
Chapter 16
Dynamics of Intermittent Synchronization
of Neural Activity

Leonid L. Rubchinsky, Choongseok Park, and Sungwoo Ahn

16.1 Synchronized Neural Activity

Electrical activity of neurons and neural populations in the brain frequently exhibits
some degree of synchrony (defined in some specific ways). Multiple experimental
studies indicate that neural synchronization is important for various functions of
the brain. For example, neural synchrony has been observed in relation to percep-
tion [11], memory [12], other cognitive functions [13], and motor functions [16, 31].
Different mechanisms underlying the involvement of oscillatory neural activity
in neural function have been considered [8]. Abnormally high (and sometimes
abnormally low) strength of neural synchrony has been implied to be critical for
the symptoms of several neurological and psychiatric disorders [32, 34], including
Parkinson’s disease (e.g., [29]) and schizophrenia (e.g., [35]).

Synchronization is a widely observed phenomenon and has been traditionally
studied with the methods of physics and nonlinear dynamics [23]. One of the
scholars, who early recognized the importance and relevance of physical studies
of synchronization to neuroscience was Misha (Mikhail Izrailevich, as one would
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politely call him in his native Russian) Rabinovich. He inspired his students and
engaged his collaborators [2], and authored many important and elegant studies of
the mechanisms and functions of neural synchrony (for example, [1, 7, 10, 17, 33]).
Misha pointed out that neural synchronization may have some peculiar properties,
which are not frequently observed in other synchronized systems in nature, because
of the very specific functions of neural systems [18].

Interestingly, Misha Rabinovich discussed the potential generality of transient
dynamics in neuroscience [24–26]. The transient (intermittent) synchrony appears to
be the norm in the synchronized dynamics of neural circuits of the brain. Even at the
rest state, without any transient stimuli, perfect synchrony in the brain has not been
reported. This is probably not very surprising. At the rest state these circuits should
be ready to respond to different stimuli. If they were in a completely synchronized
stable state, it would probably require more time and/or efforts to respond to stimuli.

16.2 Fine Temporal Structure of Intermittent
Synchronization

Neuroscience traditionally operates with observables. Usually, in the context of
neural synchrony, these are intra- or extracellularly recorded electric potentials as
a function of time. However, a consideration of the dynamics of synchronization
and desynchronization in terms of the phase space helps to understand the nature of
these phenomena.

16.2.1 Phase Space-Based View and Time-Series-Based View
of Synchronized and Desynchronized Episodes

Let’s think of coupled neurons or neural populations where each individual unit
exhibits oscillatory dynamics. Coupling is strong enough and dynamic is syn-
chronous so that there is a stable synchronization manifold in the phase space. As
we discussed above, this is a straightforward, but not an experimentally realistic
scenario. Experimentally relevant, but relatively weak intermittent synchrony may
correspond to the following dynamics: the system moves into vicinity of an unstable
synchronization manifold, but eventually leaves it because this manifold is unstable.
Since the synchrony is relatively weak, the system will spend substantial amount of
time away from the synchronization manifold. In this case a study of the properties
of synchronization manifold (e.g., its loss of stability and associated types of
intermittency) informs of what happens in the system of interest only for a small
fraction of time.

Unlike the stability of the synchronization manifold, however, the properties
of the periphery of the phase space are not universal in general. But it does not
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mean they are irrelevant to the dynamics of the neuronal networks. To connect these
ideas to experimental data we will look at these issues from the time-series analysis
perspective.

16.2.2 Dynamics of Desynchronization Episodes: Time-Series
Analysis

The phase can be extracted from a “good” oscillatory data (the data with relatively
narrow and prominent peak in the spectrum) in different ways, we will use Hilbert
phase [23]. Using Hilbert transform one obtains an analytic signal �.t/ from a real
time series x.t/ as follows:

�.t/ D x.t/ C P{ Nx.t/ (16.1)
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Let the phase of the analytic signal �.t/; say '.t/, be the Hilbert phase of the time
series. Then it is given by

z.t/ D �.t/

k�.t/k D eP{'.t/: (16.3)

If the phase difference between two oscillators tends to be close (in some specific
sense) to some constant value, then we can consider this as a synchronized
dynamics.

One can compute a fairly standard phase locking index for two phases '1.t/ and
'2.t/:

� D k 1

N

NX
jD1

eP{˚jk; (16.4)

where ˚j D '1.tj/ � '2.tj/ and N is the number of data points (for the case of
discrete time-series). This index varies between zero (no phase locking) and one
(perfect phase locking) [23].

