect to three most important dimensionless parameters: the
exponent n of the non-Newtonian fluid, the generalized Reynold number Reg of the flow, and
the bending modulus of the elastic plate K̂b. See Table 1 for the ranges of these parameters
used in the work. For the series with varying values of n, three different values of Reg
(1, 10, 100) are used, and the bending modulus is fixed to K̂b = 0.001. For the series with
varying values of Reg, five different values of n = 0.5, 0.75, 1.0, 1.25, 1.75 are used, and the
bending modulus is fixed to K̂b = 0.001. For the series with varying values of K̂b, four
different values of n = 0.6, 0.9, 1.25, 1.5 and three different values of generalized Reynolds
number (Reg = 1, 10, 100) are used.

5.2.1. Drag coefficient C̄d versus power law exponent n

Three groups of data of drag coefficient (C̄d) versus exponent n for three distinct general-
ized Reynolds numbers are plotted in the top panel of Fig. 3. The blue square, red triangle,
and black dot represent drag coefficient data for Re = 1, 10, 100, respectively. From Fig. 3,
we see that, within the parameter ranges used in the work, the drag coefficient increases with
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the increase of n for a fixed value of Re and it decreases with the increase of Re for a fixed
value of n. Drag coefficient decreases significantly with the increase of Re at the beginning;
and later decreases slightly when Re is sufficiently large (greater than 10).

Plotted on the bottom panels of Fig 3 are the plate position and shape when it settles
down into a quasi-stationary state for different values of n with Re = 1, 10, 100, from left to
right, respectively. For any panel in the bottom (corresponding to a specific value of Re),
a plate with a different value of n is identified by a surface of different color (the surface
may look like a line at certain reviewing angles). One can notice that some plates look as
if they were overlapped. This is because their positions and shapes are very close to each
other but they are not actually identical. The correspondence between the value of n and
the color is not given here. This information is not informative because it is difficult to show
such a one-to-one connection in the figure. The reasons may include 1) there are only seven
different colors available in Matlab so a color has been used more than once for different
values of n; 2) the shape and position of plate with some values of n are not always well
separated physically: they have more complex shapes than just a piece of rigid plate bent
along the middle line; some may partially overlap and cross each other; 3)these are 3D plots;
not all features/aspects can be displayed from a given angle. Nevertheless, these figures are
still used for a different purpose — providing a qualitative profile/envelope of the collection
of multiple plates with different generalized Reynolds numbers. Similar explanation applies
to Fig. 4 and Fig. 5 but shall not be repeated.

By comparison of the three panels on the bottom of Fig. 3, one can see that as Re
increases, the profile of plates with different n generates a greater envelope (representing a
greater obstacle in the flow). Therefore the shape drag of the plate becomes greater as Re
increases. Yet the data on the top panel shows that the drag coefficient becomes smaller as
Re increases. This indicates that the total drag is dominated by viscoelastic drag, rather
than shape drag.

5.2.2. Drag coefficient C̄d versus generalized Reynolds number Reg

The top panel in Fig. 4 plots five sets of drag coefficient (C̄d) data (time-averaged)
versus Reg on a log-log scale for five different values of the power law exponent n. Symbols
(dot, square, plus, triangle, and star) with different colors represent drag coefficient data
for different value of n (see figure legend.) From Fig. 4, we see that, within the parameter
ranges used, the drag coefficient decreases with the increase of Re for a fixed value of n and
it increases with the increase of n for a fixed value of Reg.

Plotted on the bottom panels of Fig 4 are plate position and shape when it attains a
quasi-stationary state for different values of Reg with n = 0.5, 0.75, 1.0, 1.25, 1.75, from left to
right, respectively. For any panel in the bottom (corresponding to a specific value of n), each
surface with a different color visualizes a plate with a different Reg (some surface may look
like a line when seen at certain angles). One can notice the same overlapping phenomenon as
in Fig. 3 and the explanation is the same. The surface located the inner most is associated
with the smallest Reg and the surface located the outer most is associated with the greatest
Reg. With the increase of Reg, the plate bends less and its final position moves outwards.
Then it appears that the drag coefficient should become greater which is not the case from
our simulations. Again this indicates that the bending of the plate is dominated by the fluid
viscoelastic forces rather than the flow inertial forces. Smaller generalized Reynolds number
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leads to greater viscoelastic force; thus the drag coefficient is greater (although the shape
drag is less).

