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Abstract—Lattice Boltzmann method (LBM) is an important
computational fluid dynamics (CFD) approach to solving the
Naiver-Stokes equations and simulating complex fluid flows.
LBM is also well known as a memory bound problem and its
performance is limited by the memory access time on modern
computer systems. In this paper, we design and develop both
sequential and parallel memory-aware algorithms to optimize
the performance of LBM. The new memory-aware algorithms
can enhance data reuses across multiple time steps to further
improve the performance of the original and fused LBM. We
theoretically analyze the algorithms to provide an insight into
how data reuses occur in each algorithm. Finally, we conduct
experiments and detailed performance analysis on two different
manycore systems. Based on the experimental results, the
parallel memory-aware LBM algorithm can outperform the
fused LBM by up to 347% on the Intel Haswell system when
using 28 cores, and by 302% on the Intel Skylake system when
using 48 cores.

Keywords-Lattice Boltzmann method; Memory aware paral-
lel algorithms; Multicore systems

I. INTRODUCTION

Computational fluid dynamics (CFD) is a crucial area that
has a variety of numerical methods to solve a wide range of
scientific, engineering, and life sciences problems. Among
the numerical methods, Lattice Boltzmann method (LBM) is
an important class of method for modeling the Naiver-Stokes
equations and simulating complex fluid flows. Nevertheless,
the performance of LBM is usually bounded by memory
accesses in current multi-core CPU architectures.

To that end, we design a sequential and a parallel memory-
aware Lattice Boltzmann algorithm to reduce the memory
bottleneck on manycore systems. The objective of our al-
gorithm redesign is to increase data reuses across multiple
fused-time-steps to improve the performance. The original
LBM algorithm scans each fluid point once, and then applies
one collision operation and one streaming operation to each
fluid point in each iteration. This results in a low arithmetic
intensity and serious bottleneck in the main memory. In
order to increase data reuse and LBM’s arithmetic intensity,
we merge two time steps into one iteration in our proposed
memory-aware LBM algorithm such that two collision op-
erations and two streaming operations can be applied to

each fluid point consecutively. This way we are able to
approximately double the data reuse rate and significantly
improve the cache hit rate.

It is nontrivial to merge multiple time steps into one itera-
tion to design the new memory-aware LBM algorithms. We
have solved the following challenges to provide both correct
results and faster performance: 1) handling the boundary
conditions for two time steps within one iteration correctly;
2) using the same two buffers as the original LBM algorithm
to compute two time steps in each iteration (i.e., no extra
space); and 3) handling the overlapping fluid points between
different threads correctly. In addition, we use theoretical
algorithm analysis to provide an insight into how many data
reuses occur in each algorithm.

We perform four types of experiment. The first type
of experiment evaluates the performance of the sequential
memory-aware algorithm. The second and the third ex-
periments validate the strong and weak scalability of the
parallel memory-aware algorithm, respectively. Based on the
scalability experiments, our parallel memory-aware LBM
can significantly outperform the fused LBM on both 28-core
Intel Haswell and 48-core Intel Skylake manycore systems.
For instance, the memory-aware LBM is up to 347% faster
in terms of strong scalability on Bridges in Pittsburgh
Supercomputer Center (PSC), and up to 302% faster in
terms of weak scalability on Stampede2 in Texas Advanced
Computing Center (TACC). In the fourth experiment, we use
Paraview [1] and Catalyst [2] to visualize and validate our
experimental results.

This work makes the following contributions:
• New memory-aware LBM algorithms to alleviate the

memory bottleneck and design of both sequential and
parallel algorithms.

• A theoretical analysis to provide insight into data reuse
for each algorithm.

• Thorough experiments and in-depth performance anal-
ysis to examine the performance of the sequential and
parallel memory-aware LBM algorithm.

In the remainder of the paper, the following section
introduces the background of the original and fused LBM
algorithms. Section III and IV show the sequential and
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Figure 1. Illustration of the D2Q9 model.

parallel memory-aware LBM algorithm. Section V presents
the analysis of the algorithms. Section VI compares the
existing work with ours. Finally, Sections VII and VIII
present the experimental results and summarize the paper.

II. BACKGROUND

A. The Lattice Boltzmann Method

The Lattice Boltzmann method [3] is a modern approach
in CFD to solving the incompressible, time-dependent
Navier-Stokes equations numerically. The fundamental idea
is that gases or fluids can be imagined as consisting of
a large number of small particles moving with random
motions. The exchange of momentum and energy is achieved
through particle streaming and billiard-like particle colli-
sion. Compared to conventional analytical methods, LBM
is relatively simple to use, easier to parallelize, and more
convenient to incorporate additional physics to simulate new
flow phenomena.

The Lattice Boltzmann equation with single relaxation
time approximation of the collision operator (BGK model)
is as follows:

fi(~x+ ~ei∆t, t+ ∆t) =

fi(~x, t)−
∆t

τ
[fi(~x, t)− feqi (ρ(~x, t), ~u(~x, t))]

where fi is the particle density distribution corresponding to
the discrete velocity direction ~ei, and ~x and t are the discrete
location and time, respectively.

