
1 23

The Journal of Supercomputing
An International Journal of High-
Performance Computer Design,
Analysis, and Use

ISSN 0920-8542

J Supercomput
DOI 10.1007/s11227-017-2103-x

Interactive 3D simulation for fluid–
structure interactions using dual coupled
GPUs

Bob Zigon, Luoding Zhu & Fengguang
Song

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Supercomput
DOI 10.1007/s11227-017-2103-x

Interactive 3D simulation for fluid–structure
interactions using dual coupled GPUs

Bob Zigon1 · Luoding Zhu2 · Fengguang Song3

© Springer Science+Business Media, LLC 2017

Abstract The scope of this work involves the integration of high-speed parallel com-
putation with interactive, 3D visualization of the lattice-Boltzmann-based immersed
boundary method for fluid–structure interaction. An NVIDIA Tesla K40c is used for
the computations, while an NVIDIA Quadro K5000 is used for 3D vector field visu-
alization. The simulation can be paused at any time step so that the vector field can
be explored. The density and placement of streamlines and glyphs are adjustable by
the user, while panning and zooming is controlled by the mouse. The simulation can
then be resumed. Unlike most scientific applications in computational fluid dynamics
where visualization is performed after the computations, our software allows for real-
time visualizations of the flow fields while the computations take place. To the best of
our knowledge, such a tool on GPUs for FSI does not exist. Our software can facilitate
debugging, enable observation of detailed local fields of flow and deformation while
computing, and expedite identification of ‘correct’ parameter combinations in para-
metric studies for new phenomenon. Therefore, our software is expected to shorten
the ‘time to solution’ process and expedite the scientific discoveries via scientific
computing.

B Bob Zigon
robert.zigon@beckman.com

1 Beckman Coulter, Indianapolis, IN 46268, USA

2 Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis,
Indianapolis, IN 46202, USA

3 Department of Computer Science, Indiana University-Purdue University Indianapolis,
Indianapolis, IN 46202, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2103-x&domain=pdf
http://orcid.org/0000-0002-6396-1883

B. Zigon et al.

Keywords Lattice Boltzmann method · The immersed boundary method · GPU
computing · Fluid–structure interaction(FSI) · Interactive simulation · Real-time
visualization

1 Introduction

The fluid–structure interaction (FSI) problem involves the interplay of a solid structure
with a surrounding fluid flow. Such problems are ubiquitous and include examples
like the deformation of a fish’s fin while swimming [1], the bending of the cilium
in the kidney lumen in response to shear flow [2], or the strong wind effect on a
skyscraper [3]. Because the interaction of an elastic solid and a viscous fluid in nature
is nonlinear, multi-physics, andmulti-scale, an analytical solution is very rare. Instead,
a computational approach is practically viable.

To date, many computational methods exist for numerical studies of problems
involving flow–structure interactions, probably because of the complexity and diver-
sity of real-world FSI problems and the limitations of mathematics and computer
resources. Each method has its strength and weakness. Some of them are comparable.
The choice is problem dependent.We shall not attempt to compare thesemethods here;
instead we list some of them for readers’ reference. These methods include immersed
boundary (IB)methods [4,5], the immersed interfacemethods [6], blob-projection [7],
immersed continuum [8], and immersed finite element [9], the Arbitrary Lagrangian
Eulerian (ALE) [10], the fictitious domain method [11], the material point method
[12], the level set method [13], and the front tracking method [14].

We choose to use the popular IB method originated by Peskin [15] for the fluid–
structure interactions. The reason is that it is well tested, efficient, and allows a variety
of fluid and solid solvers to be combined. Within the IB method, there too exists
different versions. Examples include the original versions [16], the vortex-method
version [17], the volume-conserved version [18], the adaptivemesh refinement version
[19], the (formally) second-order versions [20,21], the multigrid version [22], the
penalty version [23], the implicit versions [24–28], the generalized version for a thick
rod [29], the stochastic version [30], the porous media version, the lattice-Boltzmann
version [31–41], the fluid-solute-structure interaction version [42], and the variable
viscosity version [43].

In this work, we strive to realize the lattice-Boltzmann-based immersed boundary
(LB-IB) method developed by Zhu et al. [31] for general fluid-deformable-structure
interactions. The latticeBoltzmann (LB)method [44–51] is awidely used alternative to
traditional numerical methods for flow problems. It employs a meso-scale description
and incorporates a velocity distribution function that obeys an approximate Boltzmann
equation. Compared to conventional approaches for solving the flow problem, the
LB method is relatively simpler to use, easier to handle complex rigid boundaries
(e.g., porous media), and more convenient to incorporate additional physics into a
model to simulate new flow phenomena, particularly in three dimensions. Therefore,
our software can be easily extended to other situations such as FSI involving non-
Newtonian fluids.

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Another reason for choosing the LB-IB method is the inherent parallelism in both
the lattice Boltzmann (LB) method and the immersed boundary method, which makes
them good candidates for parallel computing on GPUs [52]. In the LB method, with
each node in the computing domain acting independently of its neighbors, the stream-
ing and collision of the fluid particles maps elegantly on to the thousands of cores
present on a GPU. In a similar manner, in the IB method, the computation of the
forces and subsequent application to the immersed object is also a procedure where
adjacent domain members can be computed in parallel.

The literature shows the existence of some work implementing the lattice Boltz-
mann and immersed boundary methods on GPUs. Valero et al. [53] demonstrated the
performance of the 2D algorithm on Intel CPU’s and NVIDIA GPU’s. The goal of
their work was to investigate optimization strategies for heterogeneous architectures
on two-dimensional domains. In the work of Mawson et al. [54], they too developed
a GPU library. Like Valero, they focused on implementation and performance, but
also investigated the application to 3D domains. Although Mawson et al. stated that
real-time 3D simulations are possible with GPU acceleration, they also found it was
very difficult to identify the z-depth for the object they placed in the field. They did
not perform visualization, nor did they address how complex internal obstacles could
be handled in their work. In 2016, Wu [55] developed a GPU accelerated LB-IB sim-
ulator for a three-dimensional ellipsoidal membrane. They focused on the creation of
efficient code for computation on a single GPU. This is in contrast to our approach
which distributed the computation and visualization across two distinct GPUs.

Our work explores the use of GPUs not only to accelerate computation, but also
interactively visualize computational results in real time in three dimensions. We
have created a number of C++ classes that simplify the implementation on GPUs. To
compare and demonstrate the efficiency of using theGPU,we also implement the algo-
rithms on CPUs using OpenMP. We model a 3D viscous flow past a deformable mesh
fixed at its midline behind a circular rigid cylinder as an example of our work; however,
our software implementation is generic and can be used for other FSI problems.

Visualization has become an essential part in engineering, research and business
workflows. The current practice for a researcher in computational fluid dynamics is
as follows: One executes a simulation and saves the data to storage, waits for the
simulation to terminate, and then loads the data from storage for visualization. For
large-scale real-world FSI problems, a simulation may take days or even weeks to
finish on modern parallel computers. Furthermore, computational studies frequently
perform many series of simulations with different combinations of problem-specific
parameters (i.e.,parametric studies).Due to the essentialnonlinearityof FSI problems,
the “correct” choices that may lead to new phenomenon or discovery are typically not
known beforehand. The real-time visualization may substantially help in this regard
by identifying the uninteresting or incorrect combinations long before simulations are
completed. For this reason, we have made it easy for the researcher to rotate and zoom
the simulation during the computation. We also allow the user to view the vector field
using three-dimensional vectors or streamlines, as well as changing their density and
placement, to better observe the behavior of the flow.

