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Abstract Most algorithms of the immersed boundary method originated by Peskin are explicit
when it comes to the computation of the elastic forces exerted by the immersed boundary to the
fluid. A drawback of such an explicit approach is a severe restriction on the time step size for
maintaining numerical stability. An implicit immersed boundary method in two dimensions using
the lattice Boltzmann approach has been proposed. This paper reports an extension of the method
to three dimensions and its application to simulation of a massive flexible sheet interacting with an
incompressible viscous flow. c© 2011 The Chinese Society of Theoretical and Applied Mechanics.
[doi:10.1063/2.1106202]
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The immersed boundary (IB) method pioneered by
Peskin1 is both a novel mathematical formulation and
an efficient numerical method for compliant-structure-
viscous-fluid interaction problems. The IB method
has been successfully applied to many such problems:
platelet aggregation, sperm motility, insect flight, ciliary
beating, nutrient transport, valveless pumping, lamprey
swimming, motions of foam and vesicles, blood flows in
the human artery and heart, etc.

Most IB methods adopt an explicit approach to cal-
culate the elastic forces on the known configuration
of the structure at each time step. Since the fluid-
structure-interaction is in nature a stiff problem, an
explicit IB method suffers a severe restriction on time
step size.1,2 The time step must be sufficiently small to
maintain numerical stability.3–5 To overcome the inher-
ent stiffness in the fluid-structure-interaction problems,
implicit numerical methods are usually desired. Much
effort has been made along this line in recent years to
develop implicit or semi-implicit IB methods.6–14 How-
ever, most of these implicit methods are not practical
for real application problems.9,11 Very recently the au-
thors have developed a lattice-Boltzmann based two di-
mensional (2D) implicit immersed boundary method.15

It has been shown numerically that the proposed 2D
implicit method is much more stable with larger time
steps and significantly outperforms the explicit version
of the IB method in terms of computational cost.

In this letter we report an extension of the previ-
ous 2D implicit IB method via the lattice-Boltzmann
approach to three dimensions with application to sim-
ulation of a compliant sheet interacting with a flowing
viscous fluid. Our three dimensional (3D) implicit IB
method can handle massive immersed boundaries via
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the d’Alembert force which only works through an im-
plicit implementation.16

The lattice Boltzmann method17 is an alternative
approach for solving the Navier-Stokes equations. It
is second order accurate in both time and space, and
is computationally efficient, especially for 3D problems.
There exist many works coupling the lattice-Boltzmann
method to the IB method, such as Refs. 18–21. How-
ever, all of the existing hybrid methods are explicit; but
ours is implicit. As expected the IB approach substan-
tially reduces the computational cost in solving the in-
compressible Navier-Stokes equations which renders our
3D implicit IB method appropriate for practical appli-
cations.

In our implicit IB method, the elastic force calcula-
tion is based on the unknown configuration of the struc-
ture at the next time step. Consequently a highly non-
linear algebraic system needs to be solved at each time
step. In our work the nonlinear system is solved by
a Jacobian-free inexact Newton-Krylov method.22 The
new implicit method is applied to simulate the inter-
action of a flexible sheet with a viscous incompressible
flow. Our preliminary results show that the fluid-sheet
system exhibits two stable states — static and flapping,
and the sheet mass is critical for the self-sustained flap-
ping. All of these results are consistent with existing
literatures.23–26

Suppose we have a compliant boundary immersed
in a viscous incompressible flow. Choosing appropriate
reference quantities for length, velocity and mass den-
sity, we formulate our lattice-Boltzmann IB formulation
in three dimensions in dimensionless form as follows

∂g(x, ξ, t)

∂t
+ ξ · ∂g(x, ξ, t)

∂x
+ f(x, t) · ∂g(x, ξ, t)

