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Abstract

In this paper, we take a look at two regression methods, namely, the Least Squares method
and the Theil-Sen estimator. The Least Squares method is the most common estimator, but
it is known to lack efficiency with non-normally distributed error terms and to lack robust-
ness to outliers. The Theil-Sen estimator is based around the median and is consequently far
more robust to outliers. We take a look at both estimators in simple linear regressions and in
multivariate models to compare the robustness and efficiency of each.

Keywords: Breakdown point, efficiency, Least Squares estimator, robustness, spatial median,
Theil-Sen estimator.

1 Introduction

Ever since it was introduced by Gauss and Legendre in the early 1800’s, the Least Squares (LS)
method has become the cornerstone of classical statistics. Because the LS estimator is easy to
compute and the most efficient for regressing data with normally distributed errors terms, it is
commonly used for both simple and multiple regression models in many applications. However,
the LS estimator has two major defects. First, it is not very efficient for regressing data with error
terms that follow non-normal distributions, especially discrete ones. Second, the LS estimator is
very sensitive to outliers. One bad observation may destroy the whole regression line. Therefore, in
recent years, many new linear regression estimators have been introduced in hopes of solving these
problems. For example, Edgeworth proposed the Least Absolute Values estimator in 1887. Huber
proposed the M-estimators in 1973. Rousseeuw proposed the Least Median of Squares estimator
and the Least Trimmed Squares estimator in 1984. ([6])
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Our research is focused on the Theil-Sen (TS) estimator. Theil first proposed this method in 1950 as
the median of pairwise slopes in a simple linear model. Sen then extended the Theil-Sen estimator in
1968 to handle ties. Several research studies have concluded that the TS estimator is highly robust,
has a bounded influence function, and possesses high asymptotic efficiency ([3], [13]). Other studies
discuss the asymptotic properties and behaviors of the TS estimator ([9], [12], [7]). Peng et al also
show the super-efficiency of the TS estimator when the error term distribution is discontinuous at
some point ([7]). Dang et al ([2]) extend the TS estimator to a multiple linear regression model
and propose the use of multivariate medians. In particular, they implement the concept of spatial
depth and use the spatial median to define the multivariate median of the estimator. Since the
TS estimator is gaining popularity, it is also included in several textbooks on nonparametric and
robust statistics, including works by Sprent ([10]), Hollander and Wolfe ([5]), and Rousseeuw and
Leroy ([6]).

Since the TS estimator offers great robustness against outliers, simplicity in computation, analytical
estimates of confidence intervals, and testable assumptions regarding residuals, it is used more and
more in various fields of study. For example, Akritas et al discuss the usage and advantage of
the TS estimator for linear regressions with double censored data in applications in astronomy.
Also, the TS estimator is useful in estimation of circular arcs and aligned ellipses ([1]). It is also
suggested as a potential replacement of the ordinary LS estimator for linear regression in remote
sensing applications ([4]).

The TS estimator is already known to be more robust than the Least Squares method. The purpose
of our research is to empirically test and demonstrate the efficiency of the TS estimator for both
simple and multiple linear regression models. We compare the variance of the TS estimator with
that of the LS estimator in a simple linear model with five different symmetric error term distri-
butions including a normal, a uniform, a binomial, a T3, and a Cauchy distribution. We compare
the variance of each TS estimate with that of the corresponding LS estimate in a multiple linear
model with different error terms from the same set of five distributions as well as the covariance
matrices of each of the estimates.

We find that in the simple linear model, when the error terms follow a light-tailed continuous
distribution, such as the normal or the uniform distribution, the TS estimator is only slightly
less efficient than the LS estimator. We see the Theil-Sen estimator perform better with a T3
distribution, and we get drastically lower variance with the Cauchy distribution in comparison to
the Least Squares method. Also, when the error terms follow a discrete distribution, such as the
binomial distribution, the TS estimator is far more efficient than the LS estimator.

For our multiple linear model, when the sample size is large enough (at least 50), the TS estimator
is consistently less efficient than the LS estimator only in the models with normally distributed and
uniformly distributed error terms. When the error terms follow a T3 or Cauchy distribution, the TS
estimator is again typically better. In fact, our results suggest that as the distribution of the error
terms moves from center focused to more and more heavy-tailed, the TS estimator gains efficiency
over the LS estimator. For the binomial distribution, the LS estimator is better for smaller sample
sizes, but as the size increases, we see the Theil-Sen estimator become the more efficient method.