Integrating visualization into the computing framework brings value in other areas.
A domain with 2563 nodes that simulates for 105 s would consume 12 terabytes of disk

123

Author's personal copy

B. Zigon et al.

space if the simulation was saved.With our approach, you simply rerun the simulation.
Moreover, any disk I/O that is incurred during simulation would certainly slow down
the overall execution time if every time step is written to disk. We have also found that
the interactivity simplified debugging. When a logic error occurred, the source was
frequently very obvious from the output.

Regarding visualization, software toolkits like the OpenGL Volumizer [56], Par-
aView [57] and VisIt [58] enable a user to interactively visualize the data after it has
been computed. In our work, we integrate large-scale simulation with real-time visu-
alization using two GPUs. An NVIDIA Tesla K40c is used for computations, while an
NVIDIA Quadro K5000 is used for 3D visualization by streamlines or vector glyphs.

To the best of our knowledge, this paper makes the following three contributions.
First, we present an efficient GPU implementation of the LB-IB method in three
dimensions. Second, we create a set of software classes capable of supporting both
CPUs and GPUs. Finally, we provide an integrated approach to realizing online FSI
visualization using multiple GPUs that emphasizes human interaction with the sim-
ulator during computation. This capability facilitates code debugging, allows one to
observe detailed local flow and deformation dynamics while computing, and expe-
dites identification of ‘correct’ parameter combinations in parametric studies for new
phenomenon. It is also expected to shorten the ‘time to solution’ process and expedite
the scientific discoveries via scientific computing.

The remainder of the paper is organized as follows. Section 2 introduces the LB-
IB method, including the mathematical formulation and its discretization. Section 3
describes the software design for the OpenMP andGPU hardware platforms. Section 4
gives implementation details. Section 5 presents our results, and Sect. 6 concludeswith
a discussion of future work.

2 The LB-IB method

2.1 The mathematical formulation

The lattice Boltzmann method originated from Boltzmann’s kinetic theory of dilute
gases. The fundamental concept is that fluids can be modeled as large collections of
particles with random motions. The exchange of momentum and energy is achieved
through particle collisions and particle streaming. The LB method is an alternative
to traditional numerical methods such as the fast Fourier Transform, the projection
method, and the particle in cell method for obtaining the solution to the viscous
incompressible flow problem. In contrast to solving for macroscopic variables like
velocity and pressure, the LB method uses a mesoscopic approach that deals with
a particle velocity distribution function g(x, ξ, t) defined on a Eulerian grid. Here x
represents the spatial coordinate, ξ represents particle velocity, and t is time.

Different from the lattice Boltzmann method, the goal of the immersed boundary
method is to model the interaction of a fluid with an elastic material. The elastic
material is treated as part of the fluid in which additional forces are applied. The
elastic material is tracked on a Lagrangian grid by following the material points. The

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

configuration of these points is used to compute elastic forces which are applied to
the nearby lattice points of the fluid.

Our overall approach for the LB-IB formulation follows that of [31]. The dimen-
sionless form is formulated as follows:

∂g(x, ξ, t)

∂t
+ ξ · ∂g(x, ξ, t)

∂x
+ fib(x, t) · ∂g(x, ξ, t)

∂ξ
= −1

τ
(g(x, ξ, t)− g(0)(x, ξ, t)).

(1)
Bhatnagar–Gross–Krook (BGK) [59] are attributed to Eq. (1) which describes the

motion of both the fluid and the immersed boundary in the context of the LB method.
The quantity g(x, ξ, t) dx dξ represents the probability of finding a particle at time t ,
located in the interval [x, x+dx], whilemovingwith velocity in the interval [ξ, ξ+dξ].
The term

− 1

τ
(g(x, ξ, t) − g(0)(x, ξ, t)) (2)

in (1) is the BGK approximation to the complex collision operator in the Boltzmann
equation,where τ is the relaxation time and g(0)(x, ξ, t) is theMaxwellian distribution.
The term fib(x, t) is the force imparted by the immersed boundary to the fluid. This
term is largely responsible for the unification of the LB and IB methods. As a result,
there is no need to explicitly remesh the immersed boundary because the two methods
are coupled by way of fib(x, t).

The LB method requires the macroscopic variables fluid mass density, ρ(x, t), and
the momentum, (ρu)(x, t), which are defined in (3) and (4) as functions of the velocity
distribution function g(x, ξ, t).

ρ(x, t) =
∫

g(x, ξ, t) dξ (3)

(ρu)(x, t) =
∫

g(x, ξ, t)ξ dξ (4)

The Eulerian force density fib(x, t) defined on the fixedEulerian lattice is calculated
from the Lagrangian force density Fib(α, t) defined on the Lagrangian grid by Eq. (5),

fib(x, t) =
∫

Fib(α, t)δ(x − X(α, t)) dα (5)

where the function δ(x) is the Dirac δ-function. The Lagrangian force density Fib is
computed as follows:

Fib(α, t) = − ∂E
∂X

= −∂(Es + Eb)
∂X

(6)

In Eq. (6), the elastic potential energy densityE consists of a stretching/compression
component Es and a bending component Eb. These last two quantities are defined by
Eqs. (7) and (8), respectively.

Es = 1

2
Ks

∫ ∫
dα2 dα3

∫ (∣∣∣∣∂X(α, t)

∂α1

∣∣∣∣ − 1

)2

dα1 (7)

123

Author's personal copy

B. Zigon et al.

Eb = 1

2
Kb

∫ ∫
dα2 dα3

∫ (∣∣∣∣∂
2X(α, t)

∂α2
1

∣∣∣∣
)2

dα1 (8)

The variables α1, α2, α3 are the three components of the Lagrangian variable α. In
the case of an immersed surface, such as the flexible membrane in Sect. 5, α2 may be
used to denote a fiber, α1 to denote the arc length along the fiber, and α3 is not used.
Ks is the stretching/compression coefficient, and Kb is the bending coefficient. Both
constants are related to Young’s modulus of the membrane.

Themotion of the flexiblemembrane is described by a system of first-order ordinary
differential equations. Equation (9) describes the system.

∂X
∂t

(α, t) = U(α, t) (9)

X(α, t) is the Eulerian coordinate of the immersed membrane at time t whose
Lagrangian coordinate is α. The immersed boundary velocity U(α, t) is interpolated
from the fluid velocity u(x, t) by using the same δ-function to apply the boundary
force to the fluid. Equation (10) describes the immersed boundary velocity.

U(α, t) =
∫

u(x, t)δ(x − X(α, t)) dx (10)

2.2 Discretization

Equations 1–9 in the previous section are discretized on a uniform fixed Eulerian
lattice for the fluid with a mesh width of h (the number of grid nodes is Nx , Ny and
Nz in the x , y and z directions, respectively). There is also a moving Lagrangian grid
for the immersed boundary with an initial mesh width �α1 = �α2 = h/2.

The D3Q19 model seen in Fig. 1 is used to discretize the BGK equation. In this
model, particles can enter and exit each lattice node along eighteen different directions.
The nineteenth direction represents the particles remaining at rest at the node. The
particle velocity space ξ is then discretized by a set of 19 velocities (see Fig. 1).

Fig. 1 D3Q19 model

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Let g j (x, t) be the distribution function along ξ j . A second-order space and time
discretization, Eq. (11), in a Lagrangian coordinate system is applied to derive the
lattice Boltzmann equation that advances g j (x, t) forward by one step.

g j (x+ ξ j , t +1) = g j (x, t)− 1

τ

[
g j (x, t)− g0j (x, t)

]
+

[
1− 1

2τ

]
w j

[
ξ j − u

c2s
+ ξ j · u

c4s
ξ j

]
· fib
(11)

Here w j is a weight for direction ξ j .

