
Logistic Regression
(A Subtitle Would Go Here if you wish)

Honglang Wang

Department of Mathematical Sciences, IUPUI



• Up to now, we’ve used statistical methods to investigate the
relationship of two variables when

• the response variable is quantitative and the explanatory variable is
categorical (comparing two means, ANOVA);

• the response variable is categorical and the explanatory variable is
categorical (comparing two proportions, contingency table);

• the response variable is quantitative and the explanatory variable is
quantitative (linear regression).

• What if the response variable is categorical and the explanatory
variable is quantitative ?



• For example, a credit card company is concern about whether their
card members would pay a bill on time or not. They may use the size
of bill, annual income, and other information of members to predict
the probability that they would pay the bill on time.

• In this unit, we are going to study the logistic regression model to
deal with the situation when the explanatory variable is quantitative
and the response variable variable is categorical (specifically, the
response variable is binary “yes/no”).



Logistic Regression

• Logistic regression model:

1. Use logistic regression to model the binary data given some
quantitative explanatory variable

2. Estimate model parameters
3. Inference



Logistic Regression

Example 9.1 The field goal is a critical scoring play in the National
Football League (NFL). The attempt distance is the primary factor
determining success. The data collected here includes all NFL field goal
attempts in 2003. For each attempt, the attempt distance x (yards) and
the success indicator y were recorded, where y = 1 represents success and
y = 0 represents failure. Overall we have 948 pairs of data (xi , yi). The
problem we are interested in here is how the probability of success would
be affected by the attempt distance.



Logistic Regression

1. Exploratory data analysis (abbr. EDA)
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Q1: Scatterplot? Good or not?
Q2: Simple linear model (y = β0 + β1x + ε)?



Logistic Regression

• Given attempt distance, count the number of success and the number
of failure.

20 30 40 50 60

0
5

10
15

20
25

30
35

yards

the number of success
the number of failure



Logistic Regression
• Given attempt distance, calculate the probability of success. Q: Linear

pattern?
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Logistic Regression

• Perform logit transform on the probability of success
logit(π) = log( π

1−π ). Q: Linear pattern?
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Logistic Regression

2. Simple logistic regression

• Based on the previous EDA, we can see that the probability of success
depends on the attempt distance of field goal.

• Given x , assume that the probability of success is π(x). Then the
corresponding success indicator y is distributed as

y 1 0
p(y) π(x) 1 − π(x)

Actually, y follows binomial distribution with n = 1 and π = π(x).



Logistic Regression

• We found that logit(π(x)) = log π(x)
1−π(x) has linear pattern with

respect to x from our observed data. So given x , we model
logit(π(x)) as a linear function of x , that is

logit(π(x)) = β0 + β1x .

• Therefore, the probability model for simple logistic regression can be
represented as follows,

Given x , y ∼ Binomial(1, π(x)),

logit(π(x)) = log π(x)
1 − π(x) = β0 + β1x .

• The sign of β1 determines whether π(x) is increasing or decreasing as
x increases. If β1 = 0, y is independent of x .



Logistic Regression

2. Estimate model parameters (β0, β1)

• The probability of observing yi given xi known:

π(xi)yi (1 − π(xi))1−yi .

• If yi = 1, then the chance is π(xi );
• If yi = 0, then the chance is 1− π(xi ).

• The likelihood function of the observed (y1, y2, ..., yn):

n∏
i=1

π(xi)yi (1 − π(xi))1−yi ,where π(xi) = exp(β0 + β1xi)
1 + exp(β0 + β1xi)

.

• Indeed, the likelihood function is a function of β0, β1 and we can
denote it by L(β0, β1).



Logistic Regression

• Maximum likelihood estimation: The likelihood function L(β0, β1)
defined above actually measures the probability of observing
(y1, ..., yn). So the best estimators for β0, β1 would be the ones that
maximize the likelihood function, that is, finding β̂0 and β̂1 such that

L(β̂0, β̂1) = maxβ0,β1L(β0, β1).



Logistic Regression

Use the following R code we can get β̂0, β̂1.

data <- read.table("fieldgoal.dat",head=F)
y <- data[,2]
x <- data[,1]
myglm <- glm(y ~ x, family=binomial("logit"))
#the estimated beta0, beta1
beta0 <- round(coef(myglm)[1],3)
beta1 <- round(coef(myglm)[2],3)
c(beta0,beta1)

## (Intercept) x
## 5.698 -0.110



Logistic Regression
The fitted probability of success π̂(x) = e5.698−0.11x

1+e5.698−0.11x .
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Logistic Regression

3. Inference

• Q1: In practice, π(x)
1−π(x) is called odds ratio. The logistic regression

basically assume the log of odds ratio has linear pattern with respect
to explanatory variable x . In Example 9.1, is the log of odds ratio a
linear function of the attempt distance?

• Consider the test

H0 : β1 = 0 vs. Ha : β1 6= 0.

• When the sample size is large, we could use Wald test, that is

z = β̂1

se(β̂1)
∼ Normal(0, 1) if H0 is true,

where se(β̂1) means the standard error of β1.



Logistic Regression

• We can find se(β̂1), z value and even the p-value using R software,

round(summary(myglm)$coefficients,3)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.698 0.451 12.631 0
## x -0.110 0.011 -10.385 0

From the R output, we can see the observed z value is −10.385 and hence
the p value is almost zero. So we reject the null hypothesis, which means
there is strong evidence that the log of odds ratio is a linear function of
the attempt distance.



Logistic Regression

• Q2: Given x0 = 40, construct the 95% confidence interval for the
probablity of success π(x0).

• When sample size is large, the 95% confidence interval for log of odds
ratio logit(π(x0)):

(c1, c2) := (β̂0 + β̂1x0)± 1.96× se(β̂0 + β̂1x0),

where se(β̂0 + β̂1x0) is the standard error of β̂0 + β̂1x0.
• So the 95% confidence interval for the probability of success π(x0) is(

ec1

1 + ec1
,

ec2

1 + ec2

)
.



Logistic Regression

• Using R, we can find out π̂(x0) and se(π̂(x0)), and then construct the
95% confidence interval for the probability of success π(x0) when
x0 = 40.

pred.glm <- predict.glm(myglm, data.frame(x = 40),
se.fit=TRUE)

#95% CI for odds ration
OR <- c(pred.glm$fit-1.96*pred.glm$se.fit,

pred.glm$fit+1.96*pred.glm$se.fit)
#95% CI for pi(x)
CI.pi <- round(exp(OR)/(1+exp(OR)),4)
names(CI.pi) <- c("2.5th", "97.5th")
CI.pi

## 2.5th 97.5th
## 0.7551 0.8141