In this work, we simulate a classic problem of fluid
flowing past a circular cylinder. Our simulation adopts the
D2Q9 model for which a fluid particle has eight neighbors,
and each fluid particle may move along 9 different directions
including staying at the center, as shown in Fig. 1.

B. The Original LBM Algorithm

The original LBM algorithm performs two entire sweeps
over the whole data grid in every time step: one sweep
for the collision operation, calculating the new distribution
function values at each fluid node; and a subsequent sweep
for the streaming operation, copying the distribution func-
tion values from each lattice node into its neighbors. Each
fluid point uses two buffers (i.e., buf1 and buf2) to store the
particle distributions at the time step t and t+1. More specif-
ically, in the collision phase, the buf1 of one fluid node is
used to compute and then store the “intermediate” state after

Algorithm 1 Original LBM
1: // Collision:
2: for i=1; i≤X; i++ do
3: for j=1; j≤Y ; j++ do
4: compute (i,j) collision using buf1
5: // Streaming:
6: for i=1; i≤X; i++ do
7: for j=1; j≤Y ; j++ do
8: propagate (i,j) buf1 to neighbors’ buf2

the collision but before streaming. Then during the streaming
phase, the “intermediate” data in buf1 is propagated to the
buf2 of this fluid node’s neighbors. Algorithm 1 presents
the original LBM in one time step. The baseline referential
original LBM is the ANSI C implementation from Palabos
[4] accessed at http://wiki.palabos.org/numerics:codes.

C. The Fused LBM Algorithm

The most well-known improvement on the original LBM
is to use loop fusion (combining the collision and the
streaming step) to enhance the temporal locality [5], [6].
Instead of sweeping through the whole grid twice per time
step, after calculating the distribution function values in
buf1 during collision operation, this algorithm immediately
propagates the “intermediate” data to the neighbors’ buf2.
The fused LBM in one time step is shown in Algorithm 2.

Algorithm 2 Fused LBM
1: // Use loop fusion to combine collision and streaming:
2: for i=1; i≤X; i++ do
3: for j=1; j≤Y ; j++ do
4: compute (i,j) collision using buf1
5: propagate (i,j)’s buf1 to its neighbors’ buf2

In the next section III, our new memory-aware algorithm
uses the fused LBM as the starting point to further optimize
memory performance.

III. THE MEMORY-AWARE ALGORITHM

A. Motivation to Focus on the Memory for LBM

Lattice Boltzmann methods, and many stencil computa-
tions (SC), are usually bounded by memory access in current
multi-core CPU and GPU architectures [7]. There are mainly
two sources for the memory bound: memory latency and
memory bandwidth. We use LBM as an example to explain
the effects of memory latency and memory bandwidth,
respectively.

Memory latency bound. In the streaming phase, LBM
updates the lattice (brings it into cache), without immedi-
ately reusing it for computation. For large-size lattices, such
access pattern will cause frequent evictions of cache lines,
thus introducing significantly high memory latency, due to
miss penalties from both cache and TLB.

Memory bandwidth bound. LBM and stencil com-
putations usually have rather high “bytes per operation”,
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Figure 2. Sequential memory-aware algorithm. (a) Initialization. (b) First collision and streaming on (1, 1). (c) First collision and streaming
on (1, 2). (d) Continue computing the first collision and streaming through (2, 1). (e) First collision and streaming on (2, 2) and fulfill
the data dependency of (1, 1) to compute the second collision and streaming. (f) Second collision and streaming on (1, 1).

which means large memory bandwidth is required for the
few computations. Nowadays computation capacity keeps
climbing rapidly due to the use of more cores and wider
SIMD units. Meanwhile, memory bandwidth has a slower
increasing pace. To adapt to the increasing gap between CPU
speed and memory speed in emerging architectures, extra
effort must be made for memory-bound applications like
LBM to achieve high performance, as reported by [8], [9],
[10].

The good news is that both latency and bandwidth can
benefit from better data reuse by carefully manipulating data
access patterns. By this means, we expect to obtain better
performance on modern architectures.

B. Sequential Memory-aware LBM

As described in Section II, the fused LBM can improve
the data reuse “within” each fused-step (i.e., reuse between
collision and streaming). To do an even better job than the
fused LBM, here we explore data reuses across multiple
fused-steps for optimizing memory accesses.

The basic idea of our algorithm is as follows: 1) we
compute the first collision and the first streaming on a block
of points (assuming they fit in the cache) at the time step
t; 2) while computing each point (i, j) at the time step t,
whenever a data dependency is fulfilled, we go back and
compute the second collision and the second streaming on

previously visited points at the time step t + 1. This idea
is essentially simple, which leads to a relatively simple
LBM code, as shown in Algorithm 3. A similar idea can
be extended to merge more than two time steps.