The constant cs = 1/
√
3 is the speed of sound for the model. The relaxation time

τ is related to the dimensionless fluid viscosity ν by the equation ν = 2τ−1
6 . The fluid

velocity u and the force fib are evaluated at time t .
The density ρ(x, t) and momentum (ρu)(x, t) are related to g j (x, t) at each node

by
ρ(x, t) =

∑
j

g j (x, t), (12)

(ρu)(x, t) =
∑
j

ξ j g j (x, t) + fib(x, t)
2

, (13)

and the equilibrium distribution function g0j is given by

g0j (x, t) = ρ(x, t)w j

[
1+ 3ξ j ·u(x, t)+ 9

2
(ξ j ·u(x, t))2 − 3

2
u(x, t) ·u(x, t)

]
. (14)

Assume the duration of the time step is set to 1. Let n be the time step index so that:
gn = g(x, ξ , n), Xn(α) = X(α, n), un = u(x, n), pn = p(x, n) and ρn = ρ(x, n).

Let the flexible membrane be represented by a discrete collection of fibers whose
Lagrangian coordinate is α2. Let α2 = q�α2, where q is an integer.

Now let each fiber be represented by a discrete collection of points whose
Lagrangian coordinate is α1. Let α1 = m�α1, where m is an integer. The “half
integer” points are given by α1 = (m + 1/2)�α1. For any function φ(α), define the
operator Dαφ to be the centered difference operator with respect to α.

The stretching energy and corresponding force are discretized as,

Es = 1

2
Ks

∑
m

(|Dα1X| − 1)2�α1 (15)

= 1

2
Ks

n f −1∑
m=1

(|Xm+1 − Xm |
�α1

− 1

)2

�α1 (16)

and

(Fs)l = Ks

�α2
1

n f −1∑
m=1

(|Xm+1 − Xm | − �α1)
Xm+1 − Xm

|Xm+1 − Xm | (δm,l − δm+1,l). (17)

123

Author's personal copy

B. Zigon et al.

Here (Fs)l , l = 1, 2 . . . , n f is the Lagrangian force densityFs associatedwith node
l. In a similar manner, the bending energy and corresponding force are discretized as,

Eb = 1

2
Kb

∑
m

|Dα1Dα1X|2�α1 (18)

= 1

2
Kb

n f −1∑
m=2

[|Xm+1 + Xm−1 − 2Xm |2
(�α1)4

]
�α1 (19)

and

(Fb)l = Kb

�α3
1

n f −1∑
m=2

(Xm+1 + Xm−1 − 2Xm)(2δm,l − δm+1,l − δm−1,l). (20)

Here (Fb)l , l = 1, 2 . . . , n f is the Lagrangian force density Fb associated with
node l. n f is the total number of grid points on the flexible membrane, and δk,l is the
Kronecker symbol.

The total Lagrangian force density isF(α, t) = Fs(α, t)+Fb(α, t). The two integral
relations for Eqs. (5) and (10) can now be discretized as

fnib(x) =
∑
α

Fn(α)δh(x − Xn(α)) �α (21)

and
Un+1(α) =

∑
x

un+1(x)δh(x − Xn(α)) h3. (22)

Here the notation
∑

α means that the sum with respect to α is taken over all of the
discrete collection of points. Similarly,

∑
x means that the sum with respect to x is

taken over all discrete points of the form x = (ih, jh, kh). δh is an approximation of
the Dirac δ-function. In the IB method, δh has the form,

δh(x) = h−3ψ
(x
h

)
ψ

(y

h

)
ψ

(z

h

)
(23)

where h is the mesh spacing, x = (x, y, z).
See [4] for details regarding the choice ofψ(r).WithUn+1(α) known fromequation

(10), the flexible membrane motion equation is

Xn+1(α) − Xn(α)

�t
= Un+1(α) (24)

or
Xn+1(α) = Xn(α) + Un+1(α) · �t. (25)

3 Software design

In order to understand the benefits of using GPUs, we also implement the LB-IB
method using OpenMP for comparison. Since the application is written in C++, some

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Solver class

Create()
Run()
Render()=0
Shutdown()=0
CollideAndStream()=0
ComputeBoundaryConditions()=0
UpdateRhoAndVelocity()=0

GPU Solver

Render()
Shutdown()
CollideAndStream()
ComputeBoundaryConditions()
UpdateRhoAndVelocity()

CPU Solver

Render()
Shutdown()
CollideAndStream()
ComputeBoundaryConditions()
UpdateRhoAndVelocity()

Fig. 2 Class diagram for the solver relationships

ImmersedBoundary class

Create()=0
ComputeAndSpreadForces()=0
InterpolateFiberVelocity()=0
Render()=0

GPU ImmersedBoundary

Create()
ComputeAndSpreadForces()
InterpolateFiberVelocity()
Render()

CPU ImmersedBoundary

Create()
ComputeAndSpreadForces()
InterpolateFiberVelocity()
Render()

Fig. 3 Class diagram for the immersed boundary relationships

classes were designed to help with code reuse between the GPU and CPU implemen-
tations. Two major classes help the software to identify the natural hardware-specific
implementation points. Figures 2 and 3 convey the essence of those two classes. The
Solver abstract base class in Fig. 2 shows seven primary methods, five of which are
abstract, thatmust be implemented to solve the latticeBoltzmann equation (the remain-
ing two dozen methods are helper functions that are omitted from the class for clarity).
A similar approach is used for the ImmersedBoundary abstract base class in Fig. 3.

The overall program structure follows in Listing 1. On lines 1 and 2, the Solver
and ImmersedBoundary objects are first given an opportunity to initialize and create
necessary data structures. The subclassing of the Solver allows the GPU to allocate the
two large 4-dimensional matrices that store the node density values, g(Nx , Ny, Nz, j),
as well as the velocity and density fields, in RAM that is local to the GPU. In a similar
fashion, the CPU solver allocates its matrices in host RAM. From that point forward,
the Solver and ImmersedBoundary objects pass pointers to their large data structures
when they need to be operated on.

123

Author's personal copy

B. Zigon et al.

1 So lve r . Create ()
2 IB . Create ()
3

4 While Not Done
5 {
6 So lve r .Run()−Compute f i e l d at time Tn

7 1 . IB . Compute & Spread Forces 3%
8 %16edilloC&maertS.revloS.2
9 3 . So lve r . Compute Boundary Condit ions 2%

10 4 . So lve r . Update Fluid Density & Ve loc i ty 16%
11 5 . IB . I n t e r p o l a t e Fiber Ve loc i ty 2%
12 6 . So lve r . Compute I n l e t & Outlet bc ’ s 11%
13

14 So lve r . Render()− Vi sua l i z e f i e l d at time Tn 5%
15 }

Listing 1: Pseudo code for main program logic

After this initialization, the Run() method computes the field at time Tn on the Tesla
card (line 6), while the Render() method displays and visualizes the generated field
(line 14). The 6 steps associatedwith computing the field in lines 7–12 are implemented
with the subclassed form of the IB (Immersed Boundary) class or the Solver (lattice
Boltzmann) class.

The use of the abstract base class makes it easier to reason about the two different
hardware platforms.Commonvariables like the dimensions of the domain, theReynold
number, or the current time step are naturally allocated in the base classes, while
hardware-specific details are in the subclasses. In fact, this class design would make it
fairly straightforward to evaluate the performance of the LB-IB algorithm on a distinct
accelerator such as the Xeon Phi from Intel.

