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ABSTRACT

Motivated by the computational burden in fitting single index models caused by high parameter
dimensionality and possibly compounded by data of massive size, we construct the A-optimal
subsampling estimators to approximate the full data estimators. We derive the A-optimal sampling
distributions by minimizing the sum of the component variances of the subsampling estimator. For an
arbitrary distribution (πi) on the n data points with its minimum πmin satisfying nπmin ≥ l0 > 0
for some constant l0, we prove asymptotic normality of the subsampling estimator for either fixed or
growing sum p+ d of the number p of the index parameters and the number d of basis functions as
the subsample size r tends to infinity such that p+ d grows slowly at the rate p+ d = o(r1/5) under
suitable conditions. We also construct an unweighted subsampling estimator, prove its asymptotic
normality for growing dimension without the foregoing assumption on (πi), and establish its higher
efficiency than the weighted estimator. We provide the analytic formulas of the first-order bias for
both estimators, and explore how the estimators and their biases are affected by the penalty λ, p+ d,
(πi) and r. We construct a fast algorithm having running time O(r2(p+ d)) with r far less than n,
and study the numerical behavior of the Subsampling approach using both simulated and real data.
Our results indicated that the proposed approach significantly outperformed the uniform subsampling
and substantially reduced the amount of computing time.

Keywords A-optimality · Asymptotic normality · Big data · Infinite dimension · Inverse Probability · Penalized spline ·
Single index model

1 Introduction

The single index model (SIM) is a hybrid of parametric and nonparametric models. It generalizes the linear regression
model by introducing a nonparametric link function, extends the generalized linear models (GLM) by allowing the
link to be unknown and data-driven, and can model interactions among covariate variables through the index. Most
importantly, the index reduces a multivariate predictor to a univariate quantity, thus avoids the "curse of dimensionality"
problem in a fully nonparametric model. The numerical implementation in fitting SIM is, however, computational
challenging, which is aggravated by data of massive size in the Era of Big Data. To tackle the challenge, one could
use the computationally easy uniform subsampling or the popular statistical-leverage-scores-based subsampling. The
two approaches, however, are not efficient in extracting important observations, see Zhang, et al. (2023) for a detailed
discussion in a linear regression model. Motivated by this, we propose the A-optimal Subsampling approach based
on the criterion of minimizing the sum of the component variances (equivalently, the trace of the variance-covariance
matrix) of the subsampling estimator.

There is an extensive amount of literature on the methods of estimation for SIM, which can be grouped into the direct
and indirect approaches. The former estimates the index parameter β without estimating the mean function m(x) (see
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(2.1)), including the average derivative method (Stoker, 1986), the local linear estimation (Hristache, et al., 2001),
and the methods involving the conditional variance of Y (Xia, et al., 2002 and Xia, 2006). The latter estimates β by
minimizing certain objective function after m(x) is estimated by some nonparametric regression method such as the
kernel smoothing (Ichimura, 1993 and Hardle, et al., 1993), the penalized splines (the P-splines, Yu & Ruppert, 2002),
the regression splines and the B-splines (both of Antoniadis, et al., 2004). In this article, we shall present the A-optimal
Subsampling approach for the penalized spline SIM.

The P-splines gained popularity in 1990’s as a flexible smoothing method for semiparametric regression. The idea of
penalization was originally from O’Sullivan (1986) who proposed the integrated squared derivative of the fitted curve
as the penalty. Then Eiler & Marx (1992) derived the difference penalty, which is purely discrete, thus much simpler as
it is trivial to calculate the difference of any order. Later in 1996, they proposed a benchmark method of curve fitting by
combining regressions with the B(Basic)-spline basis and their difference penalty. Subsequently, Ruppert & Carrol
(1997) proposed to use the truncated power function (TPF) basis as components of penalized splines with smoothness
from a ridge penalty on the coefficients of parameters. Later, Ruppert & Carroll (2000) and Yu & Ruppert (2002) used
TPF in the basis with equally spaced quantiles as knots plus a partial ridge penalty on the model function, and they
named their approach as the P-spline. Their work has greatly advanced the study and applications of penalized splines.
Since then, penalized splines become increasingly popular and are extended to various regression models for different
purposes. Recent work includes the penalized spline estimation for generalized partially linear single-index models
by Yu, et al. (2017), the variable selections for SIM with diverging number of index parameters by Wang & Wang
(2015), the multivariate single index models for longitudinal data by Wu & Tu (2016), and the large-sample estimation
and inference in multivariate single-index models by Wu, et al. (2019). Recently, Jiang and Peng (2023) proposed a
computationally efficient method for estimation in a Big Data SIM using the divide-and-conquer method, and showed
that the resulting estimator possesses the optimal convergence rate with no restriction on the number of dividing blocks.
Robust estimation in SIM especially for data of massive size is investigated in Jiang, et al. (2022). Instead of the
usual quadratic loss function only, the authors adopted a weighted linear combination of several loss functions to
accommodate the diverse data structures, combined with the divide-and-conquer method. They demonstrated that their
approach significantly reduces the memory space and the resulting estimator attains the model efficiency.

2 Overview of the Subsampling Approach in Single Index Models

In a SIM, the response yi and the covriate xi satisfy

yi = m0(β
t
0xi) + ϵi, i = 1, 2, . . . , n, (2.1)

where β0 ∈ Rp is an unknown index parameter which satisfies ∥β0∥ = 1 with its first component β1 > 0 for
identifiability, m0(x) is an unknown nonparametric function on the reals R, and ϵ1, . . . , ϵn are independent and
identically distributed (i.i.d.) random errors with zero mean and constant variance σ2

0 = Var(ϵi) > 0. Here at denotes
the transpose of a column vector a. We assume that the covariates xi are nonrandom, although the results typically
hold for random covariates.

In a penalized spline SIM, the mean function m0(x) in (2.1) is approximated by

m(x) = δtB(x), x ∈ R, (2.2)

where δ ∈ Rd is an unknown parameter vector of coefficients, and B(x) is a vector of basis functions. See the penalized
B-spline and P-spline SIM considered in Section 6. The parameter θ =: (βt, δt)t ∈ Rp+d can be estimated by
minimizing the penalized squared residuals,

Qn(θ) =
1

n

n∑
i=1

(
yi − δtB(βtxi)

)2
+ λP (θ), (2.3)

subject to the constraints

∥β∥ = 1 and β1 > 0, (2.4)

where λ is a penalty (or tuning) parameter and P (θ) is a penalty function.

Many penalties can be found in literature including the partial ridge penalty on δ (Yu & Ruppert, 2002), the penalty on
the integrated second derivative of fitted curve (Osullivan, 1986 & 1988), the difference penalty (Eilers & Marx, 1996),
and the SCAD penalty for variable selection (Fan & Li, 2001). The value of the turning parameter λ is found through a
grid search based on some criteria such as minimizing the cross-validation (CV) score, the generalized cross-validation
(GCV) score, or Akaike’s information criterion (AIC). In this paper, we shall select, suggested by Yu & Ruppert (2002),
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Algorithm 1

1. Initialization. Calculate the LSE β̂0 via linear regression of y on X, compute ϕ̂0 by (2.8), and find δ̂0 as the
minimizer of Qn(θϕ) in (2.10) after substituting ϕ = ϕ̂0.

2. Optimization. Calculate θ̂ϕ = (ϕ̂t, δ̂t)t as the minimizer of Qn(θϕ) in (2.10) initialized at θ̂ϕ0
= (ϕ̂t

0, δ̂
t
0)

t.

3. Reparametrization. Calculate β̂ by (2.7) and obtain θ̂ = (β̂t, δ̂t)t.
4. Cross validation. To each value of λ on the grid, repeat 1–3, find the value of λ which minimizes the GCV

score in (2.5), and choose the corresponding estimator as the final estimator.

a grid of 30-points in which log10(λ) are equally spaced quantiles in the interval [−6, 7]. We then choose the value of λ
which minimizes the GCV score,

GCV(λ) =
n−1

∑n
i=1

(
yi − δtB(βtxi)

)2(
1− n−1Tr(A(λ))

)2 , (2.5)

where A(λ) is the hat matrix of the penalized spline SIM, which is defined by

A(λ) = B(BtB+ nλD)−1Bt,

Here B is an n× d matrix with its ith row equal to Bt(βtxi), and D is some positive definite matrix (see two examples
in (6.2) and (6.6) below). Hence the fitted value is

ŷ = A(λ)y, (2.6)

where y = (y1, y2, . . . , yn)
t. Writing (X,y) with X = (x1,x2, . . . ,xn)

t for the full data, the trace of A(λ) can be
expressed as Tr(A(λ)) = Tr((BtB+ nλD)−1BtB), where we performed the cyclic permutation for the trace function,
which reduces the matrix dimension and saves the memory for storing big matrices. As is customary, the constraints in
(2.4) on β can be handled by the reparametrization,

β(ϕ) =
(1,ϕt)t√
1 + ∥ϕ∥2

, ϕ ∈ Rp−1. (2.7)

This has the inverse given by

ϕ =: ϕ(β) = β−1
1 (β2, . . . , βp)

t. (2.8)

The parameters to be estimated become θϕ = (ϕt, δt)t ∈ Rp+d−1, losing one dimension from the original θ. The
Jacobian matrix of transformation θ = (β(ϕ)t, δt)t 7→ θϕ can readily be found as

∂θ

∂(ϕt, δt)
=


− ϕt

(1+∥ϕ∥2)3/2
01×d

Ip−1√
1+∥ϕ∥2

− ϕ⊗2

(1+∥ϕ∥2)3/2
0(p−1)×d

0d×(p−1) Id

 . (2.9)

The objective function in (2.3) is now transformed to

Qn(θϕ) =
1

n

n∑
i=1

(
yi − δtB(β(ϕ)txi)

)2
+ λP (θϕ). (2.10)

Let θ̂ϕ = (ϕ̂t, δ̂t)t be the resulting estimator of θϕ. Substituting it in (2.7), we obtain the plug-in estimator β̂ = β(ϕ̂)
of β. The numeric computation of the estimator can be implemented as follows:

Observe that the numerical implementation bears an enormous computational burden. Specifically, the optimization in
(2.3) using Algorithm 1 in Alg. 1 through the newton or the quasi-newton method takes O(n2(p+ d)) running time
in each of the iterations needed for numerical convergence, plus the cross validation process. As a consequence, the
numerical computation can be challenging even for data of conventional sample size n and parameter dimension p+ d,
let alone for data of massive size compounded by parameters of high dimensionality.

Motivated by the computational challenge, we propose the A-optimal Subsampling approach to downsizing data and
constructing both the weighted and unweighted subsampling estimators of the parameters using a subdata as a surrogate,
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which is feasible both economically and temporally. We investigate how the subsampling estimator is affected by the
growing number p+ d of parameters, the subsample size r, and the sampling distribution π = (π1, π2, . . . , πn). We
establish asymptotic normality of the subsampling estimator for either fixed or growing p+ d to infinity slowly with
r such that (p + d)/r1/5 → 0, for an arbitrary sampling distribution π = (πi) with its minimum πmin = min(πi)
satisfying πmin ≥ l0/n for some constant l0 > 0, under additional conditions. This is detailed in Theorem 1 and
Remark 1. The message here is that the number of parameters p + d that can be fitted by data of subsample size r
must satisfy p + d = o(r1/5), which can’t be improved for penalized SIM. See Examples 1 and 2. This number of
parameters in SIM is much smaller than the optimal number p+ d = o(r1/2), which is typical in the analysis of Big
Data, see, e.g. page 29 of Bühlmann, et al. (2016), and Portnoy (1984, 1985, 1988). In practice, the value of d is often
chosen to be from the integers between 5 and 10 as suggested by Ruppert (2002). Our consideration of allowing d to
grow with r sheds some light on the approximation of the unknown link function m0(x) in (2.1) by the expansion m(x)
in (2.2) along a sequence of basis functions. Results on growing dimension in the literature are abundant, see the above
Portnory, Mammen (1993) and Chatterjee and Bose (2005) among others.

Full sample randomly weighted bootstrap estimators were well studied in the literature, see the monograph by Barbe
and Bertail (1995). Unlike the construction of weighted bootstrap estimators, our subsampling estimators is constructed
based on the scheme of importance sampling in which the weights are inversely used. The scheme is commonly used
in survey sampling and recently in the causal inference for models with latent variables. Our results contribute to
the scheme in high dimensional regression models including GLM, and provide the theoretical guarantee for various
nonuniform sampling distributions such as the leverage-scores-based distribution and the A-optimal distributions given
below.

We conducted extensive simulations and real data applications to investigate the numerical behavior of the A-optimal
subsampling estimator, and our results indicated that the proposed Subsampling approach significantly outperformed
the uniform subsampling by the criterion of mean squared errors, and used substantially less computing time than the
full-data estimator.

