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Fluid-structure-interaction  (FSI)  phenomenon  is  common  in  science  and  engineering.  The  fluid
involved  in  an  FSI  problem  may  be  non-Newtonian  such  as  blood.  A  popular  framework  for  FSI
problems is Peskin’s immersed boundary (IB) method. However, most of the IB formulations are
based  on  Newtonian  fluids.  In  this  letter,  we  report  an  extension  of  the  IB  framework  to  FSI
involving Oldroyd-B and FENE-P fluids in three dimensions using the lattice Boltzmann approach.
The  new  method  is  tested  on  two  FSI  model  problems.  Numerical  experiments  show  that  the
method is conditionally stable and convergent with the first order of accuracy.
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1     Introduction

Fluid-structure-interaction  (FSI)  problems  are  common  in
science and engineering. Because of the high level of complexity
of such problems, analytical soultions are rare if not impossible.
As an alternative to laboratory experiments, numerical solutions
are viable. Among many numerical methods [1-9] developed for
FSI problems,  the  immersed  boundary  (IB)  method  by  C.S.  Pe-
skin [10] is probably the first framework for such problems.

Most  existing  versions  of  the  IB  method  are  formulated  for
Newtonian fluids.  Note  that  the  existing  non-Newtonian  ver-
sions  [11, 12]  are  two  dimensional.  The  existing  three-dimen-
sional  (3D)  version  is  formulated  for  power-law  fluids  [13].
However, FSI problems are in general 3D and may involve non-
Newtonian  fluids  necessitating  more  sophiscated  constitutive
models  than  power-law  functions.  Such  FSI  examples  include
cancer cell  metastasizing  through  poroelastic  tissues  and  cyto-
skeleton moving in cytoplasm. In this letter, we report an exten-
sion of our previous work [13] on power-law fluids to Oldroyd-B
[14]  and  FENE-P  [15] fluids  in  three  dimensions.  The  con-
stitutive  equations  are  modelled  by  the  FENE-P  model  (redu-
cing to the Oldroyd-B model  in an especial  case)  and numeric-

ally solved by the lattice Boltzmann D3Q7 model [16].  The fluid
flow is modelled by the lattice Boltzmann equations and numer-
ically solved by the D3Q19 model. The deformable structure and
FSI  are  modelled  by  the  immersed  boundary  method.  As  a  test
on the new method, we consider two FSI toy problems — a de-
formable  plate  being  towed  at  its  midline  horizontally  in  an
Oldroyd-B fluid and a flexible sheet being flapped at  its  leading
edge vertically in an FENE-P fluid.

2     Mathematical formulation

Consider a generic deformable structure moving in a viscous
incompressible non-Newtonian  fluid  whose  constitutive  equa-
tions are modelled by the Oldroyd-B or FENE-P model. The im-
mersed boundary  formulation  for  such  a  problem  in  three  di-
mensions may be written as follows. The motion of a non-New-
tonian fluid may be governed the incompressible Navier-Stokes
equations:
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where  is  the  fluid  density, p is  the  pressure, f is  the  force
exerted by the structure to the fluid, bf denotes other body forces
such  as  gravity  acting  on  the  fluid, u is  the  velocity,  and

.  is the  viscoelastic  stress,  and  η is  the
fluid viscosity.

=
¹p

·
(aC ¡ b )

For non-Newtonian  fluids  such  as  polymeric  fluid,  the  vis-
coelastic  stress  may  be  modeled  by  the  FENE-P  model  [15]:

 where  the  polymer  conformation  tensor  C  is

governed by
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where  and  are respectively relaxation time and viscosity of
the  polymer.  The  definition  for  a  and  b  are  as  follows:

, . Here re is the model parameter.

When a = b = 1, FENE-P model reduces to the popular Oldroyd-B
model [14].

The Eulerian force density f in the Navier-Stokes equations is
computed by

( ; t) =
Z
¡

( ; t) ± ( ¡ ( ; t)) d (4) 

±
where  is  the  Lagrangian  coordinates  of  the  immersed
structure.  is  the  Dirac  delta  function. X is  position  of  the
structure. F is  the  Lagrangian force  density,  which is  computed
from the elastic potential energy of the structure.