For further analysis (originally developed in [3, 21]), we consider a first-return
map for the phase difference (see also [30]). In other words, we are considering
whether the phase difference is close to its preferred (locked) state or not once per
cycle of oscillations (we assume this preferred state exists and can be extracted
from the data, otherwise the described procedure does not make sense). How close
it should be depends on a particular problem under consideration. We will consider
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the case where we require the phase difference to be within �=2 of the preferred
phase difference.

Whenever the phase of one signal crosses a check point (which may be assumed
to be zero) from negative to positive values, the phase of the other signal is recorded,
resulting in a set of consecutive phase values f�igN

iD1: Since the phase of one signal
is zero, this is actually the phase difference between two oscillators measured
once per cycle of oscillations. Now consider .�i; �iC1/ space. The predominantly
synchronous dynamics will appear as a cluster of points on the diagonal �iC1 D �i

(note that this phase space is actually a torus). For the uniformity of analysis, all
values of the phases may be shifted in such a way that the center of the cluster
lies at the center of the first quadrant. The phase space is then partitioned into four
equally spaced regions. Figure 16.1 shows a diagram for this first-return map. The
first region is considered to be a synchronous state while other regions (II, III, and
IV) are considered to be desynchronized states. If the phase difference is required to
be not within �=2 of the preferred phase difference, but within different tolerance
limit, different partition will be required.

One can define the transition rates r1;2;3;4 for transitions between four regions
of the phase space as a ratio of the number of points leaving a region to the
total number of points in that region (see [3, 21, 30]). For example, r1 is the
number of points leaving the region I for the region II divided by the total number
of points in the region I. One can also define the duration of desynchronization
events to explore how long do the desynchronization events last. Here, the duration

Fig. 16.1 (a) Diagram of the phase space of .�i; �iC1/ first-return map. The arrows indicate all
possible transitions from one region to another and r1;2;3;4 indicate the corresponding transition
rates. The synchronized state is placed at the center of the region I and three other regions are
desynchronized states. (b) presents an example of dynamics with numerous short desynchroniza-
tions. (c) presents an example of dynamics with a very long desynchronization event
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of desynchronization events is defined as the number of steps that the system
spends away from the region I minus one. For example, the shortest duration of a
desynchronization event corresponds to the shortest path II ! IV ! I (Fig. 16.1b).
This corresponds to the length of one cycle of desynchronization events. Length
of two cycles corresponds to the path II ! III ! IV ! I and longer lengths of
desynchronization events will have many different paths.

16.2.3 An Analysis of a Simple Model System

To illustrate some of the ideas discussed above, following [3] we will consider an
example of a very simple coupled system: two coupled skewed tent maps. While this
example may be ill-suited to study phase synchronization [28], it helps to illustrate
the major ideas in a very simple setting. Consider a skew tent map

f .a; x/ D
(

x
a ; if 0 � x � a;
1�x
1�a ; if a < x � 1;

(16.5)

where 0 < a < 1: Two such maps, described by variables x and y; are coupled in
the following way:

x.t C 1/ D .1 � "/f .a; x.t// C "f .a; y.t//;

y.t C 1/ D "f .a; x.t// C .1 � "/f .a; y.t//;
(16.6)

where " is the coupling strength. The difference of the variables of two maps
�.t/ D y.t/ � x.t/ may serve as a proxy for the phase difference. The synchronous
state is x D y: It becomes stable for " larger than a critical value "c: Two Lyapunov
exponents (�.a/ and �?.a; "/) can be computed analytically [23] and are not
changed if a is changed into .1 � a/; i.e. they are symmetrical about a D 1=2:

Therefore, two different pairs of maps with symmetrical values of a have the
same values of Lyapunov exponents (in particular, the same value of �?.a; "/;

which characterizes the stability of the synchronous state). Thus they have the same
expansive/contractive properties on the average. But the two systems are different.
In one case, the map is strongly expansive in a small area of the phase space, while
in the other case the map is less expansive, but the corresponding area is larger. The
properties of the desynchronized dynamics are different between the two systems in
the intermittently synchronous dynamics (the coupling value " is less than "c) [3].
The transition rates ri and the distributions of desynchronization events durations
are markedly different between the dynamics of a D 0:1 and a D 0:9 (Fig. 16.2).
This example shows that there may be different temporal patterns of synchronized
and desynchronized dynamics in the coupled systems, which have the same stability
properties of synchronized state.
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Fig. 16.2 (a) Two kinds of skew tent maps, with a D 0:1 (black) and a D 0:9 (gray). The coupled
black maps and gray maps have identical Lyapunov exponents but different expansive/contractive
properties in different areas of the phase space. (b) transition rates and (c) distribution of durations
of desynchronization events for both types of coupled maps [30]. Here, “>5” is a sum of the
relative frequencies of all desynchronizations longer than five

16.3 Applications to Experimental Neuroscience Data

In this section we will discuss the analysis of the temporal dynamics of synchro-
nization in several different neuroscience experiments. There are different species
involved (rodents and humans), different types of recorded data (spikes, local
field potentials (LFP), and electroencephalogram (EEG)), different brain areas, and
different brain states. What is general here is that in all these cases we are dealing
with the synchronized oscillations in the neural activity of mammalian brains.