We have not applied our Subsampling approach to conduct statistical inference in the SIM. It is apparent that our optimal
Subsampling estimator will yield shorter confidence intervals or more powerful tests than those using other subsampling
estimators including the uniform (the bootstrap) and the leverage-scores-based subsampling estimators. Here the
confidence intervals and the tests are based on asymptotic normality. An application of the A-optimal subsampling
approach in statistical inference in real data can be found in Tan, et al. (2023), where the P-values for many covariate
variables in Poisson regression model using the A-optimal subsampling approach were significant while those using the
uniform subsampling were not. This doesn’t suggest, however, that the A-optimal Subsampling approach will always
yield “optimal” results in statistical inference, because the A-optimality is estimate-dependent, that is, an A-optimal
distribution for one estimator is not A-optimal for another different estimator. For example, the prediction made based
on the model whose coefficients are estimated by the A-optimal subsampling estimator is not “optimal” in terms of
EMSE in general, although one can expect that the prediction based on the A-optimal subsampling estimator has smaller
EMSE than the one based on the uniform subsampling estimator.

We have employed the B-spline and the P-spline SIM to investigate the numerical performance of the A-optimal
Subsampling approach. But we haven’t specifically examined the two models as our goal is not to compare them
although the comparison would certainly aid to further our understanding of the approach. Examining the TPF (truncated
power functions) and the B-spline basis, one can see that the TPF is simpler and practically useful for understanding the
spline regression, but it was not numerically stable in the optimizations considered in the case of either a large number
of knots, the penalty parameter λ close to zero, or datasets of large size. In these cases, typical algorithms such as the
Gauss-Newton algorithm suggested by Yu and Ruppert (2002) do not work well. The B-splines, however, are easy to
calculate and numerically superior. For a close look of the difference of the two splines, see e.g. Sharif and Kamal
(2018). Both splines have problems for large datasets as the dimension of the basis needs to increase accordingly for
precision, which increases the dimensionality of the optimization procedure. From this viewpoint, our choice of the
Subsampling approach is quite suitable, hence the meaningfulness of the study of the optimal Subsampling follows.

The article is structured as follows: In Section 3, we construct the subsampling estimator in a penalized spline SIM, and
presents the asymptotic normality of the subsampling estimator for both fixed and growing dimension. In Section 4, the
A-optimal distributions are derived, the Scoring Algorithm is constructed, and numerical implementation and truncation
are discussed. Section 6 contains the simulations. Section 7 reports two real data applications. The proof is provided in
Section 8, and supplementary tables in Section 9.

3 The Subsampling Estimator and Asymptotic Normality

In this section, we construct the subsampling estimator and prove the asymptotic normality for growing dimension.
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Algorithm 2
1. Using π, take a random subsample (X∗,y∗) of size r << n with replacement from the full sample (X,y),

and formulate the sampling probability vector π∗ = (π∗
1 , . . . , π

∗
r ).

2. Calling Algorithm 1 to the subdata (X∗,y∗) with the vector 1/(rπ∗) as weights, calculate the subsampling
estimator θ̂∗ = (β̂∗t, δ̂∗t)t.

3.1 The (Weighted) Subsampling Estimator

Let π = (πi) be a sampling distribution. The uniform sampling corresponds to π = 1/n, where 1 denotes the vector
of all components equal to 1. Later, we shall derive the A-optimal distributions. Using it, take a random subsample of
size r(r << n) from the full data (X;y) with replacement, denoted it by (X∗,y∗) with the corresponding sampling
probabilities π∗ = (π∗

1 , π
∗
2 , . . . , π

∗
r ). The subsampling estimator θ̂∗ϕ = (ϕ̂∗t, δ̂∗t)t then minimizes the weighted

objective function,

Q∗
n(θϕ) =

1

r

r∑
j=1

(
y∗j − δtB(β(ϕ)tx∗

j )
)2

nπ∗
j

+ λP (θϕ). (3.1)

By (2.7), we obtain θ̂∗ = (β(ϕ̂∗)t, δ̂∗t)t. Notice that (3.1) is the weighted version of (2.10) based on the subsample
(X∗,y∗) with the random vector 1/(rπ∗) as weights. For the uniform sampling, the weight vector reduces to 1, we
obtain the bootstrap subsampling estimator. Note that Q∗

n(θϕ) is the Hansen-Hurwitz estimator of Qn(θϕ), that is,
Q∗

n(θϕ) is an unbiased estimator of Qn(θϕ), E∗Q∗
n(θϕ) = Qn(θϕ), where E∗ denotes the conditional expectation

given the data.

3.2 Asymptotic Normality

We shall suppress ϕ and write θ = θϕ = (ϕt, δt)t unless otherwise specified. Let fi(θ) = δtB(xt
iβ(ϕ)), and let

ei(θ) = yi − fi(θ), i = 1, 2, . . . , n.

For a continuously differentiable penalty function P (θ) with gradient P ′(θ), the minimizer θ̂ =: θ̂n of Qn(θ) in (2.10)
satisfies Φn(θ) = Q′

n(θ) = 0. Specifically, θ̂ solves the equation

Φn(θ) =
1

n

n∑
i=1

ϕi(θ) =:
1

n

n∑
i=1

gi(θ) + λP ′(θ) = 0. (3.2)

where gi(θ) = −2ei(θ)f
′
i(θ). Likewise, the subsampling estimator θ̂∗ =: θ̂∗r(π) satisfies Ψ∗

n(θ) =: Q′∗
n (θ) = 0, i.e.,

Ψ∗
n(θ) =

1

r

r∑
j=1

ψ∗
nj(θ) =:

1

r

r∑
j=1

g∗
j (θ)

nπ∗
j

+ λṖ (θ) = 0. (3.3)

Using the scaled multinomial rv w = (w1, . . . , wn) ∼ smultn(r,π,π) defined in (8.1), a stochastic equivalent
expression for Ψ∗

n(θ) in terms of the full data is

Ψ∗
n(θ) =

1

n

n∑
i=1

wigi(θ) + λṖ (θ), θ ∈ Rp+d−1. (3.4)

As Φn(θ̂) = 0, we obtain, with ĝi = gi(θ̂) and ψ̂ni = ĝi/(nπi),

Ψ̂∗
n =: Ψ∗

n(θ̂) =
1

r

r∑
j=1

ψ̂∗
nj =

1

r

r∑
j=1

ĝ∗
j

nπ∗
j

=
1

n

n∑
i=1

w̄iĝi, (3.5)

where w̄i = wi − E(wi) = wi − 1. Such a stochastic representation is useful, which decouples the random scheme
from the data and is commonly used in developing the bootstrap theory. One has

E(w) = 1, Cov(w) = r−1(Diag(1/π)− 11t). (3.6)

See Zhang, et al. (2023) for more details about the scaled multinomial distribution. As a result, we readily calculate

E∗(Ψ∗
n(θ))=E∗(ψ∗

nj(θ)) = Φn(θ), Σ̂n(π) = rVar∗(Ψ̂∗
n) =

n∑
i=1

πi

( ĝi

nπi
− ¯̂g

)⊗2

=
1

n

n∑
i=1

ĝ⊗2
i

nπi
− λ2P ′(θ̂)⊗2. (3.7)
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noting ¯̂g =: E∗(ĝ∗
i /(nπi)) = n−1

∑n
i=1 ĝi = −λP ′(θ̂). As a consequence, E∗(ψ∗

nj(θ̂)) = 0 for all j. This manifests
that Ψ̂∗

n is a sum of influence functions. Let Hn(θ) = Φ̇n(θ) be the Hessian matrix. Set

Ĥn =: Hn(θ̂), Σ̂n =: Σ̂n(π), λ̂n =: λ̂n(π) = λmax(Σ̂n(π)).

We need the following assumptions.

A1 The condition number of Σ̂n(π) is bounded in probability, i.e., λmax(Σ̂n(π))/λmin(Σ̂n(π)) = OP (1).
A2 There exists a constant b0 such that it holds in probability that

λmin(Ĥn)/λ̂n(π) ≥ b0 > 0, n = 1, 2, . . . .

A3 With gi(θ) = −2ei(θ)f
′
i(θ) = ϕi(θ)− λP ′(θ),

1

n

n∑
i=1

∥ϕ̂i∥2

nπi
= OP ((p+ d)λ̂n(π)),

p+ d

r

1

n

n∑
i=1

∥ġi(θ̂)∥2

nπi
= OP (λ̂

2
n(π)).

A4 There are a neighborhood N0 of θ0 and rv ηi such that P (θ) and gi(θ) satisfy

|P̈ (θ)− P̈ (θ0)| ≤ h∥θ − θ0∥, |ġi(θ)− ġi(θ0)|o ≤ ηi∥θ − θ0∥, θ ∈ N0, i = 1, . . . , n,

where η1, ..., ηn satisfy

(p+ d)2

r

1

n

n∑
i=1

(
1 +

1

rnπi

)
η2i +

λ2(p+ d)2h2

r
= oP (λ̂

3
n(π)). (3.8)

A5 For an arbitrary u with ∥u∥ = 1, the double array zni(π) = s−1
n (π)utĤ−1

n ψ̂ni, i = 1, 2, . . . , n, n ≥ 1 with
s2n(π) =: s2n(π;u) = utĤ−1

n Σ̂n(π)Ĥ
−t
n u satisfies Lindeberg’s condition: for any ϵ > 0

1

n

n∑
i=1

z2ni(π)1
[
|zni(π)| ≥

√
rϵ
]
= oP (1), r → ∞.

For later use, we denote (A5) by (A5’) when π = 1/n (the uniform sampling).

Theorem 1 (Asymptotic Normality) Suppose that θ̂n is a consistent estimator of θ0. Assume (A1)–(A4). Then it holds in
probability that there exists a sequence of rv θ̂∗r(π) which minimizes Q∗

n(θϕ) in (3.1), and that if p+ d = oP (rλ̂n(π)),

(p+ d)−1/2λ̂1/2
n

√
r(θ̂∗r(π)− θ̂n) = OP∗(1), (3.9)

Ĥn

√
r(θ̂∗r(π)− θ̂n) = − 1√

r

r∑
j=1

ψ̂∗
nj + oP∗(λ̂1/2

n (π)). (3.10)

If, furthermore, (A5) is met, then for any unit vector u, it holds in probability that

s−1
n (π)

√
rut(θ̂∗r(π)− θ̂n) ⇒ N(0, 1), r → ∞. (3.11)

Example 1 (The bootstrap) For the uniform sampling π = 1/n, (A3)-(A4) boil down to

1

n

n∑
i=1

∥ϕ̂i∥2 = OP (λ̂n(p+d)),
p+ d

r

1

n

n∑
i=1

∥ġi(θ̂)∥2 = oP (λ̂
2
n),

(p+ d)2

r

1

n

n∑
i=1

η2i+
λ2(p+ d)2h2

r
= oP (λ̂

3
n).

For the first equation to be fulfilled in a typical case, assume λ̂n ≥ c0 > 0 for some constant c0. Furthermore, assume

max
i

∥ϕ̂i∥ = OP (
√
p+ d), max

i
∥ġi(θ̂)∥ = OP (p+ d), max

i
ηi = OP ((p+ d)3/2) = h. (3.12)

The preceding equations are then satisfied if p + d = o(r1/5) and
√
λ(p + d) = o(r1/5). This shows that (1) the

dimension p+ d is allowed to grow with r at the rate r1/5, which is much slower than the optimal rate r1/2, and (2) the
penalty λ grows to infinity at the rate

√
r/(p+ d)5/2, which depends on both r and p+ d. And for fixed r, a higher

dimension p+ d leads to a slower growing rate for λ. As a consequence, the results in Theorem 1 hold for the bootstrap
estimator if, moreover, (A1)-(A2) and (A5’) are met. It is noteworthy that (A2)-(A3) restrict the rate for λ̂n to grow to
infinity and to diminish to zero, respectively.
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Remark 1 Assume that the last equation in (3.12) holds and λ̂n ≥ c0 > 0 for some constant c0. Then (A4) is implied
by (p+ d)5 = oP (min(r, r2(nπmin))) and λ2(p+ d)5 = o(r), where πmin = min(πi). If, furthermore, the first two
equalities in (3.12) holds, then (A3) is satisfied if nπmin ≥ l0 for some constant l0 > 0. The latter condition together
with (A5’) also implies (A5). (A3)-(A4) then hold if the dimension p+ d and the penality λ satisfy p+ d = o(r1/5)

and
√
λ(p+ d) = o(r1/5). The results in Theorem 1, therefore, hold for any distribution π if, moreover, (A1)-(A2) and

(A5’) hold. As a consequence, the number p + d = o(r1/5) of parameters in SIM is much smaller than the optimal
number p+ d = O(r1/2), see Portnoy (1985, 1987); and the penalty λ depends on both r and p+ d and is allowed to
grow to infinity at a much slow rate. Note that p+ d is the number of parameters that can be fitted by subdata of size r
when the sampling distribution π = (πi) satisfies nπi ≥ l0 for all i.

Consider the unpenalized case, λ = 0. In this case, the dimensionality assumption for ηi can be relaxed to maxi ηi =
OP (1). For example, in the case of GLM, ηi can be taken as the spectral norm of the second derivative matrix ϕ̈i(θ),
while some common structure of the matrices can be used to relax the dimension assymption. In this case, (3.8) is
equivalent to p+ d = oP (min(r1/2, r(nπmin)

1/2)). Thus p+ d = oP (r
1/2) (the optimal rate) provided nπi ≥ l0 for

all i. It is clear that such relaxation is invalid for the penalization function P (θ), suggesting that the rate r1/5 can’t be
improved for the penalized SIM.