The rest of the paper is organized as follows. In Section 2, we first briefly discuss the advantages
the TS estimator has over the LS estimator in robustness. Then we show the simulation set up for
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our simple linear model and the comparison of efficiency between theoretical variance and variance
from our simulation for the LS estimator. Finally, we give the results of comparison between the
TS and LS estimator efficiencies. In Section 3, we first introduce the measure of spatial median,
and then we apply the spatial median to our multiple linear model. We discuss the simulation
set up for the multiple linear model and give the results of our relative comparison between the
parameters of the TS and LS estimators. We use covariance matrices formed from our multivariate
estimates to calculate the relative efficiency of the two methods. We also discuss the usage and
advantage of a random stochastic procedure for the multiple linear regression. Section 4 gives a
summary of our results and our conclusion after investigating both estimators.

2 Simple Linear Model

In a simple linear regression model, we typically have

yi = α + βxi + ei, i = 1, ..., n

where the error term ei is taken independently from some distribution and the intercept α and the
slope β are the parameters to be estimated. We use α̂ and β̂ to represent the respective estimations
of α and β.

The Least Squares estimation is accomplished by minimizing the sum of squared errors (SSE). So
we have [

α̂

β̂

]
= argmin

(α,β)T

n∑

i=1

r2
i = argmin

(α,β)T

n∑

i=1

[yi − (α + βxi)]
2

where each ri is the residual or the difference between the observed and estimated values.

The LS estimator is given by:

β̂LS =

∑n
i=1 (xi − x̄)(yi − ȳ)∑n

i=1 (xi − x̄)2

The TS estimator is proposed as the median of all
(
n
2

)
pairwise slopes of the n points in a set of

data. Namely,

β̂TS = med

{
yj − yi

xj − xi

, xi 6= xj , 1 ≤ i < j ≤ n

}

Both β̂LS and β̂TS are consistent and unbiased estimators of β, meaning that β̂n
p
→ β and E(β̂) = β.

When comparing methods of regression, two things we are most interested in are efficiency and
robustness. The efficiency measures how well the results from the regression describe the relation
between the response variable and the explanatory variables while robustness measures the extent
to which the regression results will be affected by outliers. A common measure of robustness for
regression estimators is the breakdown point. Generally speaking, the breakdown point is the
percentage of outliers needed in a set of data to have an arbitrarily large effect on an estimator.
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Two common measures of efficiency are the Mean Squared Error (MSE) and V̂ ar(β̂), which are
calculated as follows:

MSE =
1

N

N∑

i=1

(β̂i − β)2 =
1

N

N∑

i=1

[
(β̂i − β̄)2 + (β̄ − β)2

]

V̂ar(β̂) =
1

N

N∑

i=1

(β̂i − β̄)2

where N is the number of repetitions, β is the true slope of the line, β̂i is the estimated slope
each time, and β̄ is the mean of all β̂i’s. However, when the sample size is large, β̄ ≈ β since β̂

is unbiased, and thus (β̄ − β)2 ≈ 0. Hence, MSE ≈ Var(β̂). Thus the relative efficiency of one
estimator to the other, in this case of β̂TS to β̂LS , is defined as either of the following:

RE(β̂TS , β̂LS) =
MSE(β̂LS)

MSE(β̂TS)
or RE(β̂TS , β̂LS) =

V̂ar(β̂LS)

V̂ar(β̂TS)

In this research study, we choose to use the second expression to calculate our relative efficiency.
Now, we will take a look at the assumptions of the two estimation methods and the effects of those
assumptions.

The classical assumption for the LS estimator is that the error terms come from a normal distri-
bution and are homoscedastic. Under those assumptions, the LS estimator has been proven to be
the optimal estimator, and its efficiency cannot be surpassed. However, when the error terms are
normally distributed but heteroscedastic, the efficiency of the LS estimator can be relatively poor
and the usual confidence interval for the slope can have highly unsatisfactory probability coverage.
When the error terms are non-normally distributed, its efficiency is even worse ([13]). Also, since∑n

i=1 r2
i is dominated by larger ri’s, the LS estimator is subject to the influence of the outliers. It

is especially vulnerable to outliers in one of the explanatory variables ([6]).

On the other hand, the TS estimator does not require strict assumptions. It works well when the
error terms follow any distribution. It is especially efficient when the error terms follow a discrete
distribution, and this has been called the superefficiency property. Since the TS estimator gathers
information about central tendency from the median, it is naturally less affected by the occurrence
of outliers in a set of data. In addition, it is also robust against outliers in explanatory variables
where as some other methods, such as the Least Absolute Deviation estimator, are only robust
against y-outliers.