( ; t)The velocity of the immersed structure  is computed
as

U( ; t)=
Z
¡

( ; t) ± ( ¡ ( ; t))d : (5) 

3     Numerical Method

j

The  3D  incompressible  Navier-Stokes  equations  are  solved
using  the  lattice  Boltzmann  D3Q19  model  [16, 17].  The  particle
velocity space  is discretized by a set of 19 velocities. Let gj(x, t)
be the distribution function along  (j = 0, 1, ...,  18). The lattice
Boltzmann equation (LBE) that advances gj(x, t) forward by one
time-step is
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where wj is  the  weight,  is  speed  of  sound  of  the
model, and c is the lattice speed associated to the D3Q19 model.
The constants wj and c are model parameters. The external force

 is  treated  by  Guo’s  approach  [18].  The
macroscopic  variables  such  as  density  and  momentum

 can  be  obtained  from  the gj(x, t)  at  each  node.  The

function  is  an  expansion  of  the  Maxwell-Boltzmann
equilibrium distribution.

For viscoelastic fluids modelled by the Oldroyd-B or FENE-P
models,  the  constitutive  equations  of  the  fluids  [14, 15]  are

solved by  a  modified  lattice  Boltzmann  model  D3Q7  for  advec-
tion-diffusion equations [19].
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In a D3Q7 model, particles can move along six different dir-
ections of a node, , j = 1, 2, ..., 6, where  = (−1, 0, 0),  = (0,
−1,  0),  =  (0,  0,  −1),  =  (1,  0,  0),  =  (0,  1,  0),  =  (0,  0,  1).
Particles  may  also  be  allowed  to  stay  at  the  node  =  (0,  0,  0).
Along  each  direction , j =  0,  1,  2,  ...,  6  at  a  given  node,  the
particle  distribution  function  (corresponding to  the  com-
ponent of the configuration tensor ) is updated by
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where , 

,  and .  The  viscoelastic  force

is computed by .

4     Test Problems

K̂ b

Two  model  FSI  problems  are  considered:  A)  a  deformable
rectangular  plate  (initially  placed  vertically)  is  towed  along  its
midline  horizontally  with  a  constant  speed  in  a  3D  rectangular
box  of  an  Oldroyd-B  fluid;  B)  a  flexible  rectangular  sheet  (ini-
tially  placed  horizontally)  is  heaved  up  and  down  at  one  edge
vertically and sinusoidally in a 3D rectangular box of an FENE-P
fluid. In both cases,  the fluid is initially still  and driven to move
by the motion of  the structures.  Periodic  boundary condition is
used  on  all  of  the  three  directions.  The  structures  (plate  and
sheet) are modelled by two sets of uniform elastic fibers that are
initially orthogonal to each other. There are three dimensionless
parameters  of  the  problems:  flow  Reynolds  number Re, struc-
ture  bending  modulus ,  and  fluid  Weissenberg  number Wi.
Mesh  refinement  studies  are  performed  for  problem  A.  Many
simulations with different combinations of the three parameters
are  conducted  for  both  problems.  Our  numerical  experiments
indicate that the new IB method is convergent with first order of
accuracy and is conditionally stable.

Some  simulation  results  are  given  as  below.  In  both  cases,
simulation  results  with  the  corresponding  Newtonian  fluid  are
also  shown  for  comparison.  The  results  with  Newtonian  fluids
are obtained by setting Wi = 0 and keep all other parameters the
same as in the non-Newtonian case.

K̂ b

A)  The  values  of  the  dimensionless  parameters  are Re =  50,
 = 0.0005, Wi = 0.1. The plate is placed intially on the y−z plane

(i.e.  vertically)  in  the  middle  of  the  box  (in y and z directions)
close to  the  left  boundary.  It  is  towed  towards  the  right  bound-
ary  along its  midline with a  constant  speed. Figure 1 shows the
position and shape of the plates at several time instantants. It is
interesting  to  notice  that  the  plate  two  free  edges  flap  up  and
down  in  the  Newtonian  fluid  and  such  flapping  motion  is  not
seen in the Oldroyd-B fluid.