Example 2 (The leverage scores) The scores induce a distribution ℓ = (hi,i/p) =: (ℓi), where hi,i are the diagonal
entries of the hat matrix Hn = X(XtX)−1Xt, with X denoting the n× p covariate matrix with xt

i as its ith rows. ℓ is
widely used in the development of stochastic algorithms, see e.g. Ma, et al. (2015). Assume λmax(n

−1XtX) ≤ c1 and
∥xi∥/

√
p ≥ c2 uniformly in i for some positive constants c1, c2. From hi,i = xt

i(X
tX)−1xi it thus follows

ℓi ≥ ∥xi∥2/(pnc1) ≥ c−1
1 c2/n, i = 1, 2, . . . , n.

As a consequence, by Remark 1, the results in Theorem 1 hold for ℓ if, furthermore, (A1)-(A2) and (A5’) hold.

Remark 2 Examples 1–2 and Remark 1 demonstrate that truncation of the A-optimal and the leverage-scores based
distributions is indispensable, see Subsection 4.3 for more details.

Remark 3 The commonly used cubic spline is Lipschitz continuous and hence satisfies (A4).

Remark 4 Analogous to the proof of Theorem 1, one can prove that the same results hold for the full sample estimator
θ̂ under similar conditions for growing dimension.

3.3 The Unweighted Subsampling Estimator and Asymptotic Normality

Given a subsample (X∗, y∗), consider the unweighted objective function (cf. the weighted objective Q∗
n(θϕ) (3.1)),

Q̃∗
n(θϕ) =

1

r

r∑
j=1

(
y∗j − δtB(β(ϕ)tx∗

j )
)2

+ λP (θϕ). (3.13)

Minimizing Q̃∗
n(θϕ), we obtain an unweighted subsampling estimator θ̃∗ϕ = (ϕ̃∗t, δ̃∗t)t. Note that Q̃∗

n(θϕ) is a biased
estimator of Qn(θϕ) because E∗Q̃∗

n(θϕ) ̸= Qn(θϕ), where

Q̃n(θϕ) =: E∗Q̃∗
n(θϕ) =

n∑
i=1

πi

(
yi − δtB(β(ϕ)txi)

)2
+ λP (θϕ). (3.14)

Recalling θ = θϕ = (ϕt, δt)t, let θ̃ =: θ̃n(π) be the minimizer of Q̃n(θ), so that it solves the equation Φ̃n(θ) =

∂Q̃n(θ)/∂θ = 0, specifically,

Φ̃n(θ) = Φ̃n(θ;π) =

n∑
i=1

ϕ̃i(θ) =:

n∑
i=1

πigi(θ) + λP ′(θ) = 0. (3.15)

This is a penalized generalized bootstrap estimator for estimating equations. Chatterjee and Bose (2002) studied
dimension asymptotics for generalized bootstrap estimators, that is, they established asymptotic normality of the
estimator for growing parameter dimension.

The unweighted subsampling estimator θ̃∗ =: θ̃∗(π) satisfies Φ∗
n(θ) = 0, that is,

Φ∗
n(θ) =

1

r

r∑
j=1

ϕ∗
j (θ) =:

1

r

r∑
j=1

g∗
j (θ) + λP ′(θ) = 0. (3.16)

7
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Using the scaled multinomial rv ω = (ω1, . . . , ωn)
t ∼ smultn(r,1,π) defined in (8.1), a stochastic equivalent

expression for Φ∗
n(θ) in terms of the full data is

Φ∗
n(θ) =

n∑
i=1

ωigi(θ) + λP ′(θ), θ ∈ Rp+d−1. (3.17)

As Φ̃n(θ̃) = 0, we obtain

Φ̃∗
n =: Φ∗

n(θ̃) =
1

r

r∑
j=1

ϕ∗
j (θ̃) =

n∑
i=1

ω̄ig̃i, (3.18)

where ω̄i = ωi − E(ωi) = ωi − πi, and g̃i = gi(θ̃). One verifies for ω ∼ smultn(r,1,π) that

E(ω) = π, Cov(ω) = r−1(Diag(π)− ππt). (3.19)

As a result, by (3.19), we readily calculate, noting ¯̃g =: E∗(g̃∗
i ) =

∑n
i=1 πig̃i = −λP ′(θ̃), that

E∗(Φ∗
n(θ)) = Φ̃n(θ), Σ̃n=Σ̃n(π)=rVar∗(Φ̃∗

n) =

n∑
i=1

πi(g̃i − ¯̃g)⊗2 =

n∑
i=1

πig̃
⊗2
i − λ2P ′(θ̃)⊗2. (3.20)

Thus E∗(ϕ∗
j (θ̃)) = 0 for all j, and Φ̃∗

n is a sum of influence functions. Let H̃n(θ) = H̃n(θ;π) be the Hessian. Set

ϕ̃i = ϕ̃i(θ̃), H̃n = H̃n(π) = H̃n(θ̃;π), λ̃n = λ̃n(π) = λmax(Σ̃n(π)).

Analogous to Theorem 1, under similar assumptions (Ã1)–(Ã5) stated in the last section, we prove

Theorem 2 (ASN) Suppose that θ̃n(π) is a consistent estimator of θ0. Assume (Ã1)–(Ã4). Then it holds in probability
that there exists a sequence of rv θ̃∗(π) which minimizes Q̃∗

n(θϕ) in (3.1), and that if p+ d = oP (rλ̃n(π)),

(p+ d)−1/2λ̃1/2
n

√
r(θ̃∗r(π)− θ̃n(π)) = OP∗(1), (3.21)

H̃n(π)
√
r(θ̃∗r(π)− θ̃n(π)) = − 1√

r

r∑
j=1

ϕ∗
j (θ̃) + oP∗(λ̃1/2

n (π)). (3.22)

If, further, (Ã5) is met with s̃2n(π) = utH̃−1
n (π)Σ̃n(π)H̃

−t
n (π)u, then for any unit vector u, it holds in probability,

s̃−1
n (π)

√
rut(θ̃∗r(π)− θ̃n(π)) ⇒ N(0, 1), r → ∞. (3.23)

Remark 5 For the uniform π = 1/n, both the weighted and the unweighted subsamplining estimators simplify to the
same bootstrap estimators. Therefore, the results in Example 1 still hold for the unweighted estimators. The results in
Remark 1 with nπi replaced by one hold as well and, in particular, p+ d = o(r1/5). Here the sampling distribution is
arbitrary, manifesting that truncation is not needed for the unweighted estimators.

4 The A-optimal Distributions, Implementation and Truncation

In this Section, we derive the optimal distributions and discuss numerical computation.

4.1 The Weighted-Estimator-Based A-optimal Distributions

By (3.10), the (asymptotic) covariance matrix of θ̂∗(π) is

V̂n(π) = Ĥ−1
n Σ̂n(π)Ĥ

−t
n . (4.1)

The criterion of A-optimality aims to minimize the sum of the component variances of the subsampling estimator. The
criterion has been used to study data of massive size in linear regression (Zhu, et al., 2015; Zhang, et al., 2023), logistic
regression (Wang, et al., 2017), and count data regression (Tan, et al., 2023) among others. In the case of SIM, the
estimation of the index parameters β and the coefficients δ of the basis functions is interconnected. Luckily, a quality
estimator of β often results in a good plug-in estimator of the link function. Moreover, the knots of a spline basis
depend on the quantiles of the indices βtxi. Consequently, the estimation of β plays a central role, and we shall derive

8



A PREPRINT - APRIL 11, 2024

the sampling distributions for estimating β, but through those for estimating ϕ due to technical considerations of the
constraints in the optimization. Specifically, we seek π which minimizes the trace norm Tr(V̂n(π)) of the asymptotic
covariance matrix V̂n(π) in (4.1) subject to the constraint

∑n
i=1 πi = 1. To this end, let

L(π, τ) = Tr(V̂n(π)) + τ
( n∑

i=1

πi − 1
)
.

Using the identity Tr(aat) = ∥a∥2, we calculate

Tr(V̂n(π)) = c1Tr
(
Ĥ−1

n

n∑
i=1

( ĝĝt
i

πi
+ c2

)
Ĥ−t

n

)
= c1

n∑
i=1

∥Ĥ−1
n ĝi∥2

πi
+ c3, (4.2)

where c1, c2, c3 are constants independent of π. By the Lagrange multiplier method,

∂L(π; τ)

∂πi
=

−c1∥Ĥ−1
n ĝi∥2

π2
i

+ τ = 0, i = 1, 2, . . . , n.

If ĝj = 0, then we take πj = 0; otherwise we solve the equations for the rest of πi using the constraint
∑n

i=1 πi = 1.
Write π ∝ (ai) if πi = ai/

∑n
i=1 ai for all i. Let êi = yi − fi(θ̂).

Theorem 3 (The Â-optimal Distribution) Assume that Ĥ−1
n exists. Then there exists a probability distribution π̂ that

minimizes the trace of the asymptotic variance-covariance matrix V̂n(π) of the subsampling estimator ϕ̂∗, given by

π̂ ∝ (∥Ĥ−1
n f ′

i(θ̂)∥|êi|). (4.3)

Consider the conditional covariance given X, Σ̄0(π) = rVar(Ψ∗
n|X), where Ψ∗

n = Ψ∗
n(θ0). Write fi = fi(θ0),

ei = ei(θ0), and µi = E(ei|X), and σ2
i = E(e2i |xi) = σ2

0 + (fi − m0(x
t
iβ0))

2. Then Ψ∗
n − E(Ψ∗

n|X) =
1
n

∑n
i=1 −2(w̄iei + (ei − µi))ḟi, so that

Σ̄0(π) =
4

n2

n∑
i=1

σ2
i

πi
f ′⊗2
i + Cn,

where Cn is a constant independent of π. Let V̄0(π) = H−1
n Σ̄0H

−t
n . Analogously, minimizing Tr(V̄0(π)), we get

Theorem 4 (The Ā-optimal Distribution) Assume that H−1
n exists. Then there exists a probability distribution π̄ that

minimizes the trace of the asymptotic conditional covariance matrix V̄0(π) of the subsampling estimator ϕ̂∗, given by

π̄ ∝ (σi∥H−1
n f ′

i∥). (4.4)

Remark 6 While in a simulation study we choose β0, σ2
0 , m0(x) and m(x) and calculate σ2

i , we would take m0(x) =
m(x) = δtB(x) in an analysis of real world data, which leads to σ2

i = σ2
0 for all i. Thus, we estimate π̄ by

π˜ ∝ (∥Ĥ−1
n f ′

i(θ̂)∥). (4.5)

Remark 7 The A-optimal distributions for ϕ̂∗ to approximate ϕ̂ are given by

π̂ ∝ (∥Λ1Ĥ
−1
n f ′

i(θ̂)∥|êi|), π̄ ∝ (σi∥Λ1H
−1
n f ′

i∥), π˜ ∝ (∥Λ1Ĥ
−1
n f ′

i(θ̂)∥), (4.6)

where Λ1 be the matrix with all the entries equal to zero except the first p− 1 diagonal entries are equal to 1. These are
the sampling distributions used in our simulations and real data applications.

Remark 8 It is worth to mention that, on one hand, the residuals êi in π̂ bring more information than that in π̄ as
the residuals contain the information about the response yi. See Zhang, et al. (2023) for more discussion, where
their extensive simulations in a linear model exhibited the gain of efficiency in the subsampling estimator in terms of
empirical mean squared errors. On the other hand, the zero values of the residuals êi necessitate truncation for π̂.

Moreover, as π˜ doesn’t contain the residuals ε̂i, it satisfies (Ã6). As a result, it can be used in the unweighted
subsampling estimator θ̃∗, which is more efficient than the weighted subsampling estimator θ̂∗, see Theorem 5.1.
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Remark 9 If ĝi = gi(θ̂) = −2êif
′
i(θ̂) = yi in (4.3), then πi = 0, and the ith observation is dropped as it is

“unimportant”. This implies that an observation closer to ĝi = 0 (a hypersurface in the (x, y)-coordinate system) has
smaller probability to be chosen in the subsampling.

Remark 10 We showcased the A-optimal Subsampling approach for the SIM above. Similarly, one can obtain the
A-optimal distributions for other SIM. For example, robust estimation in SIM via using the loss function of a linear
combination of several loss functions, see e.g. Jiang, et al. (2022). We believe that conclusions similar to those in this
paper can be drawn based on our results about the Subsamping approach for various models in this and other papers.

Remark 11 It must be noted that the A-optimal sampling distribution for ϕ̂∗ to approximate ϕ̂ is not A-optimal for
β(ϕ̂∗) to approximate β(ϕ̂), see Remark 5 in Zhang, et al. (2023).