The robustness of Theil-Sen estimators to outliers in a simple linear regression can easily be demon-
strated with a small example. Consider the set of data where y = 10 + 3x + e with a normal error
distribution e ∼ N(0, 4) and where x is a sequence from 1 to 20. Both the Least Squares method
and Theil-Sen perform well for estimating the true regression line as shown in the graph below
in Figure 1. However, when outliers are created in the y values of the data (shown in the graph
by triangles), the robustness of the Theil-Sen estimator in comparison with Least Squares is clear.
The slope of the least squares estimate is drastically affected while the Theil-Sen estimate shows
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almost no effect and gives a close estimation of the true regression line. This is depicted in Figure
1, and the actual estimates are shown in the following equations:

True Regression Line y = 10 + 3x
LSE without outliers y = 10.06 + 3.03x

TSE without outliers y = 10.03 + 3.05x

LSE with outliers y = 25.39 + 1.99x

TSE with outliers y = 10.35 + 3.00x
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Figure 1: The Robustness of the Least Squares and Theil-Sen Estimators for Outliers in the y

Values

Figure 2 illustrates an image similar to that in Figure 1, but the two added outliers are in the x

values instead of the y values. Note that when the distortion is caused by outliers in explanatory

5



variables, the LS estimate is again affected while the TS estimator still gives a close estimation of
the slope. The regression lines are shown in the following equations:

True Regression Line y = 10 + 3x
LSE without outliers y = 10.06 + 3.03x

TSE without outliers y = 10.03 + 3.05x

LSE with outliers y = 20.53 + 1.75x

TSE with outliers y = 11.66 + 2.89x
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Figure 2: The Robustness of the Least Squares and Theil-Sen Estimators for Outliers in the x

Values

We have already demonstrated the high sensitivity of the LS method to outliers. In Figures 1 and
2, two outliers cause the LSE to perform poorly. In fact, it only takes one extreme point to send
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the LS estimator to infinity. Thus, the breakdown point for LSE equals 1
n

for a sample size n.
This value is 0 in the limit as n approaches infinity, so the Least Squares method is said to have a
breakdown point of 0%. ([6])

In Figures 1 and 2, the TS estimator was shown to be much less sensitive to outliers than the LS
estimator. This is naturally the case since the TSE is created around the concept of a median,
which is a much more robust measure of central tendency. For the TSE in a simple regression to
remain unaffected by outliers, we need at least half of the pairwise slopes to have both points in
the “good” set of data. As demonstrated by Dang et al ([2]), if we let ε represent the fraction of

“bad” observations, we need
(⌈n(1−ε)⌉

2 )
(n

2)
> 1

2 , where ⌈x⌉ represents the smallest integer greater than

or equal x. It follows that (1 − ε)2 ≥ 1
2 , and so ε ≤ 1 − 1

2

1
2 ≈ 0.293. The breakdown point for the

TSE is said to be 29.3%. ([6])

After demonstrating the advantage of TS estimators with robustness, we now conduct the following
simulations using R Package software to show the efficiency of the TS estimator compared to that
of the LS estimator. All of our simulations are done with the following linear model:

yi = 1 + 2x + ei, i = 1, ..., n

So, our actual intercept, α, and actual slope, β, are 1 and 2 respectively. However, in order to keep
our discussion on a one-dimension comparison, we choose to focus our investigation on the slope
estimation. Also to simplify the case, we let x be a sequence from 1 to 100.

In our first simulation, each time, we randomly generate a set of 100 observations with e ∼ N(0, 3).
We calculate β̂ using both TS method and LS method. We also calculate the variance of the error
terms using the residuals with the formula:

σ̂2 =
SSE

n − 2
=

N∑

i=1

(yi − ȳ)2

n − 2
=

N∑

i=1

e2
i

n − 2

We repeat the above procedures for N = 50, 100, and 200 times. We calculate the variance of the
N β̂i’s obtained from the TS method as well as the variance of the N β̂i’s obtained from the LS
method. Then, we calculate the average of the N σ̂2

i ’s from the LS estimation.

When we use the LS method to estimate the slope of a regression line, we can estimate the variance
by:

Var(β̂) =
Var(ei)∑N

i=1(xi − x̄)2
(1)

Since x is a sequence from 1 to 100, we have:

N∑

i=1

(xi − x̄)2 =
100∑

k=1

(k − 50)2 = 83350

Thus, Var(β̂) = Var(ei)
83350 . Since e ∼ N(0, 3), the theoretical variance for the error terms is σ2 = 3.
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So, we can calculate the theoretical variance of the slope estimator using Equation 1. We have:

Var(β̂) =
σ2

83350
=

3

83350
≈ 3.60e−5

We can obtain an estimate for the variance of the slope using the average of σ̂2
i ’s and Equation 1.

Thus, we have:

V̂ar(β̂)1 =
Mean(σ̂2

i )

83350

We can also obtain this estimate by averaging the difference between β̂i and β̄ over all the repeti-
tions. So, we also have:

V̂ar(β̂)2 =
1

N − 1

N∑

i=1

(β̂i − β̄)2

Before we make comparisons between the LSE and TSE, we first compare the theoretical variance
with these two methods of estimation obtained under the LS method. The results are presented in
Table 1. Note that the relative comparison is the observed value divided by the true value.