The values on the right of each line represent the execution duration as a percentage
of the total time needed to generate one frame for a domain size of 2563. Our test
case deals with the deformation of a flexible mesh that is composed of an orthogonal
collection of fibers. Listing 1 suggests that the streaming and collision step in the lattice
Boltzmann method is the most expensive function to implement. For our problem, the
computation of the fluid forces and the movement of the fibers required just 3%
of the frame duration. The frame duration is the amount of time required for the
computing GPU to advance the LB-IB algorithm, plus the amount of time required for
the visualization GPU render the three-dimensional scene. We expect more complex
immersed objects will consume more of the computing time. For example, in an
extreme case, if the number of nodes in the immersible structure is comparable to the
number of fluid grid nodes, the computation of the interactive forces may then become
comparable to or even dominate the execution time.

4 Implementation of LB-IB and visualization on CPU and GPU

4.1 OpenMP details on CPU

Given the challenges associated with writing and debugging GPU code, we decided
to implement the OpenMP version first. This approach helped us identify and solve

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

race conditions and performance issues before we moved to the GPU. It also helped
us recognize the two base classes in Figs. 2 and 3.

The primary difference between the two implementations lies in the data parallel
approach used on the GPU. On the GPU, we typically launched one thread for each
node in the 3D domain that required computing. The equivalent implementation with
OpenMP on CPU requires 3 nested for-loops. However, the outermost loop (for the
Z axis) is preceded by the “#pragma omp parallel” directive to request distribution of
the work across multiple CPU cores.

Many of the lessons learnedwhile implementing theOpenMPcode could be applied
to the GPU code. For example, the GPU code, like the OpenMP code, merged the
collision and streaming steps into a single step, thereby eliminating a large block of
memory reads and writes. In addition, the AOS (array of structures) implementation
of the fluid velocity field that negatively impacted the OpenMP code also affected the
GPU code. The cache friendly solution was to switch to an SOA (structure of arrays)
approach which minimized cache line reloads on the CPU. On the GPU, the SOA
approach effectively reduced the number of memory transactions by a factor of 3. For
example, when a warp of 32 cores generated 32 memory addresses to access the X
component of the fluid velocity, the SOA approach guaranteed that those 256 bytes
were physically contiguous in RAM. In contrast, the AOS approach distributed those
same 32 memory addresses across 768 bytes because the stride between logically
adjacent X components was now 24 instead of 8.

AlthoughC++natively supports three-dimensional arrays,wewrapped our arrays in
a class so that subscript checking could be enabled in the debug build of the application.
This greatly simplified the search for errant logic that occasionally indexed before the
beginning or past the end of an array. Given that we consciously accessed the domain
in Z-Y -X axis order, we could then insure that accesses to sequential nodes were
physically contiguous in memory which again further minimized cache line reloads
on the CPU.

4.2 GPU details

The GPU used for implementing the LB-IB algorithms and computing the 3D vector
field was the Tesla K40c. This card features 2880 CUDA cores, 1.4 TFLOPS double
precision (DP), and12GBofRAM.Thedevelopment environment consisted ofCUDA
7.5 and Visual Studio 2013 under Windows 7/64.

Computation of the bending and stretching forces (that accompany the spreading of
the forces) in line 7 of Listing 1was a straight forward implementation of Eqs. (17) and
(20). A data parallel approach was taken where one GPU thread is dedicated to each
point on the Lagrangian grid with synchronization primitives inserted as appropriate.

The subsequent spreading of the forces from the fibers to the fluid in Eq. (21) is
described in kernel Listing 2. First, notice in lines 20–25 how all of the accesses to
global memory on the GPU are initiated as early as possible in the kernel. This aids
in filling the memory controller pipeline and minimizes stalls later in the code due to
unavailable operands.

123

Author's personal copy

B. Zigon et al.

Next, from the host computer’s perspective, we simply launch asmanyGPU threads
as there arefibers andpoints perfiber. Each threadwill thenbe responsible for accessing
the points from the Eulerian grid and accumulating them from the neighboring fiber
nodes on the Lagrangian grid. The potential problem with this approach is that a race
condition can occur. Fortunately, modern GPUs have an atomic add instruction that
makes this accumulation indivisible as shown on lines 58–60 of Listing 2.

Finally, Eq. (21) initially concerned us from a performance standpoint because the
Eulerian force fib is computed by way of a smoothing function δh(x) that accesses the
4× 4× 4 cube of values around each node of the Lagrangian grid. With δh(x) defined
by Eq. (23), it becomes apparent that the non-coalesced nature of the 64 coefficients
may negatively impact the function. However, with line 7 of Listing 1 consuming 3%
of the execution time, we deferred further analysis until the number of Lagrangian
grid points significantly increased.

The lattice Boltzmann method consists of a collision step, a streaming step, and
a boundary computation step. Our first implementation on the GPU followed this
sequence. However, the latency associated with reading or writing GPU memory can
take between 400 and 600 clock cycles. As such, it is in our interest to minimize redun-
dant reads andwrites. In our secondGPU implementation, wemerged the collision and
streaming steps into a single step, thereby eliminating the extra reading and writing
of 8 × 19 × 2563 bytes. This resulted in a twofold increase in the execution speed of
the method, which further reinforced our belief that the LB method is memory bound
and not arithmetic bound.

Line 10 of Listing 1 shows that updating the fluid density and velocity consumed
about 16%of theGPU time for one frame.Equations (12) and (13) describe the process.
Implementing the two equations directly would result in inefficient GPU code. The
GPU will block only when an operand is not available. The better solution is to read
the 19 distribution values into an array to fill the memory controller’s read pipeline.
The final CUDA kernel is described in Listing 3. Lines 28–33 focus on performing all
memory accesses. Lines 40–51 focus on the actual computation which are not likely
to stall because the memory-based operands should now be in registers.

Line 11 of the pseudocode in Listing 1 describes the interpolation of the fiber
velocity in terms of Eq. (22).When combined with Eq. (25), the fibers are repositioned
to their new points in space. Equation (22), like Eq. (21), also concerned us from
a performance standpoint because the Lagrangian velocity field U is computed by
way of δh(x) that accesses the 4 × 4 × 4 cube of values around each node of the
Eulerian grid. The access pattern is nearly identical to that used in lines 41–63 of the
SpreadForcesKernel in Listing 2. However, with line 11 of Listing 1 consuming 2%
of the execution time, we again deferred optimization until the number of Lagrangian
grid points significantly increased.

4.3 Visualization details

In our software implementation, theTeslaGPUcardgenerates the velocity andpressure
fields at time Tn and then the Quadro GPU card uses custom GLSL shaders [60] to
generate the display. The code was explicitly designed to separate the two functions.

