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a b s t r a c t

Neural synchrony in the brain is often present in an intermittent fashion, i.e., there are intervals of
synchronized activity interspersed with intervals of desynchronized activity. A series of experimental
studies showed that this kind of temporal patterning of neural synchronization may be very specific
and may be correlated with behaviour (even if the average synchrony strength is not changed). Prior
studies showed that a network with many short desynchronized intervals may be functionally different
from a network with few long desynchronized intervals as it may be more sensitive to synchronizing
input signals. In this study, we investigated the effect of channel noise on the temporal patterns of
neural synchronization. We employed a small network of conductance-based model neurons that were
mutually connected via excitatory synapses. The resulting dynamics of the network was studied using
the same time-series analysis methods as used in prior experimental and computational studies. While
it is well known that synchrony strength generally degrades with noise, we found that noise also affects
the temporal patterning of synchrony. Noise, at a sufficient intensity (yet too weak to substantially
affect synchrony strength), promotes dynamics with predominantly short (although potentially very
numerous) desynchronizations. Thus, channel noise may be one of the mechanisms contributing to
the short desynchronization dynamics observed in multiple experimental studies.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Neural systems exhibit synchronization of oscillatory activ-
ty in a variety of different situations. This synchronization is
nvolved in multiple brain functions in cognitive and motor do-
ains (for example, see reviews by Buzsáki & Draguhn, 2004;
ell & Axmacher, 2011; Fries, 2015; Harris & Gordon, 2015).
isorganization of neural synchrony (such as excessively strong
r insufficiently strong synchrony) negatively affects the informa-
ion processing in the networks of the brain and is associated with
everal neurological disorders (such as Parkinson’s disease) and
sychiatric disorders (such as schizophrenia and autism spectrum
isorders), see Schnitzler and Gross (2005), Oswal et al. (2013),
ittman-Polletta et al. (2015) and Uhlhaas and Singer (2006).
Perfect synchrony is probably not achievable in the brain (at

east in the rest state). A moderate synchrony strength implies
hat synchrony is sometimes high and sometimes low, yielding
ome average synchrony strength level. This kind of temporal
atterning of synchronous activity may be independent of the
ynchronization strength (Ahn et al., 2018). Time-series analysis
echniques to quantify the temporal patterning of synchrony on
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893-6080/© 2021 Elsevier Ltd. All rights reserved.
very short time-scales (provided there is a statistically significant
synchrony overall) have been developed over the past decade
(e.g., Ahn et al., 2011; Park et al., 2010). These techniques re-
vealed that neural synchrony in the brain shows a very specific
patterning: it is interrupted by potentially numerous but very
short desynchronization episodes. This was observed in different
species (rodents, humans), different brain signals (spikes, LFPs,
EEG), different brain areas (cortex, hippocampus, basal ganglia),
and different brain states (healthy and diseased), see Ahn and
Rubchinsky (2013), Ahn et al. (2014), Malaia et al. (2020), Park
et al. (2010) and Ratnadurai-Giridharan et al. (2016) for the differ-
ent experiments. The distribution of desynchronization durations
is altered under different conditions. It was found to be related to
the severity of symptoms of Parkinson’s disease, addiction, and
autism (Ahn et al., 2014, 2018; Dos Santos Lima et al., 2020;
Malaia et al., 2020). However, the mode of this distribution is
always one (see studies mentioned above).

Thus, the mechanisms behind the short desynchronization
dynamics make an important problem to explore. Kinetics of
sodium and potassium spike-producing ionic channels in neurons
as well as spike-timing dependent plasticity can facilitate short
desynchronization dynamics (Ahn & Rubchinsky, 2017; Zirkle
& Rubchinsky, 2020). Noise can also potentially be a factor in
temporal patterning of synchrony, because noise is well-known
to affect synchronous dynamics in multiple ways from a straight-

forward decrease of synchrony under the action of noise to the
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ncrease of synchrony due to correlated noisy input (Goldobin
Pikovsky, 2005; Zhou et al., 2002) and can exert multiple ef-

ects on the synchrony between and within networks of neurons
e.g., McMillen & Kopell, 2003; Meng & Riecke, 2018; Zhou et al.,
013).
Noise is ubiquitous in neural systems (Ermentrout et al., 2008;

aisal et al., 2008). Thus, the question of how noise may affect the
emporal patterning of neural synchrony is very natural. Leaving
side the issue of what is noise in neural systems (Stein et al.,
005; Yarom & Hounsgaard, 2011), we will focus here on specific
ypes of noise. We will consider the effect of channel noise in
ndividual neurons (multiplicative noise) as well as the effect of
n additive noise on the temporal patterning of synchronized
ynamics in a network of synaptically coupled model neurons.
e show that both noise types can robustly alter the tempo-

al patterning of the synchronized dynamics, effectively short-
ning desynchronization intervals while simultaneously making
hem more frequent. This is similar to what one can observe in
xperimental data.