Remark 12 It is not clear how much loss of efficiency for the subsampling estimator resulted from using the A-optimal
distribution for estimating ϕ. The simulated EMSE ratios of the subsampling estimator of using the A-optimal
subsampling to using the uniform were about 10% in Table 1, and about 28% for r equal to 1% of sample size n in
Table 3. Similar results can be seen in those tables in the Supplementary Material. For the two real datasets, when r
was 5% of n, the ratios were less than 40% in Tables 5 and 7. For r as low as 0.03% of n, the ratios were about 80% in
Tables 9 and 11. These results indicated that the gain of efficiency was significant when using the A-optimal distribution
for estimating ϕ, although further gain is likely at the price of additional mathematical and algorithmic operations.

4.2 The Unweighted-Estimator-Based A-optimal Sampling Distributions

By (3.22), the (asymptotic) covariance matrix of the unweighted estimator θ̃∗ is

Ṽn(π) = H̃−1
n (π)Σ̃n(π)H̃n(π)

−t. (4.7)

As the trace norm τ̃(π) = Tr(Ṽn(π)) is a continuous function on the probability simplex π ∈ [0, 1]n with π1 + · · ·+
πn = 1, there exists a sampling distribution π̃ ∈ [0, 1]n which minimizes τ̃(π). Apparently, there is no explicit formula
for π̃, and an algorithm must be employed to find the numerical solution. For one dimension, π̃ =: (π̃n−1, π̃n) can be
explicitly found as

π̃n−1 = (A−1b)+, π̃n = 1− 1tπ̃n−1,

where a+ denotes the component-wise positive part of a vector a, A = (ak,i) and b = (b1, . . . , bn−1)
t with

ak,i = [g2k(g
′
n − g′i)− 2ġk(g

2
n − g2i )]θ̃, bk = [g2kg

′
n − 2g′kg

2
n + λ(g2kP̈ − 2ġkP

′2)]θ̃, k, i = 1, . . . , n− 1.

For n = 2, one has π̃1 ∝ [g′2/(g
′
1 − g′2)|θ̃ − 2g22/(g

2
1 − g22)|θ̃]+ and π̃2 = 1− π̃1. Consider the ‘expected version’ of

the sampling distribution, π̃01 ∝ [E(g′2)/E(g
′
1 − g′2)− 2E(g22)/E(g

2
1 − g22)]+ and π̃02 = 1− π01. One calculates

π̃01 ∝ a22x
2
2

a22x
2
2 − a21x

2
1

1[|a2x2| > |a1x1|], π̃02 ∝ a21x
2
1

a21x
2
1 − a22x

2
2

1[|a1x1| > |a2x2|],

where ai = δtḂ(β(ϕ)xi)β
′(ϕ). Oberve that (1) π̃0 = (π̃01, π̃02) is on the boundary of the probability simplex, whereas

the weighted-estimator-based A-optimal distributions π̂ and π̄ are in the interior of the simplex. This implies that
some observations will be sampled with zero probabilities (dropped) by the π̃0- subsampling, while all observations
will be sampled with positive probabilities by the π̂- or π̄- subsampling at least for large n. Specifically, by the
π̃0-subsampling, x2 will be dropped if |a2x2| > |a1x1|; (2) each π̃i is an increasing function of a2ix

2
i , just like π̂i or

π̄i which are increasing functions of the ith observations given in (4.3) and (4.4) although such functions are quite
different. The sampling mechanism for n ≥ 3 and high parameter dimension appears much more complicated.

4.3 Implementation, Presampling and Truncation

Since one of the bottlenecks for computing the sampling distribution π is to compute the Hessian matrix Ĥ =: Hn(θ̂),
we shall approximate it by a diagonal block matrix, suggested in Le Cun (1987), with the blocks equal to Ĥϕ =

∂2Qn(θ̂)/∂ϕ∂ϕ
t and Ĥδ = ∂2Qn(θ̂)/∂δ∂δ

t. That is, the diagonal blocks are kept, while the information from other
entries is skipped. Denote the first (p− 1) elements of f ′

i by f ′
ϕ,i. When only δ is penalized, P (θ) = ∥δ∥2 (such as the

ridge penalty), one obtains a computational easy version π of π̂ given in (4.3),

π ∝ (∥Ĥ−1
ϕ f ′

ϕ,i(θ̂)∥ |êi|). (4.8)

Although the computational complexity of π is still the same as the full-sample estimator θ̂, the computation of the
Hessian matrix and its inverse in π are time-saving.

10
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The Scoring Algorithm 3
1. Take a uniform presample of size r0 << n from the full data, call Algorithm 1 in Alg.1 to obtain an initial

estimator θ0 using the presample, and compute an approximation π0 to π by replacing θ̂ with θ0 in (4.8).
2. Take a subsample of size r << n from the remaining sample using π0, and call Algorithm 2 in Alg.2 to

obtain the subsampling estimator θ̂∗ using the subsample.

Remark 13 Observe that π given in (4.8) depends on the partial derivative w.r.t. ϕ only (not on that w.r.t. δ). In fact,
if we fix δ so that the only parameter is ϕ, then we can show that π is the A-optimal distribution.

As π relies on θ̂, which is not available in reality, we shall follow the Scoring Algorithm proposed in Zhang, et al.
(2023) to approximate it by presampling.

Truncation Note that each probability πi in (4.8) is proportional to the absolute value of the residual ei(θ̂). More
generally, πi in (4.3)is proportional to the norm of the linear transformation of Φi(θ̂). As in a typical case of importance
sampling, the sampling probabilities are inversely used as weights in calculating the subsampling estimator. The
probabilities that are close to zero violate the assumptions which grantee appropriate properties of the subsampling
estimators, see Section 3.2. Moreover, the Hessian matrix can be poorly conditioned, which may lead to small values
in the probabilities. As pointed out in Remark 9, such observations will be selected with small probabilities in the
subsampling. Following Zhang, et al. (2023), we truncate π = (πi) from below as follows:

πtrunc ∝ (πi1[πi > L/n] + (l/n)1[πi ≤ L/n]),

where L is a threshold value. One drops unimportant observations by taking l = 0, otherwise l = #{πi > L/n}
(the number of truncated observations). In our simulations in Section 6 and real data applications in Section 7, we
truncated up to 25%, as zero values often happened before the 25% quantile of the sampling distributions considered.
In the cases in which the uniform sampling outperformed the optimal sampling, the truncation resulted in a remarkable
improvement. In the cases in which the optimal sampling probability outperformed the uniform, the truncation didn’t
yield significant improvement.

5 The Biases and Efficiency Comparison

In this Section, we compare efficiency of the two subsampling estimators and give the analytic formulas of the first
order biases. It is standard that the formulas can be used to constructed bias-corrected estimators, and the details can be
found in textbooks.

5.1 The Biases

Peng, et al. (2024) gave the analytic formulas in Section 2 for the first-order bias of the zero estimators β̂ of parameters
β in general estimating equations Ψn(θ) = 0, and rigorously proved the rate for the reminder. The formula is given,
see (5.1), using Jn = E(Ψn(θ0)

⊗2), Hn = E(Ψ̇n(θ0)), and Gn,k = E(Ψ̈n,k(θ0)) of the components Ψn,k(θ0) of
Ψn(θ0). In our case, θ0 = θ̂ and the expectation is calculated given the data, i.e., E = E∗. Let P ′

k(θ) be the kth
component of P ′(θ) and

...
P k(θ) =: ∂2P ′

k(θ)/∂θ∂θ
t.

The Biases for the Weighted Estimators Noting Jn =: Jn(π) = E∗(Ψ̂∗⊗2
n ), we have

Jn = r−1Σ̂n(π), Hn = E∗(Ψ̇∗
n(θ̂)) =

1

n

n∑
i=1

ġi(θ̂)+λP̈ (θ̂), Gn,k = E∗(Ψ̈∗
n,k(θ̂)) =

1

n

n∑
i=1

g̈i,k(θ̂)+λ
...
P k(θ̂),

where Σ̂n(π) is given in (3.7). The first-order bias for θ̂∗ = (ϕ̂∗, δ̂∗) is then given by

Bias(ϕ̂∗, δ̂∗;π) = r−1H−1
n (b̄n1(π)− 2−1q̄n(π)), (5.1)

where q̄n(π) = (q̄n,k(π)) with q̄n,k(π) = rTr(H−⊤
n Gn,kH

−1
n Jn) = Tr(H−⊤

n Gn,kH
−1
n Σ̂n(π)), and by (3.5),

b̄n1 =: b̄n1(π) = rE∗(Ψ̇∗
n(θ̂)H

−1
n Ψ̂∗

n) =
1

n

n∑
i=1

1

nπi
ġi(θ̂)H

−1
n ĝi + λ

( 1

n

n∑
i=1

ġi(θ̂)
)
H−1

n P ′(θ̂).

11
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As a consequence, the first-order bias for β̂∗ = β∗(ϕ̂∗) is determined by Bias(β̂∗) = Jac(ϕ̂)Bias(ϕ̂∗), where
Jac⊤(ϕ) = (−ϕ, (1 + ∥ϕ∥2)I− ϕ⊗2)(1 + ∥ϕ∥2)−3/2 is the Jacobian matrix of the transformation β = β(ϕ).

Observe that Bias(ϕ̂∗, δ̂∗) is influenced by the sampling distribution π through the form of the reciprocals 1/(nπi). As
a consequence, truncation is necessary for the Â-optimal distribution π̂ in (4.3), whereas truncation may not be needed
for the Ā-optimal distribution π̄ in (4.4).

Let J0,H0,G0 denote the values of Jn,Hn,Gn when λ = 0 (unpenalized), respectively. Then

Jn(π) = J0(π) + λ2J1, Hn = H0 + λH1, Gn,k = G0
k + λG1

k,

where J1 = −Ṗ⊗2(θ̂), H1 = P̈ (θ̂) and G1
k =

...
P k(θ̂). Under suitable conditions, H−1

n = (H0)−1 + λH1
− + o(λ) as

λ tends to zero for some matrix H1
−. It then follows from the trace expression of qn,k that

q̄n,k(π) = q0k(π) + q1k(λ;π) + α(λ, p+ d,π),

where q0k(π) is the value of qn,k when λ = 0, and q1k(λ;π) = Tr(λC1(π)+λ2C2(π)+λ3C3(π)) where Ck =: Ck(π)
are independent of λ, and α(λ, p + d,π) is the remainder. Since each Ck is a product of four square matrices of
dimension p + d − 1, it follows Tr(Ck) = O((p + d)4), so that q1k(λ;π) = (λ + λ2 + λ3)O((p + d)4) and
α(λ, p+ d,π) = o(λ)Ω((p+ d)4) (the asymptotic lower bound). Hence

q̄n(π) = (λ+ λ2 + λ3)O((p+ d)9/2) + o(λ)Ω((p+ d)9/2).

Similarly, by (5.1),
b̄n1(π) = b0

1(π) + λb1
1(π) + o(λ)Ω((p+ d)5/2),

where b1
1(π) = O((p+ d)5/2). Consequently, the first-order bias satisfies

Bias(ϕ̂∗, δ̂∗;π) = r−1H−1
0 (b0

1(π)− 2−1q0(π)) + r−1(λ+ λ4)O((p+ d)11/2) + r−1o(λ)Ω((p+ d)9/2). (5.2)

Note that the first term on the left-hand side is the main term of the first-order bias for the unpenalized estimator
θ̂∗, which is of order of magnitude O(r−1(p + d)11/2). It is celebrated in literature that the optimal rate for the
penalty is λ = O(

√
r−1 log(p+ d)), see, e.g., Bickel, et al. (2009). Consequently, for the main term of the

first-order bias to be negligible at the optimal rate, the dimension p + d must grow with r at such a slow rate that
(p+ d) 11

√
log(p+ d) = o(r3/11).

In the ridge regression, P (θ) = ∥θ∥2, hence
...
P k(θ0) = 0 for all k and qn ≡ 0. Accordingly, b̄n1(π) = b0

1(π) +
λb1

1(π). As b1
1(π) = O((p+ d)5/2), we have

Bias(ϕ̂∗, δ̂∗;π) = r−1H−1
0 b0

1(π) + r−1(λ+ λ2)O((p+ d)5/2) + r−1o(λ(p+ d)5/2), (5.3)

In this case, for the main term of the first-order bias to be negligible at the optimal rate, the dimension p+ d grows at a
faster rate (p+ d) 5

√
log(p+ d) = o(r3/5). The message is that a less smooth penalty function leads to more biased

estimates, high dimension causes tremendous biases, and a bigger penalty λ results in higher biases.

The Biases for the Unweighted Estimators. Similarly, we have

H̃n(π) = E∗( ˙̃Φ∗
n(θ̃)) =

n∑
i=1

πiġi(θ̃) + λP̈ (θ̃), G̃n,k(π) = E∗( ¨̃Ψ∗
n,k(θ̃)) =

n∑
i=1

πig̈i,k(θ̃) + λ
...
P k(θ̃).

