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Motivated by an important discovery on the drag scaling law (the 4/3 power law) of
a flexible fibre in a flowing soap film by Alben et al. (Nature vol. 420, 2002, p. 479)
at high Reynolds numbers (2000 < Re < 40 000), we investigate drag scaling laws at
moderate Re for a compliant fibre tethered at the midpoint and submerged in an
incompressible viscous flow using the immersed boundary (IB) method. Our work
shows that the scaling of drag with respect to oncoming flow speed varies with Re,
and the exponents of the power laws decrease monotonically from approximately 2
towards 4/3 as Re increases from 10 to 800.

1. Introduction
The major energy expense in underwater transportation is in overcoming the

resistance (drag) of the ambient fluid. One aim of a hydrodynamic design is to reduce
the drag experienced by an immersed body (Steinberg 2002). Reduced drag means
improved propulsion efficiency and lowered energy cost. Therefore drag reduction is
an important topic. Much work has been done in this direction. For drag reduction
of a rigid body in a flow, see the overview by Bushnell & Moore (1991) and references
therein. For drag reduction of flexible aquatic animals in an aqueous environment,
see Vogel (1996) and the survey by Fish (1998) and references therein. However, much
less is known on how drag scales with the incoming flow speed for a compliant body
moving in a viscous fluid.

Classic theory (Batchelor 1967) predicts that the drag of a rigid body in a rapidly
flowing medium is proportional to the square of the oncoming medium speed. This
law does not hold if the body is compliant, which may result in substantial drag
reduction due to streamlining with the local flow. It was found that the power
required to tow a flexing streamlined swimming body is significantly smaller than to
tow a straight and rigid body at the same speed (Barrett et al. 1999). Recently Alben,
Shelley & Zhang (2002, 2004), and Alben (2004) have investigated the drag reduction
due to self-similar bending and streamlining of a flexible fibre in a two-dimensional
flowing soap film, and discovered that the drag of the fibre scales as the 4/3 power of
the incoming fluid speed at high Reynolds numbers. Schouveiler & Boudaoud (2006)
investigated the rolling-up of a plastic thin neutrally buoyant sheet into a cone in a
steady three-dimensional water flow. They found that the reconfiguration of the sheet
led to a substantial decrease in the drag coefficient and obtained the drag coefficient
as a function of the ratio of flow pressure and sheet flexure modulus. In all the above
works the Reynolds numbers were very high.
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Motivated by the work of Alben et al. (2002, 2004), Alben (2004), Zhu & Peskin
(2007) studied the influence of flow and body parameters on the drag coefficient of
an elastic fibre in a flowing viscous fluid at intermediate Re (12.5 � Re � 375). Zhu
(2007) studied the vortex shedding of a flexible fibre in an incompressible viscous
flow for Re between 30 and 800. Our current work studies scaling laws for the drag
of a compliant fibre in a fast moving viscous fluid at moderate Reynolds numbers
(0.5 � Re � 800), focusing on the influence of Reynolds number on the scaling of drag
with respect to the oncoming flow speed using the immersed boundary (IB) method
(Peskin 1977; Fauci & Peskin 1988; Tu & Peskin 1992; Fogelson 1992; Peskin &
McQueen 1993; Peskin & Printz 1993; Fauci & Fogelson 1993; Peskin & McQueen
1996; Udaykumar, Shyy & Rao 1996; Roma, Peskin & Berger 1999; Ye et al.
1999; Cortez & Minion 2000; Lai & Peskin 2000; Peskin 2002; Zhu 2001, Mittal &
Iaccarino, Griffith & Peskin 2005; Atzberger, Kramer & Peskin 2006; Kim & Peskin
2007; Taira & Colonius 2007; Mori & Peskin 2006).

We should point out that there are many other methods which are able to
handle fluid–structure-interaction problems, such as the immersed interface method
(LeVeque & Li 1994, 1997; Li & Lai 2001; Li 2006), the immersed finite element
method (Zhang et al. 2004; Liu, Kim & Tang 2005), the extended immersed boundary
method (Wang & Liu 2004), the immersed continuum method (Wang 2006, 2007), the
level set method (Hou et al. 1997; Cottet & Maitre 2004; Xu et al. 2006; Cottet &
Maitre 2006), the material point method (Sulsky, Chen & Schreyer 1994; Sulsky, Zhou
& Schreyer 1995), the fictitious domain method (Glowinski, Pan & Periaux 1994a, b;
Glowinski et al. 2001), and the Arbitrary Lagrangian Eulerian method (Hughes, Liu &
Zimmerman 1981; Donea, Giuliani & Halleux 1982).