. Methods

To focus on the very basic aspects of the noise effect on the
emporal patterns of synchronization, we employ a minimal het-
rogeneous network of relatively simple model neurons following
hn and Rubchinsky (2017).

.1. Neuronal and Synaptic Modelling

We use the same neuronal and synaptic model as the one used
n Ahn and Rubchinsky (2017) and incorporate noise into it. This
s a two-dimensional ODE model, a simplification of the Hodgkin–
uxley model which is equivalent to the Morris–Lecar model. It is
ne of the simplest models of neurons that retain kinetics of ionic
hannels (which may be important for the temporal patterns of
ynchronized dynamics as suggested by Ahn & Rubchinsky, 2017).
he model takes the following form:
dv
dt

= −INa − IK − IL − Isyn + Iapp (1)

dw
dt

=
w∞ (v) − w

τ (v)
(2)

Here v is the membrane potential of a neuron and w is the gating
variable for the potassium current. The synaptic current between
neurons, Isyn, is described below. Iapp is a constant input current to
each neuron which controls the excitability of the cell. The spike-
producing sodium and potassium currents and the leak current
are described by:

INa = gNam∞(v)(v − vNa) (3)

IK = gK (w + ξ (t))(v − vK ) (4)

IL = gL(v − vL) (5)

gNa, gK , gL are the maximal conductances for the sodium, potas-
sium and leak currents, respectively. A Gaussian white noise term,
ξ (t), is added to the gating variable w. This introduction of noise
represents the inherently stochastic nature of the membrane ion
channels in neurons (Goldwyn & Shea-Brown, 2011). The steady-
state values for the gating variables of the sodium and potassium
currents are:

m∞ (v) =
1

1 + exp
(
−2 v−vm1

vm2

) (6)

w∞ (v) =
1

1 + exp
(
−2 v−vw1

) (7)

β

31
The voltage-dependent activation time constant of the potassium
current is:

τ (v) =
1
ε

∗
2

exp
(

v−vw1
2β

)
+ exp

(
vw1−v

2β

) (8)

All synapses are excitatory, and the synaptic current from each
neuron j ̸= i to neuron i is given by:

Isyn,i = gsyn(vi − vsyn)
∑
j̸=i

sj (9)

gsyn is the maximal conductance of the synapse (i.e., the synaptic
strength), and sj is the synaptic variable for neuron j and the
summation is taken over all neurons that are connected to the
ith neuron. The synaptic variable s is governed by:
ds
dt

=∝s (1 − s)H∞ (v − θv) − βss (10)

H∞ is a sigmoidal function whose input is the presynaptic neu-
ronal voltage:

H∞ (v) =
1

1 + exp
(
−

v
σs

) (11)

ith the exception of ∝s, the values of the cellular and synaptic
arameters are the same as used in Ahn and Rubchinsky (2017):
Na = 1, gK = 3.1, gL = 0.5, vNa = 1, vK = −0.7, vL = −0.4,

vm1 = −0.01, vm2 = 0.15, vw1 = 0.08, β = 0.145, Iapp = 0.045,
ε1 = 0.02 (unless noted otherwise as in 3.1 where different
values of ε are considered) and ε2 = 1.2ε1 are values of ε in two
different neurons, vsyn = 0.5, ∝s= 2, βs = 0.2, θv = 0.0, σs = 0.2.