Also, J̃n(π) = E∗(Ψ̃∗⊗2
n ) = r−1Σ̃n(π) with Σ̃n(π) given in (3.20). The first-order bias for θ̃∗ = (ϕ̃∗, δ̃∗) is

Bias(ϕ̃∗, δ̃∗;π) = r−1H̃−1
n (π)(b̃n1(π)− 2−1q̃n(π)), (5.4)

where q̃n = (q̃n,k(π)) with

q̃n,k(π) = rTr(H̃−⊤
n G̃n,kH̃

−1
n ) = Tr(H̃−⊤

n (π)G̃n,k(π)H̃
−1
n (π)Σ̃n(π)),

b̃n1(π) = rE∗( ˙̃Φ∗
n(θ̃)H̃

−1
n Φ̃∗

n) =

n∑
i=1

πiġi(θ̃)H̃
−1
n (π)g̃i + λ

( n∑
i=1

πiġi(θ̃)
)
H̃−1

n (π)P ′(θ̃).

As a result, the first-order bias for β̃∗(π) = β̃∗(ϕ̃∗(π)) is Bias(β̃∗)(π) = Jac(ϕ̃(π))Bias(ϕ̃∗(π)).

Unlike the weighted subsampling estimators in which the Bias(ϕ̂∗, δ̂∗) in (5.1) are inversely influenced by the sampling
distribution π, the Bias(ϕ̃∗, δ̃∗) of the unweighted estimators directly depend on π. As a result, truncation for a
sampling distribution π may not be needed, whereas the influence of the penalty λ on the biases is similar to the
aforementioned result for the weighted estimators.

12
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5.2 The Efficiency Comparison

By the A-optimality, we have

Remark 14 The Â(Ā)-optimal sampling distribution π̂ (π̄) given in (4.3) ((4.4)) minimizes the trace norm of
the variance-covariance matirx V̂n(π)(V̄n(π)) of the weighted subsampling estimator θ̂∗, that is, Tr(V̂n(π̂)) ≤
Tr(V̂n(ϖ)) (Tr(V̄n(π̄)) ≤ Tr(V̄n(ϖ))) for any sampling distributionϖ.

To clarify our efficiency comparison of the sampling distributions based on different estimators, we introduce

Definition 1 Let θ̂kn, k = 1, 2 be two consistent estimators of θ0. Given a subsample of size r and for each
k, let θ̂∗kn be a subsampling estimator approximating θ̂kn such that

√
r(θ̂∗kn − θ̂kn) is asymptotically normal in

probability with zero mean and covariance matrix Vkn(θ̂n) = (H−1
knΣknH

−t
kn)(θ̂n) for some invertible matrix

Hkn(θ̂n) and positive definite matrix Σkn(θ̂kn). We say that θ̂∗1n is (asymptotically) more efficient than θ̂∗2n if V̄kn =
E(Hkn(θ0)|X)−1E(Σkn(θ0)|X)E(Hkn(θ0)|X)−t are well defined and invertible such that for any compatible u,

ut(V̄−1
1n − V̄−1

2n )u ≥ 0, n → ∞. (5.5)

Typically, there is a sequence of positive numbers cn (the same cn may mean different values) such that

Σkn(θ̂kn) = E(Σkn(θ0)|X) + oP (cn), Hkn(θ̂kn) = E(Hkn(θ0)|X) + oP (cn), k = 1, 2. (5.6)

Assume that there are constants 0 < l0 ≤ u0 and a neighborhood N0 of θ0 such that Hkn(θ) and Σkn(θ), k = 1, 2
are continuous in θ ∈ N0, and that

l0cn ≤ λminHkn(θ) ≤ λmaxHkn(θ) ≤ u0cn, l0cn ≤ λminΣkn(θ) ≤ λmaxΣkn(θ) ≤ u0cn, θ ∈ N0. (5.7)

These boundedness conditions can be relaxed to bounded in probability. Let Vkn = H−1
kn (θ̂kn)Σkn(θ̂kn)H

−t
kn(θ̂kn).

Then for any unit vector u,
ut(V−1

1n −V−1
2n )u ≥ oP (cn). (5.8)

Recalling Σ̂n in (3.7) and Ĥn therein, we write Σ̂n = Σ̂n(π; θ̂, λ), Ĥn = Ĥn(θ̂, λ), etc. to stress the dependence
on π, λ, etc.. We shall study the case that the penalty λ = λn → 0 as n → ∞. To simplify the presentation, consider
the unpenalized case of λ = 0. Set Σ̂0 = Σ̂0(π) = E(Σ̂n(π;θ0, 0)|X), Σ̃0 = Σ̃0(π) = E(Σ̃n(π;θ0, 0)|X),
Ĥ0 = E(Ĥn(θ0, 0)|X), and H̃0 = H̃0(π) = E(H̃n(π;θ0, 0)|X). We then have

Σ̂n(π;θ0, 0) =
1

n

n∑
i=1

g⊗2
i

nπi
, Σ̃n(π;θ0, 0) =

n∑
i=1

πig
⊗2
i , Ĥn(θ0, 0) =

1

n

n∑
i=1

ġi, H̃n(π;θ0, 0) =

n∑
i=1

πiġi.

To compare V̂0 =: V̂0(π) = Ĥ−1
0 Σ̂0(π)Ĥ

−t
0 and Ṽ0 =: Ṽ0(π) = H̃−1

0 (π)Σ̃0(π)H̃
−t
0 (π), we impose

Ã6 π = π(X) depends on the covariates X = (xi) and is independent of the random errors ϵ = (ϵi).

Remark 15 It is obvious that the uniform and the leverage-scores-based distributions satisfy (Ã6). Let π˜0 be the
distribution π˜ given in (4.5) but with Hn replaced by the conditional expected value given X (i.e. Ĥ0), so that
π˜0 ∝ (Ĥ−1

0 f ′
i). Then π˜0 satisfies (Ã6).

As gi = −2eif
′
i and ġi = 2f ′⊗2

i − 2eif̈i, we get E(g⊗2
i |X) = 4σ2

0f
′⊗2
i and E(ġi|X) = 2f ′⊗2

i . Let Σ̌0 =

n−1
∑n

i=1 g
⊗2
i . Then

E(Σ̌0|X) =
1

n

n∑
i=1

4σ2
0f

′⊗2
i = 2σ2

0Ĥ0, Σ̃0(π) =

n∑
i=1

πi4σ
2
0f

′⊗2
i = 2σ2

0H̃0(π). (5.9)

The first formula is the generalized conditional information matrix equality for the objective function Qn(ϕ) in (2.10)
and the second for the objective Q̃n(ϕ) in (3.14).

Let di =
√
πif

′
i and Dt = (d1, . . . ,dn). Under (Ã6), Σ̃0 = 4σ2

0

∑n
i=1 d

⊗2
i = 4σ2

0D
tD, so that σ2

0Ṽ
−1
0 = DtD by

the second equality in (5.9). Let bi = ḟi/
√
πi and Bt = (b1, . . . ,bn). By (Ã6) again, we get

∑n
i=1 b

⊗2
i = BtB =

13
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4−1σ−2
0 n2Σ̂0. By the first equality in (5.9), we get

∑n
i=1 dib

t
i = DtB = 2−1nĤ0. Let M be the block matrix

consisting column-wise of blocks D and B. Then MtM is semi-positive definite, so that

σ2
0u

t(Ṽ−1
0 − V̂−1

0 )u = ut(DtD− (DtB)(BtB)−1(DtB)t)u ≥ 0, ∀u.
Summarizing the above derivations, we prove

Theorem 5.1 Consider the unpenalized case of λ = 0. Let π be a distribution on data points such that (Ã6) is met.
Suppose that the assumptions in Theorems 1 and 2 hold. Assume that θ̂n and θ̃n(π) are consistent estimators of θ0.
Then the unweighted subsampling estimator θ̃∗n(π) which approximates θ̃n(π) is asymptotically more efficient than the
weighted estimator θ̂∗n(π) which approximates θ̂n.

Consider the penalized case of λ = λn = o(1). Under suitable conditions, θ̃n(π) = θ0+oP (1) and θ̂n = θ0+oP (1).
It then follows from (3.7) and (3.20) that (5.6) is met with cn = 1, that is,

Σ̃n(π) = Σ̃n(π; θ̃n(π), λn) = Σ̃n(π;θ0, 0) + oP (1), H̃n(π) = H̃n(π, θ̃n(π), λn) = H̃n(π,θ0, 0) + oP (1),

Σ̂n(π) = Σ̂n(π; θ̂n, λn) = Σ̂n(π;θ0, 0) + oP (1), Ĥn = Ĥn(θ̂n, λn) = Ĥn(θ0, 0) + oP (1).

Assume that the above quantities are bounded as spelt in (5.7). Assume also that the penalty function P (θ) and its first
and second partial derivatives Ṗ (θ) and P̈ (θ) are bounded in θ ∈ N0. By (5.8), for any π that satisfies (Ã6) and any
unit vector u,

ut
(
Ṽ−1

n (π, θ̃n(π), λn)− V̂−1
n (π, θ̂n, λn)

)
u ≥ oP (1). (5.10)

This exhibits that the unweighted subsampling penalized estimator θ̃∗n is asymptotically more efficient than the weighted
penalized estimator θ̂∗n, which holds on an event whose probability goes to one as n tends to infinity.

6 A Large Simulation Study

In this section, we use two penalized spline SIM (both with p = 12 and p+ d = 26) and three simulated datasets to
numerically investigate the proposed A-optimal Subsampling approach.

The sampling distribution π given in (4.8) was calculated using the Scoring Algorithm 3. For comparison, we also
reported the results of the uniform sampling πi = 1/n based on B = 500 repetitions for the sake of computational ease.
From a practical viewpoint, a large value of B would be needed, see a systematic study of sample size determination in
Zhang, et al. (2023).

Dataset 1. Generate i.i.d. random errors ϵi from the standard normal N(0, 1) and covariates xi from the p-variate
normal N(0,Σ) with Σ = (Σj,k) = (0.5|j−k|) (treated as nonrandom), choose β0 equal to the vector consisting of
(1, 0.001, 0.001) repeated p/3 times normalized to satisfy the constraint (2.4), and generate yi from

yi = (xt
iβ0)

2 exp(xt
iβ0) + σ0ϵi, i = 1, 2, . . . , n = 105, σ0 = 1, p = 12.

Dataset 2. Same as Dataset 1 except for xi’s generated from the normal mixture 0.8N(0,Σ) + 0.2N(0, 10Σ).

Dataset 3. Same as Dataset 1 except for xi’s generated from the multivariate t- distribution with 8 degrees of freedom.

Next, we apply the Subsampling approach to the following two penalized spline SIM.

6.1 The Penalized B-spline SIM

Let t = {ti}κ+1
i=0 be κ interior knots with t0 ≤ t1 ≤ · · · ≤ tκ+1. Define the augmented knots set {ti}κ+m

i=1−m by

t−(m−1) = · · · = t−1 = t0 ≤ t1 ≤ · · · ≤ tκ ≤ tκ+1 = · · · = tκ+m.

Rearrange to get {ti}κ+2m−1
i=0 . For the B-spline of order m (of degree m− 1), define {Bi,j}j=0,1,...,m−1 by recurrence:

Bi0(t) :=

{
1, if ti ≤ t < ti+1,

0, otherwise,
Bi,j+1 = ωi,j+1Bi,j + (1− ωi+1,j+1)Bi+1,j , (6.1)

where ωij(t) = (t− ti)/(ti+j − ti) if ti ̸= ti+j and 0 otherwise. Note that these functions are right-continuous. By
definition, a B-spline of order m (degree N = m− 1) with knots t of length κ+ 2 (i.e. κ interior knots) is a linear
combination of the B-splines BiN , δtB(t) =

∑κ+N
i=0 δiBiN (t), as described in Section 1.
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In the literature, knots are selected as equally spaced quantiles of indices. The larger the number of knots, the more
flexible the curve fitting is to a dataset. To avoid overfitting, O’Sullivan (1986, 1988) proposed the roughness penalty,

P (θ) =

∫ U

L

( κ+N∑
i=0

δiB
′′
iN (s)

)2

ds = δtDδ, (6.2)

where D = D(κ+m)×(κ+m) with Dij =
∫ U

L
B′′

iN (s)B′′
jN (s) ds and U = max(βtxi) and L = min(βtxi). It is well

known that this is equivalent to the second order difference penalty in Eiler and Marx (1996). We shall use the B-spline
SIM with this penalty. Clearly, the Lipschitz condition in A4 is met.

The minimizer θ̂ = (β̂t, δ̂t)t of the objective function in (2.10) satisfies Q̇n(θ̂) = 0. This is a ridge regression, so that
the estimator δ(ϕ) of the model parameter vector δ can be expressed as δ̂(ϕ) = (BtB+nλD)−1By, where B =: B(ϕ)
is an n× d matrix with its ith row equal to Bt(xt

iβ(ϕ)). The optimization is a p− 1 dimensional problem.

The Hessian matrix is usually unavailable as it is computationally expensive to calculate, and the quasi-newton method
is a popular optimization method for approximating the Hessian matrix requiring only gradient information. We use
the quasi-newton method instead of the traditional newton’s method. This is implemented in the BFGS algorithm in
“optim" package in R. See Dennis and Schnabel (1983) for the properties of BFGS.

We employ the cubic spline, i.e., N = 3 (so m = 4), and choose the number of interior knots to be κ = 10, so that
d = 14 and p + d = 26. Cubic splines are commonly used for its simplicity and smoothness properties (Lipschitz
continuity of the second order derivative).