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

1 g l o b a l
2 void SpreadForcesKernel (
3

4 double ∗ fx , double ∗ fy , double ∗ fz ,
5 double ∗ f i l x n1 , double ∗ f i l y n1 , double ∗ f i l z n 1 ,
6 double ∗ f f x , double ∗ f f y , double ∗ f f z ,
7 double dx , double dy , double dz ,
8 i n t f f fw id th , // width o f f f ? 3D matr i ce s
9 i n t f f f h e i g h t , // he ight o f f f ? 3D matr i ce s

10 i n t NumberOfFibers ,
11 i n t PointsPerFiber)
12 {
13 const i n t k f = blockIdx . x∗blockDim . x + threadIdx . x ;
14 const i n t j f = blockIdx . y∗blockDim . y + threadIdx . y ;
15

16 i f (j f >= NumberOfFibers) re turn ;
17 i f (k f >= PointsPerFiber) re turn ;
18

19 const i n t k f j f i n x = kf + j f ∗PointsPerFiber ;
20 const double f i l x n 1 t = f i l x n 1 [k f j f i n x] ;
21 const double f i l y n 1 t = f i l y n 1 [k f j f i n x] ;
22 const double f i l z n 1 t = f i l z n 1 [k f j f i n x] ;
23 const double f x t = fx [k f j f i n x] ;
24 const double f y t = fy [k f j f i n x] ;
25 const double f z t = f z [k f j f i n x] ;
26

27 const double cx = 3.1415926535 / (2 . 0 ∗ dx) ;
28 const double cy = 3.1415926535 / (2 . 0 ∗ dy) ;
29 const double cz = 3.1415926535 / (2 . 0 ∗ dz) ;
30 const double c f = 1 .0 / (64 . 0 ∗ dx∗dy∗dz) ;
31 const double K0 = c f ;
32

33 const i n t i s t a r t = s t a t i c c a s t <int >(f l o o r (f i l x n 1 t /dx−2)+1);
34 const i n t j s t a r t = s t a t i c c a s t <int >(f l o o r (f i l y n 1 t /dy−2)+1);
35 const i n t k s t a r t = s t a t i c c a s t <int >(f l o o r (f i l z n 1 t /dz−2)+1);
36

37 const i n t i s t op = i s t a r t + 4 ;
38 const i n t j s t op = j s t a r t + 4 ;
39 const i n t kstop = ks t a r t + 4 ;
40

41 f o r (i n t i = i s t a r t ; i < i s t op ; i++)
42 {
43 const double rx = dx∗ s t a t i c c a s t <double>(i)− f i l x n 1 t ;
44 const double K1 = (1 . 0 + COS(cx∗ rx)) ∗ K0;
45

46 f o r (i n t j = j s t a r t ; j < j s t op ; j++)
47 {
48 const double ry = dy∗ s t a t i c c a s t <double>(j)− f i l y n 1 t ;
49 const double K1K2 = K1∗ (1 . 0 + COS(cy∗ ry)) ;
50

51 f o r (i n t k = ks t a r t ; k < kstop ; k++)
52 {
53 const double rz = dz∗ s t a t i c c a s t <double>(k)− f i l z n 1 t ;
54 const double K3 = ((REAL)1 . 0 + COS(cz ∗ rz))∗K1K2;
55

56 const i n t inx = i + j ∗ f f fw i d t h + k∗ f f fw i d t h ∗ f f f h e i g h t ;
57

58 atomicAdd (f f x+inx , f x t ∗K3) ;
59 atomicAdd (f f y+inx , f y t ∗K3) ;
60 atomicAdd (f f z+inx , f z t ∗K3) ;
61 }
62 }
63 }
64 }

Listing 2: CUDA kernel for spreading forces

123

Author's personal copy

B. Zigon et al.

1 g l o b a l
2 void UpdateRhoAndVelocityKernel (
3 double ∗ f i n ,
4 double ∗UField , double ∗VField , double ∗WField ,
5 double ∗Rho ,
6 double ∗ f f x , double ∗ f f y , double ∗ f f z ,
7 double dt ,
8 double gl ,
9 i n t width ,

10 i n t height ,
11 i n t zdim)
12 {
13 const i n t x = GetXIndex () ;
14 const i n t y = GetYIndex () ;
15 const i n t z = GetZIndex () ;
16

17 i f (x < 2 | | x >= width−2) re turn ;
18 i f (y < 2 | | y >= height −2) re turn ;
19 i f (z < 2 | | z >= zdim−2) re turn ;
20

21 const i n t inx = x + width ∗(y + z∗ he ight) ;
22 const i n t NumCells= width∗ he ight ∗zdim ;
23 double F [1 9] ;
24

25 f o r (i n t i = 0 ; i < 19 ; i++)
26 F[i] = f i n [inx + i ∗NumCells] ;
27

28 double f f x t = f f x [inx] ;
29 double f f y t = f f y [inx] ;
30 double f f z t = f f z [inx] ;
31 double SumF = 0 . 0 ;
32 double SumX = 0 . 0 ;
33 double SumY = 0 . 0 ;
34 double SumZ = 0 . 0 ;
35

36 f o r (i n t i = 0 ; i < 19 ; i++)
37 {
38 double Q;
39 SumF += (Q = F[i]) ;
40 SumX += Xi [i] . x∗Q;
41 SumY += Xi [i] . y∗Q;
42 SumZ += Xi [i] . z∗Q;
43 }
44

45 double X1 = (SumX+0.5∗dt∗ f f x t)/SumF;
46 double Y1 = (SumY+0.5∗dt∗ f f y t)/SumF;
47 double Z1 = (SumZ+0.5∗dt ∗(f f z t+SumF∗ g l))/SumF;
48 Rho [inx] = SumF;
49 UField [inx] = X1 ;
50 VField [inx] = Y1 ;
51 WField [inx] = Z1 ;
52 }

Listing 3: CUDA kernel for updating fluid density and velocity

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

From Listing 1, it seemed that with visualization taking only 5% of the frame time,
the dual GPU approach probably was not necessary for this example. However, as our
immersed objects becomemore complex and more numerous, we have an architecture
in place that will allow us to overlap the computing and visualization phases. This will
amount to the Tesla card computing the field at time Tn while the Quadro visualizes
time Tn−1. In addition, as we anticipate to implement isosurfaces or stream ribbons to
visualize vortices [61] in the future, these calculations will be performed exclusively
on the Quadro card.

All of the 3D graphics were implemented using OpenGL. OpenGL is a cross-
platform API for rendering 2D and 3D vector graphics. The original API is called the
Direct Mode API. It is simple to use if one is familiar with 3D graphics concepts.
Unfortunately, the Direct Mode API is poorly matched for modern GPU hardware.
Modern hardware prefers to be handed blocks of thousands or millions of vectors at
time. As a result, starting with OpenGL 3.0, the Direct Mode API was deprecated
in preference for the new API. The new API is more challenging to use. However,
some of our simple tests showed that for a given GPU card like a Quadro K5000, the
drawing rate was minimally 10 times faster than the Direct Mode API. In this work,
we chose to implement the graphics using as much of the new API as possible. As
mentioned earlier, we took this implementation path in anticipation of using a large
number of complex, immersed boundary objects in our future work.

We follow [62] on visualization of vector fields. The author discussed how vector
glyphs can be used as trajectories of imaginary particles that are released into the
vector field over a short period of time δt . This was one of the two visualization
techniques that we have realized. The author then describes a broader set of tools
known as stream objects whose purpose is to utilize those same trajectories over a
longer period of time.

The other visualization technique we implemented is the streamline visualization.
For a time-independent vector field, a streamline is a curved path starting from a
given point x0 which is tangent to v, the vector field. If a streamline is modeled as a
parametric function S(τ) = x(τ), where τ represents the arc-length coordinate along
the curve, then a streamline obeys the equation

dx(τ)

dτ
× v(x(τ)) = 0. (26)

This can also be expressed as the following ODE,

dx(τ)

dτ
= v(x(τ))

|v(x(τ))| (27)

with the initial condition x(s = 0) = x0 and the constraint s ∈ [0, Smax]. When Eq.
(27) is integrated over τ from 0 to s, we have the equation

x(s) = x(0) +
∫ s

0

v(x(τ))

|v(x(τ))| dτ, (28)

with x(s = 0) = x0.

123

Author's personal copy

B. Zigon et al.

Fig. 4 User interface with glyphs

Equation (27) can be implemented using Euler’s method as follows,

∫ T

0

v(x(t))
|v(x(t))| dt ≈

N=T/δt∑
i=1

v(xi)
|v(xi)|δt, xi = xi−1 + vi−1δt. (29)

However, the global error of Euler’s method, O(δt), suggests we pursue a better
integrator. The Runge–Kutta 2 (i.e., RK2) and the RK4 integrators have global errors
ofO(δt2) andO(δt4), respectively. Therefore, we have implemented both in the event
we suspected drift in the placement of the streamlines.