Comparison of the five panels on the bottom of Fig. 4 shows that as n increases, the
collection of the plates with different Re forms a slightly smaller envelop (representing a
slightly smaller obstacle in the flow). This is because the drag increases with n.

Figs 3 and 4 show that, compared to the Newtonian case (n = 1), the drag of the plate
is increased for n ≥ 1, but decreased for n ≤ 1. In another word, the shear thinning fluid
induces drag reduction, but the shear thickening fluid induces drag increase. In both cases,
the drag coefficient increases monotonically with the value of n.

5.2.3. Drag scaling

Dimensionless drag related variable D and bending-modulus related variable η are in-
troduced to gauge the drag and flexibility of the plate, as in [1, 2]. They are defined as:
D = C̄dη

2 and η = 1√
K̂b

. Notice that this is not the physical dimensionless drag of the

plate because of the factor η2 involved. Instead, introduction of the variable is for obtaining
the drag scaling between the dimensional total drag with respect to the inflow speed V0.
Also notice that a more flexible plate has a greater value of η but a smaller value of K̂b.
As indicated in [1, 2], the dimensional total plate drag scales with the inflow speed V0 the
same way as D scales with η, i.e., the exponent of the power law is the same. Therefore, the
scaling laws in Fig 5 between D and η are the same as those between the total drag and
inflow speed.

The top panels of Fig 5 plots the dimensionless drag D versus plate flexibility η with
four different values of n on a log-log scale for three different generalized Reynolds numbers
Re = 1, 10, 100. The red dot, blue circle, cyan triangle, and black star represent respectively
results for n = 0.6, 0.9, 1.25, 1.5. The four straight lines with colors red, blue, cyan, and black
are the fitted lines to the data by the method of least square for any given value of n. Slopes
of these lines are approximated as 1.9 (Reg = 1), 1.6 (Reg = 10), and 1.2 (Reg = 100). This
suggests that the drag function D(η) can be approximated by a power function for a given
value of n, and the exponents are approximately 1.9 for Reg = 1, 1.6 for Reg = 10, and 1.2
for Reg = 100. The exponent of drag scaling seems to be insensitive to n.

In contrast to the results on drag scaling of rigid and deformable body in Newtonian
fluids (see Introduction), our simulations appear to indicate that the drag of a deformable
plate in a 3D non-Newtonian flow scales approximately as the second power of the inflow
speed when Reg is sufficiently small (around 1); and approximately as the first power of
inflow speed when Reg is sufficiently large (around 100). The power decreases from 2 to
1 as Reg increases from approximately 1 to 100. Our results indicate the drag scaling is
insensitive to the power-law exponent n of the non-Newtonian fluid.

The bottom panels of Fig. 5 give the plate position and shape after it settles down into a
quasi-stationary state for different values of bending modulus K̂b with n = 0.6, 0.9, 1.25, 1.5
for Re = 10 (profiles are similar for other generalized Reynolds numbers). Each surface of
a color is associated with a plate with a different value of K̂b. Some surfaces may look like
lines when seen at certain angles. The surface situated inner most is associated with the
smallest K̂b and the surface situated outer most is associated with the largest K̂b. As K̂b

increases the plate bends less and its final position expands outwards. This is because a
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plate with smaller value in K̂b is more flexible and gets bent and streamlined by the local
flow relatively easier. This indicates body flexibility still induces reduction of shape drag in
non-Newtonian fluid flow. Note that the positions and shapes of some plates are close to
each other so that they look as if they were overlapped.

Comparison of the four panels on the bottom of Fig. 5 shows that as n increases, the
collection of plates with different values of K̂b generates a much smaller overall envelope
(representing a much smaller obstacle in the flow). This is related to the fact that the drag
increases with the value of n. While the smaller envelope in both cases (Fig. 4 and Fig. 5)
is caused by the increasing value of n, some significant differences are noticed. First, in
Fig. 4, each envelop has a “tongue-like” structure at the center which is caused by stretching
of the plate at very small generalized Reynolds number (Reg ≤ 0.1). The absence of such
structure in Fig. 5 is because of the fixed Reg value (Reg = 10) for each envelope (formed
by different values of plate bending modulus). The other noticeable difference is that the
overall envelope size is significantly different in Fig. 5 while they differ only slightly in Fig. 4.