16.3.1 EEG Recordings in Healthy Human Subjects

In a recent study [4], EEGs recorded in a group of a hundred of healthy subjects
were subjected to the analysis described above. EEGs were recorded from scalp
electrodes and beta-band oscillations were extracted from the recordings. The data
were acquired while subjects were at rest or executed a simple motor task (open
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Fig. 16.3 Distribution of desynchronization durations for “Baseline distance � 3” (black) and
“Task C3-C4” (gray). Here, “>8” is a sum of the relative frequencies of all desynchronizations
longer than eight. Mean ˙ SD is presented

and close fists). The resulting distribution of the durations of desynchronizations
is presented in Fig. 16.3. In the rest state the pairs of distant electrodes, “Baseline
distance � 3”, were considered to minimize a cross-talk between nearby electrodes.
During a motor task, synchronization between a pair of electrodes over motor
cortices was analyzed,“Task C3-C4.”

The results do depend quantitatively on many factors, but qualitatively the
shortest possible desynchronization is always the most frequent: for different brain
rhythms, at rest and during a motor task execution, and for different arrangements
of considered electrodes.

16.3.2 Spikes and Local Field Potentials in the Basal Ganglia
of the Parkinson’s Disease Patients

A study by Park et al. [21] analyzed the fine temporal structure of the phase-locking
of neural oscillations in Parkinson’s disease in the subthalamic nucleus (STN, a
part of the basal ganglia, subcortical brain nuclei related to Parkinson’s disease).
Spiking units and LFPs were recorded with microelectrodes in a group of patients
during a neurosurgery to implant deep brain stimulator electrode. LFPs are usually
believed to be formed by synaptic currents and STN apparently lacks intranuclear
connections. Thus, unlike cortex, spikes and LFPs in STN are formed by different
processes. Episodes of beta-band activity were extracted from the data because
this activity is associated with hypokinetic motor symptoms of the disease. The
segments of data recordings with statistically significant synchrony strength were
further selected.
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Fig. 16.4 The distribution of the durations of desynchronization events in the data from patients
with Parkinson’s disease. The histograms of desynchronization event durations were computed in
two ways, unweighted (gray bars) and weighted (white bars) proportionally to the length of the
analyzed data segments. All durations that are greater than or equal to six cycles of oscillations are
pooled together in “>5” group

The distributions of the durations of desynchronization events in the resulting
data are presented in Fig. 16.4. The most frequent duration of desynchronization
events is the shortest one and the probability to observe a desynchronization event
of a duration decreases as the event duration increases. Two different ways of
computing the frequencies, unweighted and weighted proportionally to the length
of the analyzed data segments, yield qualitatively the same results.

Similar results were obtained after the analysis of the recordings from a different
brain nuclei, internal Globus Pallidus [27]. Modeling studies of the beta-band oscil-
lations in parkinsonian basal ganglia reproduce short desynchronization dynamics
even in very small networks [19, 20] and in more realistic, larger networks [22]
reach quantitative agreement with experiments.

16.3.3 Local Field Potentials in the Cortex and Hippocampus
in the Rodents Undergoing Behavioral Sensitization

Another application of the analysis of desynchronization durations to neurophysi-
ology was done at [5]. The data were recorded from hippocampus and prefrontal
cortex of rats undergoing the protocol of behavioral sensitization. This protocol
is used to study drug addiction in experimental animals and aforementioned brain
areas are known to be directly involved in the addiction phenomena. The animals
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received an injection of amphetamine every other days for several days. The dynam-
ics of theta-band oscillation were analyzed. In all animals (including the ones from
the control group) and at every stage of the protocol short desynchronizations were
observed most frequently. The distribution of the durations of desynchronization
events was different for different stages of the protocol, but short desynchronizations
always prevailed.

Interestingly, at the very beginning of the protocol, initial drug injection does
not alter average synchrony strength of theta-band oscillation. But the distribution
of desynchronization durations is changed in response to the action of the drug [5].
Eventually, after more injections, average synchrony started to exhibit differences
as well. There are two (not necessarily mutually exclusive) explanations for this.
The first one is that the distribution of desynchronization durations is altered
independently of average synchrony strength in an experiment. The second one is
that as desynchronization durations are reorganized, so the average synchrony is,
but it changes so weakly that the change of average synchrony has not been detected
statistically. Either way the distribution of desynchronization durations turns to be
more sensitive to the changes in a neuronal system, rather than average synchrony.