Our visualization subsystem is capable of generating the 3D vector field using
glyphs or streamlines [61,63–66]. The glyph-based approach draws an arrow at a point
in 3D space that is oriented with the vector flow as shown in Fig. 4. This approach is
easy to implement but suffers from the problem of visual clutter. Even with the ability
to rotate and zoom our 3D domain during simulation, it can be difficult to discern
details of the underlying field.

Listing 4 describes the algorithm. Lines 6–10 scan the velocity field and search for
the longest vector that is a fluid node. Lines 13–19 then loop one more time over the
velocity field to find the head and tail of each fluid node vector. After the head is
normalized, an arrow is drawn.

Streamlines, on the other hand, show where the vector flow has come from and
where it is going to. By changing the length of the streamlines during the computation,
we can more easily accentuate features such as vortices. The streamlines are always
tangent to the vector field, and fluid never crosses a streamline. Figure 5 shows a screen
shot of the user interface while the simulation is running and the field is viewed with
streamlines.

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Fig. 5 User interface with streamlines

1 DrawGlyphs (UData , VData , WData, IsBoundaryNode , Width , Height , ZDim)
2 {
3 MaxLen = 0
4

5 // Find the l ength o f the l a r g e s t vec to r
6 f o r Z = 1 to ZDim
7 f o r Y = 1 to Height
8 f o r X = 1 to Width
9 i f IsBoundaryNode (X,Y,Z) = 0

10 MaxLen = Max(MaxLen , VectorLength (X,Y,Z))
11

12 // Draw the ve c to r s proper ly s c a l ed
13 f o r Z = 1 to ZDim
14 f o r Y = 1 to Height
15 f o r X = 1 to Width
16 i f IsBoundaryNode (X,Y,Z) = 0
17 Head = [UData(X,Y,Z) , VData(X,Y,Z) , WData(X,Y,Z)] / MaxLen
18 Tai l = X,Y,Z
19 DrawArrow(Head , Ta i l)
20 }

Listing 4: Pseudo code to draw vector glyphs

Listing 5 describes the streamline algorithm. During the initialization of the appli-
cation, a number of 3D points called seeds are calculated. These seeds represent the
starting point for the stream lines. The seeds are uniformly distributed across the
inlet plane of the 3D domain. When the DrawStreamLines procedure is called, the
logic selects a seed and then performs an RK2 integration over PathLineLength
points. This essentially implements Eq. (28). When the TraceRK2 procedure returns,
the StreamLine variable contains a collection 3D points that trace the path. Line 6 then
calls the Draw procedure to display the path.

123

Author's personal copy

B. Zigon et al.

Table 1 Simulation parameters for Figs. 9, 10, 11 and 12

Time step Nx Ny Nz n f Initial velocity Re Ks Kb

100,000 256 256 256 104 0.03 150 0.0004 0.0005

100,000 256 256 256 104 0.03 150 0.0004 0.0015

100,000 256 256 256 104 0.03 150 0.0004 0.0032

100,000 256 256 256 104 0.03 150 0.0004 0.0050

1 DrawStreamLines (}
2 {
3 f o r i = 1 to NumberOfSeeds
4 aSeed = Seeds [i]
5 TraceRK2(aSeed , StreamLine)
6 Draw(StreamLine)
7 }
8

9 TraceRK2(aSeed , StreamLine)
10 {
11 PathLineLength = 0
12 CurrentPoint = aSeed
13

14 f o r i =0, PathLineLength<MaxPathLineLength , i++
15 bool InS ide = In t e r p o l a t eVe l o c i t y (CurrentPoint , vA)
16 i f not InS ide return
17

18 StreamLine . add (CurrentPoint)
19

20 i f Length (vA) < 1E−5 re turn
21

22 vecB = CurrentPoint + vA∗ StepS ize
23 bool InS ide = In t e r p o l a t eVe l o c i t y (vecB , vB)
24

25 i f Length (vB) < 1E−5 re turn
26

27 v = (vB + vA) ∗ 0 .5
28

29 CurrentPoint = CurrentPoint + v∗ StepS ize
30 PathLineLength = PathLineLength + StepS ize
31 }

Listing 5: Pseudo code to draw stream lines

The TraceRK2 procedure performs the actual integration. The procedure keeps
track of thePathLineLength. Line 14 traverses the vector field until thePathLineLength
becomes too long. Otherwise line 15 calls InterpolateVelocitywhich performs trilinear
interpolation of the vector field at the current point. The interpolated value is appended
to the StreamLine on line 18. Line 20 checks the length of the interpolated velocity and
exits the procedure if the magnitude is smaller than 10−5. The algorithm updates the
CurrentPoint which advances it on the field. Finally, the PathLineLength is updated
by the step size.

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Fig. 6 Cartoon of the 3D field flowing around a cylinder and interacting with a flexible mesh

This visualization technique has several useful properties. First, it is easy to imple-
ment which makes it amenable to implementation on the host CPU or the graphics
GPU. Second, if the hardware permits, all of the stream lines can be computed in
parallel.

As mentioned earlier, the placement and density of the glyphs and stream lines
can be changed while the simulation is running. In addition, one key stroke will
pause the simulation, while another key stroke will toggle between the two visual-
ization techniques. This type of functionality supports the exploratory nature of the
application.

5 Results

The results of our real-time GPU implementation of the 3D LB-IB method are illus-
trated by the example problem shown in Fig. 6: a 3D viscous incompressible fluid
flows around a circular rigid cylinder with a tethered flexible mesh placed behind. The
fluid enters from the left, flows around a cylinder, interacts with the flexible mesh, and
then exits on the right. The remaining four faces of the domain implement a no-slip
boundary condition. The flexible mesh is tethered in space along a vertical line that
divides the mesh in half. The flexible mesh consists of 52 fibers oriented vertically,
52 fibers oriented horizontally and 103 points per fiber. The simulation shows how

123

Author's personal copy

B. Zigon et al.

128 160 192 25610−2

10−1

100

101

102

Grid Size

T
im

e
in

se
co

nd
s

1-CPU core DP1

8-CPU cores DP
Tesla K40c DP

Fig. 7 Average time step execution times for 104 fibers and 103 points/fiber

the mesh folds in half under interaction with the flow field and the complicated flow
patterns behind the mesh.1

To measure the performance, we started with 3 configurations (a single-CPU core,
8-CPU cores under OpenMP, and a single GPU). Each configuration was executed for
our example problem in Fig. 6 with a grid size of 128, 160, 192 and 256. Each test ran
for 100 time steps. We then computed the average duration per time step by dividing
the execution time by 100.

The execution times for the double-precision implementations are in Fig. 7. For a
given grid size, the GPU is approximately 10 times faster than 8 cores using OpenMP,
and the 8 core OpenMP version is approximately 8 times faster than a single core.
As shown earlier, the rendering performed by the Quadro GPU consumed only 5% of
the total compute duration for each frame. In this example, we explored how the flow
around a cylinder affects the flexible mesh. However, our framework can be adapted
to explore almost all FSI problems involving a viscous incompressible fluid and an
immersed elastic structure, including the flow around a sphere, a cube or a torus.

The simulator has numerous parameters that control the behavior of the LB-IB
method. These parameters include the domain dimensions Nx , Ny, Nz , the number of
fibers n f , initial fluid field velocity, the Reynolds number Re, fiber stretching coeffi-
cient Ks and the fiber bending rigidity Kb. All of these parameters can be modified
for experimentation purposes or for parametric studies. Table 1 shows the parameters
for the four simulations we performed.