We also simulated the neurons with a current noise (additive
noise) instead of a channel noise. The model is identical to the one
described above, except that the noise term is now an additive
term in the voltage equation:
dv
dt

= −INa − IK − IL − Isyn + Iapp + ξ (t) (12)

.2. Numerical implementation

Multiplying out the voltage equation from the multiplicative
oise section, we obtain the following Langevin-type equation:
dvi

dt
= A (v) + B(v)ξi (t) (13)

here A (v) and B (v) are the drift and diffusion terms, respec-
ively. In the case of additive noise we simply have
dvi

dt
= A (v) + ξi (t) (14)

e then solve the system numerically using the Euler–Maruyama
ethod (Gardiner, 2009; Higham, 2001). Here ξ (t) is white noise

hat is distributed as σ
√
dtN(0, 1), where σ ∈ [0, 0.02] is the

noise strength. This interval was chosen so that the noise could
be strong enough to induce a change in the temporal patterns
of synchronous dynamics, yet not destroy the inherent spiking
dynamics. The noise term for each neuron is generated with a
different seed, i.e., the noise terms for each neuron are uncorre-
lated. The unit of time in our system is millisecond. The system
was integrated on the time interval [0, 20000] with a time step
of dt = 0.01 ms. To account for the initial transient behaviour
the first 5% of the time-series was discarded from analysis.

Depending on which parameter value was varied, the voltage
threshold to define an action potential was set at either 0.20,
0.25 or 0.30. To eliminate the possibility of the channel noise
driving the membrane voltage over the threshold immediately
following an action potential, a window of 15 ms was set af-
ter each neuron’s action potential in which we do not count
threshold crossings. Since the highest recorded frequency was
approximately 40 Hz, a window of 15 ms is appropriate.
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.3. Synchronization data analysis

The time-series analysis of synchronized dynamics in the net-
ork follows the earlier study of a non-noisy version of this
odel (Ahn & Rubchinsky, 2017), and is similar to the analysis
f the temporal patterns of neural synchrony in the experimental
tudies mentioned in the Introduction. We will briefly describe
he major steps of the analysis here.

The phase, ϕ (t), of a neuron is defined as

ϕ (t) = tan−1
(

v (t) − v̂

w (t) − ŵ

)
(15)

here (ŵ, v̂) is a point selected inside the neuron’s limit cycle in
he (w, v) – plane. The synchronization strength is computed as

=

⏐⏐⏐⏐⏐⏐ 1N
N∑
j=1

exp
(
i∆ϕ

(
tj
))⏐⏐⏐⏐⏐⏐

2

(16)

here ∆ϕ
(
tj
)

= ϕ1
(
tj
)
− ϕ2(tj) is the difference of the phases of

neurons 1 and 2 at time tj. N is the number of data points. The
value of γ ranges from 0 to 1, which represent a complete lack
of synchrony and perfect synchrony, respectively.

The index γ represents an average value of phase-locking over
the interval of analysis. However, to describe how synchrony
varies in time, one needs to look at the transitions to and from a
synchronized state on short timescales. This is done as follows.

If there is some degree of phase-locking present, then there
is a synchronized state, i.e., a preferred value of the phase dif-
ference ∆ϕ. We check if the actual phase difference is close to
this preferred value or not for each cycle of oscillations. When
ϕ1 increases past zero, say at time ti, then ϕ2 (ti) is recorded.
This generates a sequence of numbers {ϕ2 (ti)}Mi=1. Due to the
presence of some synchrony, there is a clustering about some
phase value, say ϕ0. This is taken as the preferred phase value,
and if ϕ2 (ti) = ϕi differs from it by more than a threshold value
of π

2 (the same value as in the experimental studies described in
the Introduction) then the neurons are considered to be in the
desynchronized state, otherwise they are considered to be in the
synchronized state.

The length of a desynchronization event is defined as the num-
er of cycles the system spends in a desynchronized state minus
ne. The lengths of all desynchronization events are recorded, and
he mode of these lengths is considered as a way to describe
he distribution of desynchronizations (as in the experimental
tudies). For later reference, a ‘‘mode n’’ system or ‘‘mode n’’
ynamics means that the mode of all lengths of desynchro-
ization events for that particular system (that particular set of
arameter values) is n. Note that in this approach, the duration
f desynchronizations is measured in relative units (the number
f cycles of oscillations). We present examples of time-series and
ssociated distributions of desynchronization durations below in
he beginning of the Results section.