∂ξ
=

−1

τ
(g(x, ξ, t)− g(0)(x, ξ, t)), (1)
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The function g(x, ξ, t) is the single particle velocity
distribution function, where x is the spatial coordinate,
ξ is the particle velocity, and t is the time. The term
−(g−g(0))/τ is the Bhatnagar-Gross-Krook (BGK) ap-
proximation to the complex collision operator in the
Boltzmann equation, where τ is the relaxation time.
The g(0) is the Maxwellian distribution. The external
force term f(x, t) = fib(x, t)+fd(x, t)+fext(x, t). The
fib(x, t) is the force imparted by the immersed bound-
ary to the fluid. The fext(x, t) is other external forces
acting on the fluid, e.g. the gravity. The fd(x, t) is
the d’Alembert force due to the sheet mass. The fluid
mass density (ρ) and momentum (ρu) may be computed
from the g function by the standard approach. The Eu-
lerian elastic force density fib(x, t) defined on the fixed
Eulerian lattice is calculated from the Lagrangian force
density F (α, t) defined on the Lagrangian grid as fol-
lows

fib(x, t) =

∫
Fib(α, t)δ(x−X(α, t))dα, (2)

where the function δ(x) is the Dirac δ-function. The La-
grangian elastic force density Fib is computed from the
elastic potential energy density of the immersed bound-
ary as in the standard IB method.16 The Eulerian den-
sity of the d’Alembert force fd(x, t) is computed from
the corresponding Lagrangian density Fd(α, t) by the
same way as computing elastic force fib,

fd(x, t) =

∫
Fd(α, t)δ(x−X(α, t))dα, (3)

where the d’Alembert force Fd(α, t) is computed by def-
inition as follows

Fd(α, t) = −M(α, t)
∂2X(α, t)

∂t2
. (4)

The motion of the immersed structure is described
by a system of 1st-order ordinary differential equations

∂X

∂t
(α, t) = U(α, t). (5)

The X(α, t) is the Eulerian coordinate of the immersed
structure at time t whose Lagrangian coordinate is α.
The immersed boundary velocityU(α, t) is interpolated
from the fluid velocity u(x, t) by the same δ-function as
used to convert the force from the boundary to the fluid,

U(α, t) =

∫
u(x, t)δ(x−X(α, t))dx. (6)

The above non-linear system of integro-differential
equations (Eqs. (1)–(6)) is discretized on a uniform fixed
Eulerian square lattice for the fluid with the uniform
mesh width h (the number of grid nodes is Nx, Ny and
Nz in x, y and z direction, respectively), plus a collec-
tion of moving Lagrangian discrete points for the im-
mersed boundary with mesh width Δα1 = Δα2 � h/2.
The D3Q19 model is used to discretize the BGK equa-
tion (1). The external forcing term in the equation is
treated by the methods proposed in Refs. 4, 7.

The main idea of our 3D implicit algorithm is as
follows. Let F denote the operator acting on the con-
figuration X(α, t+ 1) to produce the Lagrangian elas-
tic force density, S denote the spreading operator of
Lagrangian force density to fluid lattice, L denote the
operator to advance the velocity distribution function
from n to n+ 1, U denote the operator to recover fluid
velocity from distribution function, I denote the opera-
tor to interpolate the immersed boundary velocity from
the fluid, then the non-linear algebraic equation system
(after gn+1 is eliminated) for advancing the solutions
from n to n+ 1 is given by

IULSFXn+1 = Xn+1 −Xn. (7)

This nonlinear system is very complex, and the
Jacobian of the system is not available. We use
the package SUNDIALS27 to solve the nonlinear sys-
tem (7) where a Jacobian-free Newton-Krylov (JFNK)
method27 is applied.

AfterXn+1 is known, the velocity un+1 can be com-
puted by

un+1(x, t) = ULSFXn+1.

Thus the solution is advanced forward by one-step from
n to n+ 1.

The characteristic of our 3D implicit formulation is
as follows: (1) the elastic force of the immersed bound-
ary is computed implicitly and the fluid equations are
solved explicitly by the lattice Boltzmann method; (2)
the massive boundary is handled by the d’Alembert
force approach. The advantage of our 3D implicit for-
mulation is that the IB formulation is reduced to a non-
linear system of algebraic equations after discretization
with the sole unknowns being the position of the im-
mersed boundary, and a general purpose JFNK method
may be used for solving the system.