We illustrate the algorithm using an example of 3 × 4
fluid grid in Fig. 2. Each fluid node is represented by a
coordinate from bottom left corner (1, 1) to top right corner
(3, 4). Same as the fused LBM algorithm, each fluid point
has two buffers, i.e., buf1 to store the distribution value in
the time step t and buf2 in the time step t+1. The algorithm
works as follows.

1) Fig. 2.a shows the initialization state of all fluid nodes
in the current time step t.

2) In Fig. 2.b, we start computing the first fused collision
and streaming on the fluid node (1, 1) at the left corner.
We use the data in buf1 to perform collision. Then in
the streaming phase, we propagate the data in the buf1
of node (1, 1) to its own and neighbors’ buf2. Note
that we draw these buf2 with red colors. It means that
their buf2 are updated but still need other dependent
data to be fulfilled for collision in the time step t+1 .
Since buf1 of node (1, 1) has already been computed,
we draw it with a white color, which means buf1 is
flushed and can be updated by other data.

3) Next in Fig. 2.c, we move right and continue com-
puting the fluid node (1, 2) and do the same fused
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Algorithm 3 Sequential Memory-aware LBM
1: for i=1; i≤X; i+=block size do
2: for j=1; j ≤Y ; j+=block size do
3: for ii=0; ii<block size; ii++ do
4: for jj=0; jj<block size; jj++ do
5: // First fused collision and streaming:
6: compute (i+ii,j+jj) collision using buf1
7: propagate (i+ii,j+jj) buf1 to neighbors’ buf2
8: if i+ii == X − 1 or X then
9: save ρ at column X − 1 & X − 2

10: // Second fused collision and streaming:
11: if i+ii>1 and j+jj>1 then
12: compute (i+ii-1,j+jj-1) collision using buf2
13: propagate (i+ii-1,j+jj-1) buf2 to neighbors’ buf1
14: handle boundary condition // see section III-C

collision and streaming just as node (1, 1) .
4) After finishing computing the bottom row 1, we move

up one row and compute the first fused collision and
streaming on fluid node (2, 1) on row 2 in Fig. 2.d.

5) In Fig. 2.e, we compute the first fused collision and
streaming on node (2, 2) . Note that after node (2, 2)’s
streaming phase, since the buf2 in node (1, 1) has col-
lected all the particle distributions from its neighbors,
the data dependency of buf2 in node (1, 1) is fulfilled
and ready for computing the second collision in the
time step t+ 1. Thus we draw its buf2 with a yellow
color to represent that the data inside is ready for the
second fused collision at the time step t+ 1.

6) In Fig. 2.f, we perform the second fused collision and
streaming at the time step t+ 1 on node (1, 1) using
buf2. After the streaming phase, since the buf1 of node
(1, 1) and its neighbors are flushed previously, we can
safely propagate and store the “intermediate” data at
the time step t+ 1 in those buf1. Thus we mark these
buf1 with green color to represent that they are updated
by the data from the second streaming.

The sequential memory-aware LBM algorithm is shown
in Algorithm 3, where we also use loop blocking in the
nested loop. Thus, together with Fig. 2, we can observe
that Algorithm 3 accesses fluid blocks regularly block by
block, and then in each block accesses fluid points regularly
line by line. With such a regular access pattern and better
data locality, the sequential memory-aware LBM algorithm
improves performance significantly.

C. Special Handling of Boundary Conditions

Boundary conditions (BCs) are complex and affect greatly
the stability and the accuracy of LBM. The discrete distri-
bution functions on the boundary have to be taken care of
to reflect the macroscopic BCs of the fluid. Fig. 3 shows the
four BCs used in the LBM simulation:

1) The upper and lower boundaries use regularized BC.
2) At the inlet (left boundary), a parabolic Poiseuille

profile is imposed on the velocity.

X

Parabolic 
Poiseuille

profile

Pressure 
Zero 

Gradient

Bounce-back

upper: regularized BC

lower: regularized BC

store ρ at column  
of x-1, x-2

x1

y1
y

﴾x,y﴿

Y

Areas complete two time
steps computation 

Figure 3. Four boundary conditions used in the LBM simulation.
Fluid nodes in the blue area have completed two time step
computation. The two red boundary lines need to be computed
at the second time step using specific boundary conditions.

3) At the outlet (right boundary), we implement an
outflow condition: ∇u = 0. At every time step, we
compute a second order extrapolation on the right
boundary to ensure a zero-gradient BC on the pressure.
Thus the velocity is constrained to be perpendicular to
the outflow surface.

4) On the cylinder, we use the bounce-back BC.
Other different BCs can also be employed in our algorithms,
as long as it follows the procedure in the next paragraph.

Handling the Four BCs. After executing line 1∼13 in
Algorithm 3, the fluid grid area from (0, 0) to (X−1, Y −1)
has completed two time steps computation. Thus we draw
it with blue color in Fig. 3. However, the upper and
outlet boundaries have only completed the first time step
computation. Specifically, the bottom and inlet BCs have
been handled, whereas the upper and outlet BCs are left to
be computed in the second time step. Therefore, we draw
these two boundaries with red color in Fig. 3.