. Results

Following Ahn and Rubchinsky (2017), we used a simple het-
rogeneous network consisting of two neurons connected via
xcitatory synapses with the same synaptic strength (see Fig. 1).
s described in Methods, the values of ε (determining the potas-
ium current activation dynamics) differ slightly between the two
eurons, ε2 = 1.2ε1, hence their frequency of spiking is slightly
ifferent. Also, the strength of both synapses is gsyn = 0.005,

hence the coupling is weak. Due to the heterogeneity of the
network and the weak coupling, the synchronization strength
in the network is relatively weak. While this study considered
32
Fig. 1. The diagram of the minimal network: two cells mutually connected with
mutually excitatory synapses.

network heterogeneity due to different values of ε in neurons,
we also performed a series of simulations, where a similar level of
heterogeneity is achieved via difference of gK or Iapp. The resulting
effect of the noise action on the patterns of synchrony was similar
to the one observed in the networks heterogeneous in ε, and thus
as not studied in detail and is not reported here.
Fig. 2 presents an example of time-series of two neurons

Fig. 2A) and phase plane illustrations of these neurons (Fig. 2B)
n uncoupled, coupled, and coupled with noise cases. Note that
he coupling is not strong enough to lead to strong synchrony,
nd that noise levels considered here do not substantially alter
he shape of the spike and phase plane trajectory or substantially
ffect synchrony strength. This lets us to focus on the action of
oise on the temporal patterning of synchronous dynamics.
Based on the noiseless case considered in Ahn and Rubchinsky

2017) and similarly to Zirkle and Rubchinsky (2020), we vary the
alues of parameters of the potassium current kinetics in such a
ay as to change the dynamics of the noiseless network from
xhibiting predominantly short desynchronizations (i.e., those
bserved in experiments) to one with longer desynchronizations.
hese parameters are ε, the reciprocal of the peak value of the ac-
ivation time-constant τ (v), β , the widths of the activation time-
onstant τ (v) and the steady-state activation function w∞(v),
nd vw1, the voltage of half-activation and of the peak activation
onstant. Variation of either of these three parameters effectively
hanges the voltage-dependent activation time-constant τ (v) to
ither large or small, which delays or accelerates the activation
f potassium current, respectively (and changes the waveform of
scillations from spiky to more sinusoidal).

.1. Variation of ε

We first will explore if the channel noise preserves the preva-
ence of short desynchronizations or not. Smaller values of ε

orrespond to larger values of τ (v) and are known to promote
hort desynchronization dynamics (Ahn & Rubchinsky, 2017);
maller values of ε also result in a lower frequency. For ε1 =

.044, the noiseless system is mode 1 (i.e., the mode of the
istribution of all desynchronization event lengths is one cycle
f oscillation). This is similar to the experimental results (see In-
roduction). As the strength of the noise is increased, we see from
ig. 3A that the system remains mode 1. It is worth noting, that
he average synchrony strength stays virtually the same (Fig. 3B).
f course, a very strong noise will change it, but the noise range
e consider here is sufficiently weak so as to not affect the
verage synchrony strength γ . We also plot the frequency of
scillations (firing rate) in Fig. 3C. The noise does not change it
n a substantial way either, although we include it here because
t is affected by the change of ε and other channel parameters.

The effect of channel noise on the distribution of desynchro-
ization durations for ε1 = 0.044 is shown in Fig. 4. The strength
f the noise increases from left to right, and the effect is to
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Fig. 2. Voltage time-series (A) and phase plane trajectories (B) of two neurons in the network (solid black and dashed grey lines). Top row is the case of uncoupled
neurons, middle row is the case of weakly coupled neurons, and the bottom row is the case of coupled neurons with noise (ε1 = 0.044 and the noise level in the
ottom row is σ = 0.0149).
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roaden the distribution while maintaining a mode of 1. Fig. 4C
or instance, is qualitatively similar to distributions obtained from
revious studies conducted on experimental data (see references
n Introduction).

We now explore how the network with longer desynchro-
izations in the noiseless case will respond to noise. For this
e consider a higher value of ε; for ε1 = 0.132, the noise-

ess network is mode 2. As the noise strength is increased the
ode of the system shifts from 2 down to 1 (Fig. 5A). This is
ot a fully monotonous transition. Several other noise-induced
ransitions between dynamics with different modes considered
elow are not monotonous either. Moreover, the mode is just
convenient characteristic of the desynchronization episodes.
hey may experience more gradual changes not captured by
he mode. However, the results indicate that on a larger scale,
here is a clear noise-induced transition from longer to shorter
esynchronizations. Once again, the average synchrony strength
33
nd the frequency of firing are nearly constant with respect to
he noise strength (Fig. 5B and C). This will be the case for all the
ituations considered here, reflecting the fact that the noise we
se is effectively weak. This indicates that the distribution of the
esynchronization durations can be altered independently of the
verage synchrony strength and the frequency of oscillations by
arying the noise strength.
The effect of channel noise on the distribution of desynchro-

ization durations for ε1 = 0.132 is shown in Fig. 6. The strength
of the noise increases from left to right, and the effect is to
simultaneously broaden the distribution and shift the mode from
2 down to 1.