Figures 9, 10, 11 and 12 demonstrate the mesh final position, the mesh shape, and
the flow field (by streamlines) at time 100,000 (in lattice Boltzmann units). These
figures reveal that with a larger bending coefficient the mesh is deformed less at
the final equilibrium state, and the flow patterns behind the mesh become more and
more chaotic and complicated. To highlight the interactive features of our software,
Figs. 13, 14, 15 and 16 display the time evolution of mesh deformation and the flow
field with some of the user interface elements present. The bounding box is drawn to

1 Lenovo D30, 8 core E5-2609@2.4GHz, 32GB RAM, Windows 7/64.

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Fig. 8 The menu in the interface

help the user understand the extent of the domain. Arrows for the X, Y and Z axis
are drawn to better understand the orientation of the simulation. Finally, a menu of
options (Fig. 8) is presented (along with the current state of the simulation) so that the
user can interactively change

– the vector glyphs or the stream lines
– the use of an RK2 versus RK4 stream line integrator
– the ability to pause the simulation on a time step
– the ability to single step the simulation.

The view point of the user is changed by simply dragging the mouse in the X and
Y direction so that the bounding box is rotated. The simulation parameters are shown
in Table 2.

123

Author's personal copy

B. Zigon et al.

Fig. 9 Kb = 0.0005 at time step 100,000

Fig. 10 Kb = 0.0015 at time step 100,000

Fig. 11 Kb = 0.0032 at time step 100,000

Fig. 12 Kb = 0.0050 at time step 100,000

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Fig. 13 Kb = 0.0005 at time step 4000

Fig. 14 Kb = 0.0005 at time step 8000

Validation of numerical codes like LB-IB can be performed through the use of
convergence checking. In this approach, a series of gradually refined grids ensures
that the results are reliable and accurate. In our case, we needed to prove that our

123

Author's personal copy

B. Zigon et al.

Fig. 15 Kb = 0.0005 at time step 12,000

Fig. 16 Kb = 0.0005 at time step 16,000

solutions were valid and that the CPU and GPU versions were sufficiently identical.
Given that floating point arithmetic is not associative, it can be challenging to produce
CPU results that match the GPU. Since we had access to the code produced by Zhu

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

Table 2 Simulation parameters for Figs. 13, 14, 15 and 16

Timestep Nx Ny Nz n f Initial velocity Re Ks Kb

4000 256 256 256 104 0.03 150 0.0004 0.00008

8000 256 256 256 104 0.03 150 0.0004 0.00008

12,000 256 256 256 104 0.03 150 0.0004 0.00008

16,000 256 256 256 104 0.03 150 0.0004 0.00008

[31] (that had been previously validated with convergence checking), we constantly
compared our results with theirs.

Our first step was to develop our 1-core OpenMP code and configure it with param-
eters identical to [31]. Then, as each new version of the code was produced, we would
compare all 507,904 values in our 124 × 64 × 64 test domain with that of Zhu’s
at time step 1, 100, and 1000. Our criteria were that the results needed to match
to three decimal places (the codes were implemented using double-precision float-
ing point). Since our OpenMP implementation was carefully thought through, our
1-core, 4−core and 8-core versions were identical. This was relatively easy to achieve
because the code accessed and operated on its parameters in the same order. In fact,
when the three versions did not match, it was usually due to a logic error or race
condition.

With these three versions in place, we then implemented the GPU version. Again,
with each new version of the GPU code, we would compare the values from our
124 × 64 × 64 domain to those produced by the OpenMP version. We again used a
criteria that our results needed to match to three decimal places.

6 Summary and future work

This paper presents a dual GPU interactive implementation of the lattice-Boltzmann-
based immersed boundary method for fluid–structure interaction problems in three
dimensions. The implementation is demonstrated on a 3D, viscous, incompressible
flow past a deformable mesh behind a rigid cylinder of circular section. Our software
works for many FSI problems involving an incompressible viscous fluid and an elastic
structure (rigid or deformable). To the best of our knowledge, our software is the first
GPU tool integrating visualization and computing in CFD. It is expected to shorten
time to solution and speed up scientific discoveries in the FSI field.

Our single-CPU core, 8-CPU core and Tesla implementations are compared from a
performance perspective using double-precision arithmetic. Our simulations demon-
strate an 80-fold improvement of the single GPU over the single-CPU core. Our base
class design for the LB-IB algorithm greatly simplifies the hardware-specific imple-
mentations. A single application was created that addressed both hardware platforms
for the purpose of performance monitoring and comparison.

Our GPU implementation of the smoothed Dirac delta function for identifying
influence and dependent domains of a Lagrangian point on the structure (for force

123

Author's personal copy

B. Zigon et al.

spreading and velocity interpolation) may need to be optimized when the immersed
body becomes so complex that the number of Lagrangian structure grid points are
comparable to the Eulerian fluid grid points. Otherwise the software performance
may deteriorate. This is a nice future work.

Our dual GPU approach shows that there are a large number of visualization cycles
available for more complex immersed objects. As another future work, we plan to
explore distributing the computation across multiple GPUs, expanding the visualiza-
tion capabilities to include isosurfaces of quantities such as vorticity, volume rendering
on the visualization GPU, and overlapping the computation with the rendering.

Acknowledgements The authors would like to thank the NSF support under the Grant award Number
DMS-1522554.

References

1. Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid
body. Phys Rev E 82:026301

2. Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influ-
ences primary cilia and microtubule mechanics. Cytoskeleton 71:435–445

3. Huang S, Li R, Li QS (2013) Numerical simulation on fluid–structure interaction of wind around
super-tall building at high reynolds number conditions. Struct Eng Mech Int J 46:197–212

4. Peskin CS (2002) The immersed boundary method. Acta Numer 11:409
5. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261
6. LeVeque RJ, Li ZL (1997) Immersed interface methods for Stokes flows with elastic boundaries or

surface tension. SIAM J Sci Comput 18:709–735
7. Cortez R (2000) A vortex/impulse method for immersed boundary motion in high Reynolds number

flows. J Comput Phys 160:385–400
8. Wang XS (2006) From immersed boundary method to immersed continuum method. Int J Multiscale

Comput Eng 4:127–145
9. Zhang L, Gersternberger A, Wang X, LiuWK (2004) Immersed finite element method. Comput Meth-

ods Appl Mech Eng 193:2051
10. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for

incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349
11. GlowinskiR, PanT,Periaux J (1994)Afictitious domainmethod forDirichlet problemand applications.

Comput Methods Appl Mech Eng 111:1994
12. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput

Mech Appl Mech Eng 118:179–197
13. Cottet G-H,Maitre E (2006)A level setmethod for fluid–structure interactionswith immersed surfaces.

Math Models Methods Appl Sci 16:415–438
14. Kim J-D, Li Y, Li X (2013) Simulation of parachute FSI using the front tracking method. J Fluids

Struct 37:100–119
15. Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equa-

tions of motion, vol 378. PhD thesis. Physiology, Albert Einstein College of Medicine, University of
Microfilms, pp 72–30

16. Peskin CS (1977) Flow patterns around heart valves; a numerical method. J Comput Phys 25:220
17. McCracken MF, Peskin CS (1980) A vortex method for blood flow through heart valves. J Comput

Phys 35:183–205
18. Rosar ME, Peskin CS (2001) Fluid flow in collapsible elastic tubes: a three-dimensional numerical

model. New York J Math 7:281–302
19. Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J

Comput Phys 153:509–534
20. Lai MC, Peskin CS (2000) An immersed boundary method with formal second order accuracy and

reduced numerical viscosity. J Comput Phys 160:705

123

Author's personal copy

Interactive 3D simulation for fluid–structure interactions...