16.3.4 Cardiac and Respiratory Rhythms in Healthy Subjects
and Subjects with Coronary Artery Disease

Final experimental example considered here is the analysis of phase-locking
between respiration and heartbeat rhythms [6]. These rhythms are not usually
thought of as brain rhythms. However, respiratory rhythm is generated in the
brain and cardiac rhythm is generated by the electrically active cells in the heart’s
sinoatrial node, which bear some similarity to neurons (both cardiac cells and
neurons have active membrane channels and produce relaxational oscillations). It
is interesting to mention that cardiorespiratory phase-locking is almost never 1 W 1,
unlike the neurophysiological phenomena described above. In general, this is n W m
phase-locking, n and m are small integers, and respiration is a few times slower than
heartbeat. In the study [6] the methods described in the Sect. 16.2.2 were generalized
to 1 W m case. This generalization is relatively straightforward: the value of the phase
of the fast rhythm is recorded when the phase of the slow rhythm is going through
the checkpoint.

The results are qualitatively similar to the experiments with the neural signals
described above. The distributions of durations of desynchronization events do
depend on many factors such as age, coronary artery disease status, ratio of
frequencies of the oscillations. However, short desynchronizations are the most
prevalent (although their relative frequencies in cardiorespiratory synchronization
generally tend to be a bit lower than that in the neural systems described above).



272 L.L. Rubchinsky et al.

16.4 Discussion

Since neural synchronization is usually intermittent even in the rest states, the
analysis of distributions of synchronization and desynchronization intervals pro-
vides some interesting information about dynamics of neural systems. Properties
of the synchronization intervals in neural systems have been studied earlier in the
context of study of different types of intermittencies (e.g., [14, 15, 36]). But if neural
synchrony is weak (which is usually the case), substantial fraction of time is spent
in the desynchronized events. The studies reviewed in this paper indicate that quite
different neural systems share similar properties of desynchronization events, which
implies certain universality among these systems. We will discuss some potential
ramifications of these observations.

16.4.1 Measuring Fine Temporal Structure of Synchronized
Dynamics in Neuroscience

Measuring properties of desynchronization durations opens a way for two interest-
ing possibilities in neuroscience. The first one is the use of the desynchronization
durations as a diagnostic tool. The experiments with behavioral sensitization
discussed above indicate that the distribution of desynchronization durations may
be altered more easily than the synchrony strength and may serve as an early
predictor of less subtle changes in a neuronal circuit and its dynamics in response
to the drug injection. Perhaps properties of the distribution of desynchronization
durations may serve as a clinical tool to diagnose otherwise undetectable changes in
the neurophysiology.

The second one is the use of the desynchronization properties to match dynamical
models to the real systems. If a system spends a substantial fraction of time away
from synchronous state, then properties of the desynchronized states are important
in order to have an adequate model of this system. One possibility is to use the
transition rates, that describe the transitions between different parts of the phase
space, and to develop a model in such a way that these transition rates in the model
are matched to the ones derived from experimental data (like it was done in [9, 22]).
This kind of matching may be important in the modeling studies of the modulation
of synchrony in neuronal networks. If only the synchronized states in the model and
real phase space are similar, but peripheries of the phase spaces are organized in
different ways, then a modulation or stimulation during desynchronized episodes
may lead to different consequences in the model and real systems (see [9]).
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16.4.2 Potential Functional Significance of Observed Short
Desynchronizations Dynamics in Neural Data

An interesting similarity among several experimental results described in the
previous section is that in all these cases short desynchronizations dominate in the
time-series (the mode of distribution of desynchronization durations equals to 1).
For generic coupled oscillators, the mode of this distribution may have a higher
value. This distribution is defined by the properties of a phase space periphery away
from the synchronization state. Thus, for generic coupled oscillators, one may not
necessarily expect much of universality here. Unlike the loss of stability of synchro-
nization manifold, the reinjection mechanism is not necessarily universal. However,
neural desynchronizations in the brain under very much different conditions and
in different species appear to be universal: short desynchronizations prevail. There
may be something in the very common properties of neurons (perhaps properties of
kinetics of membrane channels), that universally facilitates short desynchronization
dynamics.

The observed prevalence of short desynchronizations naturally brings a question
of whether this property may have any significant functional advantage. We suppose
that short desynchronization dynamics may make neuronal circuits more amenable
to control by other brain parts or sensory inputs. Neural circuits need to be able to
transiently create some synchronized states in response to external inputs. Short
desynchronization dynamics means that although average synchrony is low, the
system moves into vicinity of a synchronized state fairly frequently. This also
implies that (for average synchrony been equal) synchronized state without inputs
should be relatively strongly unstable. This arrangement may be more conducive
to quick and efficient formation and break-up of transiently synchronized states in
response to the external inputs to the network.
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