Number of Var(β̂) Theoretical Relative
Repetitions Variance Comparison

50 4.08e−5 1.133

V̂ar(β̂)1 100 4.04e−5 3.60e−5 1.122
200 3.59e−5 0.997

50 3.70e−5 1.028

V̂ar(β̂)2 100 3.54e−5 3.60e−5 0.983
200 3.63e−5 1.008

Table 1: Comparisons with Theoretical Variance for LS Estimator where e ∼ N(0, 3) with Sample
Size n = 100

We see that V̂ar(β̂)1 and V̂ar(β̂)2 are fairly close to the corresponding theoretical variance. Also,
both variances become smaller as the number of repetitions increases. When we repeat 200 times,
both variances are within 1% difference from the theoretical variance. Therefore, we believe our
simulation is valid and fair.

Finally, we compare the actual variances of the TS estimators with that of the LS estimators.
We also perform the procedure described above for the cases in which e ∼ Uniform(−3, 3), e ∼
Binomial(12, 0.5), e ∼ T3, and e ∼ Cauchy. The results for all the efficiency comparisons between
the TS and LS estimates are shown in Table 2.

From the relative comparisons of LSE to TSE, we see that the TS estimator has a variance that
is only slightly bigger than the variance of LS estimator when the error terms follow a light-
tailed distribution such as ei ∼ N(0, 3) and ei ∼ Unif(−3, 3). Also, as the number of repetitions
increases, the variance of the TS estimator becomes closer to that of the LS estimator for both error
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Error Term Number of Var(β̂)1 Var(β̂) Relative
Distribution Repetitions by LSE by TSE Comparison

50 4.00e−5 4.53e−5 0.883
e ∼ Unif(−3, 3) 100 3.03e−5 3.24e−5 0.935

200 3.80e−5 4.00e−5 0.950

50 4.08e−5 4.46e−5 0.915
e ∼ N(0, 3) 100 4.04e−5 4.32e−5 0.935

200 3.59e−5 3.77e−5 0.947

50 2.86e−5 1.54e−5 1.857
e ∼ T3 100 3.19e−5 1.83e−5 1.743

200 5.38e−5 2.25e−5 2.391

50 9.31e−1 2.84e−5 32782
e ∼ Cauchy 100 1.29 4.95e−5 26061

200 1.13e−1 3.95e−5 2861

50 4.36e−5 4.08e−6 10.686
e ∼ Bin(12, 0.5) 100 3.50e−5 2.84e−6 12.324

200 2.96e−5 2.48e−6 11.935

Table 2: Comparison between LSE and TSE for Simple Linear Model with Sample Size n = 100

distributions. When repeated 200 times, this is especially true as Var(β̂) of TS is within about a
5% difference of LS.

Also, when ei ∼ Bin(12, 0.5), a discrete distribution, the TS estimator is much more efficient than
the LS estimator. In fact, the TS estimator has its smallest V ar(β̂) among our simulations when
the error was a binomial distribution. Thus, we confirmed that the TS estimator is super efficient
for data with discretely distributed error terms.

Finally, we see that the TS estimator is more efficient than the LS estimator both when ei ∼ T3 and
when ei ∼ Cauchy. In particular, when ei ∼ Cauchy, the TS estimator remains efficient whereas
the LS estimate becomes nearly useless in comparison. This suggests that as the distributions of
error terms change from center-focused to heavier-tailed, the TS estimator becomes relatively more
and more efficient.

We repeat our five simulations for n = 200 error terms. The results of the fairness test when
ei ∼ N(0, 3) are shown in Table 3 and the results for the comparisons between the efficiencies of
the LS and TS estimators are shown in Table 4. The true variance calculation is given by:

Var(β̂) =
Var(ei)∑N

i=1(xi − x̄)2
=

σ2

∑200
k=1(k − 100)2

=
3

666700
≈ 4.50e−6

We find that all of our conclusions for n = 100 still hold when n = 200. Also, we note that for
the discrete binomial distribution, the TS estimator provides the exact estimation for the slope
and has a variance of nearly 0. This further demonstrates that TSE is super efficient for a discrete
distribution of error terms. As expected, we see that when the number of error terms increases, all
the variances are smaller than the values for n = 100.

9



Number of Var(β̂) Theoretical Relative
Repetitions Variance Comparison

50 4.71e−6 1.047

V̂ar(β̂)1 100 4.46e−6 4.50e−6 0.991
200 4.31e−6 0.958

50 4.54e−6 1.009

V̂ar(β̂)2 100 4.49e−6 4.50e−6 0.998
200 4.46e−6 0.991

Table 3: Comparisons with Theoretical Variance for LS Estimator where e ∼ N(0, 3) with Sample
Size n = 200

Error Term Number of Var(β̂)1 Var(β̂) Relative
Distribution Repetitions by LSE by TSE Comparison