The remaining parts of the paper are as follows. In § 2 a model problem inspired
by the laboratory experiment in Alben et al. is described. The immersed boundary
(IB) formulation of the model problem and the related numerical discretization are
given in § 3. Section 4 addresses the drag scaling laws. We conclude with a summary
and discussion in § 5.

2. Model problem
To mimic the laboratory experiment reported in Alben et al. we consider an in-

compressible viscous fluid flowing in a two-dimensional vertical tunnel driven by
gravity and falling against air resistance. An elastic fibre is initially placed horizontally
at the tunnel centre with the midpoint fixed near the top boundary. See figure 1. The
tunnel’s two sidewalls are rigid and a no-slip boundary condition is used for the
velocity on the sidewalls. The top and bottom boundaries are open and the velocity
is specified at the inlet and outlet. The characteristic quantities in our problem
are: fluid density ρ0, fluid viscosity ν, inflow speed V0, fibre length L, fibre flexure
modulus Kb, fibre stretching modulus Ks , fibre linear mass density M , and the flow
tunnel width W . By dimensional analysis, there exist six independent dimensionless
parameters in our problem: Reynolds number Re, dimensionless fibre flexure modulus
K̂b, dimensionless fibre mass density M̂ , dimensionless fibre length L̂, Froude number
Fr, and dimensionless fibre stretching coefficient K̂s . See § 4 for definitions of these
dimensionless parameters and their values used in our work.

Since Zhu & Peskin (2007) showed that the drag coefficient is not sensitive to M̂ in
a range that contains the value of M̂ in the laboratory experiment (Alben et al. 2002),
and in our simulations the fibre is made almost inextensible by using sufficiently large
values of K̂s , we assume that the effects of M̂ and K̂s on drag and drag coefficient
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Figure 1. A diagram of the model problem abstracted from the laboratory experiment. The
rectangle represents the flow tunnel. The curve in the centre represents a deformed fibre. The
arrows indicate the flow direction. The curves under the arrows represent the magnitude of the
inflow speed (not to scale). See figure 2 for the exact inflow/outflow velocity profile.

are negligible. Consequently the fibre is treated as neutrally buoyant in the fluid for
our problem. Previous work (Zhu 2007) has found that the drag coefficient (Cd)
varies with dimensionless fibre length L̂: Cd increases with L̂ in the range (0.17,
0.6). To minimize this effect, the value of L̂ is kept in a small interval (0.2, 0.3) over
which drag coefficient changes only slightly. (The channel width W is kept fixed in
all simulations. The variation in L̂ is caused by different fibre lengths.) Hence the
influence of L̂ is not considered explicitly here. Furthermore, the influence of Fr is
thought to be insignificant for the range used in our work (21 � Fr � 40). Therefore
in this paper we explore only the effects of Reynolds number and dimensionless
flexure modulus on drag and drag coefficient, focusing on the scaling laws of drag
with respect to the oncoming flow speed for various Reynolds numbers.

3. The immersed boundary formulation of the model problem
3.1. The governing equations

The fluid mass density ρ0, the channel width W , and the inflow speed V0 are chosen as
the characteristic quantities for non-dimensionalization of the problem. The governing
equations in dimensionless form for the model problem are as follows. The two-
dimensional incompressible viscous Navier–Stokes equations are used to describe the
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Figure 2. A typical inflow velocity profile for inflow speed 150 cm s−1. The x-axis is the
tunnel width. The y-axis is the vertical velocity component V (x).

motion of both the fluid, which is a soap film, and the fibre (the Einstein summation
convention is used in this Section for i = 1, 2 and j = 1, 2):

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂

∂xj

(
∂ui

∂xj

)
+ fi − 1

Fr
ui − gi, (3.1)

∂ui

∂xi

= 0. (3.2)