The regularized BC indicates that each fluid node’s com-
putation on upper boundary only relies on its own buffer.
Thus, the upper BC can be handled simply by computing
the second time step. However, to handle the right outlet
zero-gradient BC, we need to conform to the formula
ρX = 4/3×ρX−1−1/3×ρX−2. This indicates the densities
ρ of fluid nodes at column X depend on the ρ at column
X − 1 and X − 2. To ensure the correctness of the outlet
BC, we use two arrays to store the ρ at column X − 1 and
X − 2 in the first time step, as reflected in line 8 and 9 in
Algorithm 3. At last, after updating these densities on the
outlet by the data stored in the two arrays, we can complete
the outlet BC computation for the second time step correctly.

IV. PARALLEL MEMORY-AWARE LBM

To support manycore systems, we use OpenMP [11] to
provide a parallel implementation of the memory-aware

4



Fluid grid node

Boundary fluid grid node

#

# Buf# Initialize, ready for 1st collision

Buf# empty/flush

#

1st-time collision (    ) and streaming

2nd-time collision (    ) and streaming

# Buf# updated by 1st streaming

Buf# ready for 3rd collision

# Buf# updated by 2nd streaming

# Buf# ready for 2nd collision

(b)(a)

1

2

3

4

2 1 2 1 2

1 21 21 21 2

1 2 1 2 1 2 1 2

1 21 21 21 2

1 2 1

5

6

2 1 2 1 2

1 21 21 21 2

1 2 1

Thread1

Thread0

1

2

3

4

2 1 2 1 2

1 21 21 21 2

1 2 1 2 1 2

1 21 21 21 2

1 2 1

5

6

2 1 2 1 2

1 21 21 2

1 1

1 2

1 2

2

Thread1

Thread0

(c)

1

2

3

4

2 1 2 1 2

1111 2

1 1 1

1 21 21 21 2

1 2 1

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

Thread1

Thread0

(d)

1

2

3

4

2 1 2 1 2

1111 2

1 1 1

1 21 21 2

1

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

Thread1

Thread0

(f)

1

2

3

4

1112

1 1 1

22

5

6

1 2 11

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

1 1 1 2

2 2 2111

1

1Thread1

Thread0

Thread1

Thread0

(g)

1

2

3

4

112

1 1 1

22

5

6

1 2 1

1 2

1 2 21 2 211

2 2 2

2

22

1 2

1

1 1 1 2

2 2 2111

1

1 21

21

2

2

(e)

1

2

3

4

1111 2

1 1 1

22

5

6

1 2 11 1

1 2

1 2

2

21 2 211

2 2 2

2 2

222

1 2

1 2

1 1 1 2

2 2 2111

Thread1

Thread0

Thread1

Thread0

(h)

1

2

3

4

112

1 1 1

22

5

6

1 2 1

1 2

1 2 21 2 211

2 2 2

2

22

1 1 1 2

2 2111

1

1 21

21

2

21 2

1 2

(k)

Thread1

Thread0

1

2

3

4

5

6
1

1

1

1 1

1

1 2

1

1 1

11

1 1

2 2 2 2

2

1

2 2

1

222

1

2 2 2 2

2222

11 1

21 1 2 21 1 2

2

Thread1

Thread0

(j)

1

2

3

4

1 1 1

5

6

1 2

1 2 21 2 211

2 2 2

1

1

1 1

1

1 2

1

1 1

11

1 1

2 2 2 2

2

1

2 2

1

2 2 2 2

222

1

2

(i)

Thread1

Thread0

1

2

3

4

2

1 1 1

5

6

2

1 2

1 2 21 2 211

2 2 2

1

1

1

1 21

21

2

21

1 2

1 1 2

1 2 1 2 2

2

2 1 21

21 21

Thread1

Thread0

Figure 4. Parallel memory-aware algorithm using OpenMP. (a) Initialization. (b) Thread 0 and 1 start computing first collision and
streaming on thread boundaries (i.e., row 3 and 6). (c) Complete computation on thread boundaries. (d) Start to compute the leftmost
node on row 1 and 3. (e) Complete computation on row 1 and 3. (f) Start to compute the leftmost node on row 2 and 5. (g) When thread
0 and 1 complete the first computation on (2, 2) and (5, 2) respectively, the buf2 in (1, 1) and (4, 1) fulfill the data dependency for second
computation. (h) Compute the second collision and streaming on (1, 1) and (4, 1). (i) Complete the first computation on row 2 and 5,
meanwhile complete second computation on row 1 and 4. (j) Complete second computation on row 2 and 5. (k) Complete the second
computation on thread boundaries (i.e., row 3 and 6).

LBM algorithm. The main challenge is how to handle
the overlapping area (thread boundary) between different
threads, therefore to guarantee the correctness of the results.