Presample Size Determination Before we proceeded, we investigated how different values of the pre-subsample size
r0 used in the Scoring Algorithm affected the performance of the subsampling estimator. Practically, r0 should be as
small as possible in comparison to the subsample size r << n, while maintaining a reasonable efficiency of the pilot
estimator used in the approximation to the subsampling distributions. To this goal, we choose r0 to be

100(0.1%n), 300(0.3%n), 500(0.5%n), 1000(1%n), 5000(5%n).

The simulations (not reported here) suggested that r0 = 500(0.5%n) was reasonable. Recently, Zhang, et al. (2023)
provided the formulas for sample size determination in the case of parameter vectors.

Empirical Mean Squared Error and Bias For each of a few subsample sizes r, we repeat the Subsampling approach
B = 500 times, and calculate the empirical mean squared error (EMSE) of the subsampling estimator β̂∗(π) under
the A-optimal (opt) and the uniform (unif) subsamplings and their ratio EMSEratio = EMSEopt/EMSEunif , using the
following formula for the EMSE,

EMSE(β̂∗(π)) =
1

B

B∑
b=1

∥β̂∗
(b)(π)− β̂∥

2, (6.3)

where β̂∗
(b)(π) is the subsampling estimator in the bth repetition and β̂ is the full-sample estimator. Here β̂ is used

instead of the true value β0 as β̂∗(π) is an approximation to β̂. The empirical squared bias of β̂∗ for the optimal and
the uniform subsamplings and their ratio Biasratio = Biasopt/Biasunif are also calculated, using the following formula,

Bias(β̂∗(π)) =
∥∥∥ 1

B

B∑
i=1

β̂∗
(b)(π)− β̂

∥∥∥2. (6.4)

In the implementation of the Scoring Algorithm, we chose r0 = 500(.5%n) and calculated an approximation to the A-
optimal distribution in Step 1 and the subsampling estimator in Step 2 for various subsample sizes from r = 100(.1n%)
to r = 5, 000(5n%). For the uniform subsampling, go directly to step 2 with all πi = 1/n.

Reported in Table 1 are the simulated EMSE (and their ratios) of the A-optimal and the uniform subsampling estimators
using Dataset 1. One observes that EMSE was decreasing as r increased until r reached 3, 000(3%n), it became stable.
The EMSE ratios were consistently and significantly less than 1. Also, the bias ratios were less than 1 for all r sizes
considered.

Reported in Table 2 are the amount of time used (including the time for computing the sampling distribution) for
computing the subsampling estimators using the Scoring Algorithm. We summarized the results as follows. First,
the time taken for the smallest subsample size r = 100 in Table 2 was quite lengthy. This is possibly due to the
convergence problem of the numerical solution, or of the number of repetitions. Similar behaviors also appeared in
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other cases. Second, the Subsampling approach saved significant amount of time compared to the full sample estimators
for all the subsample sizes considered, while maintaining the desirable efficiency in terms of EMSE. The A-optimal
subsampling estimator took a bit less time than the uniform subsampling estimator in Step 2 of the Scoring Algorithm,
but needed extra time to calculate the sampling distribution in Step 1, which was 25.67 seconds. The total time needed
for implementing the A-optimal subsampling estimators were still significantly less than 1, 174.33 seconds spent by the
full-sample estimator.

The results for Datasets 2 and 3 are given in Tables 13–14 and 15–16, respectively, and reported in Section 9 as
Supplmentary Material. The results are similar to those for Dataset 1. For example, the EMSE in Table 13 decreased
as r increased until r reached 3%n where the EMSE became stable. The EMSE ratios were consistently less than 1.

Table 1: The simulated EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their
ratios for the penalized B-spline SIM with d = 14, p = 12 and n = 100, 000, using Dataset 1.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
100(0.1%n) 0.007611 0.246294 0.030902 0.000361 0.020007 0.018049
300(0.3%n) 0.000301 0.010877 0.027708 0.000277 0.000419 0.660328
500(0.5%n) 0.000298 0.002183 0.136721 0.000279 0.000363 0.769482
1000(1%n) 0.000290 0.002175 0.133564 0.000275 0.000407 0.676333
3000(3%n) 0.000267 0.002454 0.108674 0.000257 0.000310 0.828419
5000(5%n) 0.000262 0.002598 0.100932 0.000255 0.000277 0.919580

Table 2: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized B-spline
SIM. The full-sample estimator β̂ and π (Step 1) took 1, 174.33s and 25.67s respectively, using Dataset 1.

r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 31.4029 5.9084 6.1495 8.3305 10.5931 9.0264
Timeunif 50.2206 7.5738 7.4472 10.0831 15.9996 15.1435

6.2 The Penalized P-spline SIM

Inroduced by Yu and Ruppert (2002), the mean function m(·) in this model is estimated by a P-spline,

m(u) = δtB(u),

where δ = (δ0, δ1, . . . , δq+K)t is the spline coefficient vector, and the spline basis is the truncated powers given by

B(u) = (1, u, . . . , uq, (u− κ1)
q
+, . . . , (u− κK)q+)

t. (6.5)

Here q is the order of spline basis and K is the number of knots. The knots κ1, κ2, . . . , κK are selected to be the equally
spaced sample quantiles of the index βtx. Note that q > 2 is needed to ensure the second order differentiability of
the spline basis functions. The spline for q = 3 is the cubic spline, which has the Lipschitz-continuous second order
derivatives. For the choice of number of knots K, Ruppert (2002) suggested that 5 to 10 knots are quite adequate for
smooth a monotonic or unimodal regression function.

Yu and Ruppert proposed the residual sum of squares plus the partial ridge penalty as the objective function,

Qn(θ) =
1

n

n∑
i=1

(
yi − δtB(β(ϕ)txi)

)2
+ λδtDδ, (6.6)

where D is a diagonal matrix with the last K diagonal entries equal to 1 and the rest equal to 0. This together with the
spline basis in (6.5) implies that the penalty parameter λ works to avoid overfitting by penalizing the last K elements of
model parameter δ, which forces the fitted curve to bend toward the data points closely through the knots. The penalty
function clearly satisfies the smoothness assumptions.

We chose the cubic spline (i.e., q=3) and the number of knots K = 10, so that d = 14. For Dataset 1, the results are
reported in Tables 3 – 4. One observes that the simulated EMSE values decreased with the increasing r for both the
A-optimal and the uniform subsamplings. However, the EMSE of the A-optimal subsampling estimator decreased much
faster for r ≥ 1000(1%n), and the EMSE ratios were around 0.27, which is substantially smaller than 1, indicating that
the A-optimal subsampling estimators significantly outperformed the uniform subsampling estimators.
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The results for Datasets 2 and 3 are given in Tables 17–18 and 19–20, respectively, and reported in Section 9 as
Supplementary Material. The results are similar to those for Dataset 1.

For all the datasets, the proposed Subsampling approach saved significant amount of time for all the subsmaple
sizes considered. For example, in Table 20, the full-sample estimator took 4, 4891.23 seconds, while the proposed
subsampling estimator took time in between 40 and 58 seconds.

Table 3: The simulated EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their
ratios for the P-spline SIM with d = 14, p = 12, and n = 100, 000, using Dataset 1.
r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio

100(0.1%n) 0.5601926 0.2587949 2.1646196 0.1046895 0.0220413 4.7496934
300(0.3%n) 0.1042635 0.0120707 8.6377527 0.0084708 0.0011116 7.6204553
500(0.5%n) 0.0137123 0.0038783 3.5356218 0.0012988 0.0010875 1.1943317
1000(1%n) 0.0010950 0.0039514 0.2771201 0.0010885 0.0011457 0.9501409
3000(3%n) 0.0011112 0.0041497 0.2677879 0.0011090 0.0008217 1.3495989
5000(5%n) 0.0010887 0.0038210 0.2849246 0.0010871 0.0006551 1.6594412

Table 4: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized P-spline
SIM. The full-sample estimator β̂ and π (Step 1) took 3, 357.25s and 46.51s respectively, using Dataset 1.

r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 4.16990 4.34612 4.65214 4.86108 5.66108 8.76270
Timeunif 3.24740 3.37662 3.40784 5.02662 8.02662 14.72636

7 REAL DATA APPLICATIONS

7.1 The Video Transcoding

Video content is being produced, transported and consumed in more ways and devices than ever. Meanwhile, a seamless
interaction is required between video content producing, transporting and consuming devices. The difference in device
resources, network bandwidth and video representation types result in the necessary requirements for a mechanism for
video content adoption. One such mechanism is called video transcoding. It is a process of converting one compressed
video representation to another. The basic idea of video transcoding is to convert unsupported video formats into
supported ones. Unsupported videos include videos that are not playable by a given device due to lack of format support
or those that require relatively higher system resources than the device can offer. Currently, transcoding is being utilized
for such purposes as bit-rate reduction in order to meet network bandwidth availability, resolution reduction for display
size adoption, temporal transcoding for frame rate reduction, and error resilience transcoding for insuring high quality
of service.

Runtime scheduling of transcoding jobs in multicore and cloud environments is hard as their resource requirements
may not be known before hand, thus the prediction of the transcoding time based on the input and output video
features is in demand. Consider the Youtube video transcoding time dataset from the UCI machine learning repository
(https://archive.ics.uci.edu/ml/datasets.php). It has n = 67, 875 observations and the features include bitrate, framerate,
resolution, codec, number of i frames, and so on, which are treated as predictors, X1, X2, . . . , X19, respectively. Thus
the dimension of the covariate vector is p = 19. The response variable is the total transcoding time.

We fit the data with the penalized B-spline and P-spline SIM. We compute the EMSE and bias of the subsampling
estimator given in (6.3) – (6.4) and compare the Scoring A-optimal subsampling to the uniform via the ratios,
EMSEratio and Biasratio. Again, the Scoring Algorithm 3 is applied. We also compare the amount of time needed for
the subsampling estimator β̂

∗
with that for the full sample estimator β̂. The results are reported in Tables 5–8. Observe

that the EMSE ratios are consistently smaller than 1, indicating that the A-optimal subsampling outperformed the
uniform under both model settings and for all subsample sizes. For example, when r ≥ 2000(3%n), the EMSE ratios
are around 0.2 for the B-spline SIM, which was a substantial improvement. In addition, the Subsampling approach
saved significant amount of time for all the subsmaple sizes considered.
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Table 5: The EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their ratios for the
penalized B-spline SIM with d = 14, p = 19 and n = 67, 875, using the video transcoding dataset.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
200(0.3%n) 1.19111 1.79193 0.66471 0.43577 0.82717 0.52682
350(0.5%n) 1.07367 1.78433 0.60172 0.39044 0.81281 0.48036
680(1%n) 0.69675 1.66869 0.41755 0.31616 0.70462 0.44870

2000(3%n) 0.37747 1.72069 0.21937 0.32746 0.74311 0.44066
3400(5%n) 0.35149 1.64874 0.21319 0.33651 0.68150 0.49377
6800(10%n) 0.34296 1.55243 0.22092 0.33650 0.60342 0.55765

20000(30%n) 0.34001 1.22424 0.27773 0.33906 0.37494 0.90432

Table 6: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized B-spline
SIM. The full-sample estimator β̂ and π (Step 1) took 1, 029.09s and 46.51s respectively, using the video transcoding

dataset.
r 200(.3%n) 350(.5%n) 680(1%n) 2000(3%n) 3400(5%n) 6800(10%n) 20000(30n%)
Timeopt 14.62300 4.09928 2.23788 1.28136 1.39596 2.26600 13.22626
Timeunif 2.69424 1.18566 1.07390 1.74482 2.54884 5.17372 16.17538

Table 7: The EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their ratios for the
P-spline SIM with d = 14, p = 19 and n = 67, 875, using the video transcoding dataset.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
200(0.3%n) 1.52647 1.64479 0.92806 0.63165 0.70591 0.89480
350(0.5%n) 1.39318 1.95854 0.71133 0.52222 0.97817 0.53387
680(1%n) 1.35133 1.75405 0.77041 0.47780 0.77783 0.61427

2000(3%n) 0.93755 1.69648 0.55265 0.22975 0.72307 0.31774
3400(5%n) 0.71443 1.69594 0.42126 0.13802 0.72093 0.19145
6800(10%n) 0.44914 1.46438 0.30671 0.06163 0.53695 0.11478

20000(30%n) 0.08919 1.48001 0.06026 0.01671 0.54788 0.03051

Table 8: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized P-spline
SIM. The full-sample estimator β̂ and π (Step 1) took 1, 029.75s and 11.18s respectively, using the video transcoding

dataset.
r 200(0.3n%) 350(0.5n%) 680(1n%) 2000(3n%) 3400(5n%) 6800(10n%) 20000(30n%)
Timeopt 0.19664 0.22602 0.80252 1.13454 1.44596 2.43032 10.39942
Timeunif 0.19864 0.23694 1.01206 1.57142 2.21236 4.16576 18.06122

7.2 The Gas Sensor

Here we apply the Subsampling approach to the gas sensor array dataset from chemistry
(https://archive.ics.uci.edu/ml/datasets.php). The dataset was collected by exposing p = 16 chemical sensors
to a gas mixture of Ethylene and CO in air at varying concentration levels. For each gas mixture, the signals were
recorded from the sensors. We exclude all the negative readings from each sensors and drop the first 20, 000 data
points which correspond to the system run-in time. After the cleaning, there are totally n = 1, 605, 003 observations.
The objective is to predict the concentration of enthylene with the 16 sensors readings as covariates. Note that the
sensor readings are rescaled with factor 0.001. Due to the memory limitation of desktop computers, we used the super
computer (Big Red II at Indiana University) to handle the full data estimation of the SIM fittings, then compare the
optimal subsampling with the uniform. The A-optimal Scoring Algorithm 3 is used. In the first step, the subsample
size is taken to be r0 = 800(.05%n), while in the second step, the subsample size r ranges from 160(.01%n) to
800(.05%n). Due to the memory storage issue of the big data, we only take small subsample sizes. The results are
reported in Tables 9 - 10 for the penalized B-spline SIM, and Tables 11 – 12 for the penalized P-spline SIM. For
both models, the values of EMSEratio were consistently less than 1, showing the better performance of the optimal
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subsampling over the uniform even when the subsample size was only at most 0.05 percent of the full sample. The
Subsampling approach also saved significant amount of time for all cases considered.