The vector (g1, g2) = (0, 1/Fr). The term (−1/Fr)ui models the air resistance
where the resistance coefficient is 1/Fr . The resistance to the flowing soap film due
to the ambient air is assumed to be proportional to the flowing film velocity. This
assumption is justified by the fact that the stationary velocity profile V (x) of the
soap film falling subject to gravity and air resistance without the fibre is found to
be constant over the majority of the tunnel width, which agrees very well with the
experimental measurements (Alben et al. 2002). See figure 2 for such a profile of V (x).
The vector (f1, f2) = f (x, t) is the Eulerian force density defined on a fixed Eulerian
mesh, which is calculated from the Lagrangian force density F(s, t) = (F1, F2) defined
on the Lagrangian mesh by

fi =

∫
Fi(α, t)δ(x1 − X1(α, t))δ(x2 − X2(α, t)) dα (3.3)

where δ(xi) is the Dirac delta function associated with the xi-direction; α is the
Lagrangian coordinate associated with the fibre; t is the time variable. The vector
(X1, X2) = X(α, t) is the fibre configuration, i.e. the Eulerian coordinate of a fibre
point with Lagrangian coordinate α. The Lagrangian force density F(α, t) = (F1, F2)
is defined as

Fi(α, t) = − 1

L

∂E
∂Xi

. (3.4)
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The total elastic potential energy density E = Es + Eb, where the energy generated
by stretching (Es) and bending (Eb) are computed respectively, by

Es =
1

2
K̂s

∫ (√
∂Xi

∂α

∂Xi

∂α
− 1

)2

dα, (3.5)

Eb =
1

2
K̂b

∫
∂2Xi

∂α2

∂2Xi

∂α2
dα. (3.6)

The constant K̂s is the fibre stretching coefficient which is chosen in the
computations so that the fibre is almost inextensible, and the constant K̂b is the
dimensionless flexure modulus.

The motion of the fibre is described by

∂Xi

∂t
(α, t) =

∫
uiδ(x1 − X1(α, t))δ(x2 − X2(α, t)) dx1 dx2. (3.7)

The initial condition for the velocity is the steady velocity field (0, V (x)) of the flow
problem in the absence of the fibre. Note that V (x) is not a parabola because of the
presence of air resistance. See figure 2. It is constant in the majority of the tunnel
width. The maximum value of V (x) is used as the inflow speed V0. The pressure
is zero everywhere at the initial instant (i.e. a solution to the Laplace equation
under periodic boundary conditions). The no-slip condition is applied on the two
rigid sidewalls for velocity. The initial velocity profile is imposed on the inlet and
outlet. Periodic boundary conditions are used for pressure. This is because in the
immersed boundary method the physical domain (the two-dimensional rectangular
channel in our problem) is imbedded in a slightly larger two-dimensional rectangular
computational domain, and periodic boundary conditions are used for the flow
variables along each direction for this artificial computational domain. The initial
configuration of the fibre is a horizontal line segment situated at the channel centre
with the midpoint (Xf ) fixed. The coordinate for the fixed point is (0.5, 1.8). No other
part of the fibre is constrained. The boundary condition for the fibre is Xf = (0.5, 1.8).
The initial fibre velocity is zero with respect to the fluid.

3.2. Discretization

The above nonlinear system of differential-integral equations (3.1)–(3.7) is discretized
on a fixed Eulerian coordinate by a finite difference method. The nonlinear terms
in the Navier–Stokes equations are linearized by using the velocity at the previous
time-step. The skew-symmetrical scheme is used for the convection terms. The centred
difference scheme is used for the spatial derivatives. The backward Euler is used for
the time derivatives. The resultant linear system of algebraic equations with constant
coefficients is solved numerically by discrete fast Fourier transforms. See Peskin (1977),
Peskin & McQueen (1993, 1996), Peskin (2002) and Zhu (2001) for details of this
approach.

The computations are performed on a fixed Eulerian mesh 256 × 512 for the fluid
on a 1 × 2 rectangular domain (dimensionless). The resolution for fibre discretization
is nearly half of that for the fluid. The time-step size is 1.3 × 10−4. For details of
the convergence of drag with respect to spatial meshes and time-step size, see Zhu &
Peskin (2007).
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Name Definition Range

Reynolds number (Re)
V0L

ν
0.5–800

Dimensionless flexure modulus (K̂b)
Kb

ρ0V
2
0 L3

4.1 × 10−7–5 × 103

Dimensionless mass density (M̂)
M

ρ0L
1

Dimensionless stretching coeff. (K̂s)
Ks

ρ0V
2
0 L

1.2 × 106–1.0 × 107

Dimensionless fibre length (L̂)
L

W
0.2–0.3

Froude number (Fr)
V 2

0

gL
21–40

Table 1. Dimensionless parameters used in the simulations. See § 2 for the meanings of the
symbols in defining the dimensionless parameters.

4. Main results
The instantaneous drag of the fibre is computed as the y-component of the tension

vector at the tethered point Xf . A time-averaged drag D̄ is calculated as an average
of the instantaneous drag over 200 equally spaced instants after the initial transition
dies out. See Zhu & Peskin (2007) for details. A time-averaged drag coefficient C̄d is
defined as

C̄d =
D̄

1
2
ρ0V0

2L
.