K̂ b

B)  The  values  of  the  dimensionless  parameters  are Re =  10,
 = 0.005, Wi = 1.  The sheet is  placed intially on the x−y plane

(i.e.  horizontally)  in  the  middle  of  the  box  along y and z direc-
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z (t) = A sin

µ
2¼t
T

¶
tions with the left edge closer to the left boundary. Its right edge
is  heaved  up  and  down  sinusoidally  (on  the y−z plane  along z-
direction)  in  an  FENE-P  fluid.  The z-coordiate  of  the  leading

edge is given by . Here z(t) is the z-coordin-

ate of the leading edge, A is the flapping amplitude, T is the peri-
od,  and t  is  the time.  The sheet  is  unconstrained otherwise and
free to move in other directions. Figure 2 shows the position and
shape of the sheets at several time instantants. It is interesting to
notice that the right edge of the sheet in the Newtonian fluid has
moved a distance towards the right boundary. But in the FENE-P
fluid, the right edge of the sheet has stayed where it started and
the  sheet  has  not  travelled  any  distance  forward.  The  position
and shape of the sheets show discernible differences some time
after flapping starts. distance forward. The position and shape of
the sheets show discernible differences some time after flapping
starts.

Figure  3 demonstrates  streamlines  (surrounding  the  sheet)
seeded  from  the  same  locations  at  the  same  time  instant
(100,000 LB units). The top panel is the Newtonian case and the

bottom  one  is  the  FENE-P  case.  It  is  seen  that  the  fluid  motion
caused  by  the  flapping  sheet  is  more  intense  in  the  Newtonian
case.

Our simulation results in both cases seem to indicate that the
non-Newtonian fluids  (Oldroyd-B  and  FENE-P)  tend  to  sup-
press the motion of fluid. This may be caused by the presence of
elastic  force  in  the  non-Newtonian  fluid.  Note  that  our  result
agrees with existing works [20].

5     Summary

We have developed a new IB method for non-Newtonian flu-
id-structure  interaction  in  three  dimensions.  The  lattice
Blotzmann D3Q19  model  is  used  to  solve  the  viscous  incom-
pressible NavierStokes equations for non-Newtonian fluids. The
lattice Bolztamann  D3Q7  model  is  used  to  solve  for  the  con-
stitutive  equations  (Oldroyd-B  and  FENE-P  models).  The  new
method is  tested  on  two  FSI  toy  problems.  Numerical  experi-
ments indicate that  the new method is  conditionally  stable and
convergent with the first-order accuracy. The simualtion results
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K̂ b

Fig. 1.   Motions of the plate at different time instants in a Newtonian (top panels) and Oldroyd-B (bottom panels) fluid. The dimensionless
parameters are: Re = 50,  = 0.0005, Wi = 0.1. The time instants are 9484, 22700, 40580 in LB unit, from left to right, respectively. All parameters

for the two cases are the same except the fluid property. The plate free edges perform up and down flapping motion in Newtonian fluid. The
flapping motion is not seen in the Oldroyd-B fluid.
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K̂ b

Fig. 2.   Motions of the plate at different time instants in a Newtonian (top panels) and non-Newtonian obeying FENE-P model (bottom panels)
fluid. The dimensionless parameters are: Re = 10,  = 0.005, Wi = 1.0. The time instants are 40,000, 80,000, 100,000 in LB unit, from left to right,

respectively. All parameters for the two cases are the same except the fluid property. The red line segment denotes the initial position of the
sheet leading edge being flapped. As seen from the last column, the plate in a Newtonian fluid moves a distance forward along x-direction while
the sheet in FENE-P fluid stays almost at its initial position.
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suggest  that  the  non-Newtonian  nature  of  the  fluid  may  deter
the motion of the fluid, which is consistent with the existing liter-
ature.
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Fig. 3.   Streamlines passing the same locations at the same instants around the sheet. Left: Newtonian fluid. Right: FENE-P fluid.
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