We note that the same trend was observed for systems with
larger modes, i.e., a strong enough noise shifts the mode of a
system down to one. For example, for ε1 = 0.184 the noiseless
system is mode 4. However, if the noise is sufficiently large (yet
small in a sense that it does not alter the shape of oscillations
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Fig. 3. The effect of noise on synchrony properties of the network for the case of small ε (ε1 = 0.044), which exhibits mode 1 desynchronization dynamics in the
oiseless case. The strength of the noise σ is varied along the horizontal axes. A: mode of the distribution of desynchronization durations, B: average synchrony
ndex γ , C: mean oscillation frequency (firing rate) of the system.
Fig. 4. Distributions of desynchronization durations for different levels of noise in the network exhibiting mode 1 desynchronization dynamics in the noiseless case
(ε1 = 0.044). Noise strength increases from left to right: A: σ = 0 (no noise), B: σ = 0.0097, C: σ = 0.02.
Fig. 5. The effect of noise on synchrony properties of the network, which exhibits mode 2 desynchronization dynamics in the noiseless case (ε1 = 0.132). The
trength of the noise σ is varied along the horizontal axes. A: mode of the system, B: average synchrony index γ , C: mean oscillation frequency (firing rate) of the
ystem.
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uch and does not alter average synchrony), it will shift the
ystem to mode 1 dynamics.

.2. Variation of β

We again will first explore if the channel noise will preserve
he prevalence of short desynchronizations or not under the
ariation of parameter β . The parameter β changes the widths of
he voltage-dependent time-constant of activation τ (v) and the
width of the steady-state activation function w∞(v) for potassium
urrent. Large values of β correspond to the larger width of
he sigmoidal function w (v) and to the larger width of the
∞

34
bell-shaped function τ (v). Both changes effectively delay the
ctivation of the potassium current and are known to promote
hort desynchronization dynamics (Ahn & Rubchinsky, 2017). For

= 0.131, the noiseless system is mode 1. We see in Fig. 7A
hat the mode of the system is unchanged as noise is added and
ts strength is increased. The synchrony index and the frequency
f the system are virtually unchanged from that of the noiseless
ystem and are therefore not plotted.
Now, let us look at a longer desynchronization case obtained

y varying β . For β = 0.080, the noiseless system is mode 2.
For small noise strengths, the system remains mode 2, but for
larger values the system becomes mode 1 (Fig. 7B), although
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Fig. 6. Distributions of desynchronization durations for different levels of noise in the network exhibiting mode 2 desynchronization dynamics in the noiseless case
(ε1 = 0.132). Noise strength increases from left to right: A: σ = 0 (no noise), B: σ = 0.0097, C: σ = 0.02.
Fig. 7. Effect of the noise strength σ on the mode of the desynchronization durations distribution for A: the network, which exhibits mode 1 desynchronization
ynamics in the noiseless case (β = 0.131) and B: the network, which exhibits mode 2 desynchronization dynamics in the noiseless case (β = 0.080).
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his transition is not fully monotonous with respect to the noise
trength. Again, the shift in mode is independent of the average
ynchrony index or the mean firing frequency, which do not
ubstantially change with noise (even though they are different
rom those in the network with β = 0.131).

.3. Variation of vw1

The parameter vw1 affects a horizontal translation in w∞(v)
nd τ (v). In particular, increasing vw1 shifts both curves to the
ight, i.e., towards higher voltages. For the spike generation in
he considered model neuron, it results in a faster potassium
urrent activation. Smaller values of vw1 result in shorter desyn-
hronization durations (Ahn & Rubchinsky, 2017). For vw1 =

.096, the noiseless system is mode 1. All channel noise strengths
onsidered preserve this mode 1 dynamics (Fig. 8A).
Now we set the parameter vw1 = 0.169 so as to place the

oiseless network in mode 2 dynamics (longer desynchroniza-
ions). As we vary the noise magnitude from zero to larger values,
he network exhibits a tendency for mode 1 (short desynchro-
izations) dynamics. This is not a monotonous transition, and
ith moderate noise the network may exhibit desynchroniza-
ions both shorter than in the noiseless case and longer than
n the noiseless case. But a strong enough noise will shift the
ode to one creating short desynchronization dynamics similar

o experimentally observed ones (Fig. 8B). As earlier, in all the
ases considered here, the frequency of oscillations is not altered,
nd the average synchrony strength only varies slightly (even
35
hough they are different in the network with different values of
w1 considered here).