50 3.72e−6 3.79e−6 0.981
e ∼ Unif(−3, 3) 100 4.00e−6 4.00e−6 1.000

200 5.24e−6 5.59e−6 0.937

50 4.71e−6 4.98e−6 0.946
e ∼ N(0, 3) 100 4.46e−6 4.64e−6 0.961

200 4.45e−6 4.84e−6 0.919

50 6.00e−6 3.46e−6 1.734
e ∼ T3 100 4.12e−6 2.00e−6 2.060

200 3.95e−6 2.07e−6 1.908

50 2.54e−3 5.92e−6 429
e ∼ Cauchy 100 9.47e−3 4.02e−6 2356

200 2.04e−2 5.79e−6 3523

50 5.07e−6 0.00 undefined
e ∼ Bin(12, 0.5) 100 4.27e−6 0.00 undefined

200 4.97e−6 0.00 undefined

Table 4: Comparison between LS and TS Estimators for Simple Linear Model with Sample Size
n = 200

3 Multiple Linear Model

In a multiple linear regression, we have many dependent variables. Thus, the model becomes:

yi = α + β1xi1 + ... + βpxip + ei, i = 1, ..., n

We could also write this in a matrix form as:

∼
y = X

∼
β +

∼
e

where X represents the following n × (p + 1) design matrix,
∼
y is the following vector of length n,
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and
∼
β is the (p + 1)-dimension parameter which we try to estimate:

X =




1 x11 x12 ... x1p

...
...

...
...

1 xn1 xn2 ... xnp


 ,

∼
y =




y1
...

yn


 ,

∼
β =




α

β1
...

βp




The Least Squares estimator is accomplished by minimizing the SSE. So we have:




α̂

β̂1
...

β̂p


 = argmin

(α,β1,...βp)T

n∑

i=1

r2
i = argmin

(α,β1,...βp)T

n∑

i=1

[yi − (α + β1xi1 + ... + βpxip)]
2 = argmin

∼
β

∥∥∥
∼
y − X

∼
β

∥∥∥
2

with a solution β̂LS = (XT X)−1XT

∼
y.

However, the procedure for computing the TS estimator is more complicated in the multivariate
case. Here, we employ the same method Dang et al ([2]) used in their research. First, for n obser-
vations and p dependent variables, we choose an arbitrary combination of m distinct observations,
where p + 1 ≤ m ≤ n. Let km denote the m-subset of {1, ..., n} and let Xk denote the m × (p + 1)
matrix which contains the m chosen observations so that XT

k Xk is invertible. We construct a LS

estimator β̂k = (XT
k Xk)

−1XT
k Yk based on the m observations. Then, the multivariate Theil-Sen

estimator β̂TS of the parameter β is the multivariate median (Mmed) of all
(

n
m

)
least squares

estimators:
β̂TS = Mmed{β̂k : ∀km}

Now, we need to define the multivariate median as there are many existing notions. As Dang et
al ([2]) point out, some methods, such as the componentwise median, may perform very poorly.
They use the spatial median because it represents the true “center” if the data set has one. Spatial
median also has relatively small computational burden in some cases. Hence, we also decide to
implement the spatial median to find β̂TS . In d dimensions, the spatial median of a data set
(z1, z2, ..., zn) of size n is achieved by

min
M

n∑

i=1

‖zi − M‖ (2)

where zi is a vector in d dimensions and the solution of the minimization problem (2) is the spatial
median, and it can be found by solving the following equation:

n∑

i=1

zi − M

‖zi − M‖
= 0

In our TS estimator with dimension p + 1 and size
(

n
m

)
, we use a modified Weiszfeld Algorithm to

compute the spatial median, proposed in 2000 by Vardi and Zhang ([11]).
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At this point, we will take a look at the breakdown point in the multivariate case. As previously
discussed, the TS estimator is an attractive model because of its high measure of robustness. In a
multivariate TS estimator for p dimensions and a sample size n where the multivariate median is
taken from

(
n
m

)
Least Squares estimators with p+1 ≤ m ≤ n, at least 50% of the LS estimators must

contain all “good” data. If we let ε represent the portion of “bad” observations, then
(⌈n(1−ε)⌉

m )
(n

m)
≥ 1

2 .

As shown in Dang et al ([2]), the TSE only breaks down when ε ≥ (1
2)

1
m (n−m+1

n
). The asymptotic

breakdown point has been shown to be 1 − 1
2

1
m .

In the case where p = 1 and m = 2, as in a simple regression, if ε ≤ 1 − (1
2)

1
2 ≈ 0.293, the TS

estimator can still resist large influence of outliers. Thus the breakdown point of the TS estimator
is 29.3% as we discussed in the previous section. We can see that as m increases, 1− (1

2)
1
m becomes

smaller and smaller. Therefore, when we choose m between p + 1 and n for the multivariate TSE,
we can select the compromise of robustness and efficiency of our model. If we select m = p + 1,
we have the highest possible measure of robustness, but our estimator will be less efficient. If we
let m be the sample size n, we can have the highest measure of efficiency since this is equivalent
to using the least squares estimator. However, our estimator will lose robustness. Also, either of
the extremes, p + 1 or n, provides relatively low computation burden. On the other hand, if we let
m = ⌈n

2 ⌉, we have a compromise of robustness and efficiency, yet a high computation burden due
to performing

(
n

⌈n
2
⌉

)
Least Squares estimations.