Table 9: The EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their ratios for the
penalized B-spline SIM with d = 14, p = 16 and n = 1, 605, 003, using the gas sensor dataset.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
160(0.01%n) 1.3914 1.4606 0.9526 0.4874 0.5690 0.8566
320(0.02%n) 0.7157 0.8887 0.8054 0.1425 0.2269 0.6281
480(0.03%n) 0.4875 0.6391 0.7628 0.0935 0.1213 0.7707
640(0.04%n) 0.2548 0.2971 0.8576 0.0840 0.0518 1.6213
800(0.05%n) 0.1640 0.2058 0.7968 0.1159 0.0932 1.2439

Table 10: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized B-spline
SIM. The full-sample β̂ and π (first step) took 128, 798s and 645.614s respectively, using the gas sensor dataset.

r 0.01%n 0.02%n 0.03%n 0.04%n 0.05%n
Timeopt 98.8942 148.4920 212.0116 351.6188 927.4393
Timeunif 77.4167 134.1387 166.5673 294.6663 697.4677

Table 11: The EMSE and biases of the A-optimal and the uniform subsampling estimators β̂∗(π) and their ratios for
the penalized P-spline SIM with d = 14, p = 16 and n = 1, 605, 003, using the gas sensor dataset.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
0.01%n 2.0226 2.2017 0.9186 1.0252 1.3364 0.7671
0.02%n 2.0918 2.5296 0.8269 1.1012 1.6506 0.6672
0.03%n 2.0877 2.6886 0.7765 1.1011 1.8544 0.5938
0.04%n 2.0646 2.7964 0.7383 1.0734 2.0118 0.5335
0.05%n 2.1808 2.6073 0.8364 1.2003 1.7441 0.6882

Table 12: The average time (in seconds) taken to calculate the subsampling estimator β̂∗(π) for the penalized P-spline
SIM. The full-sample estimator β̂ and π (Step 1) took 107, 523.9s and 319.458s respectively, using the gas sensor

dataset.
r 0.01%n 0.02%n 0.03%n 0.04%n 0.05%n
Timeopt 64.1687 170.3558 263.0385 538.8632 1673.112
Timeunif 35.9975 133.9499 201.5794 364.5358 1024.964

8 (Ã1)–(Ã5) and Proof of Theorem 1

Ã1 Σ̃n satisfies (A1).

Ã2 H̃n and λ̃n =: λ̃(π) satisfy (A2).

Ã3 With gi(θ) = −2ei(θ)f
′
i ; (θ) = ϕi(θ)− λP ′(θ),

n∑
i=1

πi∥ϕ̃i∥2 = OP ((p+ d)λ̃n),

n∑
i=1

πi∥ġi(θ̃)∥2 = OP ((p+ d)−1rλ̃2
n).

Ã4 η1, ..., ηn and λ, h introduced in (A4) satisfy
n∑

i=1

πiη
2
i + λ2h2 = oP ((p+ d)−2rλ̃3

n).

Ã5 The array zni = s̃−1
n (π)uH̃−1

n (π)ϕ̃i : 1 ≤ i ≤ n, n ≥ 1 with s̃2n = s̃2n(π) = utH̃−1
n (π)Σ̃n(π)H̃

−t
n (π)u

satisfies (A5).

19



A PREPRINT - APRIL 11, 2024

For sequences {Xn}, {Yn} of rv, recall Yn = oP (Xn) if ∥Yn∥/∥Xn∥ converges to zero in probability, and Yn =
OP (Xn) if ∥Yn∥/∥Xn∥ is bounded in probability. We shall write P∗ for the conditional probability given (X,y), and
define oP∗ and OP∗ similarly. Let λmin(A) (λmax(A)) be the minimum (maximum) eigenvalue of matrix A. The
euclidean norm ∥A∥ and the operator (or spectral) norm |A|o of matrixA are defined by

∥A∥2 = Tr(AtA) =
∑
i,j

A2
ij , |A|o = sup

∥u∥=1

|Au| = sup
∥u∥=1

(utAtAu)1/2.

For f : Rp 7→ R, define ḟ(x) = ∂f(x)/∂xt (f ′(x) = ∂f(x)/∂x) to be a row (column) vector. More generally, for
f : Rp 7→ Rq define ḟ(x) = ∂f(x)/∂xt to be a p× q matrix.

We need to quote Theorem 6.3.4 of Ortega and Rheinboldt (1970) below for the proof. For a given set C, its closure
and boundary are, respectively, denoted by C̄ and ∂C.

Lemma 5 Let C be an open, bounded set in Rn and assume that F : C̄ ⊂ Rn → Rn is continuous and satisfies
(x− x0)

tF(x) ≥ 0 for some x0 ∈ C and all x ∈ ∂C. Then F (x) = 0 has a solution in C̄.

Let p = (p1, . . . , pn)
t be a vector with pi ≥ 0. A random vector w = (w1, . . . , wn)

t has a scaled mutilnomial
distribution with parameters r,p,π, written w ∼ smultn(r,p,π), if it has the probability mass function,

P
(
w1 =

k1
rp1

, . . . , wn =
kn
rpn

)
=

r!∏n
i=1 ki!

n∏
i=1

πki
i , ki ≥ 0,

n∑
i=1

ki = r. (8.1)

Two cases of interest are p = π and p = 1, written w ∼ smultn(r,π,π) and ω ∼ smultn(r,1,π), respectively. The
former is utilized in the study of the (weighted) subsampling estimator and the latter in the unweighted estimator.

Using w ∼ smultn(r,π,π), we can express Q∗
n(θϕ) in terms of the full observations (X,y), and obtain a useful

stochastically equivalent representation,

Q∗
n(θϕ) =

1

n

n∑
i=1

wi

(
yi − δtB(β(ϕ)txi)

)2
+ λP (θϕ). (8.2)

Recall λ̂n = λmax(Σ̂n) in (A3), θ = θϕ and Ψ∗
r(θ) in (3.16).

Proof of Theorem 1. Let tn = q1/2r−1/2λ̂
−1/2
n t with q = p+ d for t ∈ Rp+d−1, and let

T∗(t) = q−1/2r1/2λ̂−1/2
n

(
Ψ∗

r(θ̂ + tn)−Ψ∗
r(θ̂)

)
− λ̂−1

n Hn(θ̂)t. (8.3)

For an arbitrary constant c > 0, fix ∥t∥ ≤ c. By assumption, tn = oP (1). Recalling Hn(θ̂) = n−1
∑n

i=1 ġi(θ̂) +

λP̈ (θ̂), Taylor’s theorem implies that there exists t∗n = q1/2r−1/2λ̂
−1/2
n t∗ with ∥t∗∥ ≤ c such that

T∗(t) = q−1/2r1/2λ̂−1/2
n n−1

n∑
i=1

(
wiġi(θ̂ + t∗n) + λP̈ (θ̂ + t∗n)

)
tn − λ̂−1

n Hn(θ̂)t

= (nλ̂n)
−1

( n∑
i=1

(
wiġi(θ̂ + t∗n) + nλP̈ (θ̂ + t∗n)

)
−

n∑
i=1

ġi(θ̂)t− nλP̈ (θ̂)
)
t

= (nλ̂n)
−1

( n∑
i=1

w̄iġi(θ̂) +

n∑
i=1

wi

(
ġi(θ̂ + t∗n)− ġi(θ̂)

)
+ nλ

(
P̈ (θ̂ + t∗n)− P̈ (θ̂)

))
t,

where w̄i = wi − E(wi) = wi − 1. Therefore, by (A4), we have for large r and with large probability,

∥T∗(t)∥2 ≤ 3c2(nλ̂n)
−2

(
∥H̄∗(θ̂)∥2 + qr−1λ̂−1

n

(( n∑
i=1

wiηi
)2

+ n2λ2h2
))

, (8.4)
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where H̄∗(θ) =
∑n

i=1 w̄iġi(θ). Using (3.6), it is not difficult to calculate

rE∗(∥H̄∗(θ̂)∥2) = rTr
(
E∗(

n∑
i=1

n∑
j=1

w̄iw̄j ġi(θ̂)ġj(θ̂)
t
)

= rTr
( n∑

i=1

E∗(w̄2
i )ġi(θ̂)ġi(θ̂)

t +
∑
i̸=j

E∗(w̄iw̄j)ġi(θ̂)ġj(θ̂)
t
)

= rTr
( n∑

i=1

(1− πi)

rπi
ġi(θ̂)ġi(θ̂)

t −
∑
i ̸=j

1

r
ġi(θ̂)ġj(θ̂)

t
)

≤
n∑

i=1

∥ġi(θ̂)∥2

πi
=: An,

E∗
( n∑

i=1

wiηi

)2

= E∗
( n∑

i=1

w̄iηi +
∑
i

ηi

)2

≤ 2

n∑
i=1

1

rπi
η2i + 2

( n∑
i=1

ηi

)2

≤ 2

n∑
i=1

(n+ (rπi)
−1)η2i =: Bn.

Consequently, by the second equality in (A3) and (A4), we have

E∗
(

sup
∥t∥≤c

∥T∗(t)∥2
)
≤ 3c2r−1(nλ̂n)

−2(An + qλ̂−1
n (Bn + n2λ2h2)

)
= oP (q

−1). (8.5)

It thus follows from (8.8) that

ℓ∗(c) =: inf
∥t∥=c

{
q−1/2r1/2λ̂−1/2

n ttΨ∗
r(θ̂ + tn)

}
≥ c2λ̂−1

n λmin(Ĥn)− c sup
∥t∥=c

∥T∗(t)∥ − cq−1/2r1/2λ̂−1/2
n ∥Ψr

∗(θ̂)∥.

By (A2), λ̂−1
n λmin(Ĥn) ≥ b0 > 0 with large probability for large n. Fix an arbitrary K > 0. Using Markov’s

inequality and (3.7), we obtain

P∗(q−1/2r1/2λ̂−1/2
n ∥Ψ̂r

∗∥ > K) ≤ q−1rλ̂−1
n K−2Tr

(
Var∗(Ψ̂r

∗)
)

= q−1rλ̂−1
n n−2K−2

n∑
i=1

1

rπi
∥ϕ̂i∥2 = OP (K

−2),

where the last equality follows from the first equality in (A3). This and (8.10)-(8.11) imply that for large K = c,

P∗(ℓ∗(c) > 0) ≥ 1− P∗( sup
∥t∥=c

∥T∗(t)∥ > b0c/2
)
− P∗(q−1/2r1/2λ̂−1/2

n ∥Ψ̂r
∗∥ > b0c/2

)
= 1− oP (1).

Therefore, by the continuity of Ψ∗
r(θ) on Θ and Lemma 5, there exists t∗ with ∥t∗∥ ≤ c such that

Ψ∗
r(θ̂ + q1/2r−1/2λ̂−1/2

n t∗) = 0.

Let θ̂∗ = θ̂ + q1/2r−1/2λ̂
−1/2
n t∗. Then θ̂∗ minimizes (3.1) and satisfies

P∗(∥q−1/2r1/2λ̂1/2
n (θ̂∗ − θ̂)∥ ≤ c) ≥ 1− oP (1).