For simplicity, Fig. 4 uses a 4×6 fluid grid as an example
to illustrate the parallel memory-aware LBM algorithm 3
with OpenMP. The whole grid is computed by two threads,
thus each gets a 4 × 3 grid region. Row 3 and 6 are the
thread boundaries. The parallel memory-aware LBM works
as follows:

1) Each thread computes the first fused collision and
streaming on thread boundary (row 3 and 6) from Fig.
4.a to 4.c, as shown in the line 3∼7 of Algorithm 4.

2) Each thread computes the first fused collision and
streaming on the bottom row of their own local region
(row 1 & 4) in Fig. 4.d and 4.e. This is related to the

line 14∼16 of Algorithm 4.
3) Each thread computes the first fused collision and

streaming on the upper row (row 2 and 5) in Fig. 4.f.
4) When the buf2 of some nodes fulfill the data depen-

dency for the second collision, we draw them with the
yellow color in Fig. 4.g.

5) In Fig. 4.h, each thread computes the second fused
collision and streaming on these nodes, as shown in
the line 20∼22 of Algorithm 4.

6) In Fig. 4.i and 4.j, each thread continues and repeats
step 3 to step 5 until it finishes computing two time
steps for the rest of the nodes in its local grid region
except for the thread boundary.

7) Each thread computes the second fused collision and
streaming on its thread boundary in Fig. 4.k. This is
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involved in the line 24∼29 of Algorithm 4.
Step 1 and 7 guarantee the correctness of the results. For

each thread, the thread boundary has data dependency both
on the lower one row in its own region and the bottom row in
the upper thread region. To get the correct second collision
on the lower one row, step 1 propagates the first collision
from thread boundary in advance. Similarly, step 7 needs
the completion of the previous 6 steps to fulfill the data
dependencies for the second collision on thread boundary.

Algorithm 4 shows the parallel memory-aware LBM. We
distribute the whole grid into n threads according to the X
axis. Each thread computes a local grid region with X/n×Y
points. Lines of X/n, 2X/n, ...,X are thread boundaries.
This is done by using the OpenMP clause #pragma omp
for schedule(static, thread_block = X/n).
Note that Line 17 and 18 store the ρ at column X − 1
and X − 2 in advance, to fulfill the BCs in line 30.

Algorithm 4 Parallel Memory-aware LBM with OpenMP
1: #pragma omp parallel default(shared) {
2: // First fused collision and streaming on thread boundary:
3: #pragma omp for schedule(static)
4: for i=thread block; i≤X; i+=thread block do
5: for j=1; j≤Y; j++ do
6: compute (i,j) collision using buf1
7: propagate (i,j) buf1 to neighbors’ buf2
8: // Parallel computation within each thread:
9: #pragma omp for schedule(static, thread block)

10: for i=1; i≤X; i+=block size do
11: for j=1; j≤Y; j+=block size do
12: for ii=0; ii<block size; ii++ do
13: for jj=0; jj<block size; jj++ do
14: // First fused collision and streaming
15: compute (i+ii,j+jj) collision using buf1
16: propagate (i+ii,j+jj) buf1 to neighbors’ buf2
17: if i+ii == X-1 or X then
18: save ρ at column X-1 & X-2
19: // Second fused collision and streaming
20: if (i+ii-1)%thread block != 0 then
21: compute (i+ii-1,j+jj-1) collision using buf2
22: propagate (i+ii-1,j+jj-1) buf2 to neighbors’ buf1
23: // Second fused collision and streaming on thread boundary:
24: #pragma omp for schedule(static)
25: for i=thread block; i≤X; i+=thread block do
26: for j=1; j≤Y; j++ do
27: compute (i,j) collision using buf1
28: propagate (i,j) buf1 data to neighbors’ buf2
29: }
30: handle boundary conditions

V. ANALYSIS OF THE ALGORITHMS

In this section, we theoretically analyze how many data
are reused in the original, fused and memory-aware LBM.
We consider the consecutive computation on two adjacent
fluid nodes in the three sequential algorithms. Then we
compute the average times of data reuse in each algorithm.
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1 2
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Figure 5. The original LBM has 6 buf2 reuses (in blue region)
during the consecutive computation on two adjacent fluid nodes,
while the fused LBM has 8 data reuses. (2 more buf1 reused.)

A. Data reuse in Original LBM & Fused LBM

Fig. 5 shows the times of data reuse in the original LBM.
For the consecutive computation on the two adjacent fluid
nodes (2, 2) and (2, 3) during one time step, there is no data
reuse in the collision since each node only uses its own buf1.
However, during the two streaming of the two fluid nodes,
since they propagate to the same 6 neighbors (in the blue
region), these 6 nodes’ buf2 are reused. Thus in the original
LBM, there are average 6÷2 = 3 data reuses per fluid node.

Similarly for the fused LBM, there are 6 nodes’ buf2
reuses during streaming. But with loop fusion, we propagate
the data in buf1 immediately after collision on (i, j). Thus
each fluid node’s buf1 is reused during collision. With 2
nodes’ buf1 and 6 nodes’ buf2 reuses, there are average
(6 + 2)÷ 2 = 4 data reuses per node in the fused LBM.