(Frontal area is used as reference area in defining C̄d .) Following the work of Alben
et al., an additional dimensionless quantity

η =

√
ρ0V

2
0 L3/2

Kb

and a dimensionless drag D = C̄dη
2 are introduced. The parameter η measures the

relative importance of fluid kinetic energy and fibre elastic potential energy. It is
connected to the dimensionless flexure modulus K̂b by η = (2K̂b)−1/2. Note that (i)
a greater η (or a smaller K̂b) indicates a more compliant fibre; (ii) as D scales with
η the drag scales with the inflow speed V0 (Alben et al. 2002). The values of all the
important dimensionless parameters used in this work are listed in table 1.

The main computational results are given as follows: first some typical deformed
fibre shapes are given; then the influence of Re on C̄d for different values of K̂b

is reported; then scaling laws for the dimensionless drag D with respect to η for
different Re are discussed.

It is illustrative to show some typical fibre shapes in the flowing soap film. Figure 3
plots some deformed fibre shapes (time-averaged) for Re = 192. The fibre length was
3.5 cm; the inflow speed was 220 cm s−1; the dimensionless flexure modules η ranged
from 0.01 (corresponding to the outermost straight line) to 1100 (corresponding to
the innermost curve). Note that a few fibre shapes overlap the horizontal line, and
the shapes of the two innermost fibres are very close. The left and right branches
for these two fibre shapes are not exactly symmetrical, which might be caused by
numerical errors when η is too large (see § 5). It is worth pointing out that the two
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Figure 3. Some typical time-averaged deformed fibre shapes. The fibre length was 3.5 cm; the
inflow speed was 220 cm s−1; Re = 192; η = [0.01, 1100]. The outermost straight line corres-
ponds to η = 0.01; the innermost shape corresponds to η = 1100. Note that a few fibre shapes
overlap the horizontal line, and the shapes of the two innermost fibres are very close.

sidewalls may have a strong effect on the shape of the fibre at high Re: the walls may
force the fibre to be more streamlined and more aligned with the local flow than in
the unbounded case (in the absence of the sidewalls). See Wu, Whitney & Lin (1969)
and Wu (1972) for the wall effect on cavity and wake flows. See Zhu & Peskin (2007)
and Zhu (2007) for more fibre shapes and the influence of flow and fibre parameters,
including the wall effect, on the fibre shapes.

Figure 4(a) plots the averaged drag-coefficient C̄d versus Reynolds number Re for
three different values of the dimensionless flexure modulus K̂b: K̂b = 1.299 × 10−1;
K̂b = 1.299 × 10−2; K̂b = 1.299 × 10−3. As expected, the datum of C̄d associated with
the smallest K̂b is lowest, the datum associated with the greatest K̂b is highest,
and the datum associated with the intermediate K̂b sits between for each value of Re
considered here. This implies that the decrease of K̂b, i.e. the increase of body flexibility,
is responsible for the reduction of C̄d . Note that in each case, when Re is sufficiently
high, e.g. Re > 200, the averaged drag-coefficient is nearly constant. The reason is as
follows: to single out the sole influence of Re on C̄d , all the dimensional parameters
(including Kb) must be fixed except the kinematic viscosity ν which varies with Re.
When Re is sufficiently high the total drag is dominated by the form drag which
depends on the deformed fibre shape. The fibre shape changes only slightly with Re in
the range of [200, 800] (see Zhu 2007), therefore the total drag remains nearly constant,
and also the drag coefficient C̄d . But when Re is smaller, C̄d increases as Re decreases.
C̄d increases slowly at first, and then rapidly when Re < 100. The swift increase of C̄d

results from the swift increase of skin friction which dominates the drag as Re becomes
small enough.

Figure 4(b) plots the same data by the same symbols on a log-log scale. The solid
line represents the function C̄d = 10/Re. We can see that the drag-coefficient scales
with 1/Re when Re is sufficiently small (e.g. Re � 5), irrespective of the value of K̂b.
This seems to indicate that body flexibility and streamlining is not very beneficial for
drag reduction when drag is dominated by skin friction. Notice that the prefactor
of 1/Re is strongly dependent on K̂b. Our simulation results suggest that a smaller
value of K̂b has a lower prefactor. For 5 � Re � 200, both skin friction and form
drag appear to be equally significant.