As shown in Figs 3 and 4, the exponent of the power-law of the non-Newtonian fluids
has significant influence on the drag coefficient: Cd increases with the value of n. However,
Fig 5 shows that the value of n does not have much effect on the exponent of the power
function for drag scaling, particularly for smaller generalized Reynolds numbers (Re < 10):
the exponent only slightly increases as the value of n increases.

6. Summary and Discussion

We have extended a lattice-Boltzmann (D3Q19 model) based immersed boundary (LB-
IB) method to the case of non-Newtonian fluids whose constitutive law is described by a
power function. The new method is used for simulation of a non-Newtonian fluid flow around
a deformable plate supported along its middle line (unconstrained elsewhere) in a three-
dimensional tunnel. The numerical results suggest that, in the ranges of the dimensionless
parameters used in the simulations, 1) the drag coefficient increases with the exponent of
the power-law and decreases with the generalized Reynolds number; 2) viscoelastic force
dominates the plate drag; 3) the drag scales approximately as 1.9, 1.6, and 1.2 powers of
the inflow speed for generalized Reynolds number equal to 1, 10, and 100, respectively. This
contrasts sharply with the existing results in literature regarding drag scaling of a body in
Newtonian fluid.

The above numerical results of the flexible-plate non-Newtonian-fluid interactions are
obtained via analysis from simulations using dimensionless parameters lying on the following
ranges: 0.01 ≤ Reg ≤ 200, 0.0001 ≤ K̂b ≤ 0.008, 0.5 ≤ n ≤ 1.9. We would like to point
out that when these parameters are out of these ranges, i.e., Reg or K̂b is too large, or n is
too small, the numerical computation becomes unstable. When K̂b is too large, small plate
deformations generate large Lagrangian forces on the fluid; numerical instability may be
triggered by the overshoot of the immersed plate due to the large interacting forces. When
Reg is too large, the damping effect of viscous forces is significantly lessened; the dominating
large inertia forces may causes fast relaxation of the plate to undergo tangential equilibrium.
This can induce numerical instability. Moreover, as Reg increases, thinner boundary layers
are formed and confined to the plate. Therefore smaller spatial grid spacing and temporal
step size are desirable for resolving the flow sufficiently accurately. When n is too small (e.g.,
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n < 0.3), the fluid viscosity may becomes too small where the shear rate is large, leading
to too big local generalized Reynolds number. Possible synergistic nonlinear effects of these
three factors render the numerical analysis of stability more difficulty and intractable. Future
efforts on rigorous stability analysis are definitely desired.

Our previous computational study [53] has shown that the drag of a deformable sheet
scales approximately as the inflow speed for Newtonian fluid in three dimensions when
Reynolds number in the range [1,100]. In this study, our results indicate that the drag
of the plate scales approximately as 1.9, 1.6, and 1.2 powers of the inflow speed for non-
Newtonian fluid when the generalized Reynolds number equals 1, 10, and 100, respectively.
The significant difference in the drag scaling may be explained by the non-Newtonian effect
such as the fluid elasticity which lacks in a viscous Newtonian fluid. Viscoelastic fluid may
induce more drag. Such non-Newtonian effect is incorporated in the generalized Reynolds
number Reg; but it lacks in the definition of Reynolds number (Re) for Newtonian fluid.

While drag data of a rigid body (such as a sphere or other particles) in a non-Newtonian
fluid are available in literature (see a recent review paper [21]), those of a deformable body
in a non-Newtonian fluid are not available, to the best of our knowledge. Nevertheless,
our results of drag coefficients versus the generalized Reynolds number (i.e. Fig. 4) are in
qualitative agreement with the data of bubbles in a Newtonian fluid and rigid particles in a
non-Newtonian. For Reg ∈ [0.1, 100], the range of our drag coefficient Ĉd and the trend of
Ĉd versus Reg both qualitatively agree with the existing data summarized in [21] (Fig. 3 for
bubbles and Fig. 7 for rigid particles ): Ĉd monotonically decreases from approximately 100
to 1 as Reg increases from 0.1 to 100. The qualitative agreement reflects the fact that the
drag coefficient is computed in our study when the plate has reached a quasi-steady state
where the shape and position are almost static (therefore resembling a rigid body of the
same geometry). Note that the body deformability still plays an important role in drag and
its scaling. The role is incorporated in the definition of the drag coefficient Ĉd (see Section
5.2).