B. Data reuse in Memory-aware LBM

Fig. 6 illustrates the times of data reuse in the memory-
aware algorithm with a 4× 5 gird. Same as the fused LBM,
when we compute the first fused collision and streaming on
(3, 3) and (3, 4), there are 8 data reuses. Next, the memory-
aware LBM will compute the second fused collision and

2

3

4

1 21 2

1 2 1 2 1 21 2

1 21 2

2 211

1 21 21 2 1 2

1 2

1 2

1 2

1 2
1

1 12 2

## Buf# Initialize Buf# empty/flush

# Buf# updated by 1st streaming

# Buf# updated by 2nd streaming

# Buf# ready for 2nd collision

Fluid grid node

1st-time collision (    ) & streaming

2nd-time collision (    ) & streaming

# Buf# ready for 3rd collision

Figure 6. The memory-aware LBM has 28 data reuses during the
consecutive computation on two adjacent fluid nodes (including 4
fluid nodes).
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streaming on (2, 2) and (2, 3). Since we use loop blocking,
their neighbors are still in the cache. Thus each node’s buf2
is reused during the second collision. Meanwhile, 9 nodes’
buf1 (i.e., from its own and 8 neighbors in the green region of
Fig. 6) are also reused during the second streaming. Totally
there are 8 + (1 + 9)× 2 = 28 data reuses on 4 fluid nodes.
Hence, the memory-aware LBM has average 28 ÷ 4 = 7
data reuses per node.

VI. RELATED WORK

Wellein et al. present a pipelined wavefront parallelization
approach [12] for stencil-based computations. It utilizes the
wavefront parallelization scheme [13]. Within a fixed spatial
domain successive, wavefronts are executed by all threads
scheduled to a multicore processor with a shared last level
cache. By reusing data from the same shared cache in the
successive wavefronts, this strategy reduces cache misses.
Instead of using all threads to compute one block, our
memory-aware LBM algorithms let each thread compute a
distinct data block in parallel.

T.Zeiser et al. introduce a parallel cache oblivious block-
ing algorithm (COLBA) [14] for the LBM in 3D. COLBA
is based on a cache oblivious algorithm [15], and divides
the space-time domain using space cut and time cut, thus
tries to remove the explicit dependency on the cache size.
However, it comes at the cost of irregular block access
patterns, which causes many cache and branch-prediction
misses. Due to the recursive structure of the algorithm,
they also use an unconventional parallelism scheme to map
the virtually decomposed domain to a tree. This work is
quite different from ours since it not only uses the recursive
method but also has irregular data accesses.

Pohl et al. design a sequential algorithm [5] to optimize
the cache performance of LBM on a single processor
core. This sequential algorithm diagonally and recursively
accesses blocks down and left to avoid violating data depen-
dencies, and also requires handling of various special cases.
Differently, we introduce a regular and simple algorithm,
and support parallelism on manycore systems.

As shown in section III-A that LBM is a memory bound
problem, Pedro et al. propose two methods to reduce mem-
ory usage in LBM [16]. The “LBM-ghost” method uses
extra ghost cells to store the intermediate results. Besides, it
changes the fluid data layout and accesses data irregularly.
The other “LBM-swap” method uses one fluid lattice space
to avoid extra memory and accesses data regularly. But
in every time step, it needs synchronization between two
separate kernels, i.e., kernel collision and kernel streaming
and swapping. However, our memory-aware algorithms use
two lattices to combine collide and streaming kernels in two
time steps, meanwhile access fluid data regularly.

Table I
DETAILS OF THE EXPERIMENTAL PLATFORMS.

Platform Bridges Stampede2
CPU Intel Xeon E5-2695v3 Intel Xeon 8160
# Cores 28 on 2 sockets 48 on 2 sockets
Clock rate (GHz) 2.1∼3.3 2.1 nominal (1.4∼3.7)
L1 cache 14× 32KB 24× 32KB
L2 cache 14× 256KB 24× 1MB
L3 cache (MB) 35 33
Memory (GB) 128 DDR4-2133MHz 192 DDR4-2166MHz
Compiler icc/17.4 icc/18.0.0

VII. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of the
original, fused and memory-aware LBM on two Intel CPU
architectures deployed in two supercomputers: Haswell on
Bridges and Skylake on Stampede2. Secondly, we visualize
and validate the results using Paraview and Catalyst.

The Bridges system in the Pittsburgh Supercomputer Cen-
ter has 752 regular nodes (128GB memory each). Each node
has 28 Intel Haswell cores. The Stampede2 system in the
Texas Advanced Computing Center has 1,736 SKX nodes
(192GB memory each). Each node has 48 Intel Skylake
cores. More details about the architectures used in our
experiments are given in Table I.