The log-log plot shows that the power at which C̄d grows with Re is not a constant
in general. It varies with Re between around 0 when Re is large and around −1 when
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Figure 4. The averaged drag-coefficient C̄d versus Reynolds number Re for three different val-

ues of dimensionless flexure modules K̂b: (a) a regular plot; (b) a log-log plot. �, K̂b = 1.299 ×
10−1 (η = 1.96); �, K̂b = 1.299 × 10−2 (η = 6.20); �, K̂b = 1.299 × 10−3 (η = 19.6). The solid line
on (b) is the function C̄d = (10/Re).

Re is small. The differing behaviour of the data shown by squares, and that shown by
open and filled circles, at 5 � Re � 100 may be explained by the significantly larger
value of K̂b (10 to 100 times greater than the two others) in the ‘squares’ case, where
the fibre is close to being rigid. Note that the Cd versus Re curves bear some similarity
to the classic Cd − Re curve for a rigid circular cylinder (Batchelor 1967): scaling as
Re−1 for low Re and nearly a constant for higher Re, and the transition part between
low and high Re is roughly concave up (except for the case with K̂b = 0.13 where
the transition curve possesses an inflection point). It should be pointed out that the
transition to the Re0 scale (i.e. Cd is roughly constant) occurs at much smaller Re in
our case (400–500) than the cylinder case (nearly 103). Presumably this is caused by
the additional physics (body flexibility) in our case.

Figure 5 plots on a log-log scale the dimensionless drag D versus the dimensionless η

for six different Reynolds numbers: Re = 10; Re = 55; Re = 123; Re = 192; Re = 500;
Re = 800. The dotted and dashed lines are functions D = η2 and D = η4/3,
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Figure 5. The dimensionless drag D versus η for six values of Re on a log-log scale. �, Re =
10; ∗, Re = 55; �, Re = 123; �, Re = 192; �, Re = 500; � for Re = 800. The dotted line is the
function D = η2, the dashed line is D = η4/3.

respectively. We see from the figure 5 that the data corresponding to different Re do
not collapse to a single curve on the log-log plot, and the data corresponding to a fixed
Re do not entirely lie on a straight line either. This indicates that the dimensionless
drag D does not scale as a single power of η in general at lower Reynolds numbers.
It appears that there exists a transition interval of η above/below which the data for
a fixed Re are nearly situated on a line. For the range of Re considered in this paper,
the interval is approximately (1, 10). We can see from figure 5 that when η > 10, D

scales almost as η2 for Re = 10 (the data shown by filled circles almost parallel to
D = η2). But when Re = 800, the associated data clearly deviate from the line of η2

on a log-log scale.
To quantify the powers in the drag scaling, the method of least squares is used to

fit the data of D for η � 10 for each value of Re. See figure 6 for details. The six
plots correspond to six values of Re. In each plot the x-axis is the dimensionless η,
the y-axis is the dimensionless drag D. The filled circles represent the drag data, and
the solid line is the linear function fitting the data best in the least squares sense.
For comparison, the functions D = η2 (dotted line) and D = η4/3 (dashed line) are
plotted as well. The results are as follows: the power is 1.97, 1.89, 1.83, 1.77, 1.63, 1.56
for Re = 10, 55, 123, 192, 500, 800, respectively. (Note that there is a fair amount of
uncertainty in the scaling exponents because of the limited amount of drag data
used.) Notice that the power starts at nearly 2 and decreases monotonically towards
4/3 as Re increases from 10 to 800. This shows that the scaling law of the drag of
a compliant body moving in an incompressible viscous fluid depends on Reynolds
number, which may be explained by the fact that the drag is dominated by form
drag (related to fluid inertial forces) when Re is high and by skin friction (related to
fluid viscous forces) when Re is low. When Re is sufficient small, the viscous friction
forces dominate the drag, and drag reduction due to streamlining and alignment
with the flow is not significant. As a consequence, the total fibre drag and therefore
the drag coefficient C̄d are nearly constant. Perhaps this is the reason why D scales
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Figure 6. The dimensionless drag D versus η on a log-log plot for six Reynolds numbers: (a)
Re = 10, (b) Re = 55, (c) Re = 123 (d), Re = 192, (e) Re = 500, (f ) Re = 800. In each plot the
filled circles are drag data, the solid line is the linear function fitting the data best in the least
squares sense for η � 10 on a log-log scale. Three power functions are labelled on each figure:
η2 (dotted line), η4/3 (the dashed line), and ηn (solid line) representing the drag growth where
the power n is the slope of the fitting line, which varies from 1.97 to 1.56.