We consider a massive flexible sheet in a 3D rectan-
gular box of moving viscous incompressible fluid. The
fluid flows along the x-direction (left-right). The up-
stream end of the sheet is (virtually) fixed along the
y-direction (front-rear), and the sheet is initially placed
in an angle with the x–y plane. As the fluid flows by the
sheet moves along due to the fluid viscosity subjected
to the constraint at the fixed edge. The dimensionless
parameters used in our simulations are given as below
unless otherwise stated. The length of the square sheet
is 1/3. The inflow velocity is 0.01; The constant bend-

ing modulus K̂b is 0.005; The stretching coefficient K̂s is
200; The stiffness of the virtual spring (for tethering the

upstream edge) K̂st is 1.0. The Reynolds number Re is

20–100. The sheet mass density M̂ is 0–0.01. The ratio
for the fluid domain is 2 : 1 : 1 in x-, y- and z-directions;
The lattice size is 120× 60× 60.

Many simulations have been performed with various
values of Re and M̂ . A typical case is reported first:
the dimensionless mass density is 0.01; the Reynolds
number is Re = 100. All other parameters are given as
above. The time step is 0.000 5. Two typical snapshots
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Fig. 1. Snapshots of a massive flexible sheet at t = 200 (a) and t = 10 000 (b) respectively for Re = 100.

Fig. 2. The z coordinate of the mid point on the trailing edge of the sheet for Re = 100 (a) and for Re = 20 (b) versus
time. The figure shows two distinct stable dynamical states for different Reynolds numbers: the flapping state (Re = 100),
and the stretched-straight state (Re = 20).

of the flexible sheet at t = 200 (in LB units) and t =
10 000 are plotted in Fig. 1. One can see that the sheet
still forms an angle with the x–y plane at t = 200, and
later flaps across the equilibrium position at t = 10 000.

We plot the z-coordinate of the midpoint on the
trailing edge of the sheet evolving over time in Fig. 2
(the left graph). After t = 30 000, the graph shows a pe-
riodic pattern. The dimensionless period and frequency
are approximately 0.009 and 111.

In a second typical case, Re = 20 and M̂ = 0.01.
A self-sustained flapping state is not seen: the sheet
reaches an equilibrium position after t = 30 000 and
does not flap since then (see the right graph in Fig. 2).
For a comparison Fig. 2 plots two distinct dynamical
stable states: the flapping state for Re = 100, and the
stretched-straight state for Re = 20. This result is in
agreement with the findings in Refs. 3, 23, 24.

Figure 3 shows the velocity contour for the x com-
ponent of flow velocity on the horizontal slice z = 32 at
t = 100 000 for the case with Re = 100.

Finally, simulations with different values of M̂ indi-
cate that the flapping state does not occur for a massless
sheet in the range of Reynolds numbers we have consid-

Fig. 3. Velocity (x component) contour on the horizontal
slice z = 32 at t = 100 000. Re = 100.

ered. It shows that the sheet mass plays a crucial role
for self-sustained flapping motion. This is consistent
with the findings in Refs. 3, 4, 26.

Through numerical experimentation, we have found
that the time step of the implicit method can be at
least 10 times greater than the corresponding explicit
method. For instance, for the simulation with Re =
100, the (nearly) largest dimensionless time step for the
explicit method is 5 × 10−5; while the implicit method
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can take as large as 5 × 10−4. For each time step the
number of Newton’s iterations is around 3-4 and for
each Newton step the number of linear iterations is
around 3-7. Our numerical experiments have showed
that the 3D implicit method is more stable than the 3D
explicit method. However the current implicit method
does not apply any preconditioner in solving the linear
system by the generalized minimum residual (GMRES).
A good preconditioner is needed to make our implicit
method more efficient.

We have developed an implicit immersed bound-
ary method in three dimensions which applies a lat-
tice Blotzmann method (the lattice D3Q19 model) to
solve the viscous incompressible Navier-Stokes equa-
tions. The highly nonlinear discrete system is solved
by a JFNK method. The new method is used to sim-
ulate the interaction of a deformable sheet with a 3D
viscous incompressible flow. Our preliminary results are
consistent with the existing literatures. A good precon-
ditioner for the linear system solver is desired to make
the 3D implicit method more efficient.
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