Since we want to demonstrate that the TS estimator is also efficient in multiple linear regressions,
we let m = p+1 in our simulations. Thus, the efficiency of the TS estimator obtained under our set
up should be generally at its lowest. We want to show that even with m = p + 1, the TS estimator
is still efficient enough. Also, in order to keep the computation simple, we will only consider two
dependent variables (p = 2). Thus, m = 3. So, the breakdown point is 1− (1

2)
1
3 ≈ 0.2063, which is

still very robust compared to the 0 breakdown point of the LS estimator.

We choose the following model for all simulations in this section:

yi = 1 + 5x1 + 10x2 + ei, i = 1, ..., n

Thus, we have the parameters α = 1, β1 = 5, and β2 = 10. We randomly generate n different x1’s
from a standard normal distibution and n different x2’s from a uniform distribution on (0, 1). As
in our simple linear regression, each time we generate five sets of n observations with ei ∼ N(0, 3),
ei ∼ Unif(−3, 3), ei ∼ Bin(12, 0.5), ei ∼ T3, and ei ∼ Cauchy respectively. For each set, we first
compute the LS estimator β̂LS = (α̂, β̂1, β̂2)

T by (XT X)−1XT
∼
Y . To calculate the TS estimator

β̂TS = (α̂, β̂1, β̂2)
T , we choose any 3 of the n observations and solve for the LS estimator, β̂k. Then

we find the spatial median of the
(
n
3

)
β̂k’s.

We have two ways to evaluate multivariate estimators. One method is to consider each parameter
individually and compare the relative efficiency. Our results of this comparison for N = 20, 50,
and 100 repetitions are shown in Table 5. For a continuous light-tailed distribution of error terms
such as the normal and uniform distributions, we still see that the Least Squares method again
yields more efficient results. For a discrete error distribution, we see that Theil-Sen improves over
the LSE as the sample size increases. For a T3 distribution, the Theil-Sen estimator is consistently
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more efficient. In the case of the Cauchy distribution, we see the Theil-Sen estimator return
very reasonable variances whereas the LSE again gives us nonsensical values, sending the relative
efficiencies to the hundreds and thousands.

Another method involves comparing the efficiency for the parameters of the LS and TS estimators
by the covariance matrices constructed from our simulations. Each estimator’s matrix is set up in
the following way:

Cov(β̂) =




Var(α̂) Cov(α̂, β̂1) Cov(α̂, β̂2)

Cov(α̂, β̂1) Var(β̂1) Cov(β̂1, β̂2)

Cov(α̂, β̂2) Cov(β̂1, β̂2) Var(β̂2)




We found the relative efficiency of our multivariate estimators using the method described by
Serfling ([8]), which is calculated as:

RE(β̂TS , β̂LS) =
(det(Ĉov(β̂LS)))

1
p+1

(det(Ĉov(β̂TS)))
1

p+1

This gives us a measure of comparison to indicate which estimator performed more efficiently.
Values less than 1 indicate the Least Squares method was better, and values more than 1 show
when the Theil-Sen estimator had the lower variance. As described by Serfling ([8]), this method
also gives us a measure of the asymptotic relative efficiency and thus, gives us an estimate of the
ratio of sample sizes required for our two estimators to have equivalent performance. Our results
for the relative efficiency test are shown in Table 6.

As in our simple linear model, we also demonstrate that our simulations are fair by comparing
the theoretical Least Squares covariance matrix with that of the LS estimator. We construct the
theoretical covariance matrix as Cov(β̂)LS = (XT X)−1σ2, and the relative efficiency compared
to the LS estimator is also shown in Table 6. Values close to 1 demonstrate the fairness of our
simulation. This method has an advantage over our previous relative comparison since it allows us
to compare the entire vector of parameters together instead of individually. For the five different
error distributions, we see that this comparison method reflects the same results we have already
discussed for the multivariate TSE and LSE.

To reduce the computational burden and enhance the speed of simulation, we also employed a
random stochastic procedure for calculating the TS estimator. Under this procedure, instead of
going through all

(
n
3

)
possible k3’s, we randomly pick t of the k3’s and solve for the β̂k’s. Then we

find the spatial median of the t β̂k’s. Naturally, the larger the t, the closer the results are to the
actual outcome for m = 3. In our simulations, we set t = 2000 which is about 1.24% of

(
100
3

)
when

n = 100. Therefore, the procedure is much faster and allows us to compute data for larger sample
sizes. Our results for the random stochastic procedure are shown in Table 7.