.4. Variation of βw and βτ

Variation of the previous parameters, i.e., ε, β and vw1, can
affect the average synchronization strength and frequency of
firing in addition to changing the durations of desynchroniza-
tions. For example, for β = 0.065 (and other parameter values
as described above) the system exhibits a frequency of about
41 Hz (and desynchronization durations mode 1, 2 or 3 depending
on the strength of the noise). While for β = 0.131 the fre-
quency is about 14 Hz. Thus, when we are changing the values
of parameters to explore the effect of noise on the temporal
patterns of synchronization, we do not keep the frequency of
oscillations and average synchrony strength fixed. To take care
of this issue, i.e., to use noise to control the mode of a noiseless
system while keeping both the average synchrony strength and
firing frequency near constant, one can take the parameter β
and separate it into two independent parameters, βτ and βw ,
or τ (v) and w∞(v) respectively. The result is that the mode of
he system is essentially independent of the synchrony strength
nd frequency as these two parameters are varied simultaneously
Ahn & Rubchinsky, 2017). A smaller βw and larger βτ result in
horter desynchronization durations even though frequency and
verage synchrony stay basically the same.
For βw = 0.098, βτ = 0.079 the noiseless system is mode 1.

s illustrated in Fig. 9A1, the mode remains at one even with the
ntroduction of noise, regardless of the noise strength.
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Fig. 8. The effect of the noise strength σ on the mode of the desynchronization durations distribution for A: the network, which exhibits mode 1 desynchronization
dynamics in the noiseless case (vw1 = 0.096) and B: the network, which exhibits mode 2 desynchronization dynamics in the noiseless case (vw1 = 0.169).
Fig. 9. The effect of the noise on the mode of the desynchronization durations distribution in the networks, which exhibits mode 1 desynchronization dynamics
(row 1, βw = 0.098, βτ = 0.079) or mode 2 desynchronization dynamics (row 2, βw = 0.120, βτ = 0.068) in the noiseless case, but otherwise have similar average
ynchronization strength and firing rate. The strength of the noise σ is varied along the horizontal axes. A: mode of the distribution of desynchronization durations,
: average synchrony index γ , C: mean oscillations frequency (firing rate) of the system.
For βw = 0.120, βτ = 0.068 the noiseless system is mode 2,
oreover, the average frequency of oscillations and the average
ynchronization strength stay the same as in the mode 1 case
bove. Introduction of noise of sufficiently large strength again
eads to shortening of desynchronizations and mode 1 dynamics,
ee Fig. 9A2. Not only do the frequency and average synchrony
trength not change with respect to noise (Fig. 9B2 and C2), but
heir values are not substantially different from those in Fig. 9B1
nd C1.
36
3.5. Additive noise

We also consider the action of an additive noise (current
noise) on the temporal patterning of the synchronized dynamics.
Thus, we consider here the action of additive (current, activity-
independent) noise as opposed to the multiplicative (channel,
activity-dependent) noise. We use the same framework, look-
ing at different variations of parameters and resulting modes
of desynchronization duration distributions as described in the
previous sections. Since the effects of parameter selection have
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Fig. 10. The effect of additive noise on mode of the desynchronization durations distribution. The strength of the noise is varied along the horizontal axes. A:
the network, which exhibits mode 1 desynchronization dynamics in the noiseless case, B: the network, which exhibits mode 2 desynchronization dynamics in the
noiseless case. The four rows present the networks with parameters considered in the sections 3.1–3.4, except that the noise is additive here.
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een already described above, we will just briefly present the
esults here.

In general, the effect of an additive noise on a system is very
imilar to the effect of the conductance noise, i.e., the mode of
system is switched down to one at sufficiently strong noise

trengths. Thus, Fig. 10 is similar to figures in 3.1–3.4 above.
he changes of average synchrony and firing frequency are not
lotted, because they do not experience any substantial variation
or the considered range of noise strength. For variation of ε

results refer to the first row in Fig. 10, for variation of β results
refer to the second row in Fig. 10, for variation of vw1 results refer
to third row in Fig. 10, and for variation of βw , βτ results refer to
the last row in Fig. 10.