This shows (3.21). By (8.10), we also have

T∗(t∗) = oP∗(q−1/2). (8.6)

This and (8.8) yield the desired (3.10). Noting Ψ∗
r(θ̂

∗) = 0, we have

T∗(t∗) = −q−1/2r1/2λ̂−1/2
n Ψ∗

r(θ̂)− λ̂−1/2
n Ĥnq

−1/2r1/2(θ̂∗ − θ̂).
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Consequently, for any unit vector u, we derive

s−1
n r1/2ut(θ̂∗ − θ̂) = −s−1

n utĤ−1
n r1/2Ψ∗

r(θ̂)− s−1
n q1/2λ̂1/2

n utĤ−1
n T∗(t∗)

= −s−1
n utĤ−1

n r1/2Ψ∗
r(θ̂) + oP∗(1),

(8.7)

where we used q1/2T∗(t∗) = oP∗(1) with the help of the inequality,

λ̂
1/2
n ∥utĤ−1

n ∥
sn(u)

≤ λ
1/2
max(Σn)∥utĤ−1

n ∥
λ
1/2
min(Σ̂n)∥utĤ−1

n ∥
=

λ
1/2
max(Σ̂n)

λ
1/2
min(Σ̂n)

≤ B,

where B is a constant from (A1). The asymptotic normality in (3.11) now follows from (8.12), (A5), and Lindeberg-
Feller’s theorem (e.g. Theorem 7.2.1 of Chung, 2001). Specifically, (A5) implies that it holds in probability that the
first term on the last line in (8.12) has an asymptotic standard normal distribution given the data. □

Proof of Theorem 2. Let tn = q1/2r−1/2(λ̂u
n)

−1/2t with q = p+ d for t ∈ Rp+d−1, and let

T∗(t) = q−1/2r1/2(λ̂u
n)

−1/2
(
Ψu∗

r (θ̂u + tn)−Ψu∗
r (θ̂u)

)
− λ̂−u

n Hu
n(θ̂)

ut. (8.8)

For notional brevity, write θ̂ = θ̂u, θ̂∗ = θ̂u∗, wi = ωi, Ψ∗
r(θ) = Ψu∗

r (θ), Hn(θ) = Hu
n(θ), etc. Given an arbitrary

constant c > 0, fix ∥t∥ ≤ c. By assumption, tn = oP (1). Recalling Hn(θ̂) = n−1
∑n

i=1 πiġi(θ̂) + λP̈ (θ̂), Taylor’s
theorem implies that there exists t∗n = q1/2r−1/2λ̂

−1/2
n t∗ with ∥t∗∥ ≤ c such that

T∗(t) = q−1/2r1/2λ̂−1/2
n

n∑
i=1

(
wiġi(θ̂ + t∗n) + λP̈ (θ̂ + t∗n)

)
tn − λ̂−1

n Hn(θ̂)t

= λ̂−1
n

( n∑
i=1

(
wiġi(θ̂ + t∗n) + λP̈ (θ̂ + t∗n)

)
t−

n∑
i=1

πiġi(θ̂)t− λP̈ (θ̂)t
)

= λ̂−1
n

( n∑
i=1

w̄iġi(θ̂) +

n∑
i=1

wi

(
ġi(θ̂ + t∗n)− ġi(θ̂)

)
+ λ

(
P̈ (θ̂ + t∗n)− P̈ (θ̂)

))
t,

where w̄i = wi − E(wi) = wi − πi. Therefore, by (Ã4), we have for large r and with large probability,

∥T∗(t)∥2 ≤ 3c2λ̂−2
n

(
∥H̄∗(θ̂)∥2 + qr−1λ̂−1

n

(( n∑
i=1

wiηi
)2

+ λ2h2
))

, (8.9)

where H̄∗(θ) =
∑n

i=1 w̄iġi(θ). Using (3.19), it is not difficult to calculate

rE∗(∥H̄∗(θ̂)∥2) = rTr
(
E∗(

n∑
i=1

n∑
j=1

w̄iw̄j ġi(θ̂)ġj(θ̂)
t
)

= rTr
( n∑

i=1

E∗(w̄2
i )ġi(θ̂)ġi(θ̂)

t +
∑
i̸=j

E∗(w̄iw̄j)ġi(θ̂)ġj(θ̂)
t
)

=

n∑
i=1

πi(1− πi)∥ġi(θ̂)∥2 − Tr
(∑

i ̸=j

πiπj ġi(θ̂)ġj(θ̂)
t
)

≤
n∑

i=1

πi∥ġi(θ̂)∥2 =: An,

E∗
( n∑

i=1

wiηi

)2

= E∗
( n∑

i=1

w̄iηi +
∑
i

πiηi

)2

≤ 2

n∑
i=1

πiη
2
i /r + 2

( n∑
i=1

πiηi

)2

≤ 4

n∑
i=1

πiη
2
i =: Bn.

Consequently, by the second equality in (Ã3) and (Ã4), we have

E∗
(

sup
∥t∥≤c

∥T∗(t)∥2
)
≤ 3c2r−1λ̂−2

n (An + qλ̂−1
n (Bn + λ2h2)

)
= oP (q

−1). (8.10)
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It thus follows from (8.8) that

ℓ∗(c) =: inf
∥t∥=c

{
q−1/2r1/2λ̂−1/2

n ttΨ∗
r(θ̂ + tn)

}
≥ c2λ̂−1

n λmin(Ĥn)− c sup
∥t∥=c

∥T∗(t)∥ − cq−1/2r1/2λ̂−1/2
n ∥Ψr

∗(θ̂)∥.

By (Ã2), λ̂−1
n λmin(Ĥn) ≥ b0 > 0 with large probability for large n. Fix an arbitrary K > 0. Using Markov’s

inequality and (3.7), we obtain

P∗(q−1/2r1/2λ̂−1/2
n ∥Ψ̂r

∗∥ > K) ≤ q−1rλ̂−1
n K−2Tr

(
Var∗(Ψ̂r

∗)
)

= q−1rλ̂−1
n K−2

n∑
i=1

πi

r
∥ϕ̂i∥2 = OP (K

−2),

where the last equality follows from the first equality in (Ã3). This and (8.10)-(8.11) imply that for large K = c,

P∗(ℓ∗(c) > 0) ≥ 1− P∗( sup
∥t∥=c

∥T∗(t)∥ > b0c/2
)
− P∗(q−1/2r1/2λ̂−1/2

n ∥Ψ̂r
∗∥ > b0c/2

)
= 1− oP (1).

Therefore, by the continuity of Ψ∗
r(θ) on Θ and Lemma 5, there exists t∗ with ∥t∗∥ ≤ c such that

Ψ∗
r(θ̂ + q1/2r−1/2λ̂−1/2

n t∗) = 0.

Let θ̂∗ = θ̂ + q1/2r−1/2λ̂
−1/2
n t∗. Then θ̂∗ minimizes (3.1) and satisfies

P∗(∥q−1/2r1/2λ̂1/2
n (θ̂∗ − θ̂)∥ ≤ c) ≥ 1− oP (1).

This shows (3.21). By (8.10), we also have

T∗(t∗) = oP∗(q−1/2). (8.11)

This and (8.8) yield the desired (3.10). Noting Ψ∗
r(θ̂

∗) = 0, we have

T∗(t∗) = −q−1/2r1/2λ̂−1/2
n Ψ∗

r(θ̂)− λ̂−1/2
n Ĥnq

−1/2r1/2(θ̂∗ − θ̂).
Consequently, for any unit vector u, we derive

s−1
n r1/2ut(θ̂∗ − θ̂) = −s−1

n utĤ−1
n r1/2Ψ∗

r(θ̂)− s−1
n q1/2λ̂1/2

n utĤ−1
n T∗(t∗)

= −s−1
n utĤ−1

n r1/2Ψ∗
r(θ̂) + oP∗(1),

(8.12)

where we used q1/2T∗(t∗) = oP∗(1) with the help of the inequality,

λ̂
1/2
n ∥utĤ−1

n ∥
sn(u)

≤ λ
1/2
max(Σn)∥utĤ−1

n ∥
λ
1/2
min(Σn)∥utĤ−1

n ∥
=

λ
1/2
max(Σn)

λ
1/2
min(Σn)

≤ B,

where B is a constant from (Ã1). The asymptotic normality in (3.11) now follows from (8.12), (Ã5), and Lindeberg-
Feller’s theorem (e.g. Theorem 7.2.1 of Chung, 2001). Specifically, (Ã5) implies that it holds in probability that the
first term on the last line in (8.12) has an asymptotic standard normal distribution given the data. □

9 Supplementary Material

The section contains the tables of the simulation results using Datasets 2 and 3.

Table 13: Same as Table 1 but using Dataset 2: The simulated EMSE and biases of the A-optimal and the uniform
subsampling estimators β̂∗(π) and their ratios for the penalized B-spline SIM with d = 14, p = 12, and n = 100, 000.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
100(0.1%n) 0.7437 0.8841 0.8412 0.2171 0.2273 0.9552
300(0.3%n) 0.3003 0.4929 0.6092 0.0389 0.0847 0.4598
500(0.5%n) 0.1363 0.3776 0.3611 0.0099 0.0615 0.1616
1000(1%n) 0.0555 0.2511 0.2212 0.0061 0.0460 0.1315
3000(3%n) 0.0231 0.1333 0.1730 0.0061 0.0386 0.1571
5000(5%n) 0.0315 0.1221 0.2577 0.0070 0.0364 0.1938
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Table 14: Same as Table 2 but using Dataset 2: The average time (in seconds) taken to calculate the subsampling
estimator β̂∗(π) for the penalized B-spline SIM. The full-sample β̂ and π (Step 1) took 1, 577.28s and 45.43s.

r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 7.2712 8.4250 9.0337 10.6185 17.1332 27.9052
Timeunif 7.9470 8.3083 8.6701 11.3170 21.2636 31.9889

Table 15: Same as Table 1 but using Dataset 3: The simulated EMSE and biases of the A-optimal and the uniform
subsampling estimators β̂∗(π) and their ratios for the B-spline SIM with d = 14, p = 12, and n = 100, 000.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
100(0.1%n) 1.1369 1.1717 0.9703 0.4036 0.7062 0.5715
300(0.3%n) 0.7980 1.0016 0.7967 0.2128 0.7016 0.3033
500(0.5%n) 0.5631 1.0015 0.5622 0.1541 0.7050 0.2186
1000(1%n) 0.4542 0.9873 0.4600 0.1413 0.7172 0.1970
3000(3%n) 0.3491 0.9230 0.3782 0.1367 0.7496 0.1824
5000(5%n) 0.3373 0.8728 0.3865 0.1217 0.6829 0.1781

Table 16: Same as Table 2 but using Dataset 3: The average time (in seconds) taken to calculate the subsampling
estimator β̂∗(π) for the penalized B-spline SIM. The full-sample estimator β̂ and π (Step 1) took 1, 782.5s and 46.03s.

r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 11.1171 7.5731 6.1142 9.2911 26.8115 20.9743
Timeunif 6.9309 7.8669 9.2347 14.0700 45.8354 34.5437

Table 17: Same as Table 3 but using Dataset 2: The simulated EMSE and biases of the A-optimal and the uniform
subsampling estimators β̂∗(π) and their ratios for the penalized P-spline SIM with d = 14, p = 12 and n = 100, 000.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
100(0.1%n) 1.28833 1.28740 1.00072 0.44064 0.43423 1.01477
300(0.3%n) 0.77724 0.96087 0.80889 0.20310 0.27307 0.74374
500(0.5%n) 0.66962 0.79219 0.84528 0.22648 0.20932 1.08198
1000(1%n) 0.49564 0.62578 0.79203 0.20184 0.17232 1.17131
3000(3%n) 0.22898 0.43788 0.52293 0.07403 0.11969 0.61848
5000(5%n) 0.15672 0.38733 0.40462 0.05543 0.10607 0.52257

Table 18: Same as Table 4 but using Dataset 2: The average time (in seconds) taken to calculate the subsampling
estimator β̂∗(π) for the penalized P-spline SIM. The full-sample estimator β̂ and π (Step 1) took 3, 477.2s and 17.71s.

r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 2.35708 3.66070 5.17740 10.57100 57.00426 73.81938
Timeunif 1.99488 3.38116 4.71838 8.18670 35.08972 43.59866

Table 19: Same as Table 3 but using Dataset 3: The simulated EMSE and biases of the A-optimal and the uniform
subsampling estimators β̂∗(π) and their ratios for the penalized P-spline SIM with d = 14, p = 12 and n = 100, 000.

r EMSEopt EMSEunif EMSEratio Biasopt Biasunif Biasratio
100(0.1%n) 0.93231 1.80099 0.51767 0.42049 0.87001 0.48332
300(0.3%n) 0.64008 1.82378 0.35096 0.41384 0.88681 0.46666
500(0.5%n) 0.62072 1.82251 0.34058 0.42452 0.88969 0.47715
1000(1%n) 0.56786 1.87309 0.30317 0.43791 0.94684 0.46250
3000(3%n) 0.54606 1.85944 0.29367 0.41962 0.93361 0.44946
5000(5%n) 0.53593 1.94236 0.27591 0.41756 1.01757 0.41035
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Table 20: Same as Table 4 but using Dataset 3: The average time (in seconds) taken to calculate the subsampling
estimator β̂∗(π) for the penalized P-spline SIM. The full-sample estimator β̂ and π (Step 1) took 4, 4891.23s and

39.83s.
r 100(0.1%n) 300(0.3%n) 500(0.5%n) 1000(1%n) 3000(3%n) 5000(5%n)
Timeopt 1.21686 1.84940 2.54674 4.06008 10.37228 17.91362
Timeunif 1.34630 2.62212 4.22754 7.58898 19.86076 34.76936
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