approximately as the square of η at Re = 10. Again, the η2-growth of drag for Re = 10
seems to indicate that body flexibility is not very effective in reducing drag at a small
Re. This is consistent with the fact that tiny swimming organisms do not appear
streamlined (Vogel 1996).
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Another relevant important piece of fundamental work on body flexibility in low-
Re flows is Wiggins & Goldstein (1998) where a critical bending modulus was
found at which a flagellum (which could be idealized in two dimensions as a fibre)
generates maximum propulsive force when driven sinusoidally at the leading edge.
For more information on hydrodynamic forces and body flexibility with applications
to organisms living in rapidly moving fluids, refer to Vogel (1984, 1989), Koehl (1984),
Koehl, Hunter & Jed (1991), and Denney (1994).

For very high Re flows, Albert et al. (2002) has identified a critical value of η

around O(1), below which the drag grows as the second power, akin to the case of
a rigid body. The similar ηc in our work is around 1–10. It is seen from figure 6
that below the transition interval (1, 10), the drag D approximately scales as η2

for all the values of Re reported here. This is because when η is small enough
the fibre becomes a rigid plate placed almost perpendicular to the oncoming flow.
Therefore the drag is approximately proportional to the square of the incoming flow
speed.

In the transition regime the scaling exponent is not even approximately a constant;
it varies with η for each of the Reynolds number considered here. The D versus η

curves look similar to one another: they are all convex in (1,10). Notice that the
transition exists for all Re considered in our work, and it does not vanish when Re is
taken to infinity (Alben et al. 2002). It appears that within this regime the bending of
the fibre is not self-similar (the fibre shapes are not self-similar), therefore the drag
does not scale as a constant power.

5. Summary and discussion
Using the IB method, we computed the drag of a compliant fibre fixed at the

midpoint and immersed in a flowing viscous incompressible fluid for K̂b in the range
[4.1 × 10−7, 5 × 103] and Re in the range [0.5, 800]. The least squares method is used to
fit the data from a fixed Reynolds number to a linear function for η � 10, and various
power laws are found corresponding to different Reynolds numbers. In particular,
we have found that for η � 10, the drag D scales as nearly η2 for Re = 10, and the
power monotonically decreases from nearly 2 towards 4/3 as Re increases from 10 to
800. Our simulation results show that drag reduction due to body flexibility occurs at
intermediate Re as well, but not very efficient at low Re.

An immediate question arises: would the growth power attain 4/3 as Re becomes
higher, e.g. in the interval (800, 2000)? (The Reynolds numbers in Alben et al.’s work
were between 2000 and 40 000.) It would be interesting to extend our current work
to 800 < Re < 2000 to address this. Currently, however, we are not able to do this
because of difficulty in solving a viscous flow with higher Re by the particular IB
method we use.

For an infinitely flexible fibre, i.e. the flexure modulus approaches zero or η

approaches infinity, the fibre is expected to be folded in half and aligned with
the flow. In this case, the skin friction dominates and the drag should scale as
η3/2 (Batchelor 1967). However our numerical simulations could not replicate this
scaling because of the numerical instability caused by the extremely small values
of the flexure modulus: the fibre always tends to become unstable (oscillate or
flap).

Drag mainly consists of form drag (dominating when Re is sufficiently large) and
skin friction (dominating when Re is sufficiently small). It would be interesting to
decompose the total drag into the two components. Unfortunately we have not yet
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successfully obtained such a decomposition because of practical numerical difficulties.
This work is continuing.

There are six dimensionless quantities in our problem: Re, K̂b (or η), M̂ , L̂, Fr , K̂s . In
principle, the drag D and drag-coefficient C̄d are functions of these six dimensionless
parameters. We have considered two of them under the assumption that the remaining
ones do not have significant effects. It would be a nice piece of future work to show
how these parameters might modify the drag scaling laws for values outside the
ranges used in this paper. Because of computational limitations, we have to postpone
this task.

In the laboratory experiment the soap film was approximately 1–3 μm in thickness,
and the fibre diameter was approximately 34 μm. In our model problem, both the
soap film and the fibre are considered as non-Brownian. It would be interesting to
model the fluid or the fibre or both as Brownian and find how the drag scaling laws
would be modified accordingly. This is another piece of future work.

The author would like to thank the referees for their suggestions and comments.
The author also thanks the USA National Science Foundation for the partial support
of the work under research grant DMS-0713718.
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