Our results with a random stochastic procedure prove to be very similar to our other multivariate
results. We still see the Least Squares method performs best with normal and uniform error
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Error Term N = 20 N = 50 N = 100
Distribution Variance RE Variance RE Variance RE

α LS 0.7079 0.3320 LS 0.2574 0.3824 LS 0.1204 0.3646
TS 2.1321 TS 0.6731 TS 0.3302

Unif(−3, 3) β1 LS 0.1991 0.3036 LS 0.0374 0.4052 LS 0.0231 0.2740
TS 0.6557 TS 0.0923 TS 0.0843

β2 LS 2.2780 0.3998 LS 0.6930 0.4384 LS 0.3492 0.4449
TS 5.6973 TS 1.5809 TS 0.7850

α LS 0.2880 0.6783 LS 0.0587 0.4582 LS 0.0379 0.6435
TS 0.4246 TS 0.1281 TS 0.0589

N(0, 3) β1 LS 0.0716 0.5177 LS 0.0245 0.6282 LS 0.0109 0.6412
TS 0.1383 TS 0.0390 TS 0.0170

β2 LS 0.7641 0.4896 LS 0.1975 0.6122 LS 0.0894 0.6111
TS 1.5608 TS 0.3226 TS 0.1463

α LS 0.9561 1.4384 LS 0.2565 1.0728 LS 0.1608 1.9979
TS 0.6647 TS 0.2391 TS 0.0813

T3 β1 LS 0.2779 1.8828 LS 0.0484 1.2907 LS 0.0492 1.9602
TS 0.1476 TS 0.0375 TS 0.0251

β2 LS 2.8645 1.3316 LS 0.8928 1.1583 LS 0.6753 2.8032
TS 2.1511 TS 0.7708 TS 0.2409

α LS 1956.38 949.19 LS 892.97 3143.15 LS 38.36 598.44
TS 2.0611 TS 0.2841 TS 0.0641

Cauchy β1 LS 1318.60 3781.47 LS 407.59 5522.90 LS 50.70 1942.53
TS 0.3487 TS 0.0738 TS 0.0261

β2 LS 4343.27 811.58 LS 12375.81 16171.19 LS 152.97 625.13
TS 5.3516 TS 0.7653 TS 0.2447

α LS 0.4768 0.3307 LS 0.2108 0.6650 LS 0.1378 1.0284
TS 1.4418 TS 0.3170 TS 0.1340

Bin(12, 0.5) β1 LS 0.2064 0.6010 LS 0.0701 1.9636 LS 0.0279 2.2320
TS 0.3434 TS 0.0357 TS 0.0125

β2 LS 1.8691 0.3867 LS 0.5737 1.0558 LS 0.3543 1.9350
TS 4.8340 TS 0.5434 TS 0.1831

Table 5: Relative Efficiency of Each Parameter in Mutivariate TSE to LSE

Covariance Error N

Matrices Distribution 20 50 100

Theoretical vs. LS e ∼ N(0, 3) 1.0723 0.9614 0.9183

TS vs. LS e ∼ Unif(−3, 3) 0.3002 0.3717 0.2994

TS vs. LS e ∼ N(0, 3) 0.4606 0.5435 0.6091

TS vs. LS e ∼ T3 1.2573 1.0912 2.0139

TS vs. LS e ∼ Cauchy 765.33 3893.82 632.91

TS vs. LS e ∼ Bin(12, 0.5) 0.4545 0.9933 1.1972

Table 6: Relative Efficiency of the Covariance Matrix Comparison
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distributions while the TS estimator is dominant for the Cauchy distribution and typically better
for the T3 distribution. For the binomial distribution, we again see the Theil-Sen estimator surpass
the LSE as the sample size increases. The results from the covariance matrix comparisons of our
data calculated using the random stochastic procedure are shown in Table 8.

Error Term N = 50 N = 100 N = 200
Distribution Variance RE Variance RE Variance RE

α LS 0.2603 0.3384 LS 0.0721 0.2392 LS 0.0830 0.2489
TS 0.7691 TS 0.3014 TS 0.3335

Unif(−3, 3) β1 LS 0.0599 0.3702 LS 0.0283 0.3227 LS 0.0140 0.4403
TS 0.1618 TS 0.0877 TS 0.0318