Our numerical results show that as Reg increases, the plate equilibrium position expands
outwards, i.e., the plate bends less for larger Re. This seems to be against our intuition.
Intuitively, one may speculate that as Re increases, the inertial forces become greater and
dominating, which would cause more bending of the plate and, thus, the plate should shrink
inwards and present itself as a smaller obstacle to the flow. However, according to our
simulations, this does not happen. Similar Re effect was observed for Newtonian flows as well
in both two [50, 51] and three [53] dimensions. One may speculate that, as the Re increases,
the upperstream flow speed of the plate becomes greater than flow speed right behind the
plate, thus the pressure behind the plate becomes greater than pressure in front of the plate.
Thus the pressure difference pushes the plate towards the upperstream direction. However,
the iso-surfaces of pressure for three typical generalized Reynolds numbers (Reg = 1, 10, 100)
do not confirm the hypothesis. This seems to be an interesting phenomenon which may not
permit a simple explanation; it is a nice piece of future work.

From the plate shape shown in Figs 3 and 4, one may see that the viscoelastic force
seems to dominate the total drag of the plate. The total drag the plate experiences may be
decomposed into shape drag and viscoelastic drag. The former is caused by the shape of the
obstacle in the flow; the greater is the effective area (normal to the mainstream), the greater
is the resistance or drag. The latter is caused by friction on the surface of the obstacle;
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the more viscoelastic is the fluid, the greater is the surface friction. The effective area in
Fig 3 (bottom) gets greater, but the drag coefficient gets smaller as Re increases. Similarly,
the effective area in Fig 5 gets smaller, but the drag coefficient gets greater as n increases.
Therefore, one may conclude that the viscoelastic force dominates the plate drag in both
cases.

The significance of our work may be summarized as follows. On one hand, drag data of a
deformable body in a non-Newtonian fluid are not available in literature; our computational
results fill part of the gap and hence is important in the theory of non-Newtonian fluid.
On the other hand, our results may have practical implications. Two possible examples are
given below. Firstly, shear thickening fluid may be used for manufacturing sport protective
clothing or liquid body armor. When impacted by an external object such as a bullet, the
external stress causes the stiffening of fluid by increasing viscosity; the more drag the hit
portion of clothing/armor experiences, the more effective the protection is. Our results on
Figs. 3 and 4 show that the drag coefficient increases with the value of n for shear thickening
fluid. Therefore, these results suggest that a shear-thickening fluid with higher value of n
should be preferred for this purpose. Second example is related to the damage of red blood
cells in blood flow through stenosed blood vessels. In badly narrowed blood artery inflicted
by atherosclerosis, blood rushes through the stenosis. One may assume that the damage
is caused by the significantly elevated flow speed and shear rate when cells pass through
stenosis. However, in a severely stenosed blood artery, blood stream may get significantly
slowed down in the upper and down streams of the stenosis location. Blood is shear thinning.
The reduced shear rate in these regions causes increase in viscosity which leads to decrease
in Reynolds number. Our results suggest smaller Reynold numbers induce greater drag.
Therefore, presence of stenosis may damage the circulating cells in regions away from the
stenosis as well.
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Figure 1: The setup of model problem.

Figure 2: 3D flow visualization through streamlines.
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Figure 3: Drag coefficient versus n for three different values of Reynolds number(top) and the position and
shape of the plate versus n for Reg = 1, 10, 100 (bottom). Each color represents the position/shape of a
plate. Since the available colors are limited in Matlab, a same color may be used twice or more to represent
plates of different value n.
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Figure 4: Drag coefficient versus Re for five different values of n(top) and the shape/position of the plate
versus Re for n = 0.5, 0.75, 1.0, 1.25, 1.75 (bottom). Each color represents the position/shape of a plate.
Since the available colors are limited in Matlab, a same color may be used twice or more to represent plates
of different value Re.
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Figure 5: Drag scaling for three values of Reg (top) and the position and shape of the plate versus bending
modulus for four different values of n (bottom). The variable k is the exponent of the power-law function
betweenD and η. The shape/position profiles look similar for other Reynolds numbers . Each color represents
the position/shape of a plate. Since the available colors are limited in Matlab, a same color may be used
twice or more to represent plates of different value K̂b.
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