21. Griffith BE, Peskin CS (2015) On the order of accuracy of the immersed boundary method: higher
order convergence rates for sufficient smooth problems. J Comput Phys 208:75–105

22. Zhu L, Peskin CS (2002) Simulation of a flexible flapping filament in a flowing soap film by the
immersed boundary method. J Comput Phys 179:452–468

23. Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys
Fluids 19:053103

24. Fauci LJ, Fogelson AL (1993) Truncated Newton methods and the modeling of complex elastic struc-
tures. Commun Pure Appl Math 46:787

25. Taira K, Colonius T (2007) The immersed boundary method: a projection approach. J Comput Phys
225:2118–2137

26. Mori Y, Peskin CS (2008) Implicit second-order immersed boundary method with boundary mass.
Comput Methods Appl Mech Eng 197:2049–2067

27. Hao J, ZhuL (2010)A latticeBoltzmann based implicit immersed boundarymethod for fluid–structure-
interaction. Comput Math Appl 59:185–193

28. Hao J, Zhu L (2011) A 3D implicit immersed boundary method with application. Theor Appl Mech
Lett 1:062002

29. Lim S, Ferent A, Wang XS, Peskin CS (2008) Dynamics of a closed rod with twist and bend in fluid.
SIAM J Sci Comput 31:273–302

30. Atzberger PJ, Kramer PR, Peskin CS (2006) A stochastic immersed boundary method for biological
fluid dynamics at microscopic length scale. J Comput Phys 224:1255–1292

31. Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method
based on the lattice Boltzmann approach in three dimensions with application. Comput Math Appl
61:3506–3518

32. Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate
flows. J Comput Phys 202:20–51

33. Tian FB, Luo H, Zhu L, Liao JC, Lu X-T (2011) An efficient immersed boundary-lattice Boltzmann
method for the hydrodynamic interaction of elastic filaments. J Comput Phys 230(19):7266–7283

34. Zhang C, Cheng Y, Zhu L, Wu J (2016) Accuracy improvement of the immersed boundary-lattice
Boltzmann coupling scheme by iterative force correction. Comput Fluids 124:246–260

35. Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method
and its applications. J Comput Phys 228:1963–1979

36. Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice
Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182

37. Wu J, Shu C, Zhang YH (2010) Simulation of incompressible viscous flows around moving objects
by a variant of immersed boundary-lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow
62:327–354

38. Cheng Y, Zhu L, Zhang C (2014) Numerical study of stability and accuracy of the immersed boundary
method coupled to the lattice Boltzmann BGK model. Commun Comput Phys 16:136–168

39. Cheng Y, Zhang H (2010) Immersed boundary method and lattice Boltzmann method coupled FSI
simulation of mitral leaflet flow. Comput Fluids 39:871–881

40. Shu C, Liu N, Chew Y-T (2007) A novel immersed boundary velocity correction-lattice Boltzmann
method and its application to simulate flow past a circular cylinder. J Comput Phys 226:1607–1622

41. Liu N, Peng Y, Liang Y, Lu X (2012) Flow over a traveling wavy foil with a passively flapping flat
plate. Phys Rev E 85:056316

42. Lee P, Griffith BE, Peskin CS (2010) The immersed boundary method for advection–electrodiffusion
with implicit timestepping and local mesh refinement. J Comput Phys 229:5208–5227

43. Fai TG, Griffith BE, Mori Y, Peskin CS (2014) Immersed boundary method for variable viscosity and
variable density problems using fast constant-coefficient linear solvers II: theory. SIAM J Sci Comput
36:B589–B621

44. HuangH, SukopM, LuX (2015)Multiphase lattice Boltzmannmethods: theory and application.Wiley,
Hoboken

45. Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering. World Scientific,
Singapore

46. Qian YH (1990) Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations, PhD
thesis. University Pierre et Marie Curie, Paris (1990)

47. Hou S, Zou Q, Chen S, Doolen G, Cogley A (1995) Simulation of cavity flow by the lattice Boltzmann
method. J Comput Phys 118:329

123

Author's personal copy

B. Zigon et al.

48. He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and
its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663

49. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models—an introduc-
tion. Springer, Berlin

50. Succi S (2001) The lattice Boltzmann equation. Oxford Univ Press, Oxford
51. Luo LS (1998) Unified theory of the lattice Boltzmann models for nonideal gases. Phys Rev Lett

81:1618
52. Kraus J (2014) Optimizing a LBM code for compute clusters with Kepler GPUs. http://on-

demand.gputechconf.com/gtc/2014/presentations/S4186-optimizing-lbm-code-compute-clusters
-kepler-gpus.pdf

53. Valero-Lara P, Igual FD, Prieto-Matías Pinelli A, Favier J (2015) Accelerating fluid–solid simulations
(lattice-Boltzmann & immersed-boundary) on heterogeneous architectures. J Comput Sci 10:249–261

54. Mawson M, Valero-Lara P, Favier J, Pinelli A, Revell A (2013) Fast fluid–structure interaction using
lattice Boltzmann and immersed boundary methods. In: NVIDIA GPU Conference

55. Wu J,ChengY,ZhouW,ZhangC,DiaoW(2016)GPUacceleration of FSI simulations by the immersed
boundary-lattice Boltzmann coupling scheme. ComputMathAppl. doi:10.1016/j.camwa.2016.10.005

56. Bhaniramka P, Demange Y (2002) OpenGL volumizer: a toolkit for high quality volume rendering of
large data sets. In: 2002 Symposium on Volume Visualization and Graphics, pp 45–53

57. Ahrens J, Geveci B, LawC (2005) ParaView: an end user tool for large data visualization. Visualization
Handbook, Elsevier. ISBN 13:978-0123875822

58. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C,
Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel E, Camp D, Rübel O, Durant M, Favre
JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High
performance visualization—enabling extreme-scale scientific insight, pp 357–372

59. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I; small amplitude
process in charged and neutral one-component system. Phys Rev 94:511

60. Bailey M, Cunningham S (2012) Graphics shaders theory and practice, 2nd edn. CRC Press, Boca
Raton

61. Weiskopf D (2006) GPU based interactive visualization techniques. Springer, Berlin
62. Telea AC (2015) Data visualization principles and practice, 2nd edn. CRC Press, Boca Raton
63. Yu H,Wang C,MaKL (2007) Parallel hierarchical visualization of large time-varying 3D vector fields.

In: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ACM, Nov 16, p 24
64. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7:359–369
65. Spencer B, Laramee RS, Chen G, Zhang E (2009) Evenly space streamlines for surfaces: an image

based approach. Comput Graph Forum 28:1618–1631
66. Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Pro-

ceedings Visualization ’93, pp 19–24

123

Author's personal copy

http://on-demand.gputechconf.com/gtc/2014/presentations/S4186-optimizing-lbm-code-compute-clusters-kepler-gpus.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4186-optimizing-lbm-code-compute-clusters-kepler-gpus.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4186-optimizing-lbm-code-compute-clusters-kepler-gpus.pdf
http://dx.doi.org/10.1016/j.camwa.2016.10.005

	Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs
	Abstract
	1 Introduction
	2 The LB-IB method
	2.1 The mathematical formulation
	2.2 Discretization

	3 Software design
	4 Implementation of LB-IB and visualization on CPU and GPU
	4.1 OpenMP details on CPU
	4.2 GPU details
	4.3 Visualization details

	5 Results
	6 Summary and future work
	Acknowledgements
	References