β2 LS 0.8127 0.4036 LS 0.2641 0.3003 LS 0.2161 0.3360
TS 2.0134 TS 0.8795 TS 0.6431

α LS 0.0851 0.5033 LS 0.0384 0.3813 LS 0.0227 0.3721
TS 0.1691 TS 0.1007 TS 0.0610

N(0, 3) β1 LS 0.0262 0.4729 LS 0.0113 0.5067 LS 0.0057 0.5000
TS 0.0554 TS 0.0223 TS 0.0114

β2 LS 0.2470 0.6732 LS 0.1266 0.4926 LS 0.0683 0.3483
TS 0.3669 TS 0.2570 TS 0.1961

α LS 0.2693 1.0636 LS 0.1330 1.3287 LS 0.0580 0.9431
TS 0.2532 TS 0.1001 TS 0.0615

T3 β1 LS 0.0488 0.7531 LS 0.0319 1.1558 LS 0.0143 0.7814
TS 0.0648 TS 0.0276 TS 0.0183

β2 LS 0.8380 0.9805 LS 0.3444 1.3645 LS 0.2181 1.3580
TS 0.8547 TS 0.2524 TS 0.1606

α LS 112.36 428.04 LS 15.18 79.85 LS 1340.36 16817.57
TS 0.2625 TS 0.1901 TS 0.0797

Cauchy β1 LS 55.48 876.46 LS 17.82 504.82 LS 1593.27 123509.30
TS 0.0633 TS 0.0353 TS 0.0129

β2 LS 561.32 733.75 LS 56.43 86.44 LS 22631.55 81408.45
TS 0.7650 TS 0.6528 TS 0.2780

α LS 0.2955 0.5598 LS 0.1311 0.8366 LS 0.0594 0.9706
TS 0.5279 TS 0.1567 TS 0.0612

Bin(12, 0.5) β1 LS 0.1044 0.6792 LS 0.0300 0.8427 LS 0.0132 2.6400
TS 0.1537 TS 0.0356 TS 0.0050

β2 LS 0.8948 0.5686 LS 0.4342 1.5230 LS 0.1430 19.8611
TS 1.5737 TS 0.2851 TS 0.0072

Table 7: Relative Efficiency of Each Parameter in Mutivariate TSE to LSE with Random Stochastic
Procedure

4 Conclusion

Although the Least Squares estimator is the most commonly used method of statistical regression,
it is known to have its disadvantages. As we demonstrated in section 2, the Least Squares lacks
robustness to outliers. It only takes one outlier in a sample to have an arbitrarily large effect on
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Covariance Error N

Matrices Distribution 50 100 200

Theoretical vs. LS e ∼ N(0, 3) 0.9347 1.0113 1.0988

TS vs. LS e ∼ Unif(−3, 3) 0.5438 0.3515 0.5347

TS vs. LS e ∼ N(0, 3) 0.4185 0.4465 0.4103

TS vs. LS e ∼ T3 0.9651 1.1502 1.0473

TS vs. LS e ∼ Cauchy 518.03 168.90 10939.08

TS vs. LS e ∼ Bin(12, 0.5) 0.8032 1.1833 4.1162

Table 8: Relative Efficiency of the Covariance Matrix Comparison for Random Stochastic Procedure

the estimator and to destroy the entire regression line. Hence, the breakdown point of the Least
Squares is said to be 0%. The Theil-Sen estimator has been shown to be a much more robust
method of regression with a breakdown point of 29.3%.

While the Least Squares estimator is the most efficient method for regressing data with a normal
distribution of error terms, it is known to lack efficiency in other situations. In our study, we have
compared the efficiency of the Least Squares method with that of the Theil-Sen estimator under
various circumstances in both linear and multivariate regressions. As expected, we have found the
Least Squares method to perform better than the Theil-Sen estimator in light-tailed error term
distributions such as the uniform and normal ones. However, our results in the simple linear model
show that the Theil-Sen estimator is not far behind, typically having a relative efficiency of at least
90%.

In error term distributions that are heavy-tailed, we see the Theil-Sen estimator outperform the
Least Squares method in both the linear and multivariate models. For a T3 distribution, the Theil-
Sen estimate gives us a variance that is about one half of the Least Squares estimate on average.
In the case of the Cauchy distribution, the performance of the Least Squares estimator is poor
while Theil-Sen returns reasonably small variances, and so our relative effiency is thrown into the
thousands. In a binomial distribution of error terms, we see the lowest variances for the Theil-Sen
estimator among all of our cases. This demonstrates the super efficiency of the Theil-Sen estimator
for discrete distributions.

In our results for the multivariate model, we have designed our Theil-Sen estimator such that
theoretically, the robustness is at its highest and the efficiency is at its lowest. For heavy-tailed
distributions, we have demonstrated the dominance of the Theil-Sen estimator in both robustness
and efficiency. For light-tailed distributions, the Least Squares method is the more efficient method
of regression. However, if these data sets contain outliers, the Theil-Sen estimator is more resistent
to influence, and the gain in robustness comes with a relatively small loss of efficiency in most cases
but with a cost in computational burden. We have also investigated the use of a random stochastic
procedure to alleviate those burdens. In conclusion, we have found the Theil-Sen estimator to be
a reliable method of robust regression.
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