For all the implementation, we make the compiler use
“-O3” flag on Bridges and “-O3 -xCORE-AVX512” on
Stampede2 to enable vectorization. The compiler optimiza-
tion has resulted in significant speedup due to using vector
instructions. All our experiments are performed using double
precision. Besides, we use the conventional MFLUPS metric
(millions of fluid lattice updates per second) to evaluate the
performance of each LBM algorithm.

A. Sequential performance

We have described the sequential memory-aware LBM in
Section III. Our first experiment is intended to compare the
sequential performance of original, fused and memory-aware
LBM. The experiments are performed on a single core and
the grid size ranges from 128×128 to 16384×16384. Since
we use loop blocking in the sequential memory-aware LBM
Algorithm 3. We search the best block size that can achieve
the fastest performance and the best block size is 64. Then
we set block size = 64 in the sequential memory-aware
LBM experiments to compare with the other two algorithms.

Fig. 7 shows the sequential performance of the three LBM
algorithms on Intel Haswell and Skylake CPU, respectively.
Fig. 7.a shows that the fused LBM is up to 1.6 times faster
than the original LBM using Haswell CPU. On the other
hand, the memory-aware LBM achieves 22.0 MFLUPS and
is faster than the fused LBM by up to 115% when the grid
size is 16384×16384. Fig. 7.b shows that the fused LBM is
up to 1.5 times faster than original LBM using Skylake CPU.
Also, the memory-aware LBM obtains up to 51.9 MFLUPS
and is faster than the fused LBM by up to 110%. We observe
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Figure 7. Sequential performance using three LBM algorithms.
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Figure 8. Sequential performance analysis using PAPI on Birdges.

from Fig. 7.a and 7.b that when the grid size is small (128×
128 and 256× 256), the fused LBM is better. However, the
memory-aware LBM is consistently faster than the fused
LBM starting from (1024× 1024) on both CPUs.

To dig into the reason, we use the PAPI CPU component
[17] to collect the number of L1, L2, L3 cache misses
on the Intel Haswell CPU, with results shown in Fig.
8. Fig. 8.a shows the number of L1 cache misses using
three different algorithms, where memory-aware LBM has
the lowest L1 cache misses (nearly half of that in the
fused LBM). This is expected since our carefully-designed
memory-aware method has better locality and cache-reuse.
However, the memory-aware LBM can have worse L2/L3
cache misses in small grid sizes(128×128 & 256×256), as
we can see from Fig. 8.b and 8.c. This is also easy to explain:
if the grid can fully fit into the CPU cache, our cache-reuse
optimization method simply won’t help much. For instance,
the 256×256 grid needs 9MB memory space, which is less
than the 35MB L3 cache size in the Haswell CPU of the
Bridges. However, considering that LBM simulation usually
runs on a large scale, we can still claim that our memory-
aware LBM will outperform the other two methods in most
use cases.
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Figure 9. Strong scalability using three LBM algorithms.
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Figure 10. Strong scalability performance analysis using PAPI.

B. Strong Scalability

Our second experiment evaluates the strong scalability
performance of the parallel original, fused and memory-
aware LBM. The grid size on a single node is 14336×14336
on Bridges, and 24576 × 24576 on Stampede2. We still
set block size = 64 in our parallel memory-aware LBM.
Fig. 9.a shows the strong scalability of the three LBM
algorithms on a single Haswell node of Bridges. We can
see that the original and fused LBM algorithm cannot scale
well when the number of cores is larger than 8. In contrast,
our memory-aware algorithm scales well even when the
number of cores reaches 16 and 28, which gets up to 440.6
MFLUPS and 3.5 times of speedup compared to the fused
LBM. Similarly, as depicted in Fig. 9.b, on a Skylake node
of Stampede2, the original and fused algorithms scales at
most 8 cores. However, the memory-aware LBM algorithm
can scale to 16 cores, obtain up to 310.6 MFLUPS and
outperform parallel fused LBM by up to 3.0 times.

To give an in-depth examination of the strong scalability
performance of the three algorithms, we again use PAPI
to compare and analyze the relevant hardware counters on
Bridges. Results are shown in Fig. 9.a, where we count
the number of L1, L2, L3 misses for each thread and then
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Table II
CONFIGURATION FOR WEAK SCALABILITY EXPERIMENTS FOR

THE INTEL HASWELL CPU ON Bridges.

# Cores 1 2 4 8 16 28

X (×103) 5.12 7.2 10.24 14.4 20.48 27.104

Y (×103) 5.12 7.2 10.24 14.4 20.48 27.104

Memory (GB) 3.52 6.95 14.06 27.81 56.25 98.52

Table III
CONFIGURATION FOR WEAK SCALABILITY EXPERIMENTS FOR

THE INTEL SKYLAKE CPU ON Stampede2.