4. Discussion

Our study considered intermittent synchronization of oscilla-
tions in a minimal network of two synaptically coupled neurons.
In general, as the coupling strength between oscillators increases,
the synchronization strength will increase from a low to high
level (Pikovsky et al., 2001). Moderate values of coupling nat-
urally give rise to intermittent synchrony, where episodes of
strong synchrony are interspersed with episodes of desynchro-
nized dynamics. The same level of synchrony may be reached
with a few long desynchronizations, many short desynchroniza-
tions, and many possibilities in between. Here we considered
how noise will affect the temporal patterning of moderately
synchronous dynamics.

We showed that weak noise may alter the temporal patterning
of synchrony and starting from certain magnitude it leads to the
synchronized activity punctuated by very short desynchroniza-
tions. That is, with noise of sufficient magnitude, the distribution
of desynchronization durations has a mode of one. This is the case
for both channel (or conductance) noise and current noise (i.e., for
both multiplicative and additive noise). Interestingly, this reor-
ganization of the temporal patterning of synchrony is achieved
with relatively weak noise, so that the average synchronization
strength is not substantially changed.

The observed phenomena are interesting to consider in the
context of the experimental results on the temporal patterning of
neural synchrony in the brain. Multiple experiments show that
moderately synchronized brain activity at rest has a very spe-
cific temporal pattern: most of the desynchronizations are very
short, lasting for just one cycle of oscillation (Ahn & Rubchinsky,
2013; Ahn et al., 2014; Malaia et al., 2020; Park et al., 2010);
see also Introduction). This study suggests that noise may be
one of the factors promoting this regime of desynchronization
dynamics. Naturally, real neurons are noisy, and there may be
many sources of this noise (in particular, depending on the scale
of the system considered). Multiplicative noise considered here
is a good way to describe inherent stochasticity of ion channels
in neural membranes (Goldwyn & Shea-Brown, 2011). Additive
noise may represent stochastic inputs to neurons. Both are nat-
urally occurring in the brain and the effect of either on the
temporal patterning of synchrony is robust: it promotes short
desynchronizations as in the experiments.

Other potential mechanisms of experimentally relevant short
desynchronizations dynamics have been considered and include
the specific kinetics of the ionic channels (Ahn & Rubchinsky,
2017) and spike-timing dependent plasticity (Zirkle & Rubchin-
sky, 2020). The stochastic mechanism of the short desynchroniza-
tion dynamics considered here is not necessarily mutually exclu-
sive with those mechanisms, rather all of them may potentially
act in a cooperative manner.

It is important to note the limitations of the study. The net-
work studied here is a minimal network. Real neural networks of
38
the brain have, of course, a much more complicated organization.
The same consideration applies to the relatively simplistic model
neurons used here. However, the robustness of the effect of noise
even in this simple system may indicate that it is likely to persist
on a larger scale. Also, this study does not provide an exhaustive
quantitative description of the noise action. Rather it illustrates
what the noise is capable of in terms of synchronization dynamics
changes.

Finally, we would like to note that noise may exert differ-
ent positive effects in the brain, such as increased reliability,
sensitivity, and regularity (e.g., Ermentrout et al., 2008; Faisal
et al., 2008). For example, a well-known effect of stochastic res-
onance (response to a weak signal improved by noise) has been
described in neuronal networks and the whole brain experimen-
tally (e.g., Gluckman et al., 1996; Ward et al., 2010). It also has
long been discussed that noise (and, broadly speaking, various
irregularities) may benefit neural systems because irregularities
help networks to exhibit a wide repertoire of different dynam-
ics (e.g., Garrett et al., 2011; Ghosh et al., 2008; McDonnell &
Ward, 2011; Rabinovich & Abarbanel, 1998; Yarom & Hounsgaard,
2011). Perhaps somewhat similarly, noise effects the temporal
variability of neural synchrony in such a way as to create a
system with very dynamic behaviour in the form of short desyn-
chronizations dynamic. The latter may (as was argued in Ahn &
Rubchinsky, 2013, 2017) lead to a network which can quickly,
and efficiently, form and break-up transient neural assemblies to
perform associated neural functions.
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