# Cores 1 2 4 8 16 24 32 48

X (×103) 5 7.07 10 14.08 20 24.48 28.16 33.6

Y (×103) 5 7.07 10 14.08 20 24.48 28.16 33.6

Memory(GB) 3.35 6.70 13.41 26.59 53.64 80.37 106.35 151.41

calculate the average among all threads. Fig. 10.a, 10.b and
10.c show that the memory-aware LBM algorithm has the
smallest number of L1, L2, L3 cache misses, which is 1.7,
11.4 and 4.4 times less than the fused LBM, respectively.
So we can see that the advantage of better cache-use in our
parallel memory-aware LBM provides better performance.
The reason why the memory-aware LBM scale relatively
slower from 24 to 48 cores on the Skylake CPU in Fig. 9.b
can be that the Skylake CPU clock speed decreases as the
number of active cores used and the vector instruction set,
as reported by the user guide of Stampede2. 1

C. Weak Scalability

Our third experiment evaluates the weak scalability per-
formance of the three parallel LBM algorithms. The grid
size and memory used on a single node of Bridges and
Stampede2 are presented in Table II and III, receptively. Fig.
11.a shows the weak scalability on the Haswell CPU. We
can see that our memory-aware method has the advantage
of scaling well on 16 and 28 cores, and can achieve up
to 396.1 MFLUPS and 2.9 times of speedup over the fused
LBM. Similarly, Fig. 11.b shows the weak scalability on the
Skylake CPU. Again, the original and fused LBM algorithm
are not scalable from 16 to 48 cores. The memory-aware
LBM scales the best, reaches up to 589.0 MFLUPS and
outperforms the fused LBM by up to 3 times.

We use PAPI to analyze the weak scalability experiments
on Bridges. Fig. 12.a, 12.b and 12.c show that the memory-
aware LBM has the smallest number of L1, L2, L3 cache
misses, which is up to 2.3, 13.8, and 4.6 times smaller
compared to the fused LBM, respectively. We conclude
that the best weak scalability performance in memory-aware
LBM benefits from the least number of cache misses in all
three level caches.

1The actual clock of the SKX CPU depends on the vector instruction set,
number of active cores, and other factors affecting power and temperature
limits. A single core serial code using the AVX2 instruction set may run
at 3.7GHz, while a large, fully-threaded MKL dgemm may run at 1.4GHz.
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Figure 11. Weak scalability using three LBM algorithms.

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

1 2 4 8 16 28

A
v

er
ag

e 
L

1
 C

ac
h

e 
M

is
s

Number of cores

Original

Fuse

Memory-aware

(a) Average L1 cache misses.

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

1 2 4 8 16 28

A
v

er
ag

e 
L

2
 C

ac
h

e 
M

is
s

Number of cores

Original

Fuse

Memory-aware

(b) Average L2 cache misses.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

1 2 4 8 16 28

L
3

 C
ac

h
e 

M
is

s

Number of cores

Original

Fuse

Memory-aware

(c) L3 cache misses.

Figure 12. Weak scalability performance analysis using PAPI.

D. Visualization

The last experiment is used to visualize and validate the
memory-aware LBM algorithm. Our simulation examines
the widely known and extended test scenario, a flow past a
cylinder placed in a channel, which dates back to the design
of wings of an aircraft and understanding the behavior of the
flow past them in the early 20th century. It turns out that the
Reynolds number (i.e., the ratio of a fluid’s inertial force to
its viscous force) plays an important role in characterizing
the behavior of the flow. As the Reynolds number increases
to 100 or higher, an unstable periodic pattern is created,
which is called the Karman vortex street.

Our algorithm can compute and output the velocity of
each fluid point. We use Catalyst to convert those output to
VTK files. Next, Paraview reads the VTK files and generates
figures and videos. The simulation is a flow past a 1280×256
channel. An uncompressed cylinder at location (320,128)
with radius equaling to 26 makes the steady-state symmetri-
cal flow unstable. In Fig. 13, after running 100,000 steps, a
Karman vortex street is generated. Fig. 13.a and 13.b show
the Karman vortex street with the Reynolds number 100
and 400, respectively. We can observe that more vortices are
generated when the Reynolds number equals to 400. This is
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(a) Reynolds number = 100.

(b) Reynolds number = 400.

Figure 13. Vorticity plot of flow past a cylinder, a Karman vortex
street is generated

because inertial forces dominate the viscous forces at higher
Reynolds numbers, which tend to produce more chaotic
eddies and induce flow instabilities [18]. The full simulation
videos are published at https://youtu.be/C5IqsZVPV0Y and
https://youtu.be/hyNN6yxdn18.

VIII. CONCLUSION

To address the memory bound limitation of Lattice
Boltzmann method in manycore systems, we propose the
memory-aware LBM algorithm, which improves the fused
LBM by carefully tweaking the data access pattern. We
provide a detailed algorithm analysis to demonstrate how our
memory-aware LBM algorithm can enable more data reuses
across multiple fused-steps. The sequential, strong and weak
scalability experiments show that our method outperforms
the fused LBM by up to 347% on the Intel Haswell system
when using 28 cores, and by 302% on the Intel Skylake
system when using 48 cores. Moreover, we use PAPI to
give an insight into the speedup reasons. Our future work
will extend and apply the memory-aware idea to 3D and
distributed memory